JP6715502B1 - Impedance distribution measurement method - Google Patents

Impedance distribution measurement method Download PDF

Info

Publication number
JP6715502B1
JP6715502B1 JP2019119813A JP2019119813A JP6715502B1 JP 6715502 B1 JP6715502 B1 JP 6715502B1 JP 2019119813 A JP2019119813 A JP 2019119813A JP 2019119813 A JP2019119813 A JP 2019119813A JP 6715502 B1 JP6715502 B1 JP 6715502B1
Authority
JP
Japan
Prior art keywords
current
pair
gas flow
impedance distribution
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019119813A
Other languages
Japanese (ja)
Other versions
JP2021005521A (en
Inventor
貴英 羽田
貴英 羽田
直也 松本
直也 松本
片山 昇
昇 片山
滉基 渡邊
滉基 渡邊
昌幸 板垣
昌幸 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Tokyo Gas Co Ltd
Original Assignee
Tokyo University of Science
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, Tokyo Gas Co Ltd filed Critical Tokyo University of Science
Priority to JP2019119813A priority Critical patent/JP6715502B1/en
Application granted granted Critical
Publication of JP6715502B1 publication Critical patent/JP6715502B1/en
Publication of JP2021005521A publication Critical patent/JP2021005521A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

【課題】電気化学デバイスにおける内部状態の解析精度を向上させることを目的とする。【解決手段】本実施形態に係るインピーダンス分布測定方法は、燃料電池12に備えられた一対の集電板の一方における複数の測定領域に対応して、電流分布センサ18の複数のシャント抵抗をそれぞれ配置すると共に、一対の集電板に対して電圧測定ユニット22を接続する。そして、燃料電池12に周波数を調整しながら電流を供給して、一対の集電板間を流れる電流を電流分布センサ18の複数のシャント抵抗によって測定すると共に、一対の集電板間の電圧を電圧測定ユニットによって測定する。また、測定された電流測定値及び電圧測定値に基づいて、上述の複数の測定領域毎に燃料電池12のインピーダンスを算出し、複数の測定領域のインピーダンス分布を得る。【選択図】図1PROBLEM TO BE SOLVED: To improve the accuracy of analysis of an internal state in an electrochemical device. An impedance distribution measuring method according to the present embodiment is configured such that a plurality of shunt resistors of a current distribution sensor 18 are respectively provided corresponding to a plurality of measurement regions on one of a pair of current collector plates provided in a fuel cell 12. The voltage measuring unit 22 is arranged and connected to the pair of current collecting plates. Then, current is supplied to the fuel cell 12 while adjusting the frequency, the current flowing between the pair of current collectors is measured by the plurality of shunt resistors of the current distribution sensor 18, and the voltage between the pair of current collectors is measured. Measure with a voltage measurement unit. In addition, the impedance of the fuel cell 12 is calculated for each of the plurality of measurement regions described above based on the measured current measurement value and voltage measurement value, and the impedance distribution of the plurality of measurement regions is obtained. [Selection diagram] Figure 1

Description

本発明は、インピーダンス分布測定方法及びインピーダンス分布測定装置に関し、詳しくは、電気化学インピーダンス法を用いた電気化学デバイスに対するインピーダンス分布測定方法及びインピーダンス分布測定装置に関する。 The present invention relates to an impedance distribution measuring method and an impedance distribution measuring apparatus, and more particularly, to an impedance distribution measuring method and an impedance distribution measuring apparatus for an electrochemical device using an electrochemical impedance method.

例えば燃料電池のような電気化学デバイスの集電板に周波数の調整が可能な交流電源を接続し、一対の集電板間を流れる電流と一対の集電板間の電圧から各周波数における電気化学デバイスのインピーダンスを測定して、この測定したインピーダンスから電気化学デバイスの特性を解析する手法(電気化学インピーダンス法:EIS)が知られている。 For example, an AC power source whose frequency can be adjusted is connected to the current collector plate of an electrochemical device such as a fuel cell, and the electrochemical current at each frequency is determined from the current flowing between the pair of current collector plates and the voltage between the pair of current collector plates. A method (electrochemical impedance method: EIS) of measuring the impedance of a device and analyzing the characteristics of the electrochemical device from the measured impedance is known.

例えば、特許文献1に記載される従来技術は、電流計で燃料電池の集電板における特定の1地点を流れる電流を測定し、当該電流計で測定した電流測定値に基づいて燃料電池のインピーダンスを測定し、測定されたインピーダンスのインピーダンススペクトルから得られる情報を燃料電池の等価回路にフィッティングすることで燃料電池の状態を診断するものである。 For example, in the conventional technique described in Patent Document 1, an ammeter measures a current flowing through a specific point on a current collector plate of the fuel cell, and the impedance of the fuel cell is measured based on the measured current value measured by the ammeter. Is measured and the information obtained from the impedance spectrum of the measured impedance is fitted to the equivalent circuit of the fuel cell to diagnose the state of the fuel cell.

特開2012-13618号公報Japanese Unexamined Patent Publication No. 2012-13618

しかしながら、電気化学デバイスの場合、例えば電気化学デバイスを構成する物質内における電子やイオンの移動状態の違い、及び化学反応速度の不均一性等によって、同じ集電板を流れる電流であっても集電板の部分毎にその大きさにばらつきが生じることがある。 However, in the case of the electrochemical device, for example, due to the difference in the movement state of electrons and ions in the substance forming the electrochemical device and the nonuniformity of the chemical reaction rate, even if the current flows through the same current collector plate, The size of the electric plate may vary from part to part.

したがって、従来の電気化学インピーダンス法によって電気化学デバイスの内部状態を解析する場合、電流計を接続した領域の近傍におけるインピーダンスしか測定できないため、例えば電気化学デバイスの1部分が何らかの原因によって局所的に劣化し、当該劣化部分に対応する集電板領域の電流が減少した場合であっても、劣化部分が電流の計測点の近傍でなければ、電気化学デバイスに劣化が発生したことを検出できないことがある。このため、電気化学デバイスにおける内部状態の解析精度を向上させることが望まれている。 Therefore, when the internal state of the electrochemical device is analyzed by the conventional electrochemical impedance method, only the impedance in the vicinity of the region to which the ammeter is connected can be measured, so that, for example, one part of the electrochemical device locally deteriorates due to some cause. However, even when the current in the current collector area corresponding to the deteriorated portion is reduced, it cannot be detected that the electrochemical device is deteriorated unless the deteriorated portion is near the current measurement point. is there. Therefore, it is desired to improve the accuracy of analysis of the internal state of the electrochemical device.

本発明は、上記課題に鑑みてなされたものであり、電気化学デバイスにおける内部状態の解析精度を向上させることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to improve the accuracy of analysis of the internal state in an electrochemical device.

請求項1に記載のインピーダンス分布測定方法は、一対のエンドプレートと、前記一対のエンドプレートの間に配置された一対の集電板と、前記一対の集電板の間に配置された一対のガスフローチャネルと、前記一対のガスフローチャネルの間に配置された膜集電板接合体とを有し、前記一対のガスフローチャネルの少なくとも一方に局所的な劣化が生じている燃料電池のインピーダンス分布を測定する、インピーダンス分布測定方法であって、一方の前記集電板の複数の測定領域に対応する複数の電流測定手段を有する電流分布センサを一方の前記集電板と一方の前記ガスフローチャネルとの間に配置すると共に、電圧測定手段を前記一対のガスフローチャネルに接続し、前記燃料電池に周波数を調整しながら電流を供給して、一方の前記集電板と一方の前記ガスフローチャネルとの間を流れる電流を前記複数の電流測定手段によって測定すると共に、前記一対のガスフローチャネル間の電圧を前記電圧測定手段によって測定し、前記複数の電流測定手段の電流測定値及び前記電圧測定手段の電圧測定値に基づいて、前記複数の測定領域毎に前記燃料電池のインピーダンスを算出し、前記複数の測定領域のインピーダンス分布を得る、ことを含む。 The impedance distribution measuring method according to claim 1 , wherein the pair of end plates, the pair of current collecting plates arranged between the pair of end plates, and the pair of gas flows arranged between the pair of current collecting plates. A channel and a membrane current collector assembly arranged between the pair of gas flow channels, and a fuel cell impedance distribution in which at least one of the pair of gas flow channels is locally degraded. A method for measuring impedance distribution, comprising a current distribution sensor having a plurality of current measuring means corresponding to a plurality of measurement regions of one of the current collector plates, and one of the current collector plates and one of the gas flow channels. And a voltage measuring means is connected to the pair of gas flow channels, and a current is supplied to the fuel cell while adjusting the frequency, and one of the current collector plates and one of the gas flow channels are connected. The current flowing between the two is measured by the plurality of current measuring means, the voltage between the pair of gas flow channels is measured by the voltage measuring means, and the current measurement value of the plurality of current measuring means and the voltage measuring means. Calculating the impedance of the fuel cell for each of the plurality of measurement regions based on the voltage measurement value of, and obtaining the impedance distribution of the plurality of measurement regions.

請求項1に記載のインピーダンス分布測定方法によれば、複数の測定領域のインピーダンス分布が得られるので、集電板の1地点についてのみインピーダンスを測定する場合に比して、燃料電池における内部状態の解析精度を向上させることができる。 According to the impedance distribution measuring method of claim 1, since the impedance distribution of a plurality of measurement regions can be obtained, compared with the case where the impedance is measured only at one point of the current collector, the internal state of the fuel cell The analysis accuracy can be improved.

また、請求項1に記載のインピーダンス分布測定方法によれば、一対のガスフローチャネルに電圧測定ユニットを接続することにより、複数のシャント抵抗の抵抗による影響が排除されるので、一対の集電板に電圧測定ユニットの端子を接続する場合に比して、より正確な電圧測定値を得ることができる。 Further , according to the impedance distribution measuring method of claim 1 , since the influence of the resistance of the plurality of shunt resistors is eliminated by connecting the voltage measuring unit to the pair of gas flow channels, the pair of current collecting plates. A more accurate voltage measurement value can be obtained as compared with the case where the terminal of the voltage measurement unit is connected to.

請求項に記載のインピーダンス分布測定方法は、請求項1に記載のインピーダンス分布測定方法において一方の前記集電板が、第一領域と、前記第一領域よりも前記ガスフローチャネルのガス取込口からの距離が遠い第二領域とを有し、前記第一領域の方が前記第二領域よりも前記電流測定手段の配置密度が高くなるように、前記複数の電流測定手段を配置する方法である。 Impedance distribution measuring method according to claim 2, in the impedance distribution measuring method according to claim 1, one of the collector plate comprises a first region, preparative gas in the gas flow channel than the first region And a plurality of current measuring means arranged so that the first area has a higher density of arrangement of the current measuring means than the second area. Is the way.

請求項に記載のインピーダンス分布測定方法によれば、ガス取込口に近い第一領域の方が、ガス取込口からの距離が遠い第二領域よりも電流測定手段の配置密度を高くするので、劣化の進行が早い第一領域の劣化の状況をより正確に解析することができる。 According to the impedance distribution measuring method of claim 2 , the arrangement density of the current measuring means is made higher in the first region closer to the gas intake port than in the second region far from the gas intake port. Therefore, it is possible to more accurately analyze the deterioration situation in the first region where the deterioration progresses quickly.

請求項に記載のインピーダンス分布測定方法は、請求項1又は請求項2に記載のインピーダンス分布測定方法において、前記インピーダンス分布を前記燃料電池の等価回路にフィッティングして、前記インピーダンス分布を表すマップデータを前記等価回路の構成要素毎に生成する方法である。 The impedance distribution measuring method according to claim 3 is the impedance distribution measuring method according to claim 1 or 2 , wherein the impedance distribution is fitted to an equivalent circuit of the fuel cell , and map data representing the impedance distribution. Is generated for each constituent element of the equivalent circuit.

請求項3に記載のインピーダンス分布測定方法によれば、マップデータに基づいて、等価回路の構成要素毎のインピーダンス分布を表すマップを得ることができる。したがって、等価回路の構成要素毎のインピーダンス分布を視覚的に表すことができるので、燃料電池における内部状態の解析精度をより向上させることができる。 According to the impedance distribution measuring method of the third aspect , it is possible to obtain a map showing the impedance distribution of each constituent element of the equivalent circuit based on the map data. Therefore, the impedance distribution of each constituent element of the equivalent circuit can be visually represented, so that the accuracy of analysis of the internal state of the fuel cell can be further improved.

請求項4に記載のインピーダンス分布測定装置は、一対のエンドプレートと、前記一対のエンドプレートの間に配置された一対の集電板と、前記一対の集電板の間に配置された一対のガスフローチャネルと、前記一対のガスフローチャネルの間に配置された膜集電板接合体とを有し、前記一対のガスフローチャネルの少なくとも一方に局所的な劣化が生じている燃料電池のインピーダンス分布を測定する、インピーダンス分布測定装置であって、一方の前記集電板の複数の測定領域に対応する複数の電流測定手段を有し、一方の前記集電板と一方の前記ガスフローチャネルとの間に配置された電流分布センサと、前記一対のガスフローチャネルに接続された電圧測定手段と、前記燃料電池に周波数を調整しながら電流が供給されて、一方の前記集電板と一方の前記ガスフローチャネルとの間を流れる電流が前記複数の電流測定手段によって測定されると共に、前記一対のガスフローチャネル間の電圧が前記電圧測定手段によって測定された場合に、前記複数の電流測定手段の電流測定値及び前記電圧測定手段の電圧測定値に基づいて、前記複数の測定領域毎に前記燃料電池のインピーダンスを算出して、前記複数の測定領域のインピーダンス分布を得る制御手段と、を備える。 The impedance distribution measuring device according to claim 4 , wherein a pair of end plates, a pair of current collecting plates arranged between the pair of end plates, and a pair of gas flows arranged between the pair of current collecting plates. A channel and a membrane current collector assembly arranged between the pair of gas flow channels, and a fuel cell impedance distribution in which at least one of the pair of gas flow channels is locally degraded. An impedance distribution measuring device for measuring, comprising a plurality of current measuring means corresponding to a plurality of measurement regions of one of the current collector plates, between one of the current collector plates and one of the gas flow channels. A current distribution sensor, a voltage measuring means connected to the pair of gas flow channels, and a current supplied to the fuel cell while adjusting the frequency, and one of the current collector plates and one of the gasses. Currents flowing through the flow channels are measured by the plurality of current measuring means, and currents of the plurality of current measuring means are measured when the voltage between the pair of gas flow channels is measured by the voltage measuring means. Control means for calculating the impedance of the fuel cell for each of the plurality of measurement areas based on the measurement value and the voltage measurement value of the voltage measurement means to obtain an impedance distribution of the plurality of measurement areas.

請求項4に記載のインピーダンス分布測定装置によれば、複数の測定領域のインピーダンス分布が得られるので、集電板の1地点についてのみインピーダンスを測定する場合に比して、燃料電池における内部状態の解析精度を向上させることができる。 According to the impedance distribution measuring device of claim 4 , since the impedance distribution of a plurality of measurement regions can be obtained, compared with the case where the impedance is measured only at one point of the current collector, the internal state of the fuel cell The analysis accuracy can be improved.

また、請求項4に記載のインピーダンス分布測定装置によれば、一対のガスフローチャネルに電圧測定ユニットを接続することにより、複数のシャント抵抗の抵抗による影響が排除されるので、一対の集電板に電圧測定ユニットの端子を接続する場合に比して、より正確な電圧測定値を得ることができる。 Further , according to the impedance distribution measuring device of the fourth aspect , by connecting the voltage measuring unit to the pair of gas flow channels, the influence of the resistance of the plurality of shunt resistors is eliminated, so that the pair of current collecting plates. A more accurate voltage measurement value can be obtained as compared with the case where the terminal of the voltage measurement unit is connected to.

請求項5に記載のインピーダンス分布測定装置は、請求項4に記載のインピーダンス分布測定装置において一方の前記集電板が、第一領域と、前記第一領域よりも前記ガスフローチャネルのガス取込口からの距離が遠い第二領域とを有し、前記複数の電流測定手段が、前記第一領域の方が前記第二領域よりも前記電流測定手段の配置密度が高くなるように配置されている構成である。 Impedance distribution measuring apparatus according to claim 5, in the impedance distribution measuring apparatus according to claim 4, one of the collector plate comprises a first region, preparative gas in the gas flow channel than the first region A second region far from the inlet, the plurality of current measuring means, the first region is arranged so that the arrangement density of the current measuring means is higher than the second region. It has a structure.

請求項5に記載のインピーダンス分布測定装置によれば、ガス取込口に近い第一領域の方が、ガス取込口からの距離が遠い第二領域よりも電流測定手段の配置密度が高いので、劣化の進行が早い第一領域の劣化の状況をより正確に解析することができる。 According to the impedance distribution measuring device of claim 5 , since the first region near the gas intake port has a higher arrangement density of the current measuring means than the second region far from the gas intake port. Therefore, it is possible to analyze the deterioration situation of the first region where the deterioration progresses quickly more accurately.

請求項6に記載のインピーダンス分布測定装置は、請求項4又は請求項5に記載のインピーダンス分布測定装置において、前記制御手段が、前記インピーダンス分布を前記燃料電池の等価回路にフィッティングして、前記インピーダンス分布を表すマップデータを前記等価回路の構成要素毎に生成する構成である。 The impedance distribution measuring device according to claim 6 is the impedance distribution measuring device according to claim 4 or 5, wherein the control means fits the impedance distribution to an equivalent circuit of the fuel cell , The configuration is such that map data representing a distribution is generated for each constituent element of the equivalent circuit.

請求項6に記載のインピーダンス分布測定方法によれば、マップデータに基づいて、等価回路の構成要素毎のインピーダンス分布を表すマップを得ることができる。したがって、等価回路の構成要素毎のインピーダンス分布を視覚的に表すことができるので、燃料電池における内部状態の解析精度をより向上させることができる。 According to the impedance distribution measuring method of the sixth aspect , it is possible to obtain a map representing the impedance distribution of each constituent element of the equivalent circuit based on the map data. Therefore, the impedance distribution of each constituent element of the equivalent circuit can be visually represented, so that the accuracy of analysis of the internal state of the fuel cell can be further improved.

以上詳述したように、本発明によれば、電気化学デバイスにおける内部状態の解析精度を向上させることができる。 As described in detail above, according to the present invention, it is possible to improve the accuracy of analysis of the internal state of the electrochemical device.

本実施形態に係るインピーダンス分布測定装置を用いて燃料電池のインピーダンス分布を測定する測定系の一例を示すブロック図である。It is a block diagram showing an example of a measuring system which measures impedance distribution of a fuel cell using the impedance distribution measuring device concerning this embodiment. 図1の電流分布センサが装着された燃料電池の断面図である。FIG. 3 is a cross-sectional view of a fuel cell equipped with the current distribution sensor of FIG. 1. 図2の集電板における複数の領域毎にインピーダンスを測定して得られたインピーダンス分布を説明する図である。It is a figure explaining the impedance distribution obtained by measuring impedance for every several area|region in the current collector of FIG. 図1の燃料電池の等価回路の構成要素毎に集電板上のインピーダンス分布をマップ表示した図である。FIG. 2 is a diagram in which an impedance distribution on a current collector plate is displayed as a map for each component of the equivalent circuit of the fuel cell of FIG. 1.

以下、図面を参照しながら、本発明の一実施形態について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図1には、本実施形態に係るインピーダンス分布測定装置10を用いて燃料電池12のインピーダンス分布を測定する測定系の一例が示されている。図1では、一例として、燃料電池12のインピーダンス分布を測定する例を示しているが、インピーダンス分布の測定対象は、燃料電池12に限られず、例えば水電気分解装置等の他の電気化学デバイスでもよい。以下、一例として、インピーダンス分布の測定対象を燃料電池12とした場合について説明する。 FIG. 1 shows an example of a measurement system for measuring the impedance distribution of the fuel cell 12 using the impedance distribution measuring device 10 according to this embodiment. In FIG. 1, an example of measuring the impedance distribution of the fuel cell 12 is shown as an example, but the measurement target of the impedance distribution is not limited to the fuel cell 12 and may be another electrochemical device such as a water electrolyzer. Good. In the following, as an example, the case where the fuel cell 12 is the measurement target of the impedance distribution will be described.

燃料電池12は、「電気化学デバイス」の一例であり、水素と空気を取り込み、空気に含まれる酸素と水素の電気化学反応により得られる電気エネルギーを供給(出力)する。この燃料電池12には、直流負荷14及び交流電源16が並列に接続されている。また、後に図2を用いて詳述するが、燃料電池12の一対の集電板間には、電流分布センサ18が挿入されており、この電流分布センサ18には、複数の電流測定ユニット20が接続されている。また、燃料電池12の一対の集電板に対しては電圧測定ユニット22が接続されている。 The fuel cell 12 is an example of an “electrochemical device”, which takes in hydrogen and air and supplies (outputs) electric energy obtained by an electrochemical reaction between oxygen and hydrogen contained in the air. A DC load 14 and an AC power supply 16 are connected in parallel to the fuel cell 12. Further, as will be described later in detail with reference to FIG. 2, a current distribution sensor 18 is inserted between the pair of current collecting plates of the fuel cell 12, and the current distribution sensor 18 has a plurality of current measuring units 20. Is connected. A voltage measuring unit 22 is connected to the pair of current collector plates of the fuel cell 12.

この複数の電流測定ユニット20、電圧測定ユニット22及び交流電源16には、制御ユニット24が接続されている。制御ユニット24は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を有する電気回路によって構成される。この制御ユニット24の動作については、後述するインピーダンス分布測定方法と併せて説明する。この制御ユニット24の動作は、CPUがROMに記憶されたプログラムを実行することにより実現される。 A control unit 24 is connected to the plurality of current measuring units 20, voltage measuring units 22 and AC power supply 16. The control unit 24 is composed of, for example, an electric circuit including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). The operation of the control unit 24 will be described together with the impedance distribution measuring method described later. The operation of the control unit 24 is realized by the CPU executing the program stored in the ROM.

上述の電流分布センサ18、複数の電流測定ユニット20、電圧測定ユニット22及び制御ユニット24は、本実施形態に係るインピーダンス分布測定装置10を構成している。電圧測定ユニット22は、「電圧測定手段」の一例であり、制御ユニット24は、「制御手段」の一例である。 The current distribution sensor 18, the plurality of current measurement units 20, the voltage measurement unit 22, and the control unit 24 described above configure the impedance distribution measurement device 10 according to the present embodiment. The voltage measuring unit 22 is an example of “voltage measuring means”, and the control unit 24 is an example of “control means”.

図2に示されるように、燃料電池12は、より具体的には、一対のエンドプレート32A、32Bと、一対の集電板34A、34B(カソード電極及びアノード電極)と、一対のガスフローチャネル36(セパレータ)と、膜集電板接合体38(Membrane Electrode Assembly:MEA)を有する積層構造体である。一対の集電板34A、34Bは、一対のエンドプレート32A、32Bの間に配置されており、一対のガスフローチャネル36は、一対の集電板34A、34Bの間に配置されている。また、膜集電板接合体38は、一対のガスフローチャネル36の間に配置されている。 As shown in FIG. 2, more specifically, the fuel cell 12 includes a pair of end plates 32A and 32B, a pair of current collectors 34A and 34B (cathode electrode and anode electrode), and a pair of gas flow channels. A laminated structure having 36 (separator) and a membrane current collector assembly 38 (Membrane Electrode Assembly: MEA). The pair of current collecting plates 34A and 34B are arranged between the pair of end plates 32A and 32B, and the pair of gas flow channels 36 are arranged between the pair of current collecting plates 34A and 34B. Further, the membrane current collector assembly 38 is arranged between the pair of gas flow channels 36.

電流分布センサ18は、一例として、一方の集電板34A(カソード電極)と一対のガスフローチャネル36との間に配置されている。この電流分布センサ18には、「複数の電流測定手段」の一例である複数のシャント抵抗40が備えられている。複数のシャント抵抗40は、格子状に並ぶように配列されており、一方の集電板34Aを格子状に分割した複数の測定領域(図3参照)の各々に対応して配置されている。各シャント抵抗40は、対応する測定領域の電流を測定する。 The current distribution sensor 18 is arranged, for example, between one current collector plate 34A (cathode electrode) and the pair of gas flow channels 36. The current distribution sensor 18 is provided with a plurality of shunt resistors 40, which is an example of "a plurality of current measuring means". The plurality of shunt resistors 40 are arranged side by side in a grid pattern, and are arranged corresponding to each of a plurality of measurement regions (see FIG. 3) obtained by dividing one current collector plate 34A in a grid pattern. Each shunt resistor 40 measures the current in the corresponding measurement area.

なお、図2に示される例において、電流分布センサ18は、一方の集電板34A(カソード電極)と一対のガスフローチャネル36との間に配置されて、一方の集電板34A(カソード電極)に装着されているが、他方の集電板34B(アノード電極)と一対のガスフローチャネル36との間に配置されて、他方の集電板34B(アノード電極)に装着されてもよい。 In the example shown in FIG. 2, the current distribution sensor 18 is disposed between the one current collector plate 34A (cathode electrode) and the pair of gas flow channels 36, and the one current collector plate 34A (cathode electrode). ), but may be mounted between the other collector plate 34B (anode electrode) and the other collector plate 34B (anode electrode).

また、ガスフローチャネル36のガス取込口に近い場所では、ガス中の不純物の影響により、他の場所に比べて燃料電池12の劣化が早く進行する。したがって、一方の集電板34Aでは、ガス取込口に近い第一領域の方が、ガス取込口からの距離が遠い第二領域よりもシャント抵抗40の配置密度を高くしてもよい。このようにすると、劣化の進行が早い第一領域の劣化の状況をより正確に解析することができる。 Further, in the place near the gas intake port of the gas flow channel 36, the deterioration of the fuel cell 12 progresses earlier than in other places due to the influence of impurities in the gas. Therefore, in one of the current collector plates 34A, the arrangement density of the shunt resistors 40 may be higher in the first region closer to the gas intake port than in the second region far from the gas intake port. By doing so, it is possible to more accurately analyze the deterioration situation in the first region where the deterioration progresses quickly.

電圧測定ユニット22は、一対の集電板34A、34B間に対して接続されている。ここで、一対の集電板34A、34Bのそれぞれは、ガスフローチャネル36よりも厚さがあるため、電圧取り出し用の端子の接続が容易である。したがって、図2に示される例では、一例として、一対の集電板34A、34Bに電圧測定ユニット22が接続されている。 The voltage measurement unit 22 is connected between the pair of current collector plates 34A and 34B. Here, since each of the pair of current collector plates 34A and 34B is thicker than the gas flow channel 36, it is easy to connect terminals for voltage extraction. Therefore, in the example shown in FIG. 2, as an example, the voltage measurement unit 22 is connected to the pair of current collectors 34A and 34B.

なお、図2の点線で示した矢印のように、一対のガスフローチャネル36に電圧測定ユニット22を接続してもよい。このように、一対のガスフローチャネル36に電圧測定ユニット22を接続した場合には、複数のシャント抵抗40の抵抗成分による影響が排除されるので、一対の集電板34A、34Bに電圧測定ユニット22の端子を接続する場合に比して、より正確な電圧測定値を得ることができる。 The voltage measuring unit 22 may be connected to the pair of gas flow channels 36 as indicated by the arrow shown by the dotted line in FIG. Thus, when the voltage measuring unit 22 is connected to the pair of gas flow channels 36, the influence of the resistance component of the plurality of shunt resistors 40 is eliminated, so that the pair of current collecting plates 34A and 34B are connected to the voltage measuring unit. A more accurate voltage measurement value can be obtained as compared with the case where 22 terminals are connected.

次に、本実施形態に係るインピーダンス分布測定方法について説明する。 Next, the impedance distribution measuring method according to the present embodiment will be described.

先ず、制御ユニット24により交流電源16を制御し、交流電源16から燃料電池12に指定された周波数の電流を供給する。このとき、制御ユニット24の制御により電流の周波数を調整する。 First, the control unit 24 controls the AC power supply 16 to supply the fuel cell 12 with a current of a specified frequency from the AC power supply 16. At this time, the frequency of the current is adjusted by the control of the control unit 24.

また、このように交流電源16から燃料電池12に電流を供給する際に、一対の集電板34A、34B間を流れる電流を電流分布センサ18(複数のシャント抵抗40)で測定する。電流分布センサ18は、複数のシャント抵抗40で測定した電流測定値の各々を複数の電流測定ユニット20に出力する。 Further, when the current is supplied from the AC power supply 16 to the fuel cell 12 in this manner, the current flowing between the pair of current collectors 34A and 34B is measured by the current distribution sensor 18 (a plurality of shunt resistors 40). The current distribution sensor 18 outputs each of the current measurement values measured by the plurality of shunt resistors 40 to the plurality of current measuring units 20.

複数の電流測定ユニット20は、電流分布センサ18から出力された電流測定値の時系列に沿った変化に対してFFTアナライザを用いた周波数解析を行い、周波数解析結果を制御ユニット24に出力する。なお、電流測定ユニット20は1枚でN箇所(Nは1以上の整数)の電流測定値に対する周波数解析が可能である。複数の電流測定ユニット20は、電流分布センサ18による測定領域の数(複数のシャント抵抗40の数)に応じた枚数が用いられる。 The plurality of current measurement units 20 perform frequency analysis using an FFT analyzer for changes in the current measurement values output from the current distribution sensor 18 in time series, and output the frequency analysis results to the control unit 24. It should be noted that one current measurement unit 20 can perform frequency analysis on current measurement values at N locations (N is an integer of 1 or more). The plurality of current measuring units 20 are used in a number corresponding to the number of measurement regions (the number of shunt resistors 40) measured by the current distribution sensor 18.

また、上述のように交流電源16から燃料電池12に電流を供給する際には、燃料電池12の一対の集電板34A、34B間の電圧を電圧測定ユニット22で測定する。電圧測定ユニット22は、測定した電圧測定値の時系列に沿った変化に対してFFT(Fast Fourier Transform)アナライザを用いた周波数解析を行い、周波数解析結果を制御ユニット24に出力する。 Further, when the current is supplied from the AC power supply 16 to the fuel cell 12 as described above, the voltage measuring unit 22 measures the voltage between the pair of current collector plates 34A and 34B of the fuel cell 12. The voltage measurement unit 22 performs frequency analysis using an FFT (Fast Fourier Transform) analyzer for changes in the measured voltage measurement values in time series, and outputs the frequency analysis result to the control unit 24.

制御ユニット24は、複数の電流測定ユニット20及び電圧測定ユニット22から出力された電流の周波数解析結果及び電圧の周波数解析結果を受け付け、交流電源16から燃料電池12に供給した電流の周波数に対して複数の測定領域42(図3参照)毎に燃料電池12のインピーダンスを算出する。そして、制御ユニット24は、算出したインピーダンスに基づいて、図3に示されるようにナイキスト線図44を生成して複数の測定領域42のインピーダンス分布46を得る。 The control unit 24 receives the frequency analysis result of the current and the frequency analysis result of the voltage output from the plurality of current measurement units 20 and the voltage measurement unit 22, and determines the frequency of the current supplied from the AC power supply 16 to the fuel cell 12. The impedance of the fuel cell 12 is calculated for each of the plurality of measurement regions 42 (see FIG. 3). Then, the control unit 24 generates the Nyquist diagram 44 as shown in FIG. 3 based on the calculated impedance to obtain the impedance distribution 46 of the plurality of measurement regions 42.

さらに、制御ユニット24は、得られたインピーダンス分布46を等価回路の構成要素にフィッティングして、複数の測定領域42のインピーダンス分布46を表すマップデータを等価回路の構成要素毎に生成する。そして、図4に示されるように、このマップデータに基づいて、等価回路の構成要素毎のインピーダンス分布を表すマップ48を得る。 Further, the control unit 24 fits the obtained impedance distribution 46 to the constituent elements of the equivalent circuit, and generates map data representing the impedance distribution 46 of the plurality of measurement regions 42 for each constituent element of the equivalent circuit. Then, as shown in FIG. 4, a map 48 representing the impedance distribution of each component of the equivalent circuit is obtained based on this map data.

なお、図4における構成要素Rs、L、R、R、Wi、CPE、RLP、Lの物理的意味は、次の通りである。 The physical meanings of the components R s , L, R L , R P , Wi, CPE, R LP , and L P in FIG. 4 are as follows.

構成要素Rsは、電解質膜抵抗である。構成要素Rsはナイキスト線図におけるインピーダンススペクトル(インピーダンスデータ)の高周波数域での実数軸との交点に対応する。構成要素Rsは電解質抵抗に対応し、電解質膜の厚さ及び湿潤状態に起因して変化する。また、構成要素Rsはエンドプレート(セパレータ)の抵抗やガス拡散層とエンドプレートとの接触抵抗等も含む。 Component R s is the electrolyte membrane resistance. The component R s corresponds to the intersection of the impedance spectrum (impedance data) in the Nyquist diagram with the real number axis in the high frequency range. The component R s corresponds to the electrolyte resistance and changes due to the thickness and wetness of the electrolyte membrane. The constituent element R s also includes the resistance of the end plate (separator), the contact resistance between the gas diffusion layer and the end plate, and the like.

構成要素Rは、配線抵抗であり、構成要素Lは、配線起因のインダクタである。構成要素R及び構成要素Lは高周波数域での配線由来の誘導性挙動に関連するパラメータであり、その比R/Lは、誘導性半円の時定数に相当する。 The constituent element R L is a wiring resistance, and the constituent element L is an inductor caused by wiring. The component RL and the component L are parameters related to the inductive behavior derived from the wiring in the high frequency range, and the ratio RL /L thereof corresponds to the time constant of the inductive semicircle.

構成要素Rは、集電板と溶液界面での電荷移動抵抗である。構成要素Rは集電板と溶液界面でのカソードとアノードの電荷移動抵抗の合計に相当する。通常はアノードの電荷移動抵抗は相対的に小さいので、構成要素Rはカソードのみの電荷移動抵抗に相当する。ただし、劣化などによりアノードの反応性が落ちた場合には、構成要素Rはアノードの電荷移動抵抗の影響を受ける。 Component R P is the charge transfer resistance at the current collector and solution interface. The component R P corresponds to the sum of the charge transfer resistances of the cathode and anode at the current collector and solution interface. Since the charge transfer resistance of the anode is usually relatively small, the component R P corresponds to the charge transfer resistance of the cathode only. However, when the reactivity of the anode decreases due to deterioration or the like, the constituent element R P is affected by the charge transfer resistance of the anode.

構成要素CPE(Constant Phase Element)は、集電板と溶液界面での電気二重層容量である。構成要素CPEはつぶれた容量性半円を幾何学的に表すための素子で、そのインピーダンスZCPEは以下の式(1)で表現される。
CPE=1/(jω)×TCPE・・・(1)
ここで、jは虚数単位、ωは角周波数,PはCPE指数、TCPEはCPE指数である。
高周波数域で観察される容量性半円は,構成要素Rと電気二重層容量の時定数に起因し、その直径はRとなる。低周波数域での半円はWiに対応する。
The constituent element CPE (Constant Phase Element) is the electric double layer capacity at the interface between the current collector and the solution. The constituent element CPE is an element for geometrically representing a collapsed capacitive semicircle, and its impedance Z CPE is expressed by the following equation (1).
Z CPE =1/(jω) P ×T CPE (1)
Here, j is an imaginary unit, ω is an angular frequency, P is a CPE index, and T CPE is a CPE index.
The capacitive semicircle observed in the high frequency region is due to the time constant of the component R P and the electric double layer capacitance, and its diameter is R P. The semicircle in the low frequency range corresponds to Wi.

構成要素Wiは、拡散のワールブルグインピーダンスである。Wiのインピーダンスは以下の式(2)で表現される。
=(R×tanh((jωT))/(jω×T)・・・(2)
ここで,Rは物質移動抵抗、Tは有限拡散の時定数である。低周波数域の容量性半円が時数軸と交わる値からRとRを引いた値がRに相当する。
低周波数域で観察される誘導性半円は、カソードにおける酸素還元での反応中間体の生成が集電板反応速度に影響する場合に観察されると言われている。その誘導性半円の時定数がRLP/Lに相当する。
The component Wi is the diffuse Warburg impedance. The impedance of Wi is expressed by the following equation (2).
Z w =(R W ×tanh((jωT W ) P ))/(jω P ×T W )...(2)
Here, R W is a mass transfer resistance and T W is a finite diffusion time constant. The value obtained by subtracting R S and R P from the value at which the capacitive semicircle in the low frequency range intersects with the hour axis corresponds to R W.
The inductive semicircle observed in the low frequency region is said to be observed when the formation of reaction intermediates in oxygen reduction at the cathode affects the current collector reaction rate. The time constant of the inductive semicircle corresponds to R LP /L P.

構成要素RLPは、ファラデーインピーダンスを表すための抵抗であり、構成要素Lは、ファラデーインピーダンスを表すためのインダクタである。 The constituent element R LP is a resistor for representing the Faraday impedance, and the constituent element L P is an inductor for representing the Faraday impedance.

次に、本実施形態の作用及び効果について説明する。 Next, the operation and effect of this embodiment will be described.

以上詳述した通り、本実施形態によれば、一方の集電板34Aの複数の測定領域42に対応して複数のシャント抵抗40をそれぞれ配置すると共に、一対の集電板34A、34Bに対して電圧測定ユニット22を接続した状態とする。そして、燃料電池12に周波数を調整しながら電流を供給して、一対の集電板34A、34B間を流れる電流を複数のシャント抵抗40によって測定すると共に、一対の集電板34A、34B間の電圧を電圧測定ユニット22によって測定する。また、複数のシャント抵抗40の電流測定値及び電圧測定ユニット22の電圧測定値に基づいて、複数の測定領域42毎に燃料電池12のインピーダンスを算出し、これにより、複数の測定領域42のインピーダンス分布46を得る。 As described above in detail, according to the present embodiment, the plurality of shunt resistors 40 are arranged corresponding to the plurality of measurement regions 42 of the one current collecting plate 34A, and the pair of current collecting plates 34A and 34B are provided. The voltage measuring unit 22 is connected. Then, current is supplied to the fuel cell 12 while adjusting the frequency, and the current flowing between the pair of current collector plates 34A and 34B is measured by the plurality of shunt resistors 40, and at the same time, between the pair of current collector plates 34A and 34B. The voltage is measured by the voltage measuring unit 22. Further, the impedance of the fuel cell 12 is calculated for each of the plurality of measurement regions 42 based on the current measurement values of the plurality of shunt resistors 40 and the voltage measurement value of the voltage measurement unit 22, and thus the impedance of the plurality of measurement regions 42 is calculated. Obtain the distribution 46.

したがって、複数の測定領域42のインピーダンス分布46が得られるので、集電板34Aの1地点についてのみインピーダンスを測定する場合に比して、燃料電池12における内部状態の解析精度を向上させることができる。 Therefore, since the impedance distributions 46 of the plurality of measurement regions 42 are obtained, the accuracy of analysis of the internal state of the fuel cell 12 can be improved as compared with the case where the impedance is measured only at one point of the current collector 34A. ..

また、インピーダンス分布46を燃料電池12の等価回路にフィッティングして、インピーダンス分布46を表すマップデータを等価回路の構成要素毎に生成する。そして、このマップデータに基づいて、等価回路の構成要素毎のインピーダンス分布を表すマップ48を得る。したがって、等価回路の構成要素毎のインピーダンス分布を視覚的に表すことができるので、燃料電池12における内部状態の解析精度をより向上させることができる。 Further, the impedance distribution 46 is fitted to the equivalent circuit of the fuel cell 12, and map data representing the impedance distribution 46 is generated for each constituent element of the equivalent circuit. Then, based on this map data, a map 48 representing the impedance distribution for each component of the equivalent circuit is obtained. Therefore, the impedance distribution of each component of the equivalent circuit can be visually represented, so that the accuracy of analysis of the internal state of the fuel cell 12 can be further improved.

以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above, and needless to say, various modifications can be made without departing from the scope of the invention. Is.

10 インピーダンス分布測定装置
12 燃料電池(電気化学デバイスの一例)
14 直流負荷
16 交流電源
18 電流分布センサ
20 電流測定ユニット
22 電圧測定ユニット
24 制御ユニット
32A、32B エンドプレート
34A、34B 集電板
36 ガスフローチャネル
38 膜集電板接合体
40 シャント抵抗(電流測定手段の一例)
42 測定領域
44 ナイキスト線図
46 インピーダンス分布
48 マップ
10 Impedance distribution measuring device 12 Fuel cell (an example of an electrochemical device)
14 DC load 16 AC power supply 18 Current distribution sensor 20 Current measurement unit 22 Voltage measurement unit 24 Control units 32A, 32B End plates 34A, 34B Current collector 36 Gas flow channel 38 Membrane current collector assembly 40 Shunt resistance (current measuring means) Example)
42 Measurement area 44 Nyquist diagram 46 Impedance distribution 48 map

Claims (6)

一対のエンドプレートと、前記一対のエンドプレートの間に配置された一対の集電板と、前記一対の集電板の間に配置された一対のガスフローチャネルと、前記一対のガスフローチャネルの間に配置された膜集電板接合体とを有し、前記一対のガスフローチャネルの少なくとも一方に局所的な劣化が生じている燃料電池のインピーダンス分布を測定する、インピーダンス分布測定方法であって、
一方の前記集電板の複数の測定領域に対応する複数の電流測定手段を有する電流分布センサを一方の前記集電板と一方の前記ガスフローチャネルとの間に配置すると共に、電圧測定手段を前記一対のガスフローチャネルに接続し、
前記燃料電池に周波数を調整しながら電流を供給して、一方の前記集電板と一方の前記ガスフローチャネルとの間を流れる電流を前記複数の電流測定手段によって測定すると共に、前記一対のガスフローチャネル間の電圧を前記電圧測定手段によって測定し、
前記複数の電流測定手段の電流測定値及び前記電圧測定手段の電圧測定値に基づいて、前記複数の測定領域毎に前記燃料電池のインピーダンスを算出し、前記複数の測定領域のインピーダンス分布を得る、
ことを含むインピーダンス分布測定方法。
A pair of end plates, a pair of current collectors arranged between the pair of end plates, a pair of gas flow channels arranged between the pair of current collectors, and between the pair of gas flow channels A method for measuring impedance distribution, comprising a membrane current collector assembly arranged and measuring the impedance distribution of a fuel cell in which at least one of the pair of gas flow channels is locally degraded,
A current distribution sensor having a plurality of current measuring means corresponding to a plurality of measurement regions of one of the current collecting plates is arranged between one of the current collecting plates and one of the gas flow channels, and a voltage measuring means is provided. Connected to the pair of gas flow channels,
Current is supplied to the fuel cell while adjusting the frequency, and the current flowing between the one current collector plate and one gas flow channel is measured by the plurality of current measuring means, and the pair of gases is used. Measuring the voltage between the flow channels by the voltage measuring means,
Based on the current measurement value of the plurality of current measurement means and the voltage measurement value of the voltage measurement means, the impedance of the fuel cell is calculated for each of the plurality of measurement regions to obtain the impedance distribution of the plurality of measurement regions,
Impedance distribution measurement method including the above.
一方の前記集電板は、第一領域と、前記第一領域よりも前記ガスフローチャネルのガス取込口からの距離が遠い第二領域とを有し、
前記第一領域の方が前記第二領域よりも前記電流測定手段の配置密度が高くなるように、前記複数の電流測定手段を配置する、
請求項1に記載のインピーダンス分布測定方法。
One of the current collectors has a first region and a second region in which the distance from the gas inlet of the gas flow channel is farther than the first region,
The first region is arranged so that the arrangement density of the current measuring unit is higher than that of the second region, and the plurality of current measuring units are arranged.
The impedance distribution measuring method according to claim 1.
前記インピーダンス分布を前記燃料電池の等価回路にフィッティングして、前記インピーダンス分布を表すマップデータを前記等価回路の構成要素毎に生成する、
請求項1又は請求項2に記載のインピーダンス分布測定方法。
Fitting the impedance distribution to an equivalent circuit of the fuel cell to generate map data representing the impedance distribution for each component of the equivalent circuit,
The impedance distribution measuring method according to claim 1 or 2.
一対のエンドプレートと、前記一対のエンドプレートの間に配置された一対の集電板と、前記一対の集電板の間に配置された一対のガスフローチャネルと、前記一対のガスフローチャネルの間に配置された膜集電板接合体とを有し、前記一対のガスフローチャネルの少なくとも一方に局所的な劣化が生じている燃料電池のインピーダンス分布を測定する、インピーダンス分布測定装置であって、
一方の前記集電板の複数の測定領域に対応する複数の電流測定手段を有し、一方の前記集電板と一方の前記ガスフローチャネルとの間に配置された電流分布センサと、
前記一対のガスフローチャネルに接続された電圧測定手段と、
前記燃料電池に周波数を調整しながら電流が供給されて、一方の前記集電板と一方の前記ガスフローチャネルとの間を流れる電流が前記複数の電流測定手段によって測定されると共に、前記一対のガスフローチャネル間の電圧が前記電圧測定手段によって測定された場合に、前記複数の電流測定手段の電流測定値及び前記電圧測定手段の電圧測定値に基づいて、前記複数の測定領域毎に前記燃料電池のインピーダンスを算出して、前記複数の測定領域のインピーダンス分布を得る制御手段と、
を備えるインピーダンス分布測定装置
A pair of end plates, a pair of current collectors arranged between the pair of end plates, a pair of gas flow channels arranged between the pair of current collectors, and between the pair of gas flow channels A membrane current collector assembly disposed, for measuring the impedance distribution of a fuel cell in which at least one of the pair of gas flow channels is locally deteriorated, an impedance distribution measuring device,
Having a plurality of current measuring means corresponding to a plurality of measurement regions of the one current collector, a current distribution sensor disposed between the one current collector and one of the gas flow channels,
Voltage measuring means connected to the pair of gas flow channels,
Current is supplied to the fuel cell while adjusting the frequency, and the current flowing between one of the current collector plates and one of the gas flow channels is measured by the plurality of current measuring means, and the pair of When the voltage between the gas flow channels is measured by the voltage measurement means, the fuel is measured for each of the plurality of measurement regions based on the current measurement values of the plurality of current measurement means and the voltage measurement values of the voltage measurement means. Control means for calculating the impedance of the battery, to obtain the impedance distribution of the plurality of measurement regions,
Impedance distribution measuring device provided with .
一方の前記集電板は、第一領域と、前記第一領域よりも前記ガスフローチャネルのガス取込口からの距離が遠い第二領域とを有し、
前記複数の電流測定手段は、前記第一領域の方が前記第二領域よりも前記電流測定手段の配置密度が高くなるように配置されている、
請求項4に記載のインピーダンス分布測定装置。
One of the current collectors has a first region and a second region in which the distance from the gas inlet of the gas flow channel is farther than the first region,
The plurality of current measuring means, the first region is arranged so that the arrangement density of the current measuring means is higher than that of the second region,
The impedance distribution measuring device according to claim 4 .
前記制御手段は、前記インピーダンス分布を前記燃料電池の等価回路にフィッティングして、前記インピーダンス分布を表すマップデータを前記等価回路の構成要素毎に生成する、
請求項4又は請求項5に記載のインピーダンス分布測定装置。
The control means fits the impedance distribution to an equivalent circuit of the fuel cell, and generates map data representing the impedance distribution for each component of the equivalent circuit.
The impedance distribution measuring device according to claim 4 or 5.
JP2019119813A 2019-06-27 2019-06-27 Impedance distribution measurement method Active JP6715502B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019119813A JP6715502B1 (en) 2019-06-27 2019-06-27 Impedance distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119813A JP6715502B1 (en) 2019-06-27 2019-06-27 Impedance distribution measurement method

Publications (2)

Publication Number Publication Date
JP6715502B1 true JP6715502B1 (en) 2020-07-01
JP2021005521A JP2021005521A (en) 2021-01-14

Family

ID=71131660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119813A Active JP6715502B1 (en) 2019-06-27 2019-06-27 Impedance distribution measurement method

Country Status (1)

Country Link
JP (1) JP6715502B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116047303A (en) * 2022-11-24 2023-05-02 海卓动力(青岛)能源科技有限公司 Method for comprehensively analyzing uniformity of commercial-size proton exchange membrane fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077515A (en) * 2001-09-04 2003-03-14 Toyota Central Res & Dev Lab Inc System and method for measuring electrode reaction distribution
JP2005302498A (en) * 2004-04-09 2005-10-27 Espec Corp Apparatus and method for measuring fuel cell current distribution
JP2007311202A (en) * 2006-05-18 2007-11-29 Espec Corp Cell electromotive current distribution measurement device, and cell electromotive current distribution measurement method
JP5224088B2 (en) * 2007-05-14 2013-07-03 横河電機株式会社 Method and apparatus for measuring impedance distribution of fuel cell
CN104597407A (en) * 2015-01-07 2015-05-06 同济大学 Test equipment and test method for partition zone impedance of dual-function fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116047303A (en) * 2022-11-24 2023-05-02 海卓动力(青岛)能源科技有限公司 Method for comprehensively analyzing uniformity of commercial-size proton exchange membrane fuel cell
CN116047303B (en) * 2022-11-24 2024-04-30 海卓动力(青岛)能源科技有限公司 Method for comprehensively analyzing uniformity of commercial-size proton exchange membrane fuel cell

Also Published As

Publication number Publication date
JP2021005521A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP5708658B2 (en) Stacked battery internal resistance measuring apparatus and internal resistance measuring method
CN104704381B (en) The impedance measurement device of layer-built battery
EP3124987B1 (en) Impedance measurement device and impedance measurement method
EP1611449B1 (en) System and method for measuring fuel cell voltage and high frequency resistance
US20150219728A1 (en) Method and device for measuring various parameters of membrane electrode assembly in fuel cell
JP6075442B2 (en) Impedance measuring device and control method of impedance measuring device
US11973248B2 (en) Method for diagnosing degradation of fuel cell stack, method for multi-point analysis of fuel cell, and method for estimating performance of fuel cell membrane electrode
US9634341B2 (en) Apparatus and method for diagnosing fuel cell
CN112068019B (en) Flat-plate SOFC current density distributed end plate test structure and test method
Danzer et al. Analysis of the electrochemical behaviour of polymer electrolyte fuel cells using simple impedance models
CN105518473B (en) The accurate detector of the charging current of charge and discharge device
CN109799465B (en) Fuel cell stack degradation diagnostic method
CN114094146A (en) Method for testing hydrogen permeation current of fuel cell proton exchange membrane
JP4817962B2 (en) Fuel cell current distribution measuring device, stacked fuel cell current distribution measuring device, and fuel cell current distribution measuring method
JP6715502B1 (en) Impedance distribution measurement method
EP3240073B1 (en) Fuel battery state detection device and method
CN109828216B (en) Device and method for improving accuracy of fuel cell partition electrochemical impedance spectrum measurement
US20150102819A1 (en) Lithium-ion energy store with measuring cell and methods for determining properties of the lithium-ion energy store
CN114361535A (en) Fuel cell hydrogen permeation quantity evaluation method based on electrochemical impedance spectrum
CN109669135B (en) Fuel cell multiple spot analysis method
Gunji et al. Quick crossover current measurement of a polymer electrolyte fuel cell stack with and without cell voltage terminals
Ferrero et al. Comparison between electrical and pressure measurements to detect PEM fuel cell flooding
JP2008176944A (en) Inspection method of fuel cell
JP2010048567A (en) Method and device for evaluating characteristics of battery
JP2005044602A (en) Analysis method and program of physical and chemical property of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190719

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R150 Certificate of patent or registration of utility model

Ref document number: 6715502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250