201241436 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種電化學測試片及電化學測試方法,尤 其關於一種產生一電容及一電容的電信號的電化學測試片 及電化學測試方法。 【先前技術】 電化學式電化學測試片(Electrochemical Sensor Strip ) 已成熟地被應用於檢測流體中的各種物質,而其基本原理為 利用-化學糊(Reagent) ’使其與—待職财之一待分 析物產生電化學作用,以產生一電輸出信號,此電輸出信 號與待測讀之待讀物有關。#制流體為人的血液,而 待分析物為蝴時’即可利用—葡萄糖氧化酵素及其他複合 物來作為化學試劑。 ‘”、頁丁S知電化學測試片的外觀示意圖。圖2顯示圖 1之電化學峨片的咖。如圖1 2所示,電化學測 =卿為-血糖測試片,其包含有電極基板ιι〇、流道板 二及頂板m。電極基板則包含—電路佈㈣及一基 板且其係 '藉由印刷技術於—基板m上印刷電路佈局 201241436 112所形成’而電路佈局112具有多個電極及電路。流道板 120界定出一缺口 122,其係由貫穿流道板12〇之上下表面 來形成。為了使血液能夠更順利地流動,可於頂板13〇之對 應流道板120的缺口 122的位置處設置一開口 135。 製造電化學測試片100時’需要將電極基板11〇、流道 板120以及頂板130貼合在一起。使流道板12〇位於電極基 板110及頂板130之間,且電極基板110、流道板12〇以及 頂板130共同定義出一流道15〇。流道丨5〇的位置對應流道 板120的缺口 122的位置,且具有一入口 125及一開口 135。 於操作時,使用者將血液滴於入口 125處,血液從入口 125 進入流道150,因毛細現象血液會於流道15〇中流動,流道 150中的氣體則從開口丨35排出。 電路佈局112包含參考電極lla、工作電極llb與檢測 电極llc,其中檢測電極11c與參考電極lia的電壓極性相 異;且該檢測電極llc與工作電極nb的電壓極性相異,使 得參考電極lla及檢測電極llc形成一電壓差;參考電極na 及工作電極lib形成另一電壓差。該些電極可以使用任何可 導電材質,於本實施例可以使用石墨,但本發明不應以此為 限。 圖3顯示習知電化學量測裝置之功能方塊圖。電化學量 測裝置200包含一兩個電極211及212、一參考電壓源220、 201241436 一電流電壓轉換電路230、一類比數位轉換電路240、一處 理器250及一顯示器260。於一實施例中,還可以更包含一 記憶體270。電極211用以電連接參考電極Ua,電極212 用以電連接工作電極11b及檢測電極iic。參考電壓源220 可以為接地端。參考電極1“透過電極211電連接參考電壓 源220,工作電極1 ib及檢測電極lie透過電極212電連接 類比數位轉換電路240、電流電壓轉換電路230及處理器 250。顯示器260電連接處理器25〇。記憶體27〇中可以儲存 有多個資料❶ 圖4顯不待測血液進入流道後的示意圖。如圖4所示, 於操作時,使用者將電化學測試片1〇_入電化學量測裝置 200,例如一血糖計,並將血液滴入至入口 125,血液會先沿 著流道150流過檢測電極Uc,再流過工作電極nb,最後再 流過參考電極lla。 參考電極11a與檢測電極llc係用以_血液量,當血 液由檢測電極llc流至參考電極na時,參考電極u^檢 測电極lie間產生-電愿差,由於血液為導體因此會流生— 才双測用电机I ’電化學量測裝置2〇〇檢測到檢測用電流I後, 即可得知血液已流至參考電極Ua,並啟動血_量程序。 於血糖測量程料’魏學量測裝置在參考電極山與 作电極lib間形成—電麼差,藉以測得一電流值,並依據 201241436 該電流值計算出血液之血糖濃度。 然而,依據習知技術之電化學測試片及電化學測試方法 尚存在有更一步改善的空間。 【發明内容】 本發明-實施例之目的在於提供一種電化學測試片及 電化學測試方法。本發明一實施例之目的在於提供一種產生 —電容及一電容的電信號的電化學測試片及電化學測試方 法。 依據本發明一實施例,提供一種電化學測試片用以檢測 —液體。電化學測試片包含一流道、一第一電極以及一第二 電極。流道用以供液體流入於流道中。第一電極及第二電極 用以間隔著液體而能形成一電容。 於一實施例中,第一電極位於流道内且用以接觸液體。 於一實施例中,電化學測試片更包含一第三電極,且第 三電極位於流道内且用以接觸液體,藉以於第一電極及第三 電間透過液體形成一電流信號。 於一實施例中,第二電極的位置對應流道的位置。電化 學測試片更包含一絕緣層,絕緣層覆蓋第二電極,藉以使第 二電極與液體間隔著絕緣層。 依據本發明一實施例,提供一種電化學測試方法,其利 201241436 用包含一流道、一第一電極及一第二電極的一電化學測試 片、以及耦接電化學測試片的一電化學量測裝置,來測量位 於第一電極及第二電極間之一液體。電化學測試方法包含以 下步驟。使第一電極與第二電極間產生一電壓差,並測量第 一電極與第二電極間的至少一電容的電信號。依據前述至少 一電容的電信號決定電化學量測裝置中的一處理程序。 於一實施例中,前述處理程序包含依據前述至少一電容 的電信號決定流道中之液體的量。 於一實施例中,前述處理程序包含依據前述至少一電容 的電信號計算出液體中的一待測物。 於一實施例中,前述處理程序包含以下步驟。依據前述 至少一電容的電信號的一第一電信號,決定流道中之液體的 量。判斷流道中的液體的量超過一預定值時,再依據前述至 少一電容的電信號的一第二電信號,計算出液體中的一待測 物。 依據本發明一實施例,能夠利用空氣及液體的介電常數 相異的特性’來量測第一電極與第二電極間的電容的電信 號’較能夠精準地檢測出流道内的液體不足的情況。此外於 一實施例中’能夠利用液體中之相異的雜質時液體會具有相 異介電常數的特性、或者利用液體中之雜質濃度相異時液體 亦會具有相異之介電常數相異的特性’來測得液體中的一待 201241436 測物。 本發明的其他目的和優點可以從本發明所揭露的技術 特徵中得到進-步的了解。為讓本發明之上述和其他目的、 特徵和優雜更_祕,下謂舉實施顺配合所附圖 式,作詳細說明如下。 【實施方式】 本發明一實施例之電化學測試片3⑻可以為一血糖測試 片’其包含有電極基板310、流道板12〇以及頂板13〇,且 電極基板310、流道板120以及頂板13〇界定出一流道15〇。 流道板120以及頂板130可以參考習知技術的說明,因此以 下將省略其相關6兒明。圖5顯示依本發明一實施例之電化學 測試片的透視圖。如圖5所示’電極基板31〇包含一基板lu 及形成於基板111的一電路佈局312。電路佈局;312包含來 考電極31a、工作電極31b與檢測電極3lc。參考電極31a 及工作電極31b位於流道150内,而檢測電極^。位於流道 150外部。當血液進入流道150中時會從工作電極31b流至 參考電極31a,並同時接觸工作電極31b及參考電極31a,且 血液不接觸於檢測電極31c。 圖6顯示依本發明一實施例之電化學測試片的待測血液 進入流道後的示意圖。圖7顯示依本發明—實施例之檢測電 201241436 極與參考電極_電壓與時間的關翻。如圖6所示,檢測 電極31c與參考電極31a呈絕緣狀態,當供應一電壓時,檢 測電極31c與參考電極3ia間會形成一電容,電化學量測裝 置2〇〇測碰測電極Slc與參考電極化間的電容的電信號 後即可依據s亥電容的電信號的變化或值等決定流道15〇已 充滿足夠的血液^當躺為流道⑼已充滿足夠的血液時, 即可再啟動測4程序。㈣纽序時,電化學量測裝置2〇〇 在參考电極3la肖工作電極训間形成一電壓差,藉以測得 一電流值,並依據該電流值計算出血液之血糖濃度。 1知技術是於檢測電極3ic與參考電極3ia間產生一檢 測用電流’並依據該檢顧電流決定流道15()是否已充滿足 夠的血液。相異於此’於本發明一實施例巾,係於檢測電極 31c與參考電極31a μ產生一電容,並依據該電容決定流道 150疋否已充滿足夠的血液。其優點將詳述於下。 圖8Α為習知技術中在血液不足情況下血液在流道内的 分佈不意圖。冑8Β為習知技術中在血液不足情況下血液在 机道内的分佈示意圖。如圖8Α及圖8Β所示,由於毛細現象, 在血液不足情況下,血液在流道150内流動時,很有可能已 有部分的血液已位於參考電極lla與檢測電極Uc間,且於 :道15G内還存在有空隙。在血液不足情況下,依據習知技 術’尚能夠量測到檢測_31c與參考電極31a_產生的 201241436 檢測用電流I ’並啟動血糖測量程序。然而,由於流道150 内的血液不足,電化學量測裝置2〇〇所測量到的血糖濃度的 誤差亦會過大’而影響到電化學量測裝置2〇〇的測量品質。 相異於習知技術’由於空氣及血液的介電常數相異,因 此針對血液充足之實施例及血液不充足之實施例,電化學量 ^則裝置200會檢測到相異的電容的電信號,相較於習知技 術’較能夠精準地檢測出流道150内的血液不足的情況。 此外,於血液中存在有各種的物質,且該些物質相異時 亦會造成血液之介電常數的相異。因此於一實施例中,除了 藉由電容的電信號來決定流道中血液是否充足,亦可以藉由 月ij述電谷的電號來測量^一待測物。 圖9顯不依本發明-實施例之電化學測試片的透視圖。 如圖9所示,電化學測試片4〇〇的電路佈局包含參考電極 41a、工作電極41b與檢測電極41c。電化學測試片4〇〇更包 含有-絕緣層⑽。參考電極41a、工作電極仙與檢㈣極 ♦分別延伸至流道150内部,且絕緣層14〇覆蓋於檢測電 極4lc上。當血液進入流道15〇中時,血液會經過檢測電極 4lc上方的絕緣層14〇且不與檢測電極仙接觸,流過工作 電極41b,最後再流至參考電極41a。於測量時,血液同時接 觸工作電極仙及參考電極41a,且血液不接觸於檢測電極 41c’因此可於工作電極41b及參考電極化間產生—電流信 201241436 號,而於檢測電極41c及參考電極41a間產生一電容,並測 得前述電容的電信號。 圖10顯示依本發明一實施例之電化學測試方法的流程 圖。依本發明—實施例之電化學測試方法,其利用包含多個 電極的電化學測試片300及耗接電化學測試片300的一電 化學里測裝置200,來測量位於該些電極(31a、31b及31c) 間之一待測血液的血糖濃度。電化學測試方法包含以下步 驟。 步驟S02 :使檢測電極3lc與參考電極3la間產生一電 t差,並測量檢測電極31c與參考電極31a間的至少一電容 的電信號。 、步驟SG4 :依據前述至少—電容的電織決定電化學量 、!裝置200中的一處理程序。於一實施例中,步驟中的 處理%序可以為依據前述至少—電容的*t信號決定流道15〇 中的血液4。於—實酬巾,步驟SG4巾的處理程序可以為 依據前述至少—電容的電信號計算出血財的-待測物。 於-實施例中,步驟S04中的處理程序可以包含以下步 驟。步驟S12 :依據前述至少一電容的電信號的一第—電信 號决定流道15G中的血液量。步驟S14 :判斷流道15〇中的 夜里超過預义值時,再依據前述至少—電容的電信號的 第一電k號計算出血液中的一待測物。 201241436 依據本發明一實施例,利用空氣及血液的介電常數相異 的特性,量測檢測電極與參考電極間的電容的電信號,較能 夠精準地檢測出流道150内的血液不足的情況。此外於一實 施例’利肤液t之減的㈣時錢會具有相異介電常數 的特性、或者利用血液中之雜質濃度相異時血液亦會具有相 異之介電常數相異的特性,來測得血液中的一待測物。 雖然本發明已以較佳實施例揭露如上,然其並非用以限 定本發明’任何熟習此技藝者,在不脫離本發明之精神和範 圍内’當可作些許之更動與潤飾’因此本發明之保護範圍當 視後附之巾請專利範圍所界^者為準。另外,本發明的任一 實施例或申請專利範圍不須達成本發明所揭露之全部目的 或優點或特點。此外,摘要部分和標題僅是时輔助專利文 件搜尋之用,並_來關本發明之翻範圍。 【圖式簡單說明】 圖1顯示習知電化學測試片的外觀示意圖。 圖2顯示圖1之電化學測試片的分解圖。 圖3顯示習知電化學量測裝置之功能方塊圖。 圖4顯示待測血液進入流道後的示意圖。 圖5顯示依本發明一實施例之電化學測試片的透視圖。 圖6顯示依本翻—實劇之電化學職片的待測血液 12 201241436 進入流道後的示意圖。 圖7顯示依本發明一實施例之檢測電極與參考電择閱的 電壓信號及電容的電信號的關係圖。 圖8A為習知技術中在血液不足情況下血液在流道内的 分佈示意圖。 圖8B為習知技術中在血液不足情況下血液在流道内的 分佈示意圖。 圖9顯示依本發明一實施例之電化學測試片的透視圖。 圖10顯示依本發明一實施例之電化學測試方法的流程 圖。 【主要元件符號說明】 100 電化學測試片 110 電極基板 111 基板 112 電路佈局 11a 參考電極 lib 工作電極 11c 檢測電極 120 流道板 122 缺口 201241436 125 入口 130 頂板 135 開口 140 絕緣層 150 流道 200 電化學量測裝置 211 電極 212 電極 220 參考電壓源 230 電流電壓轉換電路 240 類比數位轉換電路 250 處理器 260 顯示器 270 記憶體 300 電化學測試片 310 電極基板 312 電路佈局 31a 參考電極 31b 工作電極 31c 檢測電極 400 電化學測試片 201241436 41a 41b 41c 參考電極 工作電極 檢測電極201241436 VI. Description of the Invention: [Technical Field] The present invention relates to an electrochemical test piece and an electrochemical test method, and more particularly to an electrochemical test piece and an electrochemical test method for generating an electric signal of a capacitor and a capacitor . [Prior Art] Electrochemical Sensor Strip has been maturely used to detect various substances in fluids, and its basic principle is to use -Reagent to make it The analyte is electrochemically generated to produce an electrical output signal that is related to the object to be read. The fluid is human blood, and when the analyte is a butterfly, glucose-oxidase and other complexes can be used as a chemical reagent. A schematic view of the appearance of the electrochemical test piece of Fig. 2. Fig. 2 shows the coffee of the electrochemical film of Fig. 1. As shown in Fig. 12, the electrochemical measurement = Qing blood glucose test piece, which comprises an electrode The substrate ιι, the runner plate 2 and the top plate m. The electrode substrate comprises a circuit cloth (four) and a substrate and is formed by a printing technique on the substrate m printed circuit layout 201241436 112 and the circuit layout 112 has a plurality of Electrode and circuit. The flow channel plate 120 defines a notch 122 formed by penetrating the upper surface above the flow channel plate 12. For the smoother flow of blood, the corresponding flow channel plate 120 of the top plate 13 can be An opening 135 is disposed at the position of the notch 122. When the electrochemical test piece 100 is manufactured, the electrode substrate 11A, the flow channel plate 120, and the top plate 130 need to be bonded together. The flow channel plate 12 is placed on the electrode substrate 110 and the top plate. Between 130, the electrode substrate 110, the flow channel plate 12〇, and the top plate 130 together define a first-class channel 15〇. The position of the flow channel 丨5〇 corresponds to the position of the notch 122 of the flow channel plate 120, and has an inlet 125 and a Opening 135. during operation The user drops blood to the inlet 125, and the blood enters the flow channel 150 from the inlet 125. The blood flows through the flow channel 15〇 due to capillary action, and the gas in the flow channel 150 is discharged from the opening 35. The circuit layout 112 contains a reference. The electrode 11a, the working electrode 11b and the detecting electrode llc are different in polarity of the voltage of the detecting electrode 11c and the reference electrode lia; and the voltages of the detecting electrode 11c and the working electrode nb are different in polarity, so that the reference electrode 11a and the detecting electrode 11c are formed. A voltage difference; the reference electrode na and the working electrode lib form another voltage difference. The electrodes may use any electrically conductive material, and graphite may be used in this embodiment, but the invention should not be limited thereto. Functional block diagram of the electrochemical measuring device. The electrochemical measuring device 200 includes one or two electrodes 211 and 212, a reference voltage source 220, 201241436, a current-voltage conversion circuit 230, an analog-to-digital conversion circuit 240, and a processor 250. And a display 260. In an embodiment, a memory 270 may further be included. The electrode 211 is used for electrically connecting the reference electrode Ua, and the electrode 212 is used for electrical connection. The reference electrode source 220 is electrically connected to the reference voltage source 220, and the working electrode 1 ib and the detecting electrode lie are electrically connected to the analog-to-digital conversion circuit 240 through the electrode 212. Current-voltage conversion circuit 230 and processor 250. Display 260 is electrically coupled to processor 25A. A plurality of data can be stored in the memory 27〇. Figure 4 shows a schematic diagram of the blood to be measured after entering the flow channel. As shown in FIG. 4, during operation, the user passes the electrochemical test piece into the electrochemical measuring device 200, such as a blood glucose meter, and drops the blood into the inlet 125, and the blood first flows along the flow channel 150. The detecting electrode Uc passes through the working electrode nb and finally flows through the reference electrode 11a. The reference electrode 11a and the detecting electrode llc are used for the amount of blood. When the blood flows from the detecting electrode 11c to the reference electrode na, the reference electrode u^ detects a difference between the electrodes lie, and the blood is a conductor and thus flows. — The dual-measuring motor I' electrochemical measuring device 2〇〇 detects the detection current I, and then knows that the blood has flowed to the reference electrode Ua and starts the blood_quantization program. In the blood glucose measurement method, the Wei Xue measuring device forms a difference between the reference electrode mountain and the electrode lib, thereby measuring a current value, and calculating the blood glucose concentration according to the current value of 201241436. However, there is still room for improvement in electrochemical test pieces and electrochemical test methods according to conventional techniques. SUMMARY OF THE INVENTION The object of the present invention is to provide an electrochemical test piece and an electrochemical test method. It is an object of an embodiment of the present invention to provide an electrochemical test strip and an electrochemical test method for generating electrical signals of a capacitor and a capacitor. According to an embodiment of the invention, an electrochemical test strip is provided for detecting a liquid. The electrochemical test strip comprises a first pass, a first electrode and a second electrode. The flow path is used for liquid to flow into the flow path. The first electrode and the second electrode are used to form a capacitor by spacing the liquid. In one embodiment, the first electrode is located in the flow channel and is adapted to contact the liquid. In one embodiment, the electrochemical test strip further includes a third electrode, and the third electrode is located in the flow channel for contacting the liquid, so that a current signal is formed between the first electrode and the third electrode through the liquid. In one embodiment, the position of the second electrode corresponds to the position of the flow channel. The electrochemical test piece further comprises an insulating layer covering the second electrode, whereby the second electrode is separated from the liquid by an insulating layer. According to an embodiment of the present invention, there is provided an electrochemical test method, wherein the 201241436 uses an electrochemical test piece including a first-class track, a first electrode and a second electrode, and an electrochemical quantity coupled to the electrochemical test piece. Measuring device for measuring a liquid located between the first electrode and the second electrode. The electrochemical test method comprises the following steps. A voltage difference is generated between the first electrode and the second electrode, and an electrical signal of at least one capacitance between the first electrode and the second electrode is measured. A processing sequence in the electrochemical measuring device is determined based on the electrical signal of the at least one capacitor. In one embodiment, the processing procedure includes determining an amount of liquid in the flow path based on the electrical signal of the at least one capacitor. In one embodiment, the processing procedure includes calculating an object to be tested in the liquid based on the electrical signal of the at least one capacitor. In an embodiment, the foregoing processing procedure includes the following steps. A quantity of liquid in the flow path is determined based on a first electrical signal of the electrical signal of the at least one capacitor. When it is determined that the amount of liquid in the flow channel exceeds a predetermined value, a test object in the liquid is calculated based on a second electrical signal of the electrical signal of at least one of the capacitors. According to an embodiment of the present invention, the electrical signal of the capacitance between the first electrode and the second electrode can be measured by using the characteristic of the dielectric constant of the air and the liquid to accurately detect the insufficient liquid in the flow channel. Happening. In addition, in one embodiment, the liquid may have a different dielectric constant when the impurity in the liquid is used, or the liquid may have a different dielectric constant when the concentration of the impurity in the liquid is different. The characteristic 'to measure a liquid in the 201241436 test object. Other objects and advantages of the present invention will be apparent from the technical features disclosed herein. In order to make the above and other objects, features, and advantages of the present invention, the following description will be described in detail. [Embodiment] The electrochemical test piece 3 (8) according to an embodiment of the present invention may be a blood glucose test piece comprising an electrode substrate 310, a flow channel plate 12A, and a top plate 13A, and the electrode substrate 310, the flow channel plate 120, and the top plate 13〇 defines the first-class road 15〇. The flow path plate 120 and the top plate 130 can be referred to the description of the prior art, and thus the related matters will be omitted hereinafter. Figure 5 shows a perspective view of an electrochemical test piece in accordance with an embodiment of the present invention. As shown in FIG. 5, the electrode substrate 31 includes a substrate lu and a circuit layout 312 formed on the substrate 111. The circuit layout 312 includes a reference electrode 31a, a working electrode 31b, and a detecting electrode 31c. The reference electrode 31a and the working electrode 31b are located in the flow path 150, and the detection electrode ^. Located outside the flow channel 150. When the blood enters the flow path 150, it flows from the working electrode 31b to the reference electrode 31a, and simultaneously contacts the working electrode 31b and the reference electrode 31a, and the blood does not contact the detecting electrode 31c. Fig. 6 is a view showing the blood to be tested of the electrochemical test piece according to an embodiment of the present invention after entering the flow path. Figure 7 shows the detection of the voltage of the 201241436 pole and the reference electrode _ voltage versus time in accordance with the present invention. As shown in FIG. 6, the detecting electrode 31c is insulated from the reference electrode 31a. When a voltage is supplied, a capacitance is formed between the detecting electrode 31c and the reference electrode 3ia, and the electrochemical measuring device 2 measures the detecting electrode Slc and After referring to the electrical signal of the capacitance between the electrodes, it can be determined according to the change or value of the electrical signal of the capacitance of shai, etc. The flow channel 15 is filled with enough blood. When the flow channel (9) is filled with enough blood, Then start the test 4 program. (4) In the case of the new sequence, the electrochemical measuring device 2〇〇 forms a voltage difference between the reference electrode 3la working electrode training, thereby measuring a current value, and calculating the blood glucose concentration according to the current value. A known technique is to generate a detection current ' between the detecting electrode 3ic and the reference electrode 3ia and determine whether the flow path 15() has filled the blood according to the detection current. In contrast to the embodiment of the present invention, the detecting electrode 31c and the reference electrode 31a μ generate a capacitance, and according to the capacitance, the flow path 150 is determined to be filled with sufficient blood. The advantages will be detailed below. Fig. 8 is a schematic view showing the distribution of blood in a flow channel in the case of insufficient blood in the prior art.胄8Β is a schematic diagram of the distribution of blood in the aisle in the case of insufficient blood in the prior art. As shown in FIG. 8A and FIG. 8B, due to the capillary phenomenon, when blood flows in the flow channel 150 in the case of insufficient blood, there is a possibility that part of the blood is already located between the reference electrode 11a and the detecting electrode Uc, and is: There are also gaps in the road 15G. In the case of insufficient blood, the detection current _31c and the 201241436 detection current I' generated by the reference electrode 31a_ can be measured in accordance with the conventional technique and the blood glucose measurement program is started. However, due to insufficient blood in the flow path 150, the error of the blood glucose concentration measured by the electrochemical measuring device 2 is too large, which affects the measurement quality of the electrochemical measuring device 2〇〇. Different from the conventional technique, since the dielectric constants of air and blood are different, in the case of an embodiment with sufficient blood and an insufficient blood, the electrochemical device 200 detects an electrical signal of a different capacitance. Compared with the prior art, it is possible to accurately detect the lack of blood in the flow channel 150. In addition, various substances are present in the blood, and when these substances are different, the dielectric constant of the blood is also different. Therefore, in an embodiment, in addition to determining whether the blood in the flow channel is sufficient by the electrical signal of the capacitor, the object to be tested can be measured by the electric number of the electric valley. Figure 9 shows a perspective view of an electrochemical test piece according to the present invention - an embodiment. As shown in Fig. 9, the circuit layout of the electrochemical test piece 4A includes a reference electrode 41a, a working electrode 41b, and a detecting electrode 41c. The electrochemical test piece 4 is further provided with an insulating layer (10). The reference electrode 41a, the working electrode and the detecting (four) electrode extend to the inside of the flow path 150, respectively, and the insulating layer 14 is covered on the detecting electrode 4lc. When blood enters the flow path 15, the blood passes through the insulating layer 14 above the detecting electrode 4lc and does not come into contact with the detecting electrode, flows through the working electrode 41b, and finally flows to the reference electrode 41a. During the measurement, the blood simultaneously contacts the working electrode and the reference electrode 41a, and the blood does not contact the detecting electrode 41c', so that a current can be generated between the working electrode 41b and the reference electrode - current letter 201241436, and the detecting electrode 41c and the reference electrode A capacitor is generated between 41a and the electrical signal of the aforementioned capacitor is measured. Figure 10 is a flow chart showing an electrochemical test method in accordance with an embodiment of the present invention. According to the invention, the electrochemical test method of the embodiment uses an electrochemical test piece 300 including a plurality of electrodes and an electrochemical measuring device 200 that consumes the electrochemical test piece 300 to measure the electrodes (31a, Blood glucose concentration of one of the blood to be tested between 31b and 31c). The electrochemical test method comprises the following steps. Step S02: generating an electrical difference between the detecting electrode 31c and the reference electrode 31a, and measuring an electrical signal of at least one capacitance between the detecting electrode 31c and the reference electrode 31a. Step SG4: Determine a process in the electrochemical energy, device 200 according to at least the electrical wiring of the capacitor. In an embodiment, the process % sequence in the step may determine the blood 4 in the flow channel 15 依据 according to the at least - capacitance *t signal. In the case of the actual reward towel, the processing procedure of the step SG4 towel may be to calculate the blood loss-test object according to the aforementioned at least-capacitance electrical signal. In the embodiment, the processing in step S04 may include the following steps. Step S12: determining the amount of blood in the flow channel 15G according to a first-signal of the electrical signal of the at least one capacitor. Step S14: When it is determined that the night in the flow channel 15〇 exceeds the pre-value, the object in the blood is calculated according to the first electric k-number of the at least-capacitance electrical signal. According to an embodiment of the present invention, the electrical signal of the capacitance between the detecting electrode and the reference electrode is measured by utilizing characteristics of different dielectric constants of air and blood, and the blood shortage in the flow channel 150 can be accurately detected. . In addition, in one embodiment, when the amount of the skin lotion t is reduced (4), the money may have a characteristic of a different dielectric constant, or the blood may have a different dielectric constant when the concentration of the impurity in the blood is different. To measure a test object in the blood. Although the present invention has been disclosed in the above preferred embodiments, the present invention is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection shall be subject to the scope of the patents attached to the attached towel. In addition, any of the objects or advantages or features of the present invention are not to be construed as being limited by the scope of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents, and to cover the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the appearance of a conventional electrochemical test piece. Figure 2 shows an exploded view of the electrochemical test piece of Figure 1. Figure 3 shows a functional block diagram of a conventional electrochemical measuring device. Figure 4 shows a schematic view of the blood to be tested after entering the flow channel. Figure 5 shows a perspective view of an electrochemical test strip in accordance with an embodiment of the present invention. Fig. 6 shows a schematic diagram of the blood to be tested according to the electrochemical film of the present-real drama 12 201241436. Figure 7 is a diagram showing the relationship between a detection electrode and a reference voltage signal and an electrical signal of a capacitor according to an embodiment of the present invention. Fig. 8A is a schematic view showing the distribution of blood in a flow channel in the case of insufficient blood in the prior art. Fig. 8B is a schematic view showing the distribution of blood in a flow channel in the case of insufficient blood in the prior art. Figure 9 shows a perspective view of an electrochemical test strip in accordance with an embodiment of the present invention. Figure 10 is a flow chart showing an electrochemical test method in accordance with an embodiment of the present invention. [Main component symbol description] 100 Electrochemical test piece 110 Electrode substrate 111 Substrate 112 Circuit layout 11a Reference electrode lib Working electrode 11c Detection electrode 120 Flow path plate 122 Notch 201241436 125 Entrance 130 Top plate 135 Opening 140 Insulation layer 150 Flow path 200 Electrochemistry Measuring device 211 electrode 212 electrode 220 reference voltage source 230 current voltage conversion circuit 240 analog digital conversion circuit 250 processor 260 display 270 memory 300 electrochemical test piece 310 electrode substrate 312 circuit layout 31a reference electrode 31b working electrode 31c detecting electrode 400 Electrochemical test piece 201241436 41a 41b 41c Reference electrode working electrode detection electrode