JP4963373B2 - Fuel cell internal state observation device - Google Patents

Fuel cell internal state observation device Download PDF

Info

Publication number
JP4963373B2
JP4963373B2 JP2006115479A JP2006115479A JP4963373B2 JP 4963373 B2 JP4963373 B2 JP 4963373B2 JP 2006115479 A JP2006115479 A JP 2006115479A JP 2006115479 A JP2006115479 A JP 2006115479A JP 4963373 B2 JP4963373 B2 JP 4963373B2
Authority
JP
Japan
Prior art keywords
fuel cell
internal state
electrodes
resistance value
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006115479A
Other languages
Japanese (ja)
Other versions
JP2007287547A (en
Inventor
孝直 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2006115479A priority Critical patent/JP4963373B2/en
Priority to CA2642868A priority patent/CA2642868C/en
Priority to US12/293,342 priority patent/US20090068506A1/en
Priority to CN2007800098741A priority patent/CN101405906B/en
Priority to DE112007000666T priority patent/DE112007000666T5/en
Priority to PCT/IB2007/000993 priority patent/WO2007119162A1/en
Publication of JP2007287547A publication Critical patent/JP2007287547A/en
Application granted granted Critical
Publication of JP4963373B2 publication Critical patent/JP4963373B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0269Separators, collectors or interconnectors including a printed circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04582Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04641Other electric variables, e.g. resistance or impedance of the individual fuel cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池内部状態を観測する技術に関する。   The present invention relates to a technique for observing an internal state of a fuel cell.

従来から、燃料電池の流路設計評価や故障検知、品質保証といった種々の目的のために燃料電池の内部状態を観測する技術が求められている。たとえば固体高分子型燃料電池では、膜電極接合体が備える電解質の含水率が、燃料電池の内部状態量として重要な意味を有する。電解質の含水率の低下に応じて出力電力が顕著に低下するからである。   2. Description of the Related Art Conventionally, a technique for observing the internal state of a fuel cell has been demanded for various purposes such as fuel cell flow path design evaluation, failure detection, and quality assurance. For example, in a polymer electrolyte fuel cell, the water content of the electrolyte included in the membrane electrode assembly has an important meaning as the internal state quantity of the fuel cell. This is because the output power is significantly reduced according to the decrease in the moisture content of the electrolyte.

特開2003−77515号公報JP 2003-77515 A 特開平9−223512号公報Japanese Patent Laid-Open No. 9-223512 特開2004−152501号公報JP 2004-152501 A

しかし、出力電力の低下は、電解質の含水率が十分であっても起こり得る。通常、電解質に発生した水は、電解質近傍に配置されているガス流路を通して排出されるが、このガス流路の通気が悪いなどの原因によって、流路が水により閉塞される状態が生じる場合がある。このような状態はフラッディングと呼ばれ、流路内をガスが円滑に流れなくなるため、電解質へのガスの供給量が少なくなって出力電力が低下することになる。このようにフラッディングが生じたときには、電解質の含水率が高いにも拘わらず、出力電力が低下することになる。このように、固体高分子型燃料電池において出力低下が発生した場合においては、その原因が電解質の含水率低下に起因するのか、あるいは水過剰によるフラッディングに起因するのか、という分析が困難であるという問題を生じさせていた。この問題は、電解質の含水率低下と、水過剰によるフラッディングとでは、対応すべき措置が正反対であるため重大な問題となっていた。さらに、このような問題は、固体高分子型燃料電池に限られず、「活性化分極」や「拡散分極」、「抵抗分極」といった相違する内部状態量に応じて変化する損失要素を有する燃料電池に共通する課題であった。   However, a decrease in output power can occur even when the moisture content of the electrolyte is sufficient. Normally, the water generated in the electrolyte is discharged through the gas flow path arranged in the vicinity of the electrolyte, but the flow path is blocked by water due to poor ventilation of the gas flow path. There is. Such a state is called flooding, and the gas does not flow smoothly in the flow path, so that the amount of gas supplied to the electrolyte is reduced and the output power is reduced. When flooding occurs in this way, the output power is reduced despite the high water content of the electrolyte. As described above, in the case where a decrease in output occurs in the polymer electrolyte fuel cell, it is difficult to analyze whether the cause is due to a decrease in the water content of the electrolyte or flooding due to excess water. It was causing problems. This problem was a serious problem because the measures to be dealt with were the opposite of the decrease in the moisture content of the electrolyte and the flooding due to excessive water. Furthermore, such a problem is not limited to the polymer electrolyte fuel cell, but a fuel cell having a loss element that changes in accordance with different internal state quantities such as “activation polarization”, “diffusion polarization”, and “resistance polarization”. It was a common problem.

本発明は、上述の課題を解決するためになされたものであり、燃料電池の内部状態を観測する内部状態観測装置において、抵抗分極の状態量の分布状態を観測する技術を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a technique for observing a distribution state of resistance polarization state quantities in an internal state observation device for observing the internal state of a fuel cell. And

本発明は、上述の課題の少なくとも一部を解決するために、電解質と前記電解質を挟持する複数のセパレータとを有する燃料電池の内部状態を観測する内部状態観測装置であって、
前記燃料電池の所定の接触点において、接触によって前記複数のセパレータの1つが有する平面上の複数の領域と導通するための複数の電極と、
前記複数の電極に流れる電流を合流させて同一電位とする合流部と、
前記複数の電極の各々に流れる電極電流を計測するセンサと、
前記合流部と前記複数のセパレータの他の1つとを介して前記燃料電池に接続され、負荷を変動可能に制御する負荷部と、
前記計測された各電極電流に含まれる前記負荷の変動に応じて発生する交流成分を抽出し、前記抽出された各々の交流成分に基づいて前記燃料電池の抵抗分極の状態量の分布を観測する抽出観測部と、
を備えることを特徴とする。
The present invention is an internal state observation device for observing an internal state of a fuel cell having an electrolyte and a plurality of separators sandwiching the electrolyte in order to solve at least a part of the above-described problems,
A plurality of electrodes for conducting electrical connection with a plurality of regions on a plane of one of the plurality of separators by contact at a predetermined contact point of the fuel cell;
A merging portion for merging currents flowing through the plurality of electrodes to have the same potential;
A sensor for measuring an electrode current flowing through each of the plurality of electrodes;
A load unit that is connected to the fuel cell via the merging unit and the other one of the plurality of separators, and controls the load to be variable;
The AC component generated according to the load variation included in each of the measured electrode currents is extracted, and the distribution of state quantities of resistance polarization of the fuel cell is observed based on each of the extracted AC components. An extraction observation unit;
It is characterized by providing.

本発明の計測装置では、測定対象に負荷を変動可能に制御する負荷部が接続されるとともに、この負荷の変動に応じて発生する交流成分を抽出し、抽出された各々の交流成分に基づいて燃料電池の抵抗分極の状態量の分布を観測することができるので、たとえば抵抗分極の観測による電解質の状態の推定を実現することができる。   In the measuring apparatus according to the present invention, a load unit that controls the load to be variable is connected to the measurement target, and an alternating current component that is generated according to the fluctuation of the load is extracted, and based on each extracted alternating current component Since the distribution of the state quantity of resistance polarization of the fuel cell can be observed, it is possible to estimate the state of the electrolyte by observing the resistance polarization, for example.

上記内部状態観測装置において、
前記燃料電池は、膜電極接合体を備え、
前記内部状態観測装置は、前記分離して観測された抵抗分極の状態量の分布状態に基づいて前記膜電極接合体の含水分布状態を推定するようにしても良い。
In the internal state observation apparatus,
The fuel cell includes a membrane electrode assembly,
The internal state observation device may estimate the water content distribution state of the membrane electrode assembly based on the distribution state of the resistance polarization state quantity observed separately.

膜電極接合体は電解質と電極間において電気2重層容量を形成して極めて大きな静電容量を有するので、反応抵抗からの電解質抵抗の分離が容易で顕著な効果を奏することができるという利点を有する。さらに、流路閉塞状態から分離した電解質の含水量推定は、流路閉塞と、電解質の含水量過多と、で対応すべき措置(たとえば流路設計や制御操作)が正反対なので極めて重要である。   Since the membrane / electrode assembly has an extremely large capacitance by forming an electric double layer capacitance between the electrolyte and the electrode, it has an advantage that the electrolyte resistance can be easily separated from the reaction resistance and can have a remarkable effect. . Furthermore, the estimation of the water content of the electrolyte separated from the channel blockage state is extremely important because the measures (for example, channel design and control operation) to be handled by the channel blockage and the excessive water content of the electrolyte are opposite.

上記内部状態観測装置において、
前記抽出観測部は、前記合流部を介することなく直接的に前記燃料電池の出力電圧を測定し、前記出力電圧に基づいて各出力状態における前記燃料電池の抵抗分極の状態量の分布を観測するようにしても良い。
In the internal state observation apparatus,
The extraction observation unit directly measures the output voltage of the fuel cell without passing through the merging unit, and observes the distribution of the state quantity of resistance polarization of the fuel cell in each output state based on the output voltage. You may do it.

こうすれば、合流部を含む計測治具に起因する抵抗を排除して燃料電池の出力を正確に計測できるとともに、燃料電池の種々の出力状態に応じた内部状態の推定を実現することができる。   In this way, it is possible to accurately measure the output of the fuel cell by eliminating the resistance caused by the measuring jig including the junction, and it is possible to estimate the internal state according to various output states of the fuel cell. .

上記内部状態観測装置において、前記燃料電池における前記所定の接触点間の抵抗値である接触点間抵抗値Rbと、前記所定の接触点と前記合流部との間の合成抵抗値である回路抵抗値Rcと、前記計測された各電極電流と、に応じて前記各々の交流成分を計測し、
前記各々の交流成分は、前記所定の接触点間において想定される前記燃料電池の電流出力比の最大値を最大出力比Prとし、許容される誤差をErとするとき、下記の式を満たすように構成されているとともに、前記複数の電極で計測された各電極電流を前記各電極が接触する接触点で出力された電流とみなすように構成されていても良い。ここで、前記許容誤差Er>ABS(1−((前記最大出力比Pr+1)×前記回路抵抗値Rc+前記接触点間抵抗値Rb)/(2×前記回路抵抗値Rc+前記接触点間抵抗値Rb))。ただし、前記ABS(引数)は、前記引数の絶対値を返す関数であることを意味する。
In the internal state observing apparatus, a resistance value Rb between contact points that is a resistance value between the predetermined contact points in the fuel cell, and a circuit resistance that is a combined resistance value between the predetermined contact point and the junction. Measure each AC component according to the value Rc and each measured electrode current,
Each of the AC components satisfies the following equation when the maximum value of the current output ratio of the fuel cell assumed between the predetermined contact points is the maximum output ratio Pr and the allowable error is Er. In addition, each electrode current measured by the plurality of electrodes may be regarded as a current output at a contact point where the electrodes are in contact with each other. Here, the allowable error Er> ABS (1 − ((the maximum output ratio Pr + 1) × the circuit resistance value Rc + the resistance value Rb between the contact points) / (2 × the circuit resistance value Rc + the resistance value Rb between the contact points) )). However, the ABS (argument) means a function that returns the absolute value of the argument.

こうすれば、複数の電極間に流れる漏洩電流に起因する計測誤差を、予め想定された許容範囲内とすることができるので、計測の信頼性を高めることができる。   By so doing, the measurement error due to the leakage current flowing between the plurality of electrodes can be within a presumed allowable range, so that measurement reliability can be improved.

このような構成は、「接触点間抵抗値Rbの増加」と「回路抵抗値Rcの減少」の少なくとも一方によって実現することができる。「接触点間抵抗値Rbの増加」は、たとえば接触点を有する測定対象や測定治具の抵抗値の増加あるいは接触点間ピッチの増加によって実現することができる。一方、「回路抵抗値Rcの減少」は、たとえば後述する計測装置の回路の一体化による接触抵抗の排除や、接触面への液体金属の塗布による接触抵抗の低減によって実現することができる。   Such a configuration can be realized by at least one of “increase in resistance value Rb between contact points” and “decrease in circuit resistance value Rc”. “Increase in resistance value Rb between contact points” can be realized by, for example, increasing the resistance value of a measurement object or a measurement jig having contact points or increasing the pitch between contact points. On the other hand, the “decrease in the circuit resistance value Rc” can be realized, for example, by eliminating contact resistance by integrating circuits of a measuring device described later, or by reducing contact resistance by applying liquid metal to the contact surface.

上記計測装置において、前記回路抵抗値Rcは、前記接触点間抵抗値Rbの5分の1以下となるように構成されており、
前記計測装置は、前記複数の電極で計測された各電極電流を、前記各電極が接触する接触点で出力された電流とみなすような簡易な構成としても良い。
In the measurement device, the circuit resistance value Rc is configured to be equal to or less than one fifth of the resistance value Rb between the contact points,
The measurement device may have a simple configuration in which each electrode current measured by the plurality of electrodes is regarded as a current output at a contact point where each electrode contacts.

こうすれば、複数の電極間に流れる漏洩電流に起因する計測誤差を、電流密度分布において要求される一般的な精度とすることができるので、簡易に計測の信頼性を高めることができる。   In this way, the measurement error caused by the leakage current flowing between the plurality of electrodes can be set to the general accuracy required in the current density distribution, so that the measurement reliability can be easily increased.

上記計測装置において、前記回路抵抗値Rcは、前記測定対象の所定の接触点と前記電極との間の接触抵抗と、前記電極と前記合流部との間の接触抵抗と、の合成抵抗であるとみなして前記電流密度分布を計測するようにしても良い。   In the measurement apparatus, the circuit resistance value Rc is a combined resistance of a contact resistance between the predetermined contact point of the measurement target and the electrode and a contact resistance between the electrode and the junction. Therefore, the current density distribution may be measured.

回路抵抗値Rcはその殆どが接触抵抗で占められるので、こうすれば、接触抵抗の和を回路抵抗値Rcとみなすことによって簡易かつ実用的な計測装置を実現することができる。   Since most of the circuit resistance value Rc is occupied by the contact resistance, a simple and practical measuring device can be realized by regarding the sum of the contact resistances as the circuit resistance value Rc.

上記計測装置において、前記複数の電極および前記合流部は、一体として構成されており、
前記回路抵抗値Rcは、前記所定の接触点と前記電極との間の接触抵抗とみなして前記電流密度分布を計測するようにしても良い。
In the measurement apparatus, the plurality of electrodes and the joining portion are configured as a single unit,
The circuit resistance value Rc may be regarded as a contact resistance between the predetermined contact point and the electrode, and the current density distribution may be measured.

このように、電極と合流部を一体として構成して、電極と合流部との間の接触抵抗を排除することによって回路抵抗値Rcを低減させることができる。   In this way, the circuit resistance value Rc can be reduced by configuring the electrode and the junction part as one body and eliminating the contact resistance between the electrode and the junction part.

上記計測装置において、前記複数の電極の各々と前記測定対象との間に液体金属を塗布することによって、前記複数の電極の各々と前記測定対象との間の接触抵抗が小さくなるように構成されているようにしても良い。   In the measurement apparatus, the liquid resistance is applied between each of the plurality of electrodes and the measurement target, so that the contact resistance between each of the plurality of electrodes and the measurement target is reduced. You may make it.

このように、接触面への液体金属の塗布による接触抵抗の低減によっても回路抵抗値Rcを小さくすることができる。   Thus, the circuit resistance value Rc can also be reduced by reducing the contact resistance by applying liquid metal to the contact surface.

上記計測装置において、前記液体金属は、ガリウムとインジウムとを含む合金であるようにすることが好ましい。ガリウムとインジウムとを含む合金は、毒性が小さく抵抗値も小さいという点でかかる目的に対して好ましい性質を有しているからである。   In the measuring apparatus, the liquid metal is preferably an alloy containing gallium and indium. This is because an alloy containing gallium and indium has favorable properties for this purpose in that it has low toxicity and low resistance.

上記計測装置において、前記測定対象は、反応ガス流路を備えた燃料電池の電池電極であり、
前記複数の電極の各々と前記測定対象との間の各接触面の間の間隔は、前記反応ガス流路の幅方向のピッチの2倍以下となるように構成されているようにしても良い。
In the measurement apparatus, the measurement object is a battery electrode of a fuel cell provided with a reaction gas flow path,
The distance between each contact surface between each of the plurality of electrodes and the measurement target may be configured to be not more than twice the pitch in the width direction of the reaction gas channel. .

こうすれば、電池電極が反応ガス流路に対する圧力の不均一に起因する電池電極と反応ガス流路の接触抵抗の増大を抑制することができる。   If it carries out like this, the increase in the contact resistance of a battery electrode and a reactive gas flow path resulting from the nonuniformity of the pressure with respect to a reactive gas flow path may be suppressed.

上記計測装置において、前記センサを前記複数の電極の軸方向に相互にずらすことによって、前記複数の電極間のピッチを前記センサの前記複数の電極の軸に垂直な方向の大きさよりも小さくするように構成されているようにしても良い。   In the measurement apparatus, the pitch between the plurality of electrodes is made smaller than the size in the direction perpendicular to the plurality of electrode axes of the sensor by shifting the sensors in the axial direction of the plurality of electrodes. It may be configured as follows.

こうすれば、センサの大きさを確保してセンシング精度を維持しつつ、測定点の密度を高くすることができる。   In this way, it is possible to increase the density of measurement points while ensuring the sensor size and maintaining the sensing accuracy.

上記計測装置において、前記測定対象は、反応ガス流路を備えた燃料電池の電池電極であり、
前記複数の電極は、
前記合流部に電流を導く電極ロッドと、
前記測定対象の所定の接触点において、前記電極ロッドの断面積より広い面積で接触するための接触端子と、
を備え、
前記計測装置は、さらに、前記接触端子の各々を一体として前記測定対象に押しつける圧力板を備えるようにしても良い。
In the measurement apparatus, the measurement object is a battery electrode of a fuel cell provided with a reaction gas flow path,
The plurality of electrodes are:
An electrode rod for guiding current to the junction,
At a predetermined contact point of the measurement object, a contact terminal for contacting with an area larger than a cross-sectional area of the electrode rod;
With
The measuring device may further include a pressure plate that presses each of the contact terminals integrally with the measurement target.

こうすれば、電池電極が反応ガス流路の山部に対する圧力の不均一に起因する電池電極と反応ガス流路の接触抵抗や集電電極とセパレータとの間の接触抵抗のばらつきを抑制することができる。   In this way, the battery electrode suppresses the variation in the contact resistance between the battery electrode and the reaction gas channel and the contact resistance between the collector electrode and the separator caused by the non-uniform pressure on the peak of the reaction gas channel. Can do.

上記計測装置において、さらに、
前記圧力板と、前記接触端子の各々の間に付勢部を備えるようにしても良い。
In the above measuring device,
A biasing portion may be provided between the pressure plate and each of the contact terminals.

こうすれば、電池電極と反応ガス流路の間や集電電極とセパレータとの間の接触抵抗のばらつきをさらに抑制して、計測精度を高めることができる。   By so doing, it is possible to further suppress variation in contact resistance between the battery electrode and the reactive gas flow path, or between the current collecting electrode and the separator, and increase the measurement accuracy.

上記計測装置において、さらに、
前記複数の電極は、接触による導通が可能な中央領域と、前記中央領域を囲む閉じた周辺領域とを備えた接触面を有し、
前記周辺領域は、絶縁されているようにしても良い。
In the above measuring device,
The plurality of electrodes have a contact surface including a central region capable of conducting by contact and a closed peripheral region surrounding the central region,
The peripheral region may be insulated.

こうすれば、接触点間隔を小さくしつつ接触点間抵抗値Rbを増加させることができる。   If it carries out like this, resistance value Rb between contact points can be increased, making a contact point space | interval small.

なお、本発明は、電流密度分布計測方法や、この内部状態観測装置を搭載した燃料電池制御装置や燃料電池システムなどの装置その他の種々の態様で実現することができる。   The present invention can be realized in a current density distribution measuring method, a fuel cell control device equipped with the internal state observation device, a fuel cell system, and other various aspects.

以下、本発明の実施の形態について、実施例に基づき以下の順序で説明する。
A.本発明の第1実施例における内部状態観測装置の構成:
B.本発明の第1実施例における状態観測:
C.本発明の第2実施例における状態観測:
D.変形例:
Hereinafter, embodiments of the present invention will be described in the following order based on examples.
A. Configuration of internal state observation apparatus in the first embodiment of the present invention:
B. State observation in the first embodiment of the present invention:
C. State observation in the second embodiment of the present invention:
D. Variations:

A.本発明の第1実施例における内部状態観測装置の構成:
図1は、本発明の第1実施例における内部状態観測装置100と観測対象の概略構成図である。内部状態観測装置100は、複数の測定用電極120と、電流集合板111と、計測治具としてのエンドプレート109およびターミナルプレート107と、電子負荷装置110と、電力密度分布計測装置210とを備えている。内部状態観測装置100は、本実施例では、燃料電池セル201を観測対象としている。
A. Configuration of internal state observation apparatus in the first embodiment of the present invention:
FIG. 1 is a schematic configuration diagram of an internal state observation device 100 and an observation target in the first embodiment of the present invention. The internal state observation device 100 includes a plurality of measurement electrodes 120, a current collecting plate 111, an end plate 109 and a terminal plate 107 as measurement jigs, an electronic load device 110, and a power density distribution measurement device 210. ing. In the present embodiment, the internal state observation apparatus 100 has the fuel cell 201 as an observation target.

燃料電池セル201は、本実施例では、膜電極接合体202と、膜電極接合体202を両側から挟むカーボン製の2つのセパレータ203、204と、を備えた固体高分子型燃料電池である。2つのセパレータ203、204には、膜電極接合体202側に反応ガスが流れるガス流路(図示せず)が形成されている。燃料電池セル201は、かかる反応ガスの反応によって電力を生成し、2つのセパレータ203、204を介して外部に出力する。   In this embodiment, the fuel cell 201 is a polymer electrolyte fuel cell including a membrane electrode assembly 202 and two separators 203 and 204 made of carbon that sandwich the membrane electrode assembly 202 from both sides. The two separators 203 and 204 are formed with gas flow paths (not shown) through which the reaction gas flows on the membrane electrode assembly 202 side. The fuel battery cell 201 generates electric power by the reaction of the reaction gas and outputs it to the outside through the two separators 203 and 204.

電子負荷装置110は、可変の周波数で周期的に負荷を変動させることができるように構成されている。電子負荷装置110は、電流集合板111とターミナルプレート107との間に電気的に接続されている。電力密度分布計測装置210は、2つのセパレータ203、204の間の電位差と、測定用電極120の各々に流れる電流とに基づいて電力密度分布を計測する。各測定用電極120に流れる電流は、各測定用電極120に備えられた電流センサ126の出力に応じて計測される。   The electronic load device 110 is configured to be able to vary the load periodically at a variable frequency. The electronic load device 110 is electrically connected between the current collecting plate 111 and the terminal plate 107. The power density distribution measuring apparatus 210 measures the power density distribution based on the potential difference between the two separators 203 and 204 and the current flowing through each of the measurement electrodes 120. The current flowing through each measurement electrode 120 is measured according to the output of the current sensor 126 provided in each measurement electrode 120.

本実施例では、電力密度分布に基づいて2つのセパレータ203、204に挟まれた膜電極接合体202が有する図示しない電解質の各部分における含水率(あるいは含水分布)が推定される。なお、測定方法詳細については後述する。電力密度分布に基づいて計測しているのは、各電力出力状態における含水分布を推定するためであり、電流密度分布から直接的に含水分布を推定するようにしても良い。   In this embodiment, the water content (or water content distribution) in each part of the electrolyte (not shown) included in the membrane electrode assembly 202 sandwiched between the two separators 203 and 204 is estimated based on the power density distribution. Details of the measurement method will be described later. The measurement is based on the power density distribution in order to estimate the water content distribution in each power output state, and the water content distribution may be estimated directly from the current density distribution.

図2は、セパレータ204の各部分から出力される電流値を測定する複数の測定用電極120の拡大図である。測定用電極120の各々は、ロッド128と、ロッド128の両端に接続された2つの集電電極124、125と、電流センサ126と、を備えている。   FIG. 2 is an enlarged view of a plurality of measurement electrodes 120 that measure the current value output from each portion of the separator 204. Each of the measurement electrodes 120 includes a rod 128, two current collecting electrodes 124 and 125 connected to both ends of the rod 128, and a current sensor 126.

電流センサ126は、本実施例では、磁場の変化を高感度で計測可能なホール素子を利用したセンサである。電流センサ126は、ロッド128に流れる電流に応じて変化する磁場に応じた電気信号を出力する。   In this embodiment, the current sensor 126 is a sensor using a Hall element that can measure a change in magnetic field with high sensitivity. The current sensor 126 outputs an electrical signal corresponding to a magnetic field that changes according to the current flowing through the rod 128.

図3は、本発明の第1実施例における集電電極125のセパレータ204上における配列状態を示す説明図である。本実施例では、集電電極125の間隔は、3mmに設定されている。かかる設定は、集電電極125の間隔がセパレータ204に形成された流路の幅方向のピッチの2倍以下となるように設定することが好ましい。こうすれば、複数の集電電極125による押し付け圧力が各流路に均等に伝わるからである。   FIG. 3 is an explanatory view showing an arrangement state of the collecting electrodes 125 on the separator 204 in the first embodiment of the present invention. In this embodiment, the interval between the collecting electrodes 125 is set to 3 mm. Such a setting is preferably set so that the interval between the collecting electrodes 125 is not more than twice the pitch in the width direction of the flow path formed in the separator 204. This is because the pressing pressure by the plurality of collecting electrodes 125 is uniformly transmitted to each flow path.

図4は、内部状態観測装置100と観測対象の燃料電池セル201とで構成される電気回路の等価回路を示している。この等価回路は、電力を発生させる燃料電池セル201と、抵抗Rbと、接触抵抗Rc1と、配線抵抗Rc2と、電子負荷装置110とで構成されている。抵抗Rbは、隣接する集電電極125の間におけるセパレータ204の内部の抵抗である。接触抵抗Rc1は、集電電極125とセパレータ204の接触に起因して生ずる接触抵抗である。配線抵抗Rc2は、内部状態観測装置100全体の配線抵抗である。   FIG. 4 shows an equivalent circuit of an electric circuit composed of the internal state observation device 100 and the fuel cell 201 to be observed. This equivalent circuit includes a fuel cell 201 that generates electric power, a resistor Rb, a contact resistor Rc1, a wiring resistor Rc2, and an electronic load device 110. The resistance Rb is a resistance inside the separator 204 between the adjacent collector electrodes 125. The contact resistance Rc1 is a contact resistance generated due to the contact between the current collecting electrode 125 and the separator 204. The wiring resistance Rc2 is the wiring resistance of the entire internal state observation apparatus 100.

図5は、説明をわかりやすくするために等価回路の一部を抜き出して示した説明図である。前述のように、本実施例では、膜電極接合体202の各部分Fc1、Fc2における反応ガスの反応状態を推定するためにセパレータ204の各部分から出力される電流値を計測する。かかる計測は、測定用電極120に流れる電流値を測定することによって計測される。具体的には、セパレータ204の各部分で発生した電位v1、v2によって出力される電流値i1、i2は、2つの測定用電極120に流れる電流値i3、i4に流れる電流値を測定することによって計測される。   FIG. 5 is an explanatory diagram showing a part of the equivalent circuit extracted for easy understanding. As described above, in this embodiment, the current value output from each part of the separator 204 is measured in order to estimate the reaction state of the reaction gas in each part Fc1 and Fc2 of the membrane electrode assembly 202. Such measurement is performed by measuring the value of the current flowing through the measurement electrode 120. Specifically, the current values i1 and i2 output by the potentials v1 and v2 generated at the respective portions of the separator 204 are obtained by measuring the current values i3 and i4 flowing through the two measurement electrodes 120. It is measured.

ただし、電流値i1、i2は、それぞれ電流値i3、i4に単純に比例する関係にはない。セパレータ204の内部にも電流が流れるため、電位v2を発生させた部位からも電流値i3が流れる測定用電極120の側に電流が漏洩するからである。かかる漏洩についての定量分析を考慮した計測方法については後述する。   However, the current values i1 and i2 are not simply proportional to the current values i3 and i4, respectively. This is because the current flows also inside the separator 204, so that the current leaks from the portion where the potential v2 is generated to the measurement electrode 120 side where the current value i3 flows. A measurement method that takes into account the quantitative analysis of such leakage will be described later.

図6は、観測対象の燃料電池セル201の一部分Fc1の等価回路の一例を示す説明図である。この等価回路は、説明を分かりやすくするために反応抵抗Rdif1および電気2重層容量Cd1とから構成される単一の並列回路と、この並列回路に直列に接続された電解質抵抗Rsol1とから構成されているものとしている。ここで、「反応抵抗Rdif1」は、膜電極接合体202への反応ガスの供給や排水に起因する損失を表している。「電気2重層容量Cd1」は、膜電極接合体202の活性化分極に起因する損失を表している。「電解質抵抗Rsol1」は、膜電極接合体202が備える図示しない電解質の導電率の逆数である。この導電率は、この電解質の含水率に顕著に依存することが知られている。以下で説明する実施例では、この依存性に基づいて電解質の含水率が推定される。   FIG. 6 is an explanatory diagram showing an example of an equivalent circuit of a part Fc1 of the fuel cell 201 to be observed. This equivalent circuit is composed of a single parallel circuit composed of a reaction resistor Rdif1 and an electric double layer capacitor Cd1 and an electrolyte resistor Rsol1 connected in series to the parallel circuit for easy understanding. It is supposed to be. Here, “reaction resistance Rdif1” represents a loss caused by supply or drainage of the reaction gas to the membrane electrode assembly 202. “Electric double layer capacitance Cd1” represents a loss due to the activation polarization of the membrane electrode assembly 202. “Electrolyte resistance Rsol1” is the reciprocal of the conductivity of the electrolyte (not shown) included in the membrane electrode assembly 202. It is known that this conductivity depends significantly on the water content of this electrolyte. In the examples described below, the moisture content of the electrolyte is estimated based on this dependency.

B.本発明の第1実施例における状態観測:
本実施例では、電解質の各部分における含水率の分布を推定するために電解質抵抗Rsol1が計測される。電解質抵抗Rsol1の計測は、計測可能な抵抗値(燃料電池セル201の一部分Fc1の内部抵抗)から反応抵抗Rdif1を分離することによって行われる。反応抵抗Rdif1の分離は、たとえば電子負荷装置110の負荷を十分に短い所定の周期(すなわち所定の高周波)で変動させるとともに、所定の周期に合わせたバンドパスフィルタによって測定用電極120に流れる電流値から交流成分を抽出することによって行われる。この抽出処理は、電力密度分布計測装置210によって行われる。
B. State observation in the first embodiment of the present invention:
In this embodiment, the electrolyte resistance Rsol1 is measured in order to estimate the moisture content distribution in each part of the electrolyte. The electrolyte resistance Rsol1 is measured by separating the reaction resistance Rdif1 from the measurable resistance value (the internal resistance of a part Fc1 of the fuel cell 201). The reaction resistance Rdif1 is separated, for example, by changing the load of the electronic load device 110 at a sufficiently short predetermined period (that is, a predetermined high frequency), and the value of the current flowing through the measuring electrode 120 by a band-pass filter adjusted to the predetermined period This is done by extracting the AC component from. This extraction process is performed by the power density distribution measuring apparatus 210.

このような分離が可能な理由は、燃料電池の出力電流の交流成分は、周波数が高ければ反応抵抗Rdif1でなく高周波においてインピーダンスが低い電気2重層容量Cd1を流れるので、計測可能な抵抗値(燃料電池セル201の一部分Fc1の内部抵抗)が電解質抵抗Rsol1に近づくからである。特に、膜電極接合体202は、電気2重層容量を構成してファラッド単位の極めて大きな静電容量を有するので好適である。変動負荷の周波数は、周波数を高くするほど電気2重層容量Cd1を少ないインピーダンスで流れるが、過度に高周波とすると内部状態観測装置100の回路と観測対象のインダクタンス成分の影響が発生するので、このようなインダクタンス成分とのトレードオフとして決定することが好ましい。   The reason why such separation is possible is that the AC component of the output current of the fuel cell flows through the electric double layer capacitance Cd1 having a low impedance at a high frequency instead of the reaction resistance Rdif1 if the frequency is high. This is because the internal resistance of a part Fc1 of the battery cell 201 approaches the electrolyte resistance Rsol1. In particular, the membrane electrode assembly 202 is suitable because it constitutes an electric double layer capacitance and has a very large capacitance in Farad units. As the frequency of the variable load increases, the electric double layer capacitance Cd1 flows with less impedance as the frequency increases. However, if the frequency is excessively high, the influence of the circuit of the internal state observation device 100 and the inductance component of the observation target occurs. It is preferable to determine this as a trade-off with a large inductance component.

さらに、本実施例では、電力密度分布計測装置210は、さらに、2つのセパレータ203、204の間の電位差を用いて電力密度分布が測定されるので、観測対象となる燃料電池セル201の種々の出力状態における含水率分布を推定することができる。   Furthermore, in the present embodiment, the power density distribution measuring apparatus 210 further measures the power density distribution using the potential difference between the two separators 203 and 204, so that various fuel cell cells 201 to be observed The moisture content distribution in the output state can be estimated.

このように、第1実施例は、燃料電池セル201の出力電力に含まれる交流電力成分の分布(あるいは交流電流成分)に基づいて膜電極接合体202が有する図示しない電解質の含水分布状態を観測することができる。   As described above, the first embodiment observes the water content distribution state of the electrolyte (not shown) of the membrane electrode assembly 202 based on the distribution (or AC current component) of the AC power component included in the output power of the fuel cell 201. can do.

C.本発明の第2実施例における状態観測:
本発明の第2実施例は、交流電流密度分布からセパレータ204の内部における漏洩電流の影響を以下の解析に基づいて抑制している点で第1実施例と相違する。
C. State observation in the second embodiment of the present invention:
The second embodiment of the present invention is different from the first embodiment in that the influence of the leakage current inside the separator 204 is suppressed based on the following analysis from the alternating current density distribution.

図5の等価回路の回路方程式は以下のとおりである。ここで、回路方程式を分かりやすくするために接触抵抗Rc1と配線抵抗Rc2の合成抵抗を回路抵抗Rcとするとともに、v2>v1と仮定すると、キルヒホッフの法則により以下の式が導出される。
(1)第1式:i1+i2=i3+i4
(2)第2式:i3=i1+i5
(3)第3式:i4=i2−i5
The circuit equation of the equivalent circuit of FIG. 5 is as follows. Here, in order to make the circuit equation easy to understand, assuming that the combined resistance of the contact resistance Rc1 and the wiring resistance Rc2 is the circuit resistance Rc and v2> v1, the following expression is derived by Kirchhoff's law.
(1) First formula: i1 + i2 = i3 + i4
(2) Second formula: i3 = i1 + i5
(3) Third formula: i4 = i2-i5

さらに、各部分の電位に着目すると以下の式が導出される。
(1)第4式:v1=v2−Rb×i5
(2)第5式:v0=v1−Rc×i3
(3)第6式:v0=v2−Rc×i4
Further, when attention is paid to the potential of each part, the following expression is derived.
(1) Fourth formula: v1 = v2−Rb × i5
(2) Formula 5: v0 = v1-Rc × i3
(3) Sixth formula: v0 = v2-Rc × i4

第1式〜第6式の連立方程式を解くと以下の式が導出される。
(1)第7式:i1=i3+Rc/Rb(i3−i4)
(2)第8式:i2=i4+Rc/Rb(−i3+i4)
ここで、電流i1、i2が測定対象の電流であり、電流i3、i4が電流センサ126で計測される電流である。第7式と第8式の第2項がセパレータ204の内部で漏洩する電流に相当している。
When the simultaneous equations of the first to sixth formulas are solved, the following formula is derived.
(1) Formula 7: i1 = i3 + Rc / Rb (i3-i4)
(2) Eighth Formula: i2 = i4 + Rc / Rb (−i3 + i4)
Here, the currents i1 and i2 are currents to be measured, and the currents i3 and i4 are currents measured by the current sensor 126. The second term of the seventh and eighth equations corresponds to the current leaking inside the separator 204.

第2実施例の計測方法は、第7式と第8式の第2項が内部状態観測装置100のハードウェア構成によって調整可能である点に発明者が着目して実現させた実用性の高い計測方法である。本方法によれば、簡易な構成で複数の電極間に流れる漏洩電流に起因する計測誤差を、予め想定された許容範囲内とすることができるという利点を有する。   The measurement method of the second embodiment has high practicality realized by the inventor paying attention to the fact that the second term of the seventh and eighth equations can be adjusted by the hardware configuration of the internal state observation device 100. This is a measurement method. According to this method, there is an advantage that the measurement error caused by the leakage current flowing between the plurality of electrodes can be within the allowable range assumed in advance with a simple configuration.

たとえば許容誤差Erを、電流値i5/電流値i2(図5)として定義するとともに、想定される各測定点の電流出力比の最大値を最大出力比Prとすると、第1式〜第6式の連立方程式を解くことによって以下の第9式を満たすように内部状態観測装置100のハードウェアを構成すれば良いことが分かる。
第9式:許容誤差Er>ABS(1−((最大出力比Pr+1)×回路抵抗値Rc+接触点間抵抗値Rb)/(2×回路抵抗値Rc+接触点間抵抗値Rb))。ただし、ABS(引数)は、引数の絶対値を返す関数であることを意味する。
For example, when the allowable error Er is defined as current value i5 / current value i2 (FIG. 5) and the maximum value of the current output ratio at each measurement point is assumed to be the maximum output ratio Pr, the first to sixth expressions It can be understood that the hardware of the internal state observation device 100 may be configured to satisfy the following ninth equation by solving the simultaneous equations.
Ninth equation: allowable error Er> ABS (1 − ((maximum output ratio Pr + 1) × circuit resistance value Rc + contact point resistance value Rb) / (2 × circuit resistance value Rc + contact point resistance value Rb)). However, ABS (argument) means a function that returns the absolute value of the argument.

このようなハードウェア構成は、「接触点間抵抗値Rbの増加」と「回路抵抗値Rcの減少」の少なくとも一方によって実現することができる。「接触点間抵抗値Rbの増加」は、たとえば接触点を有する測定対象や測定治具の抵抗値の増加あるいは接触点間ピッチの増加によって実現することができる。一方、「回路抵抗値Rcの減少」は、たとえば後述する計測装置の回路の一体化による接触抵抗の排除や、接触面への液体金属の塗布による接触抵抗の低減によって実現することができる。   Such a hardware configuration can be realized by at least one of “increasing resistance value Rb between contact points” and “decreasing circuit resistance value Rc”. “Increase in resistance value Rb between contact points” can be realized by, for example, increasing the resistance value of a measurement object or a measurement jig having contact points or increasing the pitch between contact points. On the other hand, the “decrease in the circuit resistance value Rc” can be realized, for example, by eliminating contact resistance by integrating circuits of a measuring device described later, or by reducing contact resistance by applying liquid metal to the contact surface.

具体的には、「回路抵抗値Rcの減少」は、集電電極125とセパレータ204との間に所定の金属を塗布することによって小さくすることができる。塗布可能な金属としては、インジウムや鉛といった延性金属や、ガリウム・インジウム合金や水銀、ナトリウムといった液体金属とがある。接触抵抗の低減の観点からは、液体金属が好ましく、安全性の観点からはガリウム・インジウム合金のようなガリウムとインジウムとを含む合金が好ましい。「回路抵抗値Rcの減少」は、さらに、複数の測定用電極120と電流集合板111を一体化することによって一体型測定用電極120aを構成して(図7)、これらの間の接触抵抗を排除することによって回路抵抗値Rcを低減させることもできる。   Specifically, the “decrease in the circuit resistance value Rc” can be reduced by applying a predetermined metal between the current collecting electrode 125 and the separator 204. Examples of metals that can be applied include ductile metals such as indium and lead, and liquid metals such as gallium-indium alloys, mercury, and sodium. From the viewpoint of reducing contact resistance, a liquid metal is preferable, and from the viewpoint of safety, an alloy containing gallium and indium such as a gallium-indium alloy is preferable. The “decrease in the circuit resistance value Rc” means that the plurality of measurement electrodes 120 and the current collecting plate 111 are integrated to form an integrated measurement electrode 120a (FIG. 7), and the contact resistance between them. The circuit resistance value Rc can also be reduced by eliminating.

ハードウェア構成時における回路抵抗値Rcの計測は、たとえば前記回路抵抗値Rcは、集電電極125とセパレータ204との間の接触抵抗と、測定用電極120と電流集合板111との間の接触抵抗と、の合成抵抗であるとみなすようにしても良い。回路抵抗値Rcはその殆どが接触抵抗で占められるからである。ただし、測定用電極120と電流集合板111が一体として構成されている場合には、回路抵抗値Rcは、集電電極125とセパレータ204との間の接触抵抗とみなすことができる。   For example, the circuit resistance value Rc is measured by the contact resistance between the collecting electrode 125 and the separator 204 and the contact between the measuring electrode 120 and the current collecting plate 111. You may make it consider that it is the combined resistance of resistance. This is because most of the circuit resistance value Rc is occupied by the contact resistance. However, when the measurement electrode 120 and the current collecting plate 111 are integrally configured, the circuit resistance value Rc can be regarded as a contact resistance between the current collecting electrode 125 and the separator 204.

一方、「接触点間抵抗値Rbの増加」は、セパレータ204を抵抗の大きな材質とする方法やセパレータ204と集電電極125との間にカーボンプレートのような抵抗値の大きなプレートを測定治具として挟む構成や後述の第4変形例における構成が実現可能である。   On the other hand, the “increase in the resistance value Rb between contact points” is a method of using a separator 204 having a large resistance material or a plate having a large resistance value such as a carbon plate between the separator 204 and the collector electrode 125 as a measurement jig. And a configuration in a fourth modification described later can be realized.

なお、さらに、簡易な構成として、回路抵抗値Rcが、接触点間抵抗値Rbの5分の1以下となるようにハードウェアを構成すれば一般的に十分な精度で電流密度分布測定が可能であることを発明者が多数の実測例によって導き出した。   Furthermore, as a simple configuration, if the hardware is configured so that the circuit resistance value Rc is 1/5 or less of the inter-contact point resistance value Rb, current density distribution measurement can generally be performed with sufficient accuracy. The inventor has derived this from many actual measurement examples.

このように、第2実施例では、内部状態観測装置100のハードウェア構成によって漏洩電流を小さくすることができるので、漏洩電流に起因する測定誤差を抑制して簡易に電流密度分布を計測することができるという利点がある。   As described above, in the second embodiment, since the leakage current can be reduced by the hardware configuration of the internal state observation device 100, the measurement error due to the leakage current can be suppressed and the current density distribution can be easily measured. There is an advantage that can be.

D.変形例:
以上、本発明のいくつかの実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、以下のような変形例が可能である。
D. Variations:
As mentioned above, although several embodiment of this invention was described, this invention is not limited to such embodiment at all, and implementation in various aspects is possible within the range which does not deviate from the summary. It is. For example, the following modifications are possible.

D−1.上記実施例では、電流センサ126が測定用電極120の軸方向に同一の位置に配置されているが、たとえば図8に示されるように電流センサ126を測定用電極120の軸方向に相互にずらすことによって、測定用電極120のピッチを電流センサ126の測定用電極120に垂直な方向の大きさよりも小さくするように構成しても良い。こうすれば、センサの大きさを確保してセンシング精度を維持しつつ、測定点の密度を高くすることができる。 D-1. In the above embodiment, the current sensor 126 is disposed at the same position in the axial direction of the measurement electrode 120. For example, the current sensor 126 is shifted in the axial direction of the measurement electrode 120 as shown in FIG. Accordingly, the pitch of the measurement electrodes 120 may be configured to be smaller than the size of the current sensor 126 in the direction perpendicular to the measurement electrodes 120. In this way, it is possible to increase the density of measurement points while ensuring the sensor size and maintaining the sensing accuracy.

D−2.上記実施例では、電流集合板111が複数の測定用電極120を測定対象としての燃料電池セル201(図1)に押し当てているが、たとえば図9に示されるように集電電極125の各々を一体として測定対象に押しつける圧力板130を備えるようにしても良い。こうすれば、複数の測定用電極120の長さの製造公差に起因して生ずる測定用電極120毎の押し当て圧力のバラツキを抑制することができる。 D-2. In the above embodiment, the current collecting plate 111 presses the plurality of measurement electrodes 120 against the fuel cell 201 (FIG. 1) as the measurement object. For example, as shown in FIG. May be provided with a pressure plate 130 that is pressed against the object to be measured. By so doing, it is possible to suppress variations in the pressing pressure for each measuring electrode 120 caused by manufacturing tolerances of the lengths of the plurality of measuring electrodes 120.

なお、圧力板130は、電流集合板111aよりも面圧方向の十分に剛性を大きくするように構成されていればよく、圧力板130を導電体で構成する場合には、集電電極125間の短絡防止のため集電電極125との間に絶縁体130nを装備すれば良い。   Note that the pressure plate 130 only needs to be configured to have sufficiently higher rigidity in the surface pressure direction than the current collecting plate 111a. When the pressure plate 130 is formed of a conductor, the pressure plate 130 is provided between the current collecting electrodes 125. In order to prevent a short circuit, an insulator 130n may be provided between the collector electrode 125 and the collector electrode 125.

また、たとえば図10に示されるように圧力板130と集電電極125との間に付勢のためのバネ125sを備えるようにしても良い。こうすれば、電池電極と反応ガス流路の間の接触抵抗のばらつきをさらに抑制して、計測精度を高めることができる。   Further, for example, as shown in FIG. 10, a spring 125 s for biasing may be provided between the pressure plate 130 and the current collecting electrode 125. By so doing, it is possible to further suppress variation in contact resistance between the battery electrode and the reaction gas flow path, and to improve measurement accuracy.

D−3.上記実施例では、集電電極125の接触面の前面が導通可能に構成されているが、たとえば図11に示されるように構成しても良い。図11は、集電電極125の接触面を示す説明図である。接触面は、絶縁のためのエナメル被膜が施された絶縁領域125n(ハッチングが施された領域)と導通可能な導通領域125cとを有している。導通領域125cには、液体金属が塗布されている。絶縁領域125nは、導通領域125cの周囲を取り囲んだ閉じた領域として構成されている。 D-3. In the above embodiment, the front surface of the contact surface of the current collecting electrode 125 is configured to be conductive, but may be configured as shown in FIG. 11, for example. FIG. 11 is an explanatory view showing a contact surface of the collecting electrode 125. The contact surface has an insulating region 125n (hatched region) provided with an enamel coating for insulation and a conductive region 125c capable of conducting. Liquid metal is applied to the conduction region 125c. The insulating region 125n is configured as a closed region surrounding the conductive region 125c.

この構成では、図12に示されるような経路の漏洩電流を防止することができるので、押しつけ圧力の均一化のために接触点間隔を小さくしつつ、図13に示されるような接触点間抵抗値Rbを増加させることができる。   In this configuration, since the leakage current of the path as shown in FIG. 12 can be prevented, the contact point resistance as shown in FIG. 13 is reduced while the contact point interval is made small in order to equalize the pressing pressure. The value Rb can be increased.

D−4.上記実施例では、燃料電池セル201の単セルが出力する電力密度分布を一方から計測しているが、たとえば図14に示されるように測定用電極120を燃料電池のスタックの中間に挟むようにして構成しても良い。なお、本発明は、内部状態観測方法や、この内部状態観測装置を搭載した燃料電池などの装置その他の種々の態様で実現することができる。 D-4. In the above embodiment, the power density distribution output from one cell of the fuel cell 201 is measured from one side. For example, as shown in FIG. 14, the measurement electrode 120 is sandwiched between the fuel cell stacks. You may do it. Note that the present invention can be realized in an internal state observation method, a device such as a fuel cell equipped with the internal state observation device, and other various aspects.

D−5.上記実施例では、固体高分子型燃料電池が有する電解質の含水率を推定しているが、固体高分子型燃料電池に限られず、「活性化分極」や「拡散分極」、「抵抗分極」といった相違する内部状態パラメータに応じて変化する損失要素を有する燃料電池に適用して燃料電池の抵抗分極の状態量の分布を他の損失(たとえば「活性化分極」や「拡散分極」)から分離して観測することができる。 D-5. In the above embodiment, the moisture content of the electrolyte of the polymer electrolyte fuel cell is estimated, but not limited to the polymer electrolyte fuel cell, such as “activation polarization”, “diffusion polarization”, “resistance polarization”, etc. Applies to fuel cells with loss factors that vary according to different internal state parameters, separating the distribution of resistance polarization state quantities of fuel cells from other losses (eg, “activation polarization” and “diffusion polarization”) Can be observed.

本発明は、一般に、各電極電流に含まれる負荷の変動に応じて発生する交流成分を抽出し、抽出された各々の交流成分に基づいて燃料電池の抵抗分極の状態を表す物理量(すなわち状態量)の分布を観測するように構成されていれば良い。ただし、固体高分子型燃料電池は、電解質と電極間において電気2重層容量を形成して極めて大きな静電容量を有し、さらに含水量や閉塞状態の推定は極めて重要である一方、それぞれに対応すべき措置が正反対なので顕著な効果を奏する。   In general, the present invention extracts an alternating current component generated in accordance with a load variation included in each electrode current, and represents a physical quantity (that is, a state quantity) representing a state of resistance polarization of the fuel cell based on each extracted alternating current component. ) Distribution may be observed. However, the polymer electrolyte fuel cell has an extremely large electrostatic capacity by forming an electric double layer capacity between the electrolyte and the electrode, and it is very important to estimate the water content and the clogged state. Since the measures to be taken are the opposite, it has a remarkable effect.

なお、燃料電池は、一般に、「活性化分極」を表すキャパシタンスと、「拡散分極」を表す抵抗と、「抵抗分極」を表す抵抗とから構成されており、キャパシタンス//抵抗の並列回路を複数直列に接続した回路と、この回路に直列に接続された抵抗とから構成される。この場合にも上述と同様に、変動負荷を使用して「抵抗分極」を「拡散分極」から分離することができる。ここで、「活性化分極」は、燃料電池の電極などが活性化のためのエネルギーを必要とすることに起因する損失である。「抵抗分極」は、電解質抵抗や電解質抵抗と電極の間の抵抗等に起因する損失である。「拡散分極」は、電解質への反応物質の補給や電解質からの生成物の除去等に起因する損失である。   In general, a fuel cell includes a capacitance representing “activation polarization”, a resistance representing “diffusion polarization”, and a resistance representing “resistance polarization”, and a plurality of parallel circuits of capacitance / resistance are provided. It is composed of a circuit connected in series and a resistor connected in series to this circuit. In this case as well, the “resistance polarization” can be separated from the “diffusion polarization” by using a variable load as described above. Here, the “activation polarization” is a loss due to the fact that the electrode of the fuel cell needs energy for activation. “Resistance polarization” is a loss caused by electrolyte resistance, resistance between the electrolyte resistance and the electrode, or the like. “Diffusion polarization” is loss due to supply of reactants to the electrolyte, removal of products from the electrolyte, and the like.

また、特許請求の範囲における「観測する」とは、広い意味を有し、燃料電池の抵抗分極の状態量に強い相関関係を有する計測値(たとえば電流密度分布)を取得することをも含む。   Further, “observing” in the claims has a broad meaning and includes obtaining a measured value (for example, current density distribution) having a strong correlation with the state quantity of resistance polarization of the fuel cell.

本発明の第1実施例における内部状態観測装置100と観測対象の概略構成図。1 is a schematic configuration diagram of an internal state observation device 100 and an observation target in a first embodiment of the present invention. セパレータ204の各部分から出力される電流値を測定する複数の測定用電極120の拡大図。The enlarged view of the several electrode 120 for a measurement which measures the electric current value output from each part of the separator 204. FIG. 本発明の第1実施例における集電電極125のセパレータ204上における配列状態を示す説明図。Explanatory drawing which shows the array state on the separator 204 of the current collection electrode 125 in 1st Example of this invention. 内部状態観測装置100と観測対象の燃料電池セル201とで構成される電気回路の等価回路を示す説明図。Explanatory drawing which shows the equivalent circuit of the electric circuit comprised by the internal state observation apparatus 100 and the fuel cell 201 of observation object. 内部状態観測装置100と観測対象の燃料電池セル201とで構成される電気回路の等価回路の一部を示す説明図。Explanatory drawing which shows a part of equivalent circuit of the electric circuit comprised by the internal state observation apparatus 100 and the fuel cell 201 of observation object. 観測対象の燃料電池セル201の一部分FC1の等価回路の一例を示す説明図。Explanatory drawing which shows an example of the equivalent circuit of some FC1 of the fuel cell 201 of observation object. 複数の測定用電極120に電流集合板111が一体化された一体型測定用電極120aを示す説明図。Explanatory drawing which shows the integrated measurement electrode 120a by which the current collection board 111 was integrated with the several electrode 120 for measurement. 第1変形例における複数の測定用電極120を示す説明図。Explanatory drawing which shows the some electrode 120 for a measurement in a 1st modification. 第2変形例における内部状態観測装置100と観測対象の概略構成図。The schematic block diagram of the internal state observation apparatus 100 and observation object in the 2nd modification. 第3変形例における内部状態観測装置100と観測対象の概略構成図。The schematic block diagram of the internal state observation apparatus 100 and observation object in a 3rd modification. 第4変形例における内部状態観測装置100と観測対象の概略構成図。The internal state observation apparatus 100 in the 4th modification and the schematic block diagram of observation object. 第4変形例で抑制される漏洩電流を示す説明図。Explanatory drawing which shows the leakage current suppressed by the 4th modification. 第4変形例で漏洩電流が抑制された様子を示す説明図。Explanatory drawing which shows a mode that the leakage current was suppressed in the 4th modification. 第5変形例における内部状態観測装置100と観測対象の概略構成図。The internal state observation apparatus 100 in a 5th modification and the schematic block diagram of an observation object.

符号の説明Explanation of symbols

100…内部状態観測装置
107…ターミナルプレート
109…エンドプレート
110…電子負荷装置
111、111a…電流集合板
120、120a…測定用電極
120…測定用電極
124、125…集電電極
126…電流センサ
128…ロッド
130…圧力板
201…燃料電池セル
202…膜電極接合体
203…セパレータ
204…セパレータ
210…電力密度分布計測装置
DESCRIPTION OF SYMBOLS 100 ... Internal state observation apparatus 107 ... Terminal plate 109 ... End plate 110 ... Electronic load apparatus 111, 111a ... Current collecting plate 120, 120a ... Measuring electrode 120 ... Measuring electrode 124, 125 ... Current collecting electrode 126 ... Current sensor 128 DESCRIPTION OF SYMBOLS ... Rod 130 ... Pressure plate 201 ... Fuel cell 202 ... Membrane electrode assembly 203 ... Separator 204 ... Separator 210 ... Power density distribution measuring device

Claims (14)

電解質と前記電解質を挟持する複数のセパレータとを有する燃料電池の内部状態を観測する内部状態観測装置であって、
前記燃料電池の所定の接触点において、接触によって前記複数のセパレータの1つが有する平面上の複数の領域と導通するための複数の電極と、
前記複数の電極に流れる電流を合流させて同一電位とする合流部と、
前記複数の電極の各々に流れる電極電流を計測するセンサと、
前記合流部と前記複数のセパレータの他の1つとを介して前記燃料電池に接続され、可変の周波数で周期的に負荷を変動可能に制御する負荷部と、
前記計測された各電極電流に含まれる前記負荷の変動に応じて発生する交流成分を抽出し、前記抽出された各々の交流成分に基づいて前記燃料電池の抵抗分極の状態量の分布を観測する抽出観測部と、
を備え
前記抽出観測部は、
前記複数の電極で計測された各電極電流を前記各電極が接触する接触点で出力された電流とみなすように構成されており、
前記燃料電池における前記所定の接触点間の抵抗値である接触点間抵抗値Rbと、前記所定の接触点と前記合流部との間の合成抵抗値である回路抵抗値Rcと、前記計測された各電極電流と、に応じて前記各々の交流成分を計測し、
前記所定の接触点間の抵抗と、前記所定の接触点と前記合流部との間の合成抵抗は、前記所定の接触点間において想定される前記燃料電池の電流出力比の最大値を最大出力比Prとし、許容される誤差をErとするとき、下記の式を満たすように構成されていることを特徴とする、内部状態観測装置。
前記許容誤差Er>ABS(1−((前記最大出力比Pr+1)×前記回路抵抗値Rc+前記接触点間抵抗値Rb)/(2×前記回路抵抗値Rc+前記接触点間抵抗値Rb))
ただし、前記ABS(引数)は、前記引数の絶対値を返す関数であることを意味する。
An internal state observation device for observing an internal state of a fuel cell having an electrolyte and a plurality of separators sandwiching the electrolyte,
A plurality of electrodes for conducting electrical connection with a plurality of regions on a plane of one of the plurality of separators by contact at a predetermined contact point of the fuel cell;
A merging portion for merging currents flowing through the plurality of electrodes to have the same potential;
A sensor for measuring an electrode current flowing through each of the plurality of electrodes;
A load unit that is connected to the fuel cell via the merging unit and the other one of the plurality of separators, and controls the load to be variable periodically at a variable frequency ;
The AC component generated according to the load variation included in each of the measured electrode currents is extracted, and the distribution of state quantities of resistance polarization of the fuel cell is observed based on each of the extracted AC components. An extraction observation unit;
Equipped with a,
The extraction observation unit is
Each electrode current measured by the plurality of electrodes is configured to be regarded as a current output at a contact point where each electrode contacts,
The resistance value Rb between contact points, which is a resistance value between the predetermined contact points in the fuel cell, and the circuit resistance value Rc, which is a combined resistance value between the predetermined contact point and the junction, are measured. And measuring each of the alternating current components according to each electrode current,
The resistance between the predetermined contact points and the combined resistance between the predetermined contact points and the junction are the maximum output of the current output ratio of the fuel cell assumed between the predetermined contact points. and the ratio Pr, when the error allowed and Er, characterized that you have been configured so as to satisfy the following equation, the internal state observer.
The allowable error Er> ABS (1 − ((the maximum output ratio Pr + 1) × the circuit resistance value Rc + the resistance value Rb between the contact points) / (2 × the circuit resistance value Rc + the resistance value between the contact points Rb))
However, the ABS (argument) means a function that returns the absolute value of the argument.
請求項1記載の内部状態観測装置であって、
前記燃料電池は、膜電極接合体を備え、
前記抽出観測部は、前記観測された抵抗分極の状態量の分布状態に基づいて前記膜電極接合体の含水分布状態を推定する、内部状態観測装置。
The internal state observation device according to claim 1,
The fuel cell includes a membrane electrode assembly,
The said extraction observation part is an internal state observation apparatus which estimates the moisture content distribution state of the said membrane electrode assembly based on the distribution state of the observed state quantity of resistance polarization.
請求項1または2に記載の内部状態観測装置であって、
前記抽出観測部は、前記合流部を介することなく直接的に前記燃料電池の出力電圧を測定し、前記出力電圧に基づいて各出力状態における前記燃料電池の抵抗分極の状態量の分布を観測する、内部状態観測装置。
The internal state observation device according to claim 1 or 2,
The extraction observation unit directly measures the output voltage of the fuel cell without passing through the merging unit, and observes the distribution of the state quantity of resistance polarization of the fuel cell in each output state based on the output voltage. , An internal state observation device.
請求項記載の内部状態観測装置であって、
前記回路抵抗値Rcは、前記接触点間抵抗値Rbの5分の1以下となるように構成されており、
前記内部状態観測装置は、前記複数の電極で計測された各電極電流を、前記各電極が接触する接触点で出力された電流とみなすように構成されている、内部状態観測装置。
The internal state observation device according to claim 1 ,
The circuit resistance value Rc is configured to be 1/5 or less of the resistance value Rb between the contact points,
The internal state observation device is configured to regard each electrode current measured by the plurality of electrodes as a current output at a contact point where the electrodes are in contact with each other.
請求項1ないし4に記載の内部状態観測装置であって、
前記回路抵抗値Rcは、前記燃料電池の所定の接触点と前記電極との間の接触抵抗と、前記電極と前記合流部との間の接触抵抗と、の合成抵抗であるとみなして前記電流密度分布を計測する、内部状態観測装置。
It is an internal state observation apparatus of Claim 1 thru | or 4 , Comprising:
The circuit resistance value Rc is regarded as a combined resistance of a contact resistance between a predetermined contact point of the fuel cell and the electrode and a contact resistance between the electrode and the junction, and the current An internal state observation device that measures density distribution.
請求項ないしのいずれかに記載の内部状態観測装置であって、
前記複数の電極および前記合流部は、一体として構成されており、
前記回路抵抗値Rcは、前記燃料電池の所定の接触点と前記電極との間の接触抵抗とみなして前記電流密度分布を計測する、内部状態観測装置。
The internal state observation device according to any one of claims 1 to 5 ,
The plurality of electrodes and the merging portion are configured as a single unit,
The internal state observation device that measures the current density distribution by regarding the circuit resistance value Rc as a contact resistance between a predetermined contact point of the fuel cell and the electrode.
請求項1ないしのいずれかに記載の内部状態観測装置であって、
前記複数の電極の各々と前記燃料電池との間に液体金属を塗布することによって、前記複数の電極の各々と前記燃料電池との間の接触抵抗が小さくなるように構成されている、内部状態観測装置。
The internal state observation device according to any one of claims 1 to 6 ,
An internal state in which a contact resistance between each of the plurality of electrodes and the fuel cell is reduced by applying a liquid metal between each of the plurality of electrodes and the fuel cell. Observation device.
請求項記載の内部状態観測装置であって、
前記液体金属は、ガリウムとインジウムとを含む合金である、内部状態観測装置。
The internal state observation device according to claim 7 ,
The internal state observation device, wherein the liquid metal is an alloy containing gallium and indium.
請求項1ないしのいずれかに記載の内部状態観測装置であって、
前記燃料電池は、反応ガス流路を備えた燃料電池の電池電極であり、
前記複数の電極の各々と前記燃料電池との間の各接触面の間の間隔は、前記反応ガス流路の幅方向のピッチの2倍以下となるように構成されている、内部状態観測装置。
The internal state observation device according to any one of claims 1 to 8 ,
The fuel cell is a battery electrode of a fuel cell having a reaction gas flow path,
An internal state observation device configured such that a distance between each contact surface between each of the plurality of electrodes and the fuel cell is not more than twice a pitch in a width direction of the reaction gas flow path. .
請求項1ないしのいずれかに記載の内部状態観測装置であって、
前記センサを前記複数の電極の軸方向に相互にずらすことによって、前記複数の電極間のピッチを前記センサの前記複数の電極の流れる方向に垂直な方向の大きさよりも小さくするように構成されている、内部状態観測装置。
The internal state observation device according to any one of claims 1 to 9 ,
By shifting the sensor relative to each other in the axial direction of the plurality of electrodes, the pitch between the plurality of electrodes is configured to be smaller than the size in the direction perpendicular to the flow direction of the plurality of electrodes of the sensor. An internal state observation device.
請求項1ないし10のいずれかに記載の内部状態観測装置であって、
前記燃料電池は、反応ガス流路を備えた燃料電池の電池電極であり、
前記複数の電極は、
前記合流部に電流を導く電極ロッドと、
前記燃料電池の所定の接触点において、前記電極ロッドの断面積より広い面積で接触するための接触端子と、
を備え、
前記抽出観測部は、さらに、前記接触端子の各々を一体として前記燃料電池に押しつける圧力板を備えている、内部状態観測装置。
It is an internal state observation apparatus in any one of Claims 1 thru | or 10 , Comprising:
The fuel cell is a battery electrode of a fuel cell having a reaction gas flow path,
The plurality of electrodes are:
An electrode rod for guiding current to the junction,
At a predetermined contact point of the fuel cell, a contact terminal for contacting in a larger area than a cross-sectional area of the electrode rod;
With
The extraction observation unit further includes a pressure plate that presses each of the contact terminals against the fuel cell as a unit.
請求項11記載の内部状態観測装置であって、さらに、
前記圧力板と、前記接触端子の各々の間に付勢部を備えている、内部状態観測装置。
The internal state observation device according to claim 11 , further comprising:
An internal state observation device comprising an urging portion between each of the pressure plate and the contact terminal.
請求項1ないし12のいずれかに記載の内部状態観測装置であって、さらに、
前記複数の電極は、接触による導通が可能な中央領域と、前記中央領域を囲む閉じた周辺領域とを備えた接触面を有し、
前記周辺領域は、絶縁されている、内部状態観測装置。
The internal state observation device according to any one of claims 1 to 12 , further comprising:
The plurality of electrodes have a contact surface including a central region capable of conducting by contact and a closed peripheral region surrounding the central region,
The peripheral region is an internal state observation device that is insulated.
電解質と前記電解質を挟持する複数のセパレータとを有する燃料電池の内部状態を観測する状態観測方法であって、
前記燃料電池の所定の接触点において、接触によって前記複数のセパレータの1つが有する平面上の複数の領域と導通するための複数の電極と、前記複数の電極に流れる電流を合流させて同一電位とする合流部とを準備する工程と、
前記複数の電極の各々に流れる電極電流を計測する工程と、
前記合流部と前記複数のセパレータの他の1つとを介して前記燃料電池に接続され、可変の周波数で周期的に負荷を変動可能に制御する工程と、
前記計測された各電極電流に含まれる前記負荷の変動に応じて発生する交流成分を抽出し、前記抽出された各々の交流成分に基づいて前記燃料電池の抵抗分極の状態量の分布を観測する工程と、
を備え
前記燃料電池の分布を観測する工程は、
前記複数の電極で計測された各電極電流を前記各電極が接触する接触点で出力された電流とみなすように構成されており、
前記燃料電池における前記所定の接触点間の抵抗値である接触点間抵抗値Rbと、前記所定の接触点と前記合流部との間の合成抵抗値である回路抵抗値Rcと、前記計測された各電極電流と、に応じて前記各々の交流成分を計測することを含み、
前記所定の接触点間の抵抗と、前記所定の接触点と前記合流部との間の合成抵抗は、前記所定の接触点間において想定される前記燃料電池の電流出力比の最大値を最大出力比Prとし、許容される誤差をErとするとき、下記の式を満たすように構成されていることを特徴とする、状態観測方法。
前記許容誤差Er>ABS(1−((前記最大出力比Pr+1)×前記回路抵抗値Rc+前記接触点間抵抗値Rb)/(2×前記回路抵抗値Rc+前記接触点間抵抗値Rb))
ただし、前記ABS(引数)は、前記引数の絶対値を返す関数であることを意味する。
A state observation method for observing an internal state of a fuel cell having an electrolyte and a plurality of separators sandwiching the electrolyte,
At a predetermined contact point of the fuel cell, a plurality of electrodes that are electrically connected to a plurality of regions on a plane included in one of the plurality of separators by contact, and currents flowing through the plurality of electrodes are merged to have the same potential. A step of preparing a junction to be
Measuring an electrode current flowing through each of the plurality of electrodes;
Connected to the fuel cell via the merging portion and the other one of the plurality of separators, and controlling the load to be variable periodically at a variable frequency ; and
The AC component generated according to the load variation included in each of the measured electrode currents is extracted, and the distribution of state quantities of resistance polarization of the fuel cell is observed based on each of the extracted AC components. Process,
Equipped with a,
The step of observing the distribution of the fuel cell comprises:
Each electrode current measured by the plurality of electrodes is configured to be regarded as a current output at a contact point where each electrode contacts,
The resistance value Rb between contact points, which is a resistance value between the predetermined contact points in the fuel cell, and the circuit resistance value Rc, which is a combined resistance value between the predetermined contact point and the junction, are measured. Measuring each alternating current component in response to each electrode current,
The resistance between the predetermined contact points and the combined resistance between the predetermined contact points and the junction are the maximum output of the current output ratio of the fuel cell assumed between the predetermined contact points. and the ratio Pr, when the error allowed and Er, characterized that you have been configured so as to satisfy the following equation, the state observation method.
The allowable error Er> ABS (1 − ((the maximum output ratio Pr + 1) × the circuit resistance value Rc + the resistance value Rb between the contact points) / (2 × the circuit resistance value Rc + the resistance value between the contact points Rb))
However, the ABS (argument) means a function that returns the absolute value of the argument.
JP2006115479A 2006-04-19 2006-04-19 Fuel cell internal state observation device Expired - Fee Related JP4963373B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006115479A JP4963373B2 (en) 2006-04-19 2006-04-19 Fuel cell internal state observation device
CA2642868A CA2642868C (en) 2006-04-19 2007-04-17 Device and method for monitoring internal state of fuel cell
US12/293,342 US20090068506A1 (en) 2006-04-19 2007-04-17 Device and method for monitoring internal state of fuel cell
CN2007800098741A CN101405906B (en) 2006-04-19 2007-04-17 Device and method for monitoring internal state of fuel cell
DE112007000666T DE112007000666T5 (en) 2006-04-19 2007-04-17 Apparatus and method for monitoring the internal condition of a fuel cell
PCT/IB2007/000993 WO2007119162A1 (en) 2006-04-19 2007-04-17 Device and method for monitoring internal state of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115479A JP4963373B2 (en) 2006-04-19 2006-04-19 Fuel cell internal state observation device

Publications (2)

Publication Number Publication Date
JP2007287547A JP2007287547A (en) 2007-11-01
JP4963373B2 true JP4963373B2 (en) 2012-06-27

Family

ID=38441882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115479A Expired - Fee Related JP4963373B2 (en) 2006-04-19 2006-04-19 Fuel cell internal state observation device

Country Status (6)

Country Link
US (1) US20090068506A1 (en)
JP (1) JP4963373B2 (en)
CN (1) CN101405906B (en)
CA (1) CA2642868C (en)
DE (1) DE112007000666T5 (en)
WO (1) WO2007119162A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270904B2 (en) * 2007-11-05 2013-08-21 鶴賀電機株式会社 Fuel cell characteristics diagnosis method
JP4968113B2 (en) * 2008-03-03 2012-07-04 株式会社デンソー Fuel cell system
JP5228759B2 (en) * 2008-09-29 2013-07-03 日産自動車株式会社 Resistance distribution detection device and fuel cell system using the same
EP2383826B1 (en) 2008-12-26 2018-05-30 Toyota Jidosha Kabushiki Kaisha Device for estimating the water content of a fuel cell and fuel cell system
WO2010073383A1 (en) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 Fuel cell system
WO2010073386A1 (en) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 Fuel cell system
JP5310739B2 (en) 2008-12-26 2013-10-09 トヨタ自動車株式会社 Fuel cell system
WO2010073385A1 (en) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 Fuel cell system
KR101100115B1 (en) 2009-08-17 2011-12-29 서울메트로 a checking system for charge and discharge a storage
US8206862B2 (en) * 2010-03-08 2012-06-26 GM Global Technology Operations LLC Method to measure and communicate cell voltage in a fuel cell stack by embedding measurement units on the plate
JP5488162B2 (en) * 2010-04-23 2014-05-14 株式会社デンソー Current distribution measuring device, abnormality handling method thereof, and fuel cell system
JP5489969B2 (en) * 2010-06-25 2014-05-14 株式会社日本自動車部品総合研究所 Inspection apparatus and inspection method
JP5354480B2 (en) * 2010-12-09 2013-11-27 横河電機株式会社 Fuel cell evaluation system
DE102011088613B3 (en) * 2011-12-14 2012-12-06 Hamburg Innovation Gmbh Fuel cell membrane unit, controllable fuel cell and high pressure electrolysis cell
JP5936915B2 (en) * 2012-05-22 2016-06-22 本田技研工業株式会社 Fuel cell impedance measurement device
JP6115261B2 (en) * 2013-04-02 2017-04-19 株式会社日本自動車部品総合研究所 Fuel cell monitoring device
CA2944366C (en) 2014-03-28 2018-12-04 Nissan Motor Co., Ltd. Laminated battery, separator and connection method of internal resistance measuring device
JP6455363B2 (en) * 2015-08-27 2019-01-23 株式会社Soken Diagnostic equipment
KR102650965B1 (en) * 2018-04-23 2024-03-25 삼성에스디아이 주식회사 Method of estimating battery states
CN110165258A (en) * 2019-05-16 2019-08-23 苏州市华昌能源科技有限公司 It is capable of the fuel cell pack and fuel cell stack system of monitoring current distribution
KR20220060243A (en) * 2020-11-04 2022-05-11 현대자동차주식회사 Apparatus and method for measuring cell pitch of fuel cell stack
FR3123450B1 (en) * 2021-05-26 2023-06-23 Alstom Hydrogene Sas Device for measuring the voltage of one or more electrochemical cell(s)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8804859D0 (en) * 1988-03-01 1988-03-30 Ici Plc Electrode & construction thereof
JPH09223512A (en) 1996-02-16 1997-08-26 Fuji Electric Co Ltd Abnormality monitoring method of fuel cell and device therefor
US6214487B1 (en) * 1999-02-01 2001-04-10 Motorola, Inc. Integral sensors for monitoring a fuel cell membrane and methods of monitoring
JP2003077515A (en) 2001-09-04 2003-03-14 Toyota Central Res & Dev Lab Inc System and method for measuring electrode reaction distribution
JP5119565B2 (en) * 2001-09-12 2013-01-16 株式会社デンソー Fuel cell system
US6828053B2 (en) * 2002-07-26 2004-12-07 General Motors Corporation In-situ resistive current and temperature distribution circuit for a fuel cell
JP4048097B2 (en) * 2002-10-28 2008-02-13 本田技研工業株式会社 Fuel cell current density measurement device
JP4151405B2 (en) * 2002-12-25 2008-09-17 日産自動車株式会社 Fuel cell power generation control device
JP4227814B2 (en) * 2003-02-07 2009-02-18 エスペック株式会社 Battery state diagnosis apparatus and battery state diagnosis method
CN1564011A (en) * 2004-03-17 2005-01-12 清华大学 Single chip voltage monitor for vehicle fuel cell stack
US20050287402A1 (en) * 2004-06-23 2005-12-29 Maly Douglas K AC impedance monitoring of fuel cell stack
US7314680B2 (en) * 2004-09-24 2008-01-01 Hyteon Inc Integrated fuel cell power module
AT500968B8 (en) * 2004-10-07 2007-02-15 Avl List Gmbh METHOD FOR MONITORING THE OPERATING STATE OF A FUEL CELL STACK

Also Published As

Publication number Publication date
WO2007119162A1 (en) 2007-10-25
US20090068506A1 (en) 2009-03-12
JP2007287547A (en) 2007-11-01
CN101405906B (en) 2012-01-04
DE112007000666T5 (en) 2009-02-26
CN101405906A (en) 2009-04-08
CA2642868A1 (en) 2007-10-25
CA2642868C (en) 2012-07-10

Similar Documents

Publication Publication Date Title
JP4963373B2 (en) Fuel cell internal state observation device
EP3124987A1 (en) Impedance measurement device and impedance measurement method
JP5396823B2 (en) Current measuring device
CN104205421A (en) Temperature sensor and method for detecting a temperature of a battery cell
US9660283B2 (en) Current measurement device
CN111525051B (en) Battery core cover plate, battery module and vehicle
JP4459081B2 (en) Current density distribution measuring device
JP6036836B2 (en) Multilayer battery internal resistance measurement circuit
CN105655614B (en) The inspection method of fuel cell
CN106802386A (en) A kind of low sense test equipment with stack bus bar
JP4590965B2 (en) Current measuring device
CN103339807B (en) Power distributor and power measurement method
US8192891B2 (en) Monopolar type membrane electrode assembly having sensing element
JP6715502B1 (en) Impedance distribution measurement method
JP5708219B2 (en) Current measuring device
JP5605213B2 (en) Fuel cell impedance measurement device
CN106981680B (en) Conductive measurement layer for measuring potential differences
JP5488163B2 (en) Current measuring device
JP2004095301A (en) Measuring device for electrode potential of fuel cell
JP5338084B2 (en) Capacitor inspection device and inspection method using the same
CN113721077B (en) Double-protection type wire electrode system for testing strip-shaped insulating surface resistivity
CN220419528U (en) Partition current measuring device and fuel cell with same
TW201241436A (en) Electrochemical test strip and electrochemical test method
KR101556650B1 (en) Cooling Water Diagnosis Apparatus and Production Method thereof
JP5622650B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees