JP2004095301A - Measuring device for electrode potential of fuel cell - Google Patents

Measuring device for electrode potential of fuel cell Download PDF

Info

Publication number
JP2004095301A
JP2004095301A JP2002253975A JP2002253975A JP2004095301A JP 2004095301 A JP2004095301 A JP 2004095301A JP 2002253975 A JP2002253975 A JP 2002253975A JP 2002253975 A JP2002253975 A JP 2002253975A JP 2004095301 A JP2004095301 A JP 2004095301A
Authority
JP
Japan
Prior art keywords
potential
electrode
oxygen electrode
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002253975A
Other languages
Japanese (ja)
Other versions
JP4269599B2 (en
Inventor
Chikayuki Takada
高田 慎之
Taizo Yamamoto
山本 泰三
Shigenobu Tsutazumi
傳住 重伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2002253975A priority Critical patent/JP4269599B2/en
Publication of JP2004095301A publication Critical patent/JP2004095301A/en
Application granted granted Critical
Publication of JP4269599B2 publication Critical patent/JP4269599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device for measuring a local potential of an electrode in a fuel cell, having a simple structure and enabling installation of two or more of them. <P>SOLUTION: A part of a fuel cell oxygen electrode 21 is used as a detecting piece 41 insulated from the surrounding oxygen electrode 21, the potential of a collecting member 32 brought into contact with the oxygen electrode is set as a reference potential, and a voltmeter 5 to measure a potential difference between the reference potential and the detecting piece 41 is provided. A measuring circuit is formed for every detecting piece 41, by providing a plurality of the detecting pieces 41 on the surface of the oxygen electrode 21, and by providing the voltmeter 5 to measure the potential difference when the potential of the collecting member 32 is set as the reference potential. Occurrence of an abnormal potential can be accurately detected by detecting the potential of each part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は燃料電池における電極電位測定装置にかかり、詳しくは電極内の特定の位置(局部)における電位を測定する電極電位測定装置に関するものである。
【0002】
【従来の技術】
従来、高分子電解質膜を使用した燃料電池では、電解質膜を挟んだ両側で燃料ガス或いは酸化ガスがイオン化し、そのイオンが電解質膜を透過して電気化学的な反応を生じるものであるから、電解質膜を挟んで燃料ガスと酸化ガスが存在していれば、両者の電気化学的な反応が継続する。従来では、燃料電池の運転を停止するために、燃料電池への燃料ガスおよび酸化ガスの供給を停止している。この場合、燃料電池内には、燃料ガスと酸化ガスが残存しているから、一方の残存ガスがなくなるまで両者の電気化学的な反応が継続することとなる。
【0003】
燃料ガスや酸化ガスの供給を止めた後、残存ガスが燃料電池の内部で反応すると、その体積が減少し、燃料室(燃料ガス流路)側の圧力が次第に低下する。燃料室内の内部圧力が低下すると、酸化ガス流路から電解質膜を透過して燃料ガス流路内に酸化ガスが侵入する。その結果、燃料室内では、燃料ガスの濃度が他の領域より特に濃い領域と、酸化ガスの濃度が他の領域により特に濃い領域が併存する状態、即ち、同一の燃料室内で、燃料ガスと酸化ガスが偏在した状態が発生することとなる。このガスの偏在が増大していくと、燃料ガスが偏在した部分が局部電池を形成し、酸化ガスが偏在した部分に正常発電時と逆向きの電流を流すように働くため、特に酸素極を腐食させることなり、劣化が速くなる。
このような異常反応を回避するためには、燃料室側の電極面のどこで、いつ局部電池が構成されているかを監視する必要がある。
【0004】
【発明が解決しようとする課題】
そこで、従来では、燃料室内の水素濃度を測定する代わりに、燃料極の電位分布を測る方法として、塩橋を用いてRHE(Reversible Hydrogen Electrode)基準で燃料極電位を測る方法が知られている。しかし、この方法を用いると、電極面に対する測定部位のそれぞれに塩橋を設けなければならず、構成が大型化してしまうという問題があった。
【0005】
また、燃料室内の水素とそれ以外のガスの偏在を確認するには、燃料極面に対して複数箇所の検出部を設置し、それらの電位を比較しなければならないが、複数の検出部にそれぞれ塩橋を設けるには、さらに構成が大型化してしまうという問題があった。特に、燃料電池単位セルをセパレータを介して積層し、スタックを構成した燃料電池では、検出対象となる燃料極が、小さな間隔を空けて多数配置されるので、塩橋を利用する検出部を設けることは、さらに構成が大掛かりとなり、事実上取り付けは不可能である。
さらに、水素と水素以外の気体が混在する雰囲気下では、RHEの電位自体も正確ではなく、異常電位の現象が起きているか否かは検出できるが、異常電位の程度や具体的な数値までは検出することは難しいといった問題もあった。
【0006】
この発明は、構成が簡易であり、複数設置が可能な、燃料電池における電極電位測定装置を提供することにある。
【0007】
【課題を解決するための手段】
以上のような目的を達成する本発明は以下の構成を有する。
(1) 酸素極と燃料極とで固体高分子電解質を挟持した燃料電池単位セルの酸素極に設けられ、測定位置の酸素極の一部を周囲の酸素極から絶縁状態として構成された検出片と、該検出片に通電可能に接続された検出端子とを備えている検出部と、
酸素極と前記検出部との間に接続され、酸素極を基準電位とし酸素極の電位と検出部の電位との電位差を検出する電位測定手段とを有する燃料電池の電極電位測定装置。
【0008】
(2) 酸素極と燃料極とで固体高分子電解質を挟持した燃料電池単位セルと導電性を有するセパレータとを交互に積層して構成された燃料電池スタックの酸素極に設けられ、測定位置の酸素極の一部を周囲の酸素極から絶縁状態として構成された検出片と、該検出片に通電可能に接続され、セパレータと絶縁されている検出端子とを備えた検出部と、
酸素極と前記検出部との間に接続され、酸素極を基準電位とし酸素極の電位と検出部の電位との電位差を検出する電位測定手段とを有する燃料電池の電極電位測定装置。
【0009】
(3) 酸素極の複数箇所に配置されている上記(1)又は(2)に記載の燃料電池の電極電位測定装置。
【0010】
(4) 検出端子は絶縁材料で構成された保持部材を介して、セパレータに固定されている請求項2又は3に記載の燃料電池の電極電位測定装置。
【0011】
【発明の実施の形態】
以下、本発明の燃料電池の電極電位測定装置1について、添付図面に基づき詳細に説明する。図1は、本発明の燃料電池の電極電位測定装置1を備えた燃料電池スタック10の構成を示す模式図である。
燃料電池スタック10は、単位セル2と、セパレータ3とを備えている。単位セル2は、酸素極21と燃料極22とで固体高分子電解質23を挟持した構成となっている。酸素極21と燃料極22は、それぞれ固体高分子電解質23に接触する反応層211、221と、セパレータ3に接触するガス拡散層212、222とを備えている。
【0012】
セパレータ3は、酸素極21と燃料極22にそれぞれ接触して電流を外部に取り出すための集電部材31、32とを有している。
集電部材31、32は、導電性と耐蝕性を備えた材料で構成されている。集電部材31、32としては、例えば、緻密質カーボン、金属等の材料で構成されている。金属で構成した場合には、例えば、ステンレス、ニッケル合金、チタン合金等の材料に耐蝕導電処理を施したものを用いることができる。ここで、耐蝕導電処理とは、例えば、金メッキ等が挙げられる。
【0013】
図2は、セパレータ3と単位セル2の位置関係を示す分解斜視図である。集電部材31の燃料極22に接触する面には、直交方向に等間隔で配置された凸部311が複数形成され、該凸部311の間には、溝312が格子状に形成されている。各凸部311先端の平面部が燃料極22にそれぞれ接触する接触部313となっており、この接触部313を介して燃料極22と通電可能となる。溝312と、燃料極22の表面とによって、水素ガスが流通する燃料室30が形成される。この燃料室30において、水素ガスが燃料極22へ供給される。
【0014】
燃料室30には、燃料ガス供給孔318と燃料ガス排出孔317とが形成され、水素ガスは燃料ガス供給孔318から燃料室30内に流入し、燃料極22に水素を供給しつつ、燃料ガス排出孔317から流出する。この実施形態では、集電部材31は、矩形であり、燃料ガス供給孔318と燃料ガス排出孔317は、集電部材31の平面視における図心を中心として点対称の位置に(対角線方向)に、それぞれ配置されている。以上のように、燃料室30は、各セパレータ3と単位セル2の間にそれぞれ形成されている。
【0015】
各燃料室30の燃料ガス供給孔318は、燃料電池スタック10内において、集電部材31の積層方向に形成されている燃料ガス供給通路319aにそれぞれ連通しており、燃料ガス排出孔317は、燃料電池スタック10内において、集電部材31の積層方向に形成されている燃料ガス排出通路319bにそれぞれ連通している。燃料ガス供給通路319aと各燃料ガス供給孔318によって、燃料ガスを各燃料室30に分配する燃料ガスマニホールドが構成される。
【0016】
図3は、集電部材32の全体斜視図である。集電部材32の、酸素極21に接触する面には、直線状に連続して隆起した凸部321が等間隔で複数形成され、該凸部321の間には、溝322がそれぞれ形成される。つまり、凸部321と溝322は、交互に配置された形状となっている。凸部321は、最も突出した峰の平面部が酸素極21に接触する接触部323となっており、この接触部323を介して酸素極21と通電可能となる。溝322と、酸素極21の表面とによって、空気が流通する空気流通路325が形成される。
【0017】
溝322は、集電部材31の両端部に達しており、空気流通路325の上下端は、燃料電池スタック10の外側に連通する開口部となっている。両端の開口部の一方は、空気が流入する空気流入部326を形成し、他方の開口部は、空気が流出する空気流出部327を形成している。空気流入部326から流入した空気は、空気流通路325において、酸素極22と接触し、酸素極に酸素を供給しつつ、空気流出部327へ導かれる。なお、集電部材32の両端部には、積層時に、燃料ガス供給通路319aと燃料ガス排出通路319bをそれぞれ構成する孔328、327を有している。
【0018】
以上のような構成を有する単位セル2と集電部材32について設けられている電極電位測定装置1について説明する。図1に示されているように、電極電位測定装置1は、検出部4と、電位測定手段である電圧計5と、検出部4と電圧計5、および電圧計5と集電部材32とを接続する導線61、62とを備えている。
【0019】
検出部4は、酸素極21内に設けられた検出片41と、検出片41の表面に接続された検出端子42と、検出端子42を保持する保持部材43とを備えている。検出片41は、酸素極21の一部を切り出して、周囲の酸素極21から絶縁状態としたものであり、検出片41と周囲の酸素極21との間には、絶縁部411が設けられている。この絶縁部411は、絶縁材料を充填することにより構成し、あるいは単に隙間を空けることにより構成することができる。検出片41は、固体高分子電解質23に接触し、高分子電解質23との間でイオン伝導可能に構成されている。このような構成とすることによって、燃料極22側に空気(酸素)が偏在した場所での異常電位を検出することができる。
【0020】
検出端子42は、例えばPt、Au、Ti、Taなどの耐食性のある金属で構成することができる。検出端子42を保持している保持部材43は、集電部材32側に固定されており、絶縁材料で構成されている。保持部材43は、検出端子42を集電部材32側に保持するとともに、検出端子42を集電部材32と周囲の酸素極21から電気的に絶縁する作用を有する。また、検出端子42は、単位セル2と集電部材32とを重ね合わせて燃料電池スタック10を組み立てた際に、酸素極21の検出片41に接触する構成となっている。
【0021】
検出端子42には、導線61の一端が接続されており、導線61の他端は、電圧計5に接続されている。導線61は、絶縁材で被覆されており、集電部材32の空気流通路325内を挿通し、図3に示されているように、集電部材32の端部(空気流通路325)から外側に導出されている。導線61には絶縁材によって被覆されており、空気流通路325内で集電部材32との接触により、集電部材32と導線61が通電しない構成となっている。
【0022】
導線61を集電部材32の端部から外側に導出することによって、集電部材32を積層することができ、燃料電池スタック10に本発明の電極電位測定装置1を用いることが容易となる。
電圧計5の他方の端子には、導線62の一端が接続され、導線62の他端は、酸素極側の集電部材32に接続されている。導線62は絶縁材で被覆されている。
【0023】
以上のように構成された電極電位測定装置は、酸素極21に複数設けられている。例えば、図2に示されているように、上下方向に3段、左右方向に5列設けられ、それぞれの検出部41について、それぞれ電圧計5が接続された独立した回路が構成される。
【0024】
このような複数の位置の電位を検出することによって、例えば、図4に示されているように、電極の各位置における電位の変化をモニターすることができる。検出片41aの位置の曲線をa、検出片41bの位置の曲線をb、検出片41cの位置の曲線をc、検出片41dの位置の曲線をdで表すと、経時変化する電位を知ることができる。燃料供給停止し、燃料電池の負荷をオフした後、時間の経過とともに、電位が高く変化している箇所(a,b,c)は、燃料室30に水素と酸素が偏在している状態で空気が多く存在する箇所であり、電位がゼロ又は負となっている箇所(d)は比較的水素で満たされている箇所である。
【0025】
図4に示されている曲線では、検出片41dの位置と、他の検出片41a〜cの位置との間に電位差が生じており、この電位差が所定値以上となった場合に、異常電位が生じたものとすることができる。また、1箇所の電位を検出した場合には、電位値がゼロの位置から変化した量により、異常電位と判定することができる。
【0026】
【発明の効果】
請求項1に記載の発明によれば、塩橋を用いる必要がなく、測定装置の構成を簡易にすることができる。また、酸素極を基準電位とすることによって、電位の程度をより正確に測定することができる。
請求項2に記載の発明によれば、塩橋を用いないので、セパレータを用いて多数の単位セルを積層した燃料電池スタックに用いることができる。
【0027】
請求項3に記載の発明によれば、複数箇所の電位を測定し、これを比較することによって、異常電位の発生や、発生場所を正確かつ迅速に検出することができる。
請求項4に記載の発明によれば、保持部材を用いて検出端子を保持する構成とし、燃料電池単位セルにセパレータを積層することで検出端子と検出片とが接続される構成することによって、電極電位測定装置の組立が容易とすることができる。
【図面の簡単な説明】
【図1】本発明の燃料電池の電極電位測定装置を備えた燃料電池スタックの構成を示す模式図である。
【図2】セパレータと単位セルの位置関係を示す分解斜視図である。
【図3】集電部材の全体斜視図である。
【図4】電極各部の電位の経時変化を示すグラフである。
【符号の説明】
1 電極電位測定装置
10 燃料電池スタック
2 単位セル
3 セパレータ
30 燃料室
4 検出部
41 検出片
42 検出端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode potential measuring device in a fuel cell, and more particularly to an electrode potential measuring device for measuring a potential at a specific position (local part) in an electrode.
[0002]
[Prior art]
Conventionally, in a fuel cell using a polymer electrolyte membrane, a fuel gas or an oxidizing gas is ionized on both sides of the electrolyte membrane, and the ions permeate the electrolyte membrane to cause an electrochemical reaction. If a fuel gas and an oxidizing gas are present across the electrolyte membrane, the electrochemical reaction between the two continues. Conventionally, in order to stop the operation of the fuel cell, the supply of the fuel gas and the oxidizing gas to the fuel cell is stopped. In this case, since the fuel gas and the oxidizing gas remain in the fuel cell, the electrochemical reaction between the two continues until one of the remaining gases disappears.
[0003]
After the supply of the fuel gas or the oxidizing gas is stopped, when the residual gas reacts inside the fuel cell, the volume decreases, and the pressure in the fuel chamber (fuel gas flow path) side gradually decreases. When the internal pressure in the fuel chamber decreases, the oxidizing gas permeates through the electrolyte membrane from the oxidizing gas flow path and enters the fuel gas flow path. As a result, in the fuel chamber, a region in which the concentration of the fuel gas is particularly higher than the other region and a region in which the concentration of the oxidizing gas is particularly higher than the other region coexist, that is, in the same fuel chamber, the fuel gas and the oxidizing gas coexist. A state in which the gas is unevenly distributed occurs. When the uneven distribution of this gas increases, the part where the fuel gas is unevenly formed forms a local cell, and the part where the oxidizing gas is unevenly distributed acts to flow a current opposite to that during normal power generation. Corrosion causes faster deterioration.
In order to avoid such an abnormal reaction, it is necessary to monitor where and when the local battery is formed on the electrode surface on the fuel chamber side.
[0004]
[Problems to be solved by the invention]
Therefore, conventionally, as a method of measuring the potential distribution of the fuel electrode, instead of measuring the hydrogen concentration in the fuel chamber, a method of measuring the fuel electrode potential based on RHE (Reversible Hydrogen Electrode) using a salt bridge is known. . However, when this method is used, there is a problem that a salt bridge must be provided at each of the measurement sites with respect to the electrode surface, and the configuration becomes large.
[0005]
Also, in order to confirm the uneven distribution of hydrogen and other gases in the fuel chamber, it is necessary to install a plurality of detectors on the fuel electrode surface and compare their potentials. There is a problem in that the construction of each of the salt bridges is further increased in size. In particular, in a fuel cell in which fuel cell unit cells are stacked with a separator interposed therebetween to form a stack, a large number of fuel electrodes to be detected are arranged at small intervals, so that a detection unit using a salt bridge is provided. This further complicates the construction and is virtually impossible to mount.
Furthermore, in an atmosphere in which hydrogen and a gas other than hydrogen are mixed, the potential of RHE itself is not accurate, and it can be detected whether or not the phenomenon of abnormal potential has occurred. There was also a problem that it was difficult to detect.
[0006]
An object of the present invention is to provide an electrode potential measuring device in a fuel cell, which has a simple configuration and can be installed in plurals.
[0007]
[Means for Solving the Problems]
The present invention that achieves the above object has the following configuration.
(1) A detection piece provided at an oxygen electrode of a fuel cell unit cell in which a solid polymer electrolyte is sandwiched between an oxygen electrode and a fuel electrode, and configured so that a part of the oxygen electrode at a measurement position is insulated from surrounding oxygen electrodes. And a detection unit including a detection terminal electrically connected to the detection piece,
An electrode potential measuring device for a fuel cell, comprising: a potential measuring unit connected between an oxygen electrode and the detecting unit, the potential measuring unit detecting a potential difference between the potential of the oxygen electrode and the potential of the detecting unit using the oxygen electrode as a reference potential.
[0008]
(2) A fuel cell unit cell in which a solid polymer electrolyte is sandwiched between an oxygen electrode and a fuel electrode, and a separator having conductivity are provided alternately on an oxygen electrode of a fuel cell stack configured to have a measurement position. A detection piece configured such that a part of the oxygen electrode is insulated from the surrounding oxygen electrode, and a detection unit including a detection terminal connected to the detection piece so as to be able to conduct electricity and insulated from the separator.
An electrode potential measuring device for a fuel cell, comprising: a potential measuring unit connected between an oxygen electrode and the detecting unit, the potential measuring unit detecting a potential difference between the potential of the oxygen electrode and the potential of the detecting unit using the oxygen electrode as a reference potential.
[0009]
(3) The electrode potential measuring device for a fuel cell according to the above (1) or (2), which is arranged at a plurality of positions of the oxygen electrode.
[0010]
(4) The electrode potential measuring device according to claim 2 or 3, wherein the detection terminal is fixed to the separator via a holding member made of an insulating material.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a fuel cell electrode potential measuring device 1 of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing a configuration of a fuel cell stack 10 provided with a fuel cell electrode potential measuring device 1 of the present invention.
The fuel cell stack 10 includes a unit cell 2 and a separator 3. The unit cell 2 has a configuration in which a solid polymer electrolyte 23 is sandwiched between an oxygen electrode 21 and a fuel electrode 22. The oxygen electrode 21 and the fuel electrode 22 include reaction layers 211 and 221 that come into contact with the solid polymer electrolyte 23 and gas diffusion layers 212 and 222 that come into contact with the separator 3.
[0012]
The separator 3 has current collecting members 31 and 32 for contacting the oxygen electrode 21 and the fuel electrode 22, respectively, and for extracting current to the outside.
The current collecting members 31 and 32 are made of a material having conductivity and corrosion resistance. The current collecting members 31 and 32 are made of, for example, a material such as dense carbon and metal. In the case of using a metal, for example, a material obtained by subjecting a material such as stainless steel, a nickel alloy, a titanium alloy or the like to a corrosion-resistant conductive treatment can be used. Here, the corrosion-resistant conductive treatment includes, for example, gold plating.
[0013]
FIG. 2 is an exploded perspective view showing a positional relationship between the separator 3 and the unit cell 2. On the surface of the current collecting member 31 that contacts the fuel electrode 22, a plurality of convex portions 311 are formed at regular intervals in the orthogonal direction, and grooves 312 are formed in a lattice shape between the convex portions 311. I have. The flat part at the tip of each convex part 311 is a contact part 313 that comes into contact with the fuel electrode 22, and the fuel electrode 22 can be electrically connected via the contact part 313. The fuel chamber 30 through which the hydrogen gas flows is formed by the groove 312 and the surface of the fuel electrode 22. In the fuel chamber 30, hydrogen gas is supplied to the fuel electrode 22.
[0014]
A fuel gas supply hole 318 and a fuel gas discharge hole 317 are formed in the fuel chamber 30, and hydrogen gas flows into the fuel chamber 30 from the fuel gas supply hole 318 to supply hydrogen to the fuel electrode 22 while supplying hydrogen to the fuel electrode 22. It flows out of the gas discharge hole 317. In this embodiment, the current collecting member 31 is rectangular, and the fuel gas supply hole 318 and the fuel gas exhaust hole 317 are located at point-symmetrical positions with respect to the centroid of the current collecting member 31 in plan view (diagonal direction). , Respectively. As described above, the fuel chambers 30 are formed between the respective separators 3 and the unit cells 2.
[0015]
The fuel gas supply holes 318 of the respective fuel chambers 30 communicate with the fuel gas supply passages 319a formed in the stacking direction of the current collecting members 31 in the fuel cell stack 10, and the fuel gas discharge holes 317 In the fuel cell stack 10, the fuel cell stack 10 communicates with fuel gas discharge passages 319b formed in the direction in which the current collecting members 31 are stacked. The fuel gas supply passage 319a and each fuel gas supply hole 318 constitute a fuel gas manifold that distributes fuel gas to each fuel chamber 30.
[0016]
FIG. 3 is an overall perspective view of the current collecting member 32. A plurality of linearly and continuously raised convex portions 321 are formed at regular intervals on a surface of the current collecting member 32 that contacts the oxygen electrode 21, and a groove 322 is formed between the convex portions 321. You. That is, the convex portions 321 and the grooves 322 have a shape arranged alternately. The protruding portion 321 has a contact portion 323 in which a flat portion of the most protruding peak comes into contact with the oxygen electrode 21, and it is possible to conduct electricity with the oxygen electrode 21 via the contact portion 323. The groove 322 and the surface of the oxygen electrode 21 form an air flow passage 325 through which air flows.
[0017]
The groove 322 reaches both ends of the current collecting member 31, and the upper and lower ends of the air flow passage 325 are openings communicating with the outside of the fuel cell stack 10. One of the openings at both ends forms an air inflow portion 326 through which air flows in, and the other opening forms an air outflow portion 327 through which air flows out. The air that has flowed in from the air inflow portion 326 is brought into contact with the oxygen electrode 22 in the air flow passage 325 and is guided to the air outflow portion 327 while supplying oxygen to the oxygen electrode. In addition, at both ends of the current collecting member 32, holes 328 and 327 forming a fuel gas supply passage 319a and a fuel gas discharge passage 319b, respectively, at the time of lamination, are provided.
[0018]
The electrode potential measuring device 1 provided for the unit cell 2 and the current collecting member 32 having the above-described configuration will be described. As shown in FIG. 1, the electrode potential measuring device 1 includes a detecting unit 4, a voltmeter 5 serving as a potential measuring unit, a detecting unit 4 and a voltmeter 5, and a voltmeter 5 and a current collecting member 32. Are connected to each other.
[0019]
The detection unit 4 includes a detection piece 41 provided in the oxygen electrode 21, a detection terminal 42 connected to a surface of the detection piece 41, and a holding member 43 that holds the detection terminal 42. The detection piece 41 is obtained by cutting out a part of the oxygen electrode 21 and making it insulated from the surrounding oxygen electrode 21. An insulating portion 411 is provided between the detection piece 41 and the surrounding oxygen electrode 21. ing. The insulating portion 411 can be configured by filling an insulating material, or simply by providing a gap. The detection piece 41 is configured to be in contact with the solid polymer electrolyte 23 and to be able to conduct ions with the polymer electrolyte 23. With such a configuration, it is possible to detect an abnormal potential at a location where air (oxygen) is unevenly distributed on the fuel electrode 22 side.
[0020]
The detection terminal 42 can be made of a corrosion-resistant metal such as Pt, Au, Ti, and Ta. The holding member 43 holding the detection terminal 42 is fixed to the current collecting member 32 side, and is made of an insulating material. The holding member 43 has a function of holding the detection terminal 42 on the current collecting member 32 side and electrically insulating the detection terminal 42 from the current collecting member 32 and the surrounding oxygen electrode 21. The detection terminal 42 is configured to come into contact with the detection piece 41 of the oxygen electrode 21 when the fuel cell stack 10 is assembled by stacking the unit cell 2 and the current collecting member 32.
[0021]
One end of a conductor 61 is connected to the detection terminal 42, and the other end of the conductor 61 is connected to the voltmeter 5. The conducting wire 61 is covered with an insulating material, penetrates through the air flow passage 325 of the current collecting member 32, and extends from the end (the air flow passage 325) of the current collecting member 32 as shown in FIG. It is led out. The conducting wire 61 is coated with an insulating material, so that the current collecting member 32 and the conducting wire 61 are not energized by contact with the current collecting member 32 in the air flow passage 325.
[0022]
By leading the conducting wire 61 outward from the end of the current collecting member 32, the current collecting member 32 can be laminated, and the use of the electrode potential measuring device 1 of the present invention in the fuel cell stack 10 becomes easy.
One end of a conducting wire 62 is connected to the other terminal of the voltmeter 5, and the other end of the conducting wire 62 is connected to the current collecting member 32 on the oxygen electrode side. The conducting wire 62 is covered with an insulating material.
[0023]
A plurality of the electrode potential measuring devices configured as described above are provided on the oxygen electrode 21. For example, as shown in FIG. 2, three stages are provided in the vertical direction and five columns are provided in the horizontal direction, and each detection unit 41 is configured as an independent circuit to which the voltmeter 5 is connected.
[0024]
By detecting the electric potentials at such a plurality of positions, for example, as shown in FIG. 4, it is possible to monitor a change in the electric potential at each position of the electrode. When the curve of the position of the detection piece 41a is represented by a, the curve of the position of the detection piece 41b is represented by b, the curve of the position of the detection piece 41c is represented by c, and the curve of the position of the detection piece 41d is represented by d, the potential that changes over time is known. Can be. After the fuel supply is stopped and the load of the fuel cell is turned off, the portions (a, b, c) where the potential changes with time with the passage of time are in a state where hydrogen and oxygen are unevenly distributed in the fuel chamber 30. A place where a lot of air exists, and a place (d) where the potential is zero or negative is a place relatively filled with hydrogen.
[0025]
In the curve shown in FIG. 4, a potential difference occurs between the position of the detection piece 41d and the positions of the other detection pieces 41a to 41c. When this potential difference becomes a predetermined value or more, the abnormal potential Has occurred. When one potential is detected, an abnormal potential can be determined based on the amount of change from the position where the potential value is zero.
[0026]
【The invention's effect】
According to the first aspect of the present invention, it is not necessary to use a salt bridge, and the configuration of the measuring device can be simplified. Further, by using the oxygen electrode as the reference potential, the degree of the potential can be measured more accurately.
According to the second aspect of the present invention, since a salt bridge is not used, it can be used for a fuel cell stack in which many unit cells are stacked using a separator.
[0027]
According to the third aspect of the present invention, by measuring the potentials at a plurality of locations and comparing the measured potentials, it is possible to accurately and quickly detect the occurrence of the abnormal potential and the location of the occurrence.
According to the invention as set forth in claim 4, the detection terminal is held by using the holding member, and the detection terminal and the detection piece are connected by stacking the separator on the fuel cell unit cell. The electrode potential measuring device can be easily assembled.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a configuration of a fuel cell stack provided with a fuel cell electrode potential measuring device of the present invention.
FIG. 2 is an exploded perspective view showing a positional relationship between a separator and a unit cell.
FIG. 3 is an overall perspective view of a current collecting member.
FIG. 4 is a graph showing the change over time of the potential of each part of the electrode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode potential measuring device 10 Fuel cell stack 2 Unit cell 3 Separator 30 Fuel chamber 4 Detector 41 Detector piece 42 Detector terminal

Claims (4)

酸素極と燃料極とで固体高分子電解質を挟持した燃料電池単位セルの酸素極に設けられ、測定位置の酸素極の一部を周囲の酸素極から絶縁状態として構成された検出片と、該検出片に通電可能に接続された検出端子とを備えている検出部と、
酸素極と前記検出部との間に接続され、酸素極を基準電位とし酸素極の電位と検出部の電位との電位差を検出する電位測定手段とを有する燃料電池の電極電位測定装置。
A detection piece provided at the oxygen electrode of the fuel cell unit cell in which the solid polymer electrolyte is sandwiched between the oxygen electrode and the fuel electrode, and configured so that a part of the oxygen electrode at the measurement position is insulated from the surrounding oxygen electrode; A detection unit having a detection terminal connected to the detection piece so as to be able to conduct electricity;
An electrode potential measuring device for a fuel cell, comprising: a potential measuring unit connected between an oxygen electrode and the detecting unit, the potential measuring unit detecting a potential difference between the potential of the oxygen electrode and the potential of the detecting unit using the oxygen electrode as a reference potential.
酸素極と燃料極とで固体高分子電解質を挟持した燃料電池単位セルと導電性を有するセパレータとを交互に積層して構成された燃料電池スタックの酸素極に設けられ、測定位置の酸素極の一部を周囲の酸素極から絶縁状態として構成された検出片と、該検出片に通電可能に接続され、セパレータと絶縁されている検出端子とを備えた検出部と、
酸素極と前記検出部との間に接続され、酸素極を基準電位とし酸素極の電位と検出部の電位との電位差を検出する電位測定手段とを有する燃料電池の電極電位測定装置。
A fuel cell unit cell in which a solid polymer electrolyte is sandwiched between an oxygen electrode and a fuel electrode, and a separator having conductivity are provided alternately on the oxygen electrode of a fuel cell stack configured by stacking, and the oxygen electrode at a measurement position is provided. A detection piece configured to be partially insulated from the surrounding oxygen electrode, and a detection unit including a detection terminal that is electrically connected to the detection piece and is insulated from the separator.
An electrode potential measuring device for a fuel cell, comprising: a potential measuring unit connected between an oxygen electrode and the detecting unit, the potential measuring unit detecting a potential difference between the potential of the oxygen electrode and the potential of the detecting unit using the oxygen electrode as a reference potential.
酸素極の複数箇所に配置されている請求項1又は2に記載の燃料電池の電極電位測定装置。The electrode potential measuring device for a fuel cell according to claim 1, wherein the electrode potential measuring device is disposed at a plurality of positions of the oxygen electrode. 検出端子は絶縁材料で構成された保持部材を介して、セパレータに固定されている請求項2又は3に記載の燃料電池の電極電位測定装置。4. The electrode potential measuring device for a fuel cell according to claim 2, wherein the detection terminal is fixed to the separator via a holding member made of an insulating material.
JP2002253975A 2002-08-30 2002-08-30 Fuel cell electrode potential measuring device Expired - Fee Related JP4269599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253975A JP4269599B2 (en) 2002-08-30 2002-08-30 Fuel cell electrode potential measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253975A JP4269599B2 (en) 2002-08-30 2002-08-30 Fuel cell electrode potential measuring device

Publications (2)

Publication Number Publication Date
JP2004095301A true JP2004095301A (en) 2004-03-25
JP4269599B2 JP4269599B2 (en) 2009-05-27

Family

ID=32059836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253975A Expired - Fee Related JP4269599B2 (en) 2002-08-30 2002-08-30 Fuel cell electrode potential measuring device

Country Status (1)

Country Link
JP (1) JP4269599B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302498A (en) * 2004-04-09 2005-10-27 Espec Corp Apparatus and method for measuring fuel cell current distribution
JP2005347218A (en) * 2004-06-07 2005-12-15 Toyota Motor Corp Fuel cell
JP2006278246A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Control method of fuel cell stack
JP2009245651A (en) * 2008-03-28 2009-10-22 Equos Research Co Ltd Fuel cell system
US8154243B2 (en) 2008-07-24 2012-04-10 Honda Motor Co., Ltd. Fuel cell potential measuring apparatus and manufacturing method therefor
CN112083368A (en) * 2019-06-12 2020-12-15 中国船舶重工集团公司第七六研究所 Self-noise test method of measuring electrode based on compensation mode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5694123B2 (en) * 2011-10-27 2015-04-01 本田技研工業株式会社 Fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302498A (en) * 2004-04-09 2005-10-27 Espec Corp Apparatus and method for measuring fuel cell current distribution
WO2005101557A1 (en) * 2004-04-09 2005-10-27 Espec Corp. Fuel cell current distribution measuring equipment and fuel cell current distribution measuring method
JP2005347218A (en) * 2004-06-07 2005-12-15 Toyota Motor Corp Fuel cell
JP2006278246A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Control method of fuel cell stack
JP2009245651A (en) * 2008-03-28 2009-10-22 Equos Research Co Ltd Fuel cell system
US8154243B2 (en) 2008-07-24 2012-04-10 Honda Motor Co., Ltd. Fuel cell potential measuring apparatus and manufacturing method therefor
CN112083368A (en) * 2019-06-12 2020-12-15 中国船舶重工集团公司第七六研究所 Self-noise test method of measuring electrode based on compensation mode

Also Published As

Publication number Publication date
JP4269599B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US6949920B2 (en) Apparatus for measuring current density of fuel cell
US9513243B2 (en) Crack detection in ceramics using electrical conductors
JP5474839B2 (en) Fuel cell current density distribution measuring device
JP4817962B2 (en) Fuel cell current distribution measuring device, stacked fuel cell current distribution measuring device, and fuel cell current distribution measuring method
JP4269599B2 (en) Fuel cell electrode potential measuring device
JP2019031733A (en) Electrochemical device equipped with hydrogen sensor
JP4447272B2 (en) Fuel cell evaluation system
JP2006216390A (en) Current monitoring device of fuel cell
JP5078573B2 (en) Fuel cell system
JP4428046B2 (en) Fuel cell
JP5694123B2 (en) Fuel cell
JP5144410B2 (en) Corrosion detector for metal separator of fuel cell
JP3846386B2 (en) Gas sensor element
JP4037220B2 (en) Gas sensor element
JP2005203158A (en) Fuel cell monitoring device
JP2014049266A (en) Method and device for measuring electrolyte membrane of fuel cell
JP5945466B2 (en) Potential measurement device for fuel cell
JP5829580B2 (en) Potential measurement device for fuel cell
JP5508633B2 (en) Fuel cell abnormality detection device, fuel cell device, and fuel cell abnormality detection method
US11796503B2 (en) Water detecting device and method of water detection
JP2005222808A (en) Fuel cell abnormality detection system, and fuel cell abnormality detection method
JP4268732B2 (en) Gas sensor
JP5634258B2 (en) Method for monitoring operating state of solid oxide fuel cell and solid oxide fuel cell
JP2008235105A (en) Method and device for detecting moisture content of fuel cell
JP2004093200A (en) Gas sensor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees