JP4959437B2 - Ozone generator. - Google Patents

Ozone generator. Download PDF

Info

Publication number
JP4959437B2
JP4959437B2 JP2007159191A JP2007159191A JP4959437B2 JP 4959437 B2 JP4959437 B2 JP 4959437B2 JP 2007159191 A JP2007159191 A JP 2007159191A JP 2007159191 A JP2007159191 A JP 2007159191A JP 4959437 B2 JP4959437 B2 JP 4959437B2
Authority
JP
Japan
Prior art keywords
electrode
flat
ozone
base
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007159191A
Other languages
Japanese (ja)
Other versions
JP2008308372A (en
Inventor
次勝 小田嶋
浩一 高木
厚志 旭
勝 千葉
邦夫 佐々木
武志 千葉
公司 澤田
Original Assignee
株式会社 オーエンス・ジェー・ピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 オーエンス・ジェー・ピー filed Critical 株式会社 オーエンス・ジェー・ピー
Priority to JP2007159191A priority Critical patent/JP4959437B2/en
Publication of JP2008308372A publication Critical patent/JP2008308372A/en
Application granted granted Critical
Publication of JP4959437B2 publication Critical patent/JP4959437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、相対する二つの電極間に高電圧を印加し、形成された両電極で起こる放電空間に酸素または空気を通過させてオゾンガスを発生させるオゾン発生装置の技術に関する。   The present invention relates to a technology of an ozone generator that generates ozone gas by applying a high voltage between two opposing electrodes and passing oxygen or air through a discharge space that occurs between the two electrodes formed.

オゾンは、その強力な酸化力によって、殺菌、脱臭、脱色など多くの分野に応用がなされているが、オゾンを発生させるには、一般的、図1の無声放電式オゾン発生装置に示すように、平板電極a,bに平行に対向するように設け、一方の電極aはセラミック等の誘電体dを覆って、誘電体dと他方の電極bとで放電空間eを形成し、両電極に高周波高電圧交流電源cにより高電圧を印加して放電空間eで放電を行い、この放電空間eに空気や酸素ガスfを通過させてオゾンを発生させるオゾン発生装置が知られている。
このオゾン発生装置は、放電面積が大きいことから無声放電が可能で古くからオゾン発生に利用されているが、両電極間に高周波、高電圧を印加することから消費電力の多さが問題となり、また、電力の多くが熱に変わり、その熱が発生したオゾンを分解してしまうため、効率が悪いといった問題点があり、さらに、高電圧を発生するための電源装置、それを受け入れる放電部で発生する熱を冷却する水冷装置などが必要なので、全体では比較的大型な設備となってしまうといった問題点があった。
そのため、小型化や低消費電力化の必要から、放電効率を上げる構造が求められ、特許文献1に開示され、図2の無声放電オゾン発生装置に示すような、多数の突起電極を設ける技術が提供されている。しかし、両平板電極よりも消費電力が少なくなるが、依然として、消費電力は多く、更なる消費電力を節約できるオゾン発生装置の開発が要望されている。
Ozone is applied in many fields such as sterilization, deodorization, and decolorization due to its strong oxidizing power, but in order to generate ozone, as shown in the silent discharge ozone generator of FIG. Are provided so as to face the plate electrodes a and b in parallel. One electrode a covers a dielectric d such as a ceramic, and the dielectric d and the other electrode b form a discharge space e. There is known an ozone generator that applies high voltage from a high-frequency, high-voltage AC power source c, discharges in a discharge space e, and generates ozone by passing air or oxygen gas f through the discharge space e.
This ozone generator is capable of silent discharge because of its large discharge area and has been used for ozone generation for a long time, but because of the high frequency and high voltage applied between both electrodes, the amount of power consumption becomes a problem, In addition, since most of the electric power is converted into heat and the ozone generated by the heat is decomposed, there is a problem that the efficiency is low, and furthermore, a power supply device for generating a high voltage and a discharge unit that receives it. Since a water cooling device or the like for cooling the generated heat is required, there is a problem that the overall equipment becomes relatively large.
Therefore, a structure for increasing discharge efficiency is required because of the need for downsizing and low power consumption, and a technique for providing a large number of protruding electrodes as disclosed in Patent Document 1 and shown in the silent discharge ozone generator of FIG. Is provided. However, although it consumes less power than both plate electrodes, it still consumes more power, and there is a demand for the development of an ozone generator that can save further power consumption.

特開平08−59213号公報Japanese Patent Laid-Open No. 08-59213

本発明の課題は、上述した問題点に鑑みてなされたもので、多数突起電極を備えたオゾン発生装置において、より小型軽量化が可能で、より低消費電力でオゾン発生効率の良いオゾン発生装置を提供することである。   An object of the present invention has been made in view of the above-described problems. In an ozone generator having a large number of protruding electrodes, an ozone generator that can be reduced in size and weight, has lower power consumption, and has good ozone generation efficiency. Is to provide.

ところで、特許文献1は、多数の突起を有する所謂マルチポイント電極を使用することにより、両平板状の電極より消費電力は少なくなる技術を開示しているが、本発明者らは、更に突起電極を多数にして、極めて密集状態となる突起密度とすると消費電力が少なくなるが、密集状態が更に細かくなり平板に近づくと消費電力が逆に多くなり、突起密度の最適密度が存在することを見出した。そして、その最適密度は電極の金属によっても異なることを見出した。
その研究過程で、従来の多数の突起電極は、通常、電気伝導性の良好な銅や真鍮等が使用されていたが、オゾン発生のための突起電極の先端は鋭利な針先形状であるが、この針先形状であると放電により先端の損耗が激しく、損耗によって先端の形状や突起の高さが変わると期待通りの放電が得られなくなり、また、突起間のバラツキも大きくなり、したがって、放電の効率が低下するといった問題点があり、特に、使用初期の先端の損耗が激しく、この期間でのオゾン発生能力が大きく変動してオゾンの発生量の制御が難しくなり、先端の損耗の度合いもまちまちで結果としてオゾン発生効率も低下することを見出した。
By the way, Patent Document 1 discloses a technique that uses a so-called multi-point electrode having a large number of protrusions, thereby reducing power consumption compared to both flat-plate electrodes. When the density of protrusions becomes extremely dense, the power consumption decreases.However, when the denseness becomes finer and approaches the flat plate, the power consumption increases and the optimum density of the protrusion density exists. It was. And the optimum density was found to vary depending on the metal of the electrode.
In the research process, many conventional protruding electrodes were usually made of copper, brass or the like having good electrical conductivity, but the tip of the protruding electrode for generating ozone has a sharp needle tip shape. In this needle tip shape, the tip end is severely worn by the discharge, and if the tip shape and the height of the projection change due to the wear, the expected discharge cannot be obtained, and the variation between the projections also increases. There is a problem that the efficiency of discharge is reduced, especially the wear of the tip at the beginning of use is severe, the ozone generation capacity fluctuates greatly during this period, it becomes difficult to control the amount of ozone generated, the degree of tip wear As a result, it was found that the ozone generation efficiency also decreased.

このため、銅や真鍮以外のステンレス(SUS)の針状の突起電極を用いた放電装置を連続稼働させたところ、放電開始から5日までは急激にオゾン発生量が減少し不安定であったが、その後は安定したオゾン発生量となり、オゾン発生量も高水準を維持することが判った。この安定した状態の突起電極の先端部の状態を拡大してみると、先端部の角が損耗し始めてR形状や平坦状となって安定するので、予めこの安定する形状にしておけば、長期に亘ってオゾンの発生効率が良く安定した性能を維持することを見出した。
更に、オゾン発生濃度を高めるには、放電空間以外の部分である突起の根元の部分の空隙を極力少なくして、通過する原料の空気や酸素ガスを効率よく放電空間に導く必要がある。しかし、放電により装置が高温になると折角生成したオゾンガスが熱分解するので放電空間近傍を冷却しなければならない。そこで、前記の突起形状は電極の冷却フィンの役目も果たしているので、前記突起根元の部分の空隙に着目して、最低限の空隙だけを残して、突起を角柱、角錐、円錐形状にして表面積を同じ或いは増加させて、突起根元の無駄な空隙を削減すれば、冷却効果を維持しながら放電空間の空気や酸素ガス等の通過量の比率を上げることが可能であることを見出した。
For this reason, when a discharge device using a needle-like protruding electrode made of stainless steel (SUS) other than copper or brass was continuously operated, the amount of ozone generation decreased sharply from the start of discharge until 5 days and was unstable. However, after that, it became clear that the amount of ozone generated was stable, and the amount of ozone generated was maintained at a high level. When the state of the tip of the protruding electrode in a stable state is enlarged, the corner of the tip starts to wear out and becomes stable in an R shape or a flat shape. It has been found that ozone generation efficiency is good and stable performance is maintained.
Furthermore, in order to increase the ozone generation concentration, it is necessary to reduce the gap at the base of the projection, which is a part other than the discharge space, as much as possible, and to efficiently pass the raw material air and oxygen gas to the discharge space. However, when the temperature of the apparatus becomes high due to discharge, the ozone gas generated at the corner is thermally decomposed, so the vicinity of the discharge space must be cooled. Therefore, since the projection shape also serves as a cooling fin of the electrode, paying attention to the gap at the base of the projection, leaving only the minimum gap, the projection is a prism, pyramid, cone shape and the surface area It has been found that if the void at the base of the protrusion is reduced by increasing or decreasing the ratio, the ratio of the passing amount of air or oxygen gas in the discharge space can be increased while maintaining the cooling effect.

本発明は、上記課題を解決するために、上記知見に基づきなされたもので、請求項1の発明のオゾン発生装置は、誘電体に覆われた表面が平滑な平坦電極と相対する表面に多数の突起を有する突起電極とで放電空間を形成し、前記突起電極はステンレス製であり、該突起電極の各突起の先端と前記平坦電極との最短距離を等しくするとともに突起の密度を5.8〜33.7本/cm2とし、前記平坦電極と突起電極とに高電圧を印加し、前記放電空間に酸素又は空気を通過させてオゾンを発生させることを特徴とする。
請求項2の発明は、請求項1のオゾン発生装置において、前記平坦電極の基盤と、相対する前記多数突起電極の基盤とが平板状であることを特徴とする。
請求項3の発明は、請求項1のオゾン発生装置において、前記多数突起電極の基盤が円柱形状であり、相対する前記平坦電極が円柱形状の突起電極を囲む円筒形状であることを特徴とする。
請求項4の発明は、請求項1乃至3のオゾン発生装置において、前記多数突起電極の突起は基盤の根元に近くなるに従い断面積を大きくし、突起の先端は0.1〜0.7mm2の平坦部を有することを特徴とする。
請求項5の発明は、前記突起電極は、請求項1乃至4のオゾン発生装置において、基盤の根元に近い程断面積を大きくした錘形とし、且つ、隣り合う突起電極の根元の間隔は1.0mm以下とすることを特徴とする。
The present invention has been made on the basis of the above-mentioned knowledge in order to solve the above-mentioned problems, and the ozone generator of the invention of claim 1 has a large number of surfaces covered with a dielectric material on a surface facing a smooth flat electrode. A discharge space is formed by a projection electrode having a plurality of projections, and the projection electrodes are made of stainless steel. The shortest distance between the tip of each projection of the projection electrode and the flat electrode is made equal, and the density of the projections is 5.8. ˜33.7 / cm 2 , high voltage is applied to the flat electrode and the protruding electrode, and oxygen or air is passed through the discharge space to generate ozone.
According to a second aspect of the present invention, in the ozone generator according to the first aspect, the base of the flat electrode and the base of the multi-projection electrode facing each other are flat.
According to a third aspect of the present invention, in the ozone generator according to the first aspect, the base of the multi-projection electrode has a columnar shape, and the flat electrodes facing each other have a cylindrical shape surrounding the columnar projection electrode. .
According to a fourth aspect of the present invention, in the ozone generator of any one of the first to third aspects, as the projections of the multi-projection electrode become closer to the base of the substrate, the cross-sectional area is increased, and the tip of the projection is 0.1 to 0.7 mm 2 It has the flat part of this.
According to a fifth aspect of the present invention, in the ozone generator according to any one of the first to fourth aspects, the protruding electrode has a weight shape having a cross-sectional area that is larger as it is closer to the base of the base, and the interval between the bases of adjacent protruding electrodes is 1. It is characterized by being 0.0 mm or less.

請求項1乃至3の発明によれば、オゾン発生装置において突起電極をステンレス製としたので放電による損耗を少なくすることができ、多数突起電極の突起の密度を5.8 〜 33.7本/cm2とマルチポイント形状にしたことで、放電回数が増加し、また、放電開始電圧を低下させることができ、オゾン発生効率も上昇して消費電力も削減でき、電源回路小型化も可能である。
請求項4の発明によれば、請求項1の効果に加えて、突起の損耗による形状変化が少なくなり、稼働初期から安定したオゾン発生量とすることができ、オゾン発生量の長期安定が可能となり、供給電源の制御も容易となる。
請求項5の発明によれば、請求項1乃至4の効果に加えて、電極の表面積を広くしているので、放電に伴って発生する熱を放散する放熱効果が大きく、また、隣り合う極間を通過する原料空気等と発生したオゾンガスの流れによって冷却される。結果として、熱によるオゾンの分解を抑制してオゾンの生成効率をあげることができ、生成効率(単位消費電力量あたりのオゾン生成量)が良いので、その分だけ消費電力を削減でき、同時に電源部を小型化できる。
According to the first to third aspects of the present invention, since the protruding electrodes are made of stainless steel in the ozone generator, the wear due to discharge can be reduced, and the density of the protrusions of the large number of protruding electrodes is 5.8 to 33.7 / With the multi-point shape of cm 2 , the number of discharges can be increased, the discharge start voltage can be lowered, the ozone generation efficiency can be increased, the power consumption can be reduced, and the power circuit can be downsized. .
According to the invention of claim 4, in addition to the effect of claim 1, the shape change due to the wear of the protrusion is reduced, and the ozone generation amount can be stabilized from the beginning of operation, and the ozone generation amount can be stabilized for a long time. Thus, the control of the power supply is facilitated.
According to the invention of claim 5, in addition to the effects of claims 1 to 4, since the surface area of the electrode is widened, the heat dissipation effect to dissipate heat generated by the discharge is great, and the adjacent electrodes It is cooled by the flow of raw material air etc. passing between and the generated ozone gas. As a result, it is possible to increase the ozone generation efficiency by suppressing the decomposition of ozone by heat, and the generation efficiency (ozone generation amount per unit power consumption) is good. The size can be reduced.

本発明のオゾン発生装置の好適な実施例を図を参照して説明するが、先ず、多数突起電極の単独の突起の形状について説明する。
放電電極である突起電極の個々電極の先端は、鋭利であるほうが突起の特性を生かせるが、実際には放電開始時から放電の影響によって先端が損耗し始め、丸みを帯びてくるが、やがて、R形状或いは平面形状の大きさがある程度まで進むと、損耗の進行が非常に遅くなることを見出したが、放電初期の段階の損耗の進行中は、放電も不安定で、オゾン発生装置としての制御が困難であり、しかも、不揃いの高さとなるので放電回数や放電効率も減ることもある。
本発明の実施例では、予め先端をある程度のR形状あるいは面取り形状を施して、最初から安定した放電と高水準での放電効率を確保するようにしているが、突起の先端は損耗を抑えるために、あまり先端の平坦部の面積を大きくすると平板電極に近くなるので、「突起」電極の特性を失わない程度に平面化する必要がある。
また、円柱や角柱のように先端の断面積と根元までの断面積が同じであると損耗が根元まで続くことになるので、根元に近づくに従い突起の断面積が大きくなる形状であることが必要であり、円錐形、多角錐形、あるいは多角柱の上部が多角錘形のものがよく、これらの形状を適宜選択すればよい。
A preferred embodiment of the ozone generator of the present invention will be described with reference to the drawings. First, the shape of a single protrusion of a multi-projection electrode will be described.
The tip of each electrode of the protruding electrode, which is the discharge electrode, can make use of the characteristics of the protrusion if it is sharp, but actually the tip starts to wear out due to the influence of the discharge from the beginning of the discharge and becomes rounded, but eventually, It has been found that the progress of wear becomes very slow when the size of the R shape or the planar shape progresses to a certain extent, but the discharge is unstable during the progress of wear at the initial stage of discharge, and as an ozone generator It is difficult to control, and the height is uneven, so the number of discharges and discharge efficiency may be reduced.
In the embodiment of the present invention, the tip is given a certain R shape or chamfering shape in advance so as to ensure stable discharge and high level discharge efficiency from the beginning. In addition, if the area of the flat portion at the tip is made too large, it becomes close to a flat plate electrode, and therefore it is necessary to planarize it so as not to lose the characteristics of the “projection” electrode.
Also, if the cross-sectional area at the tip and the cross-sectional area up to the base are the same as in the case of a cylinder or a prism, the wear will continue to the base, so the cross-sectional area of the protrusion must increase as it approaches the base. It is preferable that the top of the cone, polygonal pyramid, or polygonal column is a polygonal pyramid, and these shapes may be selected as appropriate.

以上のような条件を満たす突起電極の形状の1例として、図3の4角錐形の実施例1で説明する。
図3(a)に示すように、下方(根元)へ行くほど太くなる4角錐形の突起で先端での対角度α=20°〜90°とし、実施例1では、図3(b)に示すように、先端近くを平坦部11にして、下方に行くほど太くすることで放電による損耗がある位置で止まり進行し難い形状で、その先端の平坦部11の面積は、0.5mm2 及び、0.1〜0.7mm2(後述の実施例2乃至3[グラフ2]参照)としている。
すなわち、突起先端が損耗するのは、電荷が突起先端の鋭利な1点に集中して放電し、鋭利な点ほどたちまち損耗するが、その結果、全体としてはやがてR形状となり、さらに進行すれば、理論的には平面となるものと考えられるが、平面に近づくほど放電はし難くなり、その結果損耗も進行し難くなる。
本実施例1では、先端角度α=30°としたが、先端角度が大きすぎれば初めから放電し難くなるので、自ずと限界があり、先端角度α=20°〜90°であれば有効に使用できる。
As an example of the shape of the protruding electrode that satisfies the above conditions, a quadrangular pyramid embodiment 1 shown in FIG. 3 will be described.
As shown in FIG. 3 (a), a quadrangular pyramid-shaped protrusion that becomes thicker toward the bottom (base) is set to have a diagonal angle α = 20 ° to 90 ° at the tip. In Example 1, in FIG. As shown in the figure, the flat portion 11 near the tip is made thicker as it goes downward, so that it stops at a position where there is wear due to discharge and does not proceed easily. The area of the flat portion 11 at the tip is 0.5 mm 2 and 0.1 to 0.7 mm 2 (see Examples 2 to 3 [Graph 2] described later).
In other words, the tip of the protrusion is worn out because the electric charge is concentrated and discharged at one sharp point on the tip of the protrusion, and the sharp point is worn away, but as a result, the entire shape eventually becomes an R shape, and if it progresses further Theoretically, it is considered to be a flat surface, but the closer to the flat surface, the more difficult it is to discharge, and as a result, wear does not easily progress.
In the first embodiment, the tip angle α = 30 °. However, if the tip angle is too large, it is difficult to discharge from the beginning. Therefore, there is a limit naturally, and the tip angle α = 20 ° to 90 ° is effectively used. it can.

このように、本発明の実施例1では、前述した知見に基づき、予め、安定した放電形状の突起電極にしておくことで、長期に亘って安定した放電が可能で、且つ、他の突起電極との高さも同一として放電効率も水準を維持する形状にしておくものである。更に、材質も電気伝導からすれば銅や真鍮が良いが、放電による損耗が大きく、このため、本実施例1では損耗を少なくして使用期間を長くするためにステンレス(SUS)を用いている。
この実験使用したステンレスの規格はSUS304であるが、ステンレス(SUS)であれば、規格がSUS303、SUS304、SUS305、SUS309、SUS310、SUS316 等のオーステナイト系、および SUS409、SUS410、SUS430 等のフェライト系が使用可能である。
As described above, in Example 1 of the present invention, based on the above-described knowledge, a stable discharge-shaped projecting electrode is provided in advance, so that stable discharge can be performed over a long period of time, and other projecting electrodes can be used. The discharge efficiency is maintained at the same level with the same height. Furthermore, copper or brass is preferable as the material from the viewpoint of electrical conduction. However, wear due to discharge is large, and in this embodiment, stainless steel (SUS) is used in order to reduce wear and lengthen the use period. .
The standard of stainless steel used in this experiment is SUS304. If the standard is stainless steel (SUS), the standard is austenite such as SUS303, SUS304, SUS305, SUS309, SUS310, SUS316, and ferrite such as SUS409, SUS410, and SUS430. It can be used.

さらに、前記突起電極を集合した多数の突起電極について説明するが、この実施例1の先端が未処理の形状、すなわち、先端角度α=30°の鋭利にとがった図3(a)の形状でステンレス製の突起電極を、図4に示すような、巾60mm×長さ220mmのステンレス製基盤2上に1465本設けたものを参考例1(但し、図4は先端平坦部のある電極の実施例の例で、参考例ではない。)とし、同様の形状の真鍮製基盤に突起を設けた電極を参考例2として、図5のオゾン発生装置(但し、図5は先端平坦部のある電極の実施例の例で、参考例ではない。)とに取り付け、連続稼働してオゾン発生量の初期の変化を調べたのが、図6の[グラフ1]である。
この[グラフ1]から判るように、参考例1のステンレス(SUS)の針状の突起電極の放電装置を連続稼働させると、放電開始から5日までは急激にオゾン発生量が減少し不安定であったが、その後は安定したオゾン発生量となった。この安定した状態の突起先端部の状態を拡大してみると、先端部の角が損耗し始めてR形状となって、その平坦面積は0.1〜0.7mm2の平坦部となっていた。他方、参考例2の真鍮は、放電による損耗が激しいのが原因と考えられるが、オゾンの発生量の変化が激しく、制御が極めて難しいことが判る。また、参考例2は突起の高さが不揃いになる為か、オゾン発生量の増減の変化が激しい。
したがって、突起電極の材質がステンレスであれば、長期に安定した性能が得られることが判る。
Further, a large number of protruding electrodes in which the protruding electrodes are assembled will be described. The tip of Example 1 has an unprocessed shape, that is, the shape of FIG. 3A with a sharp tip angle α = 30 °. Reference Example 1 is shown in FIG. 4 in which 1465 protruding electrodes made of stainless steel are provided on a stainless steel substrate 2 having a width of 60 mm and a length of 220 mm as shown in FIG. The example is an example, not a reference example.), And an electrode having a brass base with a similar shape provided with a protrusion is referred to as a reference example 2, and the ozone generator of FIG. 5 (however, FIG. 5 shows an electrode having a flat tip portion). (Example 1), not a reference example), and the initial change in the amount of ozone generated was examined by continuous operation, and [Graph 1] in FIG.
As can be seen from [Graph 1], when the stainless steel (SUS) needle-like projection electrode discharge device of Reference Example 1 is continuously operated, the amount of ozone generated decreases sharply from the start of discharge until the 5th, and is unstable. After that, the amount of ozone generated was stable. When the state of the tip portion of the projection in a stable state is enlarged, the corner of the tip portion begins to wear and becomes an R shape, and the flat area is a flat portion of 0.1 to 0.7 mm 2 . . On the other hand, the brass of Reference Example 2 is thought to be due to the intense wear and tear caused by the discharge, but it can be seen that the amount of ozone generated is drastically changed and the control is extremely difficult. In Reference Example 2, the change in the amount of ozone generation is drastic because the heights of the protrusions are not uniform.
Therefore, it can be seen that if the material of the protruding electrode is stainless steel, stable performance can be obtained for a long time.

この平坦部の面積を適正値を調べたのが、図7の[グラフ2]である。
実施例1での突起電極1は、図3(b)に示す形状で平坦部11の面積は0.5mm2とし、対向角αは30°各突起の基盤2(図4)の根元からの高さは5mmであり、図4に示すように、ステンレス製基盤2上に1465本のステンレス製の突起を縦横方向に整列させ、その突起密度11.1/cm2であり、実際には密集した状態である。
この密集した突起電極1を、図5に示すように、オゾン発生装置の上側の上部枠体51に固定し、相対するセラミックの誘電体4に覆われた表面が平坦電極3を下側の下部枠体52に固定し、誘電体4(平坦電極3)と突起電極1を平行状態で突起先端の距離を1.5mmとした放電空間eを形成し、この放電空間eに空気(又は酸素ガス)を送り込む。また、突起電極1の基盤2からはリード線21が、平坦電極(基盤)3からはリード線31が接続され、従来装置と同様に両電極に高周波高電圧交流電源により高電圧が印加されている。
ここで、誘電体4が厚すぎると、突起電極1と平坦電極3の距離が遠くなり、放電のため大きな電力を必要として消費電力が増加してしまう。セラミック誘電体4はできるだけ薄いほうが望ましいが、強度面から限界もあるので、実施例では厚さ2mmを使用している。誘電体はセラミック製の場合であれば、厚さ1.5〜2mmが使用可能である。
平坦電極3を覆うセラミック誘電体4と突起電極1の突起先端との隙間距離は1.5mmとしている。隙間距離は小さいほうが放電しやすく消費電力が少ない。放電し易くするには、間隔距離が0mmでも可能であるが、オゾン発生量が少ない。また、距離が開くほどオゾン発生量が増加するが、同時に消費電力が大幅に増加し、間隔距離2.5mm以上では消費電力が大きくなりすぎて実用的ではない。これらのことから、間隔距離は0〜2.5mmが設定可能であるが、オゾン発生量と消費電力のバランスを考えて、本実施例での間隔は、1.5mmに設定しており、実際の電極間の距離は、1.5mm+2mm=3.5mmである。
FIG. 7 [Graph 2] shows an appropriate value for the area of the flat portion.
The protrusion electrode 1 in Example 1 has the shape shown in FIG. 3B, the area of the flat portion 11 is 0.5 mm 2 , and the opposing angle α is 30 ° from the base of the base 2 of each protrusion (FIG. 4). The height is 5 mm, and as shown in FIG. 4, 1465 stainless steel protrusions are aligned vertically and horizontally on the stainless steel substrate 2, and the protrusion density is 11.1 / cm 2. It is in the state.
As shown in FIG. 5, the dense protruding electrodes 1 are fixed to the upper frame 51 on the upper side of the ozone generator, and the surface covered with the opposing ceramic dielectric 4 is the flat electrode 3 on the lower lower side. A discharge space e is fixed to the frame 52, the dielectric 4 (flat electrode 3) and the protruding electrode 1 are in parallel and the distance between the protrusion tips is 1.5 mm. Air (or oxygen gas) is formed in the discharge space e. ). Further, a lead wire 21 is connected from the base 2 of the protruding electrode 1 and a lead wire 31 is connected from the flat electrode (base) 3, and a high voltage is applied to both electrodes by a high frequency high voltage AC power source as in the conventional device. Yes.
Here, if the dielectric 4 is too thick, the distance between the protruding electrode 1 and the flat electrode 3 increases, and a large amount of power is required for discharge, resulting in an increase in power consumption. The ceramic dielectric 4 is desirably as thin as possible. However, since there is a limit in terms of strength, a thickness of 2 mm is used in the embodiment. If the dielectric is made of ceramic, a thickness of 1.5 to 2 mm can be used.
The gap distance between the ceramic dielectric 4 covering the flat electrode 3 and the protrusion tip of the protrusion electrode 1 is 1.5 mm. Smaller gap distances are easier to discharge and consume less power. In order to facilitate discharge, an interval distance of 0 mm is possible, but the amount of ozone generated is small. In addition, the amount of ozone generated increases as the distance increases, but at the same time, the power consumption increases significantly. If the distance is 2.5 mm or more, the power consumption becomes too large and is not practical. From these facts, the interval distance can be set to 0 to 2.5 mm, but the interval in this embodiment is set to 1.5 mm in consideration of the balance between the amount of ozone generation and the power consumption. The distance between the electrodes is 1.5 mm + 2 mm = 3.5 mm.

なお、隣り合う突起の側面は放電に寄与しないが、空気等に触れて突起電極1を冷却する冷却空間gを形成する。同様に、実施例2では0.1mm2、実施例3では0.7mm2で放電状態を調べたが、先端の平坦部11の大きさ以外は、実施例1と同じである。なお、この実験でオゾン供給装置への供給空気は5リットル/minであり、以後の実験ではことわりがない限り、この数値である。
この[グラフ2]から判ることは、安定状態を維持する実施例1、実施例2、実施例3において、実施例2の突起先端の平坦部の面積が0.1mm2ではオゾン発生量は多いが、損耗は拡大して検査すると実施例1、実施例3に比べると多く、逆に、突起の先端の平面が大きくなれば放電はし難くなり、比較例1もステンレス製ではあるが、1.0mm2とするとオゾン発生量は少なく効率も低くなる。したがって、突起電極1での突起先端の平坦部11の面積は0.1〜0.7mm2がよく、これ以上面積を大きくすると平板電極に近づき性能が劣るので、損耗を考慮すれば0.5mm2の前後がより好ましい。
The side surfaces of the adjacent protrusions do not contribute to the discharge, but form a cooling space g in which the protrusion electrode 1 is cooled by touching air or the like. Similarly, the discharge state was examined at 0.1 mm 2 in Example 2 and 0.7 mm 2 in Example 3, but it was the same as Example 1 except for the size of the flat portion 11 at the tip. In this experiment, the supply air to the ozone supply device is 5 liters / min, and this value is used unless otherwise noted in the subsequent experiments.
From this [Graph 2], it can be seen that in Examples 1, 2 and 3 that maintain a stable state, the amount of ozone generation is large when the area of the flat part at the tip of the protrusion of Example 2 is 0.1 mm 2. However, when the wear is enlarged and inspected, it is more than in Example 1 and Example 3, and conversely, if the flat surface of the tip of the protrusion becomes large, it becomes difficult to discharge, and Comparative Example 1 is also made of stainless steel. If it is 0.0 mm 2 , the amount of ozone generated is small and the efficiency is low. Therefore, the area of the flat portion 11 at the tip of the protrusion in the protrusion electrode 1 is preferably 0.1 to 0.7 mm 2 , and if the area is increased beyond this, the performance becomes inferior to the flat plate electrode, so that the wear is taken into consideration. More preferably around 2 .

[突起密度]
オゾンの生成量は、放熱のエネルギーロス等を無視すれば、おおよそ消費電力に比例することから、消費電力によってオゾン生成量を比較することが出来るが、前記実施例のような多数突起電極にすれば、[グラフ2]に見られるように、低電圧で放電をはじめ、全体にわたって、低電圧でより多くのオゾンを発生でき、一般にバリア放電では移動するトータルの電荷量が等しい場合に1つのマイクロ放電での電荷量を小さくして、多くの放電を起こすことで活性種を効率よく発生でき、したがって、突起数を増やしてマイクロ放電数を増やせばオゾン発生量を増やすことが出来る。
しかし、突起が多すぎると、それだけ「平面」に近づき、却ってマイクロ放電数は減少し、「突起」電極の効果を損なうものと考えられ、突起数密度には限界がある。逆に、突起数が少なければこれも平面と変わらなくなる。
[Protrusion density]
The amount of ozone produced is roughly proportional to the power consumption if the energy loss of heat dissipation is ignored, so the amount of ozone produced can be compared by the power consumption. For example, as can be seen in [Graph 2], discharge can be started at a low voltage, and more ozone can be generated at a low voltage over the whole. Active species can be generated efficiently by reducing the amount of charge in the discharge and generating a large amount of discharge. Therefore, if the number of protrusions is increased and the number of microdischarges is increased, the amount of ozone generated can be increased.
However, if there are too many protrusions, it will approach the “plane” accordingly, and the number of micro discharges will decrease, and the effect of the “protrusion” electrode will be impaired, and the protrusion density is limited. Conversely, if the number of protrusions is small, this will not change from the flat surface.

本発明者らの研究により、以下の実験で判るように、放電する突起電極の密集する突起数密度には最適値或いは最適範囲が存在し、その密度は電極の材質によっても異なることを見出した。
長期に安定した放電性能を得る突起電極の材質としては、電極の損耗が少なく、ステンレスが最適であり、突起形状は先端に平坦部がある円錐形、多角錐形、あるいは、多角錘形が最適である。ここで、最適突起密度について、実施例1の形状で、その大きさを比例的に変えて、密度を変えてその投入エネルギー密度とオゾン発生量との関係を調べたのが、図8の[グラフ3]である。
この[グラフ3]での実施例1、実施例4〜6、及び、比較例2、比較例3は、全て4角錐形状で、先端の傾斜角度α=30°、先端平坦面積0.5mm2の突起電極とし、基盤は巾60mm×長さ220mmのステンレス製基盤上2に切削加工により製造したもので、突起密度だけを下記のように変えてある。
実施例1・・1465本:突起密度11.1本/cm2
実施例4・・・765本:突起密度 5.8本/cm2
実施例5・・3075本:突起密度23.3本/cm2
実施例6・・4448本:突起密度33.7本/cm2
比較例2・・・396本:突起密度 3.0本/cm2
比較例3・・8092本:突起密度61.3本/cm2
この[グラフ3]から判るように、比較例2の突起密度が少ない3.0本/cm2の電極では17J/Lにおけるオゾン発生量は0.3g/hで、実施例1の突起密度11.1本/cm2の0.9g/hに比べて1/3程度であり、逆に、突起密度が多い比較例3の61.3本/cm2ではオゾン発生量が0.5g/hで、実施例1の突起密度11.1本/cm2の0.9g/h比べてほぼ半分となる。
したがって、[グラフ3]から突起密度は実施例4の5.8本/cm2〜実施例6の33.7本/cm2が好ましく、より好ましくは実施例5の23.3本 〜実施例6の33.7本/cm2である。
なお、突起密度の範囲は、突起の材質によって異なり、例えば、電気伝導率のよい真鍮では、1000本:突起密度7.6本/cm2〜2000本:突起密度15.2本/cm2であった。
As a result of the study by the present inventors, it has been found that there is an optimum value or an optimum range for the density of the number of projections that are densely discharged in the discharge electrode, and the density varies depending on the material of the electrode. .
As the material of the protruding electrode that obtains stable discharge performance for a long period of time, stainless steel is optimal as the electrode wear is small, and the protruding shape is optimally conical, polygonal pyramid, or polygonal pyramid with a flat part at the tip It is. Here, with respect to the optimum protrusion density, the relationship between the input energy density and the amount of ozone generation was examined by changing the size proportionally in the shape of Example 1 and changing the density. Graph 3].
In this [Graph 3], Example 1, Examples 4 to 6, Comparative Example 2 and Comparative Example 3 are all quadrangular pyramid shapes, tip inclination angle α = 30 °, tip flat area 0.5 mm 2. The base electrode was manufactured by cutting on a stainless base 2 having a width of 60 mm and a length of 220 mm, and only the protrusion density was changed as follows.
Example 1 ··· 1465: protrusion density 11.1 / cm 2
Example 4... 765: protrusion density 5.8 / cm 2
Example 5 ··· 3075: protrusion density 23.3 / cm 2
Example 6 • 4448: protrusion density of 33.7 / cm 2
Comparative Example 2 ... 396: Protrusion density: 3.0 / cm 2
Comparative Example 3 8092: Protrusion density 61.3 / cm 2
As can be seen from this [Graph 3], the amount of ozone generated at 17 J / L is 0.3 g / h in the electrode of Comparative Example 2 with a small protrusion density of 3.0 / cm 2 , and the protrusion density of Example 1 is 11 g / h. is about 1/3 as compared with .1 present / cm 2 0.9 g / h, to the contrary, 61.3 present / cm ozone generation amount at 2 0.5 g / h in Comparative example 3 the projection density is large Thus, it is almost half of the projection density of 11.1 pieces / cm 2 in Example 1 compared to 0.9 g / h.
Therefore, from [Graph 3], the protrusion density is preferably 5.8 / cm 2 in Example 4 to 33.7 / cm 2 in Example 6, more preferably 23.3 in Example 5 to Example. 6 of 33.7 pieces / cm 2 .
Note that the range of the protrusion density varies depending on the material of the protrusion. For example, in brass with good electrical conductivity, 1000 pieces: protrusion density 7.6 pieces / cm 2 to 2000 pieces: protrusion density 15.2 pieces / cm 2 . there were.

[冷却作用]
図5に示すように、実施例の突起電極1は、多数の突起先端部から放電するので、長時間使用すると加熱され、放電空間の温度は上昇する。オゾン発生装置においては、電極周囲の温度が上昇すると、オゾンの生成効率が下がる傾向があり、このことを示すのが図9の[グラフ4]である。
このグラフ4からは、13℃から14℃、20℃と温度が上昇し、50℃になると1/4〜1/6程度までオゾン生成効率に下がるようになり、この原因は高熱により生成したオゾンが分解されてしまうものと考えられる。
また、前述したように、実施例1の突起電極である4角錐の隣り合う側面は放電には寄与しないが、空気等に触れて突起電極1を冷却する冷却空間gを形成する。このことを図10の[グラフ5]で説明すると、実施例1の突起密度11.1本/mm2で突起の高さ5mmの突起電極と平面電極の比較例4を図5のオゾン発生装置に装着し、空気を40リットル/minで送り込んだ時の温度を測定すると、実施例1では、70℃程度を維持しているが、平板の比較例4では、120℃にも上昇し、実施例1等の多数突起形状は冷却効果を有するので、オゾン発生装置において特に有効である。
この冷却効果を高める形状は、図11(a)の隣り合う突起の根元に隙間が無い形状に比べて、空気の流通面積を増やすために、図11(b)の実施例7のように、根元に0.5mmの隙間を設けるとさらに冷却効果が高まる。
しかし、あまり冷却空間gを大きくすると冷却空間は放電に寄与せず、その空間を通過する空気や酸素等の原料ガスはオゾン生成に寄与しないので、その分だけ原料空気が無駄になるので、オゾン発生量のバランスを取る必要がある。
[Cooling action]
As shown in FIG. 5, the protruding electrode 1 of the embodiment discharges from a large number of protruding tip portions, so that it is heated when used for a long time, and the temperature of the discharge space rises. In the ozone generator, when the temperature around the electrode rises, the ozone generation efficiency tends to decrease, and this is shown in [Graph 4] in FIG.
From this graph 4, the temperature rises from 13 ° C. to 14 ° C. and 20 ° C., and when it reaches 50 ° C., the ozone generation efficiency decreases to about 1/4 to 1/6, which is caused by ozone generated by high heat. Is considered to be decomposed.
In addition, as described above, adjacent side faces of the quadrangular pyramids that are the protruding electrodes of Example 1 do not contribute to the discharge, but form a cooling space g that cools the protruding electrodes 1 by touching air or the like. This will be described with reference to [Graph 5] in FIG. 10. Comparative Example 4 of the projection electrode having the projection density of 11.1 / mm 2 and the projection height of 5 mm in Example 1 and the flat electrode is shown in FIG. When the temperature when air was fed at 40 liters / min was measured, the temperature in Example 1 was maintained at about 70 ° C., but in Comparative Example 4 of the flat plate, the temperature rose to 120 ° C. Since the multi-protrusion shape of Example 1 has a cooling effect, it is particularly effective in an ozone generator.
In order to increase the air flow area, the shape that enhances the cooling effect is larger than the shape having no gap at the base of adjacent protrusions in FIG. 11 (a), as in Example 7 in FIG. 11 (b). If a gap of 0.5 mm is provided at the base, the cooling effect is further enhanced.
However, if the cooling space g is too large, the cooling space does not contribute to the discharge, and the source gas such as air and oxygen that passes through the space does not contribute to ozone generation. It is necessary to balance the generation amount.

そこで、図12の実施例8ように、実施例1の図11(a)の断面形状(図中斜線部分)よりも、グレーの部分の形状とすることで断面積(体積)が増大するので冷却空間が削減し、放電にも冷却にも関与しない無駄な空気が流れるのを防ぎ、逆に、突起側面の空気接触面積を増大させ、更に、一対の突起の根元に巾0.5mmで突起先端からの深さ4.0mm程度の溝12を設けて冷却に寄与する面積自体をも増やすようにしてもよい。この場合の溝巾は0.3mm〜1.0mm以下が好ましく、 深さは突起先端からの3〜5mm程度が好ましく、より好ましくは、実施例7,8のように、溝巾0.5mmでは深さ4mm程度がよい。
実施例1において、実施例8のような巾0.5mmで、深さは突起先端からの深さ4mmの溝を設けた電極形状では、別途に水冷の冷却装置を用いなくても、夏期に最高室温45℃、最高湿度95%で30日間連続稼働させても、オゾン発生量は低下しなかった。
なお、溝巾が1.0mm以上になるとオゾン発生に寄与する空気の割合が低くなってオゾン量の濃度が低下し、溝巾が0.3mm以下だと空気が通過しづらくなり冷却効果が薄れて、オゾン分解が起こるので、別途に冷却装置が必要となる。
Therefore, as in Example 8 of FIG. 12, the cross-sectional area (volume) is increased by making the shape of the gray portion rather than the cross-sectional shape (shaded portion in the drawing) of FIG. Reduces the cooling space, prevents the flow of useless air that is not involved in discharge or cooling, conversely increases the air contact area on the side surface of the protrusion, and further, with a 0.5mm width at the base of the pair of protrusions A groove 12 having a depth of about 4.0 mm from the tip may be provided to increase the area itself contributing to cooling. In this case, the groove width is preferably 0.3 mm to 1.0 mm or less, and the depth is preferably about 3 to 5 mm from the tip of the protrusion. More preferably, as in Examples 7 and 8, the groove width is 0.5 mm. A depth of about 4 mm is good.
In Example 1, the electrode shape having a width of 0.5 mm and a depth of 4 mm from the tip of the protrusion as in Example 8 can be used in the summer without using a separate water-cooled cooling device. The amount of ozone generated did not decrease even when operated continuously for 30 days at a maximum room temperature of 45 ° C. and a maximum humidity of 95%.
If the groove width exceeds 1.0 mm, the proportion of air that contributes to ozone generation decreases and the concentration of ozone decreases, and if the groove width is 0.3 mm or less, it becomes difficult for air to pass through and the cooling effect decreases. Since ozonolysis occurs, a separate cooling device is required.

次に、上述した各実施例では、 図3(a)のような下方へ行くほど太くなる4角錐形の突起で先端角度α=20°〜90°とし、先端近くは水平になるような平坦部11としたが、ほぼ平坦部を形成するのであれば、図13(a)(b)に示す実施例9ように、半球状でもよく、この場合には突起電極1aの半球状の先端11aで、仮想平面hを想定し、4角錐形の各編辺の延長上で形成する4角形(多角形)の平面の面積は、0.1〜0.7mm2としてもよい。
また、各実施例の相対する電極の基礎部分は平板状であるが、図14に示す実施例10のように円柱形状としてもよく、中心円柱2bに突起密度が5.8 〜 33.7本/cm2の突起電極1bを設け、その中心の突起電極1bの回りに放電空間eを形成するように円筒を設け、その円筒内壁に表面が平坦の平坦電極(基盤)3bを設け、更にその内壁を覆うように誘電体4bを設けた構成にしてもよい。
さらに、これとは逆に、円筒側の内壁を突起電極し、中心円柱(2b)側を表面が平坦な平坦電極とし、電極である中心円柱2bを誘電体で覆ってもよい。
いずれにしても、突起電極の各突起の先端と平坦電極との最短距離を等しくすることが、実際に放電する面積を拡げることになる。
Next, in each of the above-described embodiments, the tip angle α = 20 ° to 90 ° with a quadrangular pyramidal projection that becomes thicker as it goes downward as shown in FIG. However, if a substantially flat portion is formed, it may be hemispherical as in the ninth embodiment shown in FIGS. 13A and 13B. In this case, the hemispherical tip 11a of the protruding electrode 1a is used. Thus, assuming the virtual plane h, the area of the quadrangular (polygonal) plane formed on the extension of each side of the quadrangular pyramid may be 0.1 to 0.7 mm 2 .
Moreover, although the base part of the electrode which each Example opposes is flat form, it is good also as a cylindrical shape like Example 10 shown in FIG. 14, and protrusion density is 5.8-33.7 pieces in the center cylinder 2b. / Cm 2 protruding electrode 1b, a cylinder is formed so as to form a discharge space e around the central protruding electrode 1b, a flat electrode (base) 3b having a flat surface is provided on the inner wall of the cylinder, and The dielectric 4b may be provided so as to cover the inner wall.
Further, conversely, the inner wall on the cylindrical side may be a protruding electrode, the central column (2b) side may be a flat electrode with a flat surface, and the center column 2b as an electrode may be covered with a dielectric.
In any case, equalizing the shortest distance between the tip of each protrusion of the protrusion electrode and the flat electrode increases the actual discharge area.

以上のように、本実施例は、オゾン発生装置において突起電極をステンレス製としたので放電による損耗を少なくすることができ、多数突起電極の突起の密度を5.8 〜 33.7本/cm2とマルチポイント形状にしたことで、放電回数が増加し、放電開始電圧の低下で、オゾン発生効率が上昇して消費電力が削減でき、電源回路小型化にでき、突起の損耗による形状変化が少なくなり、稼働初期から安定したオゾン発生量とすることができる。更に、オゾン発生量の長期安定が可能となり、供給電源の制御も容易となる。また、電極の表面積を広くしているので、放電に伴って発生する熱を放散する放熱効果が大きく、また、隣り合う極間を通過する原料空気等と発生したオゾンガスの流れによって冷却される。結果として、熱によるオゾンの分解を抑制してオゾンの生成効率をあげることができ、生成効率(単位消費電力量あたりのオゾン生成量)を良くしたことで、その分だけ消費電力を削減でき、同時に電源部を小型化できる。
なお、本発明の特徴を損なうものでなければ、上述した実施例に限定されるものでないことは勿論である。例えば、実施例では突起形状を4角錐としたが、円錐形、多角錐形、あるいは多角柱の上部が多角錘形に限らず、突起先端から基盤の根元に近づく従い断面積が大きくなるような形状であればよい。
As described above, in this example, since the protruding electrodes are made of stainless steel in the ozone generator, wear due to discharge can be reduced, and the density of the protrusions of the multiple protruding electrodes is 5.8 to 33.7 / cm 3. 2 and the multi-point shape increases the number of discharges, lowers the discharge start voltage, increases ozone generation efficiency, reduces power consumption, reduces the power circuit size, and changes in shape due to wear of protrusions. The amount of ozone can be reduced and the amount of ozone generated can be stabilized from the beginning of operation. Furthermore, the ozone generation amount can be stabilized for a long period of time, and the supply power can be easily controlled. In addition, since the surface area of the electrode is increased, the heat dissipation effect of radiating the heat generated along with the discharge is great, and cooling is performed by the flow of the generated ozone gas and the raw material air passing between adjacent electrodes. As a result, it is possible to increase ozone generation efficiency by suppressing the decomposition of ozone by heat, and by improving the generation efficiency (ozone generation amount per unit power consumption), power consumption can be reduced by that much, At the same time, the power supply can be downsized.
Needless to say, the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired. For example, although the shape of the protrusion is a quadrangular pyramid in the embodiment, the upper portion of the cone, polygonal pyramid, or polygonal column is not limited to the polygonal pyramid, and the cross-sectional area increases from the tip of the protrusion toward the base of the base. Any shape is acceptable.

従来の無声放電式オゾン発生装置の作動を説明する原理図である。It is a principle figure explaining the action | operation of the conventional silent discharge type ozone generator. 先行技術の無声放電式オゾン発生装置の作動を説明する原理図である。It is a principle figure explaining the action | operation of the silent discharge type ozone generator of a prior art. 本発明の実施例1(実施例1〜8)での突起電極の先端形状を説明する図で、図3(a)は加工前の状態の突起部分、図3(b)実施例の突起先端の平坦部の状態を示した斜視図である。FIGS. 3A and 3B are diagrams for explaining a tip shape of a protruding electrode in Example 1 (Examples 1 to 8) of the present invention, FIG. 3A is a protruding part before processing, and FIG. It is the perspective view which showed the state of the flat part. 図3(b)の突起を集合した多数突起を有する電極の形状で、図4(a)はその平面図、図4(b)は前方からの側面図、図4(c)は側方からの側面図である。FIG. 4 (a) is a plan view, FIG. 4 (b) is a side view from the front, and FIG. 4 (c) is from the side. FIG. 本発明の実施例のオゾン発生装置の全体を断面図である。It is sectional drawing of the whole ozone generator of the Example of this invention. 参考例1,2でのオゾン発生量の初期減衰の状態の[グラフ1]の図である。It is a figure of [graph 1] of the state of the initial attenuation of the ozone generation amount in the reference examples 1 and 2. 電極形状の平坦部の大きさの違いによる本発明の実施例と比較例とのオゾン発生量の[グラフ2]の図である。It is a figure of [a graph 2] of the amount of ozone generation of the example of the present invention and the comparative example by the difference in the size of the flat part of electrode shape. 本発明の実施例と比較例の投入エネルギー密度とオゾン発生量の[グラフ3]の図である。It is a figure of [graph 3] of the input energy density of the Example and comparative example of this invention, and ozone generation amount. 本発明の実施例での電極周囲温度とオゾンの生成効率の[グラフ4]の図である。It is a figure of [graph 4] of the electrode ambient temperature and the production | generation efficiency of ozone in the Example of this invention. 実施例1と比較例4の電極形状の冷却効果の[グラフ5]の図である。It is a figure of [graph 5] of the cooling effect of the electrode shape of Example 1 and Comparative Example 4. 本発明の実施例の冷却構造を説明する図で、図11(a)は隣り合う突起の根元の冷却効果を説明する図、図11(b)は根元に隙間を設けた冷却効果を説明する図である。11A and 11B are diagrams illustrating a cooling structure according to an embodiment of the present invention. FIG. 11A illustrates a cooling effect at the base of adjacent protrusions, and FIG. 11B illustrates a cooling effect by providing a gap at the root. FIG. 本発明の実施例の冷却効果を高める別の実施例の断面図である。It is sectional drawing of another Example which raises the cooling effect of the Example of this invention. 図13(a)は、本発明の突起電極の先端部の別の実施例の斜視図、図13(b)はその側面図である。FIG. 13 (a) is a perspective view of another embodiment of the tip of the protruding electrode of the present invention, and FIG. 13 (b) is a side view thereof. 本発明の更に別の実施例の斜視図である。It is a perspective view of another Example of this invention.

符号の説明Explanation of symbols

e・・・放電空間、g・・・冷却空間、h・・・仮想平面
1,1a,1b・・・突起電極、11,11a・・・平坦部、12・・・溝
2・・・突起電極基盤、2b・・・中心円柱(突起電極基盤)、21・・・リード線、
3,3b・・・平坦電極(基盤)、31・・・リード線、
4,4b・・・誘電体
51・・上部枠体、52・・・下部枠体、
e ... discharge space, g ... cooling space, h ... virtual plane 1, 1a, 1b ... projecting electrode, 11, 11a ... flat part, 12 ... groove 2 ... projection Electrode base, 2b ... Center cylinder (projection electrode base), 21 ... Lead wire,
3, 3b ... Flat electrode (base), 31 ... Lead wire,
4, 4b ... Dielectric
51..Upper frame, 52 ... Lower frame,

Claims (5)

誘電体に覆われた表面が平滑な平坦電極と相対する表面に多数の突起を有する突起電極とで放電空間を形成し、
前記突起電極はステンレス製であり、
該突起電極の各突起の先端と前記平坦電極との最短距離を等しくするとともに突起の密度を5.8 〜 33.7本/cm2とし
前記平坦電極と突起電極とに高電圧を印加し、
前記放電空間に酸素又は空気を通過させてオゾンを発生させることを特徴とするオゾン発生装置。
A discharge space is formed by a flat electrode having a smooth surface covered with a dielectric and a protruding electrode having a large number of protrusions on the surface facing the surface,
The protruding electrode is made of stainless steel,
The shortest distance between the tip of each projection of the projection electrode and the flat electrode is made equal, and the density of the projections is set to 5.8 to 33.7 / cm 2. A high voltage is applied to the flat electrode and the projection electrode,
An ozone generator that generates ozone by passing oxygen or air through the discharge space.
前記平坦電極の基盤と、相対する前記多数突起電極の基盤とが平板状であることを特徴とする請求項1に記載のオゾン発生装置。   2. The ozone generator according to claim 1, wherein the base of the flat electrode and the base of the multiple protruding electrodes facing each other have a flat plate shape. 前記多数突起電極の基盤が円柱形状であり、相対する前記平坦電極が円柱形状の突起電極を囲む円筒形状であることを特徴とする請求項1に記載のオゾン発装置。   2. The ozone generator according to claim 1, wherein the base of the multiple protruding electrodes has a cylindrical shape, and the opposed flat electrodes have a cylindrical shape surrounding the cylindrical protruding electrodes. 前記多数突起電極の突起は基盤の根元に近くなるに従い断面積を大きくし、突起の先端は0.1〜0.7mm2の平坦部を有することを特徴とする請求項1乃至3に記載のオゾン発生装置。 4. The projection of the multi-projection electrode has a cross-sectional area that increases as it approaches the base of the base, and the tip of the projection has a flat portion of 0.1 to 0.7 mm < 2 >. Ozone generator. 前記突起電極は、基盤の根元に近くなるに従い面積を大きくした錘形とし、且つ、隣り合う突起電極の根元の間隔は1.0mm以下にすることを特徴とする請求項1乃至4に記載のオゾン発生装置。   5. The protruding electrode according to claim 1, wherein the protruding electrode has a spindle shape with an area increasing as it approaches the base of the base, and the interval between the adjacent protruding electrodes is 1.0 mm or less. Ozone generator.
JP2007159191A 2007-06-15 2007-06-15 Ozone generator. Active JP4959437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159191A JP4959437B2 (en) 2007-06-15 2007-06-15 Ozone generator.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159191A JP4959437B2 (en) 2007-06-15 2007-06-15 Ozone generator.

Publications (2)

Publication Number Publication Date
JP2008308372A JP2008308372A (en) 2008-12-25
JP4959437B2 true JP4959437B2 (en) 2012-06-20

Family

ID=40236308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159191A Active JP4959437B2 (en) 2007-06-15 2007-06-15 Ozone generator.

Country Status (1)

Country Link
JP (1) JP4959437B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170937A (en) * 2009-01-26 2010-08-05 Techno Ryowa Ltd Discharge electrode for ionizer
JP5576057B2 (en) * 2009-04-24 2014-08-20 パナソニック株式会社 Ozone generator
CN101880030B (en) * 2009-05-08 2012-06-13 清华大学 Ozone generating device
JP7125338B2 (en) * 2018-12-14 2022-08-24 株式会社豊田中央研究所 ozone generator
JP7342391B2 (en) * 2019-03-19 2023-09-12 株式会社富士通ゼネラル Charging device and air purifier with charging device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291803A (en) * 1987-05-26 1988-11-29 Sumitomo Heavy Ind Ltd Ozone generator
CA2075789C (en) * 1992-08-11 1998-12-22 Amir Salama Inner electrode for an ozone generator, ozone generator containing said electrode and method of use of said ozone generator
JPH0741303A (en) * 1993-07-28 1995-02-10 Meidensha Corp Ozone generator
JPH1179709A (en) * 1997-08-28 1999-03-23 Mitsubishi Heavy Ind Ltd Ozone generating device

Also Published As

Publication number Publication date
JP2008308372A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4959437B2 (en) Ozone generator.
CA2699771A1 (en) Ozone generating apparatus
KR101152406B1 (en) arc plasma torch
JP7125338B2 (en) ozone generator
US10829858B2 (en) Electrode arrangement for electrochemically treating a liquid
JP2007059385A (en) Atmospheric pressure plasma generating apparatus of electrode structure for inhibiting useless electric discharge
KR101687679B1 (en) A discharge tube for the ozone generator comprised of a pair of cap
JP2009087697A (en) Plasma generator
JP4017825B2 (en) Ozone generator
JP5126983B2 (en) Plasma generator
EP0901983B1 (en) Ozonizer
JP4070342B2 (en) Creeping discharge ozone generator
RU2174095C2 (en) Apparatus for electric synthesis of ozone
TWI365010B (en)
JP7077136B2 (en) Ozone generator
JP6235162B2 (en) Ozone generator
JPS63242903A (en) Ozonizer
JPH0741303A (en) Ozone generator
KR100315196B1 (en) Spiral high density ozonizer
JPH11209105A (en) Ozonizer
JP2008229432A (en) Swirling flow producing device without mechanical operation part
JP2011171056A (en) Solution plasma discharge device
KR20200097451A (en) Underwater arc discharge device
JP2000239005A (en) Ozonizer
JPH061230Y2 (en) Discharge reactor electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250