JP5126983B2 - Plasma generator - Google Patents

Plasma generator Download PDF

Info

Publication number
JP5126983B2
JP5126983B2 JP2009088989A JP2009088989A JP5126983B2 JP 5126983 B2 JP5126983 B2 JP 5126983B2 JP 2009088989 A JP2009088989 A JP 2009088989A JP 2009088989 A JP2009088989 A JP 2009088989A JP 5126983 B2 JP5126983 B2 JP 5126983B2
Authority
JP
Japan
Prior art keywords
plasma
region
longitudinal direction
atmospheric pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009088989A
Other languages
Japanese (ja)
Other versions
JP2009158491A (en
Inventor
勝 堀
浩之 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NU Eco Engineering Co Ltd
Original Assignee
NU Eco Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NU Eco Engineering Co Ltd filed Critical NU Eco Engineering Co Ltd
Priority to JP2009088989A priority Critical patent/JP5126983B2/en
Publication of JP2009158491A publication Critical patent/JP2009158491A/en
Application granted granted Critical
Publication of JP5126983B2 publication Critical patent/JP5126983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Cleaning In General (AREA)

Description

本発明は、プラズマ発生装置に関する。特に、いわゆる大気圧プラズマ発生装置に関する。   The present invention relates to a plasma generator. In particular, it relates to a so-called atmospheric pressure plasma generator.

本発明者らは、特許文献1及び2に記載された大気圧プラズマ発生装置を出願している。向かい合う電極面にマイクロサイズの凹凸形状を施すことで、ホローカソード放電を生じさせてプラズマを発生させるものである。当該プラズマ発生領域(プラズマ化領域)を通過するようにプラズマ発生用ガスを導入すれば、少なくともその一部がプラズマ化したガスを噴出させることができる。これにより、単相の商用100V電源から昇圧機で数kV程度の高周波を発生させて、簡便に高密度な大気圧プラズマを発生させることができる。   The inventors have applied for an atmospheric pressure plasma generator described in Patent Documents 1 and 2. By applying micro-sized uneven shapes to the opposing electrode surfaces, a hollow cathode discharge is generated to generate plasma. If the plasma generation gas is introduced so as to pass through the plasma generation region (plasmaization region), at least a part of the gas can be ejected. Thereby, a high frequency of about several kV can be generated from a single-phase commercial 100V power source with a booster, and high-density atmospheric pressure plasma can be easily generated.

特開2006−196210JP 2006-196210 A 特開2006−272039JP 2006-272039 A

特許文献1及び2の技術では、電極間隔を広くすると放電が不安定となり、逆に間隔を1cm以上とした場合は放電維持が不可能となる。そこで特許文献1及び2においては、例えば長手方向を有する領域をプラズマ化領域とする場合、当該長手方向の長さの電極を用いていた。しかし、そのような長い電極を互いに向き合わせた場合、プラズマ化の均一化に問題があった。このために例えば液晶パネル等の表面の一部のような、比較的幅の広い領域へのプラズマ処理に十分には有効利用できない。或いは、プラズマ発生領域の体積自体を大きくすることも困難である。このため、高密度な大気圧プラズマを発生しうるものでありながら、その有効利用範囲が限定されたものとなっていた。   In the techniques of Patent Documents 1 and 2, when the electrode interval is widened, the discharge becomes unstable. Conversely, when the interval is set to 1 cm or more, the discharge cannot be maintained. Therefore, in Patent Documents 1 and 2, for example, when a region having a longitudinal direction is a plasma region, an electrode having a length in the longitudinal direction is used. However, when such long electrodes face each other, there is a problem in uniformizing the plasma. For this reason, it cannot be effectively used for plasma processing to a relatively wide region such as a part of the surface of a liquid crystal panel or the like. Alternatively, it is difficult to increase the volume of the plasma generation region itself. For this reason, although the high-density atmospheric pressure plasma can be generated, its effective use range is limited.

本発明は上記課題を解決するためのものであり、その目的は、プラズマ発生領域の体積を大きくした大気圧プラズマ発生装置を提供することである。   The present invention has been made to solve the above problems, and an object of the present invention is to provide an atmospheric pressure plasma generator in which the volume of the plasma generation region is increased.

請求項1に係る発明は、大気圧プラズマ発生装置において、長手方向を有する柱状のプラズマ化領域を形成する絶縁体から成る筐体部と、筐体部に内包されるプラズマ化領域に、長手方向に離間して配設された1対の電極と、プラズマ化領域の長手方向に沿って、プラズマ発生用ガスをプラズマ化領域に導入するプラズマ発生用ガスの導入口と、プラズマ化領域の長手方向に沿って、少なくとも一部がプラズマ化したガスを噴出し、プラズマ化領域の長手方向に沿って配設された噴出口とを有し、プラズマ化領域は、長手方向の長さが、1cm以上50cm以下であり、長手方向に垂直な断面積は、3mm2 以上25mm2 以下であることを特徴とする大気圧プラズマ発生装置である。 The invention according to claim 1 is the atmospheric pressure plasma generator, wherein the casing portion made of an insulator that forms a columnar plasma formation region having a longitudinal direction, and the plasma formation region contained in the casing portion in the longitudinal direction A pair of electrodes disposed apart from each other, a plasma generating gas inlet for introducing the plasma generating gas into the plasma generating region along the longitudinal direction of the plasma generating region, and the longitudinal direction of the plasma generating region And a jet port disposed along the longitudinal direction of the plasma formation region, and the plasma conversion region has a length in the longitudinal direction of 1 cm or more. The atmospheric pressure plasma generator is characterized by having a cross-sectional area of 50 mm or less and perpendicular to the longitudinal direction of 3 mm 2 or more and 25 mm 2 or less.

請求項2に係る発明は、プラズマ化領域の長手方向及びガス流方向に垂直な幅を、2mm以上5mm以下としたことを特徴とする。   The invention according to claim 2 is characterized in that a width perpendicular to the longitudinal direction of the plasma region and the gas flow direction is 2 mm or more and 5 mm or less.

請求項3に係る発明は、筐体内部を、加圧も減圧もしない、大気圧プラズマ発生源とすることを特徴とする。尚、本発明において大気圧プラズマとは、0.5気圧乃至2気圧の範囲内での圧力下を言うものとする。
請求項4に係る発明は、1対の電極が、1cm以上50cm以下の距離で離間して配置されていることを特徴とする。
請求項5に係る発明は、1対の電極の少なくとも一方には、他方の電極と対向する表面に凹凸が形成されていることを特徴とする。
請求項6に係る発明は、柱状のプラズマ化領域の長手方向の長さLcmと、長手方向に垂直な断面積σmm2の関係は、2≦Lσ≦200且つ3≦σ≦25であることを特徴とする。
The invention according to claim 3 is characterized in that the inside of the housing is an atmospheric pressure plasma generation source that is neither pressurized nor depressurized. In the present invention, atmospheric pressure plasma means under a pressure in the range of 0.5 to 2 atmospheres.
The invention according to claim 4 is characterized in that the pair of electrodes are spaced apart by a distance of 1 cm to 50 cm.
The invention according to claim 5 is characterized in that at least one of the pair of electrodes is provided with irregularities on the surface facing the other electrode.
In the invention according to claim 6, the relationship between the longitudinal length Lcm of the columnar plasma region and the cross-sectional area σmm 2 perpendicular to the longitudinal direction is 2 ≦ Lσ ≦ 200 and 3 ≦ σ ≦ 25. Features.

絶縁体から成る筐体部に囲まれた、或いは挟まれた空間に大気圧プラズマが形成される。この絶縁体に囲まれた、或いは挟まれた柱状の空間でプラズマの長尺化が図られている。ここで絶縁体の役割は、その内面が帯電することで、長手方向を有する体積の大きなプラズマ化領域全体のプラズマ化を安定させるものであると考えられる。   Atmospheric pressure plasma is formed in a space surrounded or sandwiched by a casing made of an insulator. The length of the plasma is increased in a columnar space surrounded or sandwiched between the insulators. Here, it is considered that the role of the insulator is to stabilize the plasma formation of the entire plasma formation region having a large volume in the longitudinal direction by charging the inner surface thereof.

プラズマ発生用ガスの流路はプラズマ化領域の長手方向に沿った流路でも良く、或いは垂直に横切るものでも良い。プラズマ発生用ガスの流路がプラズマ化領域の長手方向に沿った流路である場合は、例えば処理対象がガスである場合は、その処理対象ガスとプラズマ発生用ガスとを混合して導入口からプラズマ化領域に導入することができる。
特許文献1及び2に記載された凹凸面を有する電極を用いたホローカソード放電を利用すると、容易に大気圧プラズマを生成できる。
本発明の柱状のプラズマ化領域の長手方向の長さL(cm)は1以上50以下であり、長手方向に垂直な断面積σ(mm2)は3以上25以下である。柱状のプラズマ化領域は、断面積σが小さいほど長さLを長くできる。また、筐体部が実質的に筒状である方が、長さLを長くできる。Lとσの関係は2≦Lσ≦200であればプラズマを安定して生成できることが実験で確かめられた。
The flow path of the plasma generating gas may be a flow path along the longitudinal direction of the plasma generation region, or may be one that crosses vertically. When the flow path of the plasma generating gas is a flow path along the longitudinal direction of the plasma generation region, for example, when the processing target is a gas, the processing target gas and the plasma generating gas are mixed to introduce the inlet Can be introduced into the plasma region.
When hollow cathode discharge using an electrode having an uneven surface described in Patent Documents 1 and 2 is used, atmospheric pressure plasma can be easily generated.
The length L (cm) in the longitudinal direction of the columnar plasma region of the present invention is 1 or more and 50 or less, and the cross-sectional area σ (mm 2 ) perpendicular to the longitudinal direction is 3 or more and 25 or less. In the columnar plasma region, the length L can be increased as the cross-sectional area σ is smaller. Further, the length L can be increased when the casing is substantially cylindrical. It has been experimentally confirmed that plasma can be stably generated if the relationship between L and σ is 2 ≦ Lσ ≦ 200.

1.Aは本発明の具体的な一実施例に係るプラズマ発生装置100の構成を示す断面図、図1.Bは電極2a及び2bの形状の詳細を示す図。1. 1A is a cross-sectional view showing a configuration of a plasma generating apparatus 100 according to a specific embodiment of the present invention, FIG. B is a figure which shows the detail of the shape of electrodes 2a and 2b. 2.Aは本発明の具体的な他の実施例に係るプラズマ発生装置110の構成を示す断面図、図1.Bはプラズマ化領域Pの長手方向に垂直な断面図(部分図)。2. 1A is a cross-sectional view showing a configuration of a plasma generator 110 according to another specific embodiment of the present invention, FIG. B is a cross-sectional view (partial view) perpendicular to the longitudinal direction of the plasma region P. FIG.

筐体部は、内部で発生するプラズマに対して耐性の強い材料を用いることが必要であり、例えば焼結窒化ホウ素(PBN)のようなセラミックスが好ましい。   For the casing, it is necessary to use a material that is highly resistant to plasma generated therein, and ceramics such as sintered boron nitride (PBN) is preferable.

電極の材料としては、ステンレス、モリブデン、タンタル、ニッケル、銅、タングステン、又は、これらの合金などを使用することができる。ホローカソード放電を生じせしめる凹部を形成する面は、1〜30mm程度の厚さとするのが望ましい。厚くすることで、凹部を多段に形成することができ、ガスの流速を向上させてプラズマの生成密度を向上させることができる。ホローカソード放電を生じせしめる凹部は、例えば深さを0.5mm程度とすると良い。凹部はドット状に不連続に形成されても、溝状に連続して形成されても良いが、連続していた方が望ましい。凹部の形状は、円柱面状、半球面状、角柱面状、角錐状、その他任意に形成できる。   As the material of the electrode, stainless steel, molybdenum, tantalum, nickel, copper, tungsten, or an alloy thereof can be used. The surface on which the concave portion that causes hollow cathode discharge is formed preferably has a thickness of about 1 to 30 mm. By increasing the thickness, the recesses can be formed in multiple stages, the gas flow rate can be improved, and the plasma generation density can be improved. For example, the depth of the recess that causes the hollow cathode discharge may be about 0.5 mm. The concave portions may be formed discontinuously in a dot shape or may be formed continuously in a groove shape, but it is desirable that the concave portions be continuous. The shape of the concave portion can be arbitrarily formed as a cylindrical surface, a hemispherical surface, a prismatic surface, a pyramid, or the like.

プラズマを発生させるためのガスは、大気圧で、空気、酸素、例えばHe、Ne、Arその他の希ガス、窒素、水素などを用いることができる。空気や酸素を用いることにより、活性な酸素ラジカルが得られ、有機汚染物質の効果的な除去が可能となる。また、空気を用いれば経済的である。たとえば、希ガスであるArを用いた場合には、Arプラズマが処理対象に照射される時、周囲の酸素分子がArプラズマにより酸素ラジカルになる。この酸素ラジカルにより、処理対象物表面の有機汚染物質を効果的に除去することができる。また、ガスとしてArガス以外に使用しないので、経済的でもある。以上の理由から、空気とArとの混合ガスを用いても良い。ガスの流速、供給量、或いは真空度は任意に設定できる。また、本発明は高周波によりプラズマを発生させるものではなく、電極に接続する電源は、直流、交流、その他任意であって、周波数に制限はない。   As a gas for generating plasma, air, oxygen, for example, He, Ne, Ar or other rare gas, nitrogen, hydrogen, or the like can be used at atmospheric pressure. By using air or oxygen, active oxygen radicals can be obtained, and organic contaminants can be effectively removed. Moreover, it is economical if air is used. For example, when Ar, which is a rare gas, is used, when Ar plasma is irradiated to the processing target, surrounding oxygen molecules become oxygen radicals by Ar plasma. With this oxygen radical, organic contaminants on the surface of the object to be treated can be effectively removed. Moreover, since it is not used as gas other than Ar gas, it is also economical. For the above reasons, a mixed gas of air and Ar may be used. The gas flow rate, supply amount, or degree of vacuum can be set arbitrarily. Further, the present invention does not generate plasma by high frequency, and the power source connected to the electrode is direct current, alternating current, or any other, and the frequency is not limited.

また、噴出口から処理対象にプラズマガスを噴射する場合の距離は、ガスの流速とも関係するが、例えば2mm〜20mmの範囲が望ましい。さらに望ましくは、3mm〜12mmであり、最も望ましくは、4mm〜8mmである。酸素ラジカルを発生させる場合、処理対象の表面において酸素ラジカルの密度が最も高く、電子密度が最も低くなるような距離に設定するのが良い。これにより、処理対象のチャージアップ損傷を防止でき、最も、効率の良い洗浄が可能となる。さらに、処理対象に対して斜め方向からプラズマを照射しても良い。斜め方向からプラズマを照射することで、例えば偏光フィルムや液晶封止剤にプラズマが照射されて製品に対する悪影響を防止することができる。また、プラズマを照射したくない部分には、プラズマを含まない空気などのガスを吹き付けて、プラズマが拡散しないようにすることができる。   Moreover, although the distance in the case of injecting plasma gas to a process target from a jet nozzle is also related with the gas flow velocity, the range of 2 mm-20 mm is desirable, for example. More desirably, it is 3 mm to 12 mm, and most desirably 4 mm to 8 mm. When generating oxygen radicals, it is preferable to set the distance so that the density of oxygen radicals is highest and the electron density is lowest on the surface to be treated. Thereby, the charge-up damage of the processing object can be prevented, and the most efficient cleaning is possible. Further, plasma may be irradiated to the processing target from an oblique direction. By irradiating the plasma from an oblique direction, for example, the polarizing film or the liquid crystal sealant is irradiated with the plasma, and adverse effects on the product can be prevented. Further, a gas such as air that does not contain plasma can be sprayed on a portion where plasma is not desired to prevent the plasma from diffusing.

また、電極の酸化防止には、窒素やAr、又は、還元作用のある水素を含むガスを用いて酸素濃度を低くすると良い。また、複数種類のプラズマを発生させることで、有機汚染物質のみ除去し、他の領域には反応しないようにすることも可能である。また、処理対象へのプラズマの照射部分から反応後のガスを吸引しておくのが望ましい。これにより有機汚染物質と反応した分子が他の領域に付着することが防止される。さらに、プラズマの温度と密度をレーザ光の吸収分光分析などを用いて測定し、所定の温度と密度になるように、印加電圧の大きさ、パルス印加であれば、デューティ比、照射時間、ガス流速などをフィードバック制御することが望ましい。これにより、品質の高い洗浄と洗浄時間の短縮を実現することができる。また、噴出口を直線状又は複数個の噴出口を直線状に配置して形成したとして、噴出口の幅と長さを適正に設定することにより、必要な部分にのみプラズマを照射することが可能となる。また、ガスを冷却しておいて、本装置に供給してプラズマ化するのが望ましい。これにより、プラズマの温度が必要以上に上昇することが防止され、例えば液晶表示装置等に対する影響、たとえば、偏光フィルムへの損傷を防止することが可能となる。本発明は、非常に小型にすることができると共に、ガスの供給方向とプラズマの吹き出し方向や、吹き出しプラズマの形状などを任意に自由に設計することができる。よって、これらのプラズマを吹き出す開口部を複数設け、それぞに、任意の方向からガスを供給させることも可能となる。したがって、基板においてACFの貼付部分にのみプラズマを高密度で照射することが可能となると共に、液晶表示器組付装置の空いている狭い空間であっても、有効に本洗浄装置を有効に取り付けることが可能となる。
以上の全ての発明において、大気圧が望ましいが、減圧でも、加圧でも良く、大気圧には、0.5〜2気圧程度も大気圧とする。
In order to prevent oxidation of the electrode, it is preferable to lower the oxygen concentration by using nitrogen, Ar, or a gas containing hydrogen having a reducing action. Further, by generating a plurality of types of plasma, it is possible to remove only organic contaminants and not react with other regions. In addition, it is desirable to suck in the gas after reaction from a portion irradiated with plasma to the processing target. This prevents molecules that have reacted with organic contaminants from adhering to other areas. Furthermore, the plasma temperature and density are measured using absorption spectroscopy analysis of laser light, and the magnitude of the applied voltage and, if a pulse is applied, the duty ratio, the irradiation time, and the gas so that the predetermined temperature and density are obtained. It is desirable to feedback control the flow rate. Thereby, it is possible to realize high-quality cleaning and shortening of the cleaning time. Further, assuming that the jet port is formed in a straight line or a plurality of jet ports arranged in a straight line, the width and length of the jet port can be set appropriately to irradiate the plasma only on necessary portions. It becomes possible. Further, it is desirable to cool the gas and supply it to the apparatus to turn it into plasma. Thereby, it is possible to prevent the temperature of the plasma from rising more than necessary, and for example, it is possible to prevent the influence on the liquid crystal display device, for example, damage to the polarizing film. The present invention can be made very small, and can freely design the gas supply direction, the plasma blowing direction, the shape of the blowing plasma, and the like. Therefore, it is possible to provide a plurality of openings through which these plasmas are blown, and to supply gas from any direction. Therefore, it is possible to irradiate plasma only on the ACF-attached portion of the substrate with high density, and to effectively attach the cleaning device even in a vacant narrow space of the liquid crystal display assembly device. It becomes possible.
In all the above inventions, atmospheric pressure is desirable, but it may be reduced or pressurized, and the atmospheric pressure is about 0.5 to 2 atmospheres.

図1.Aは本発明の具体的な一実施例に係るプラズマ発生装置100の構成を示す断面図である。図1.Bは、図1.Aのプラズマ発生装置100の電極2a及び2bの形状の詳細を示す図である。   FIG. A is a cross-sectional view showing a configuration of a plasma generating apparatus 100 according to a specific embodiment of the present invention. FIG. B is shown in FIG. It is a figure which shows the detail of the shape of the electrodes 2a and 2b of the plasma generator 100 of A. FIG.

図1.Aのプラズマ発生装置100は、アルミナ(Al23)を原料とする焼結体から成る筒状の筐体部10を有し、その両端の開口を、ガス導入口10i及びガス噴出口10oとした。筐体部10内部のガス導入口10i近傍に電極2aを、筐体部10内部のガス噴出口10o近傍に電極2bを配置した。電極2a及び2bは図1.Bに示す通り、互いに対向する面が深さ0.5mm程度の凹部(ホロー)Hを多数有した凹凸面となっている。筐体部10は内径2〜5mm、厚さ0.2〜0.3mm、長さ25cmの管状とし、電極2a及び2bの径は1mm程度に形成する。こうして、商用交流電圧である、60Hz、100Vを用いて約9kVに昇圧し、20mAで電極2a、2b間に印加し、アルゴンをガス導入口10iから導入すると、電極2a及び2bを最大24cmまで離間してもプラズマ(図1.Aで符号Pを付した斜線領域)が発生した。
電極2a及び2b間を長さ24cmとして、筒状の筐体部10の内径を変化させたところ、内径3mm以下で安定して放電した。また、筒状の筐体部10の内径を3mmとして、電極2a及び2b間の長さを変化させたところ、距離24cm以下で安定して放電した。
FIG. The plasma generating apparatus 100 of A has a cylindrical casing 10 made of a sintered body made of alumina (Al 2 O 3 ) as a raw material, and openings at both ends thereof are connected to a gas inlet 10i and a gas outlet 10o. It was. The electrode 2a is disposed in the vicinity of the gas inlet 10i inside the housing 10 and the electrode 2b is disposed in the vicinity of the gas outlet 10o inside the housing 10. The electrodes 2a and 2b are shown in FIG. As shown in B, the surfaces facing each other are uneven surfaces having many recesses (hollows) H having a depth of about 0.5 mm. The casing 10 is a tube having an inner diameter of 2 to 5 mm, a thickness of 0.2 to 0.3 mm, and a length of 25 cm, and the electrodes 2a and 2b have a diameter of about 1 mm. Thus, when the voltage is increased to about 9 kV using commercial AC voltage 60 Hz and 100 V, 20 mA is applied between the electrodes 2a and 2b, and argon is introduced from the gas inlet 10i, the electrodes 2a and 2b are separated to a maximum of 24 cm. Even then, plasma (the hatched area marked P in FIG. 1.A) was generated.
When the length between the electrodes 2a and 2b was 24 cm and the inner diameter of the cylindrical casing 10 was changed, the battery was stably discharged with an inner diameter of 3 mm or less. Further, when the inner diameter of the cylindrical casing 10 was set to 3 mm and the length between the electrodes 2a and 2b was changed, the battery was stably discharged at a distance of 24 cm or less.

図1.Aのプラズマ発生装置100において、酸素(O2)を導入しプラズマ化することで、例えば煤を分解可能である。即ち、プラズマ発生装置100をディーゼル排気ガスの浄化に用いうることがわかる。即ち、図1.Aのプラズマ発生装置100において、酸素(O2)及び処理前排気ガス(S)をガス導入口10iから導入し、電極2a、2b間に交流電圧を印加することで、ガス噴出口10oからは酸素(O2)と、二酸化炭素(CO2)及び水(H2O)を含んだ処理済み排気ガス(S’)が得られる。 FIG. In the plasma generating apparatus 100 of A, for example, soot can be decomposed by introducing oxygen (O 2 ) into plasma. That is, it can be seen that the plasma generator 100 can be used for purification of diesel exhaust gas. That is, FIG. In the plasma generating apparatus 100 of A, oxygen (O 2 ) and pre-treatment exhaust gas (S) are introduced from the gas inlet 10i, and an alternating voltage is applied between the electrodes 2a and 2b. A treated exhaust gas (S ′) containing oxygen (O 2 ), carbon dioxide (CO 2 ) and water (H 2 O) is obtained.

図2.Aは本発明の具体的な他の実施例に係るプラズマ発生装置110の構成を示す断面図である。図2.Bは、図2.Aのプラズマ発生装置110のプラズマ化領域Pの長手方向に垂直な断面図(部分図)である。   FIG. A is a cross-sectional view showing a configuration of a plasma generating apparatus 110 according to another specific embodiment of the present invention. FIG. B is shown in FIG. It is sectional drawing (partial drawing) perpendicular | vertical to the longitudinal direction of the plasma-ized area | region P of the plasma generator 110 of A. FIG.

図2.Aのプラズマ発生装置110は、アルミナ(Al23)を原料とする焼結体から成る筐体部11を有する。筐体部11は、図2.A内左右方向にスリット状に伸びたガス導入口11i及び複数個の円筒状ガス噴出口11oを有する。ガス導入口11iからプラズマ化領域Pの直上までは、スリット幅(図2.A紙面に対して前後方向、図2Bの左右方向)を1mmとし、内径1〜2mmのガス噴出口11oはプラズマ化領域Pの長手方向に沿って一直線状に形成されている。プラズマ化領域Pは、長手方向に垂直な断面の一辺を2〜5mmの正方形とし、長さを4cmとした。電極2a及び2bは実施例1で用いたものと同じ形状のものを用いた。こうして、商用交流電圧である、60Hz、100Vを用いて約9kVに昇圧し、20mAで電極2a、2b間に印加し、アルゴンをガス導入口11iから導入すると、電極2a及び2b間を4cm迄離間しても、プラズマ化が確認された。
プラズマ発生装置110は、液晶表示器のガラス基板において、異方性導電フィルム(ACF)を貼付する部分を、ACFを貼付する前に洗浄することで、ACFの基板に対する接着度を向上させることができる。
また、電極2a及び2b間を長さ4cmとして、プラズマ化領域Pの断面の一辺の長さを変化させたところ、5mm以下で安定して放電した。また、プラズマ化領域Pの断面の一辺の長さを5mmとして、電極2a及び2b間の長さを変化させたところ、距離4cm以下で安定して放電した。
FIG. A plasma generator 110 of A has a casing 11 made of a sintered body made of alumina (Al 2 O 3 ) as a raw material. The housing unit 11 has the structure shown in FIG. A gas inlet 11i and a plurality of cylindrical gas outlets 11o extending in a slit shape in the left-right direction in A are provided. From the gas inlet 11i to just above the plasma region P, the slit width (front / rear direction with respect to FIG. 2.A paper plane, left / right direction in FIG. 2B) is 1 mm, and the gas outlet 11o having an inner diameter of 1 to 2 mm is converted to plasma. It is formed in a straight line along the longitudinal direction of the region P. The plasma region P has a square of 2 to 5 mm on one side of the cross section perpendicular to the longitudinal direction and a length of 4 cm. The electrodes 2a and 2b have the same shape as that used in Example 1. Thus, when the voltage is increased to about 9 kV using commercial AC voltage 60 Hz and 100 V, 20 mA is applied between the electrodes 2a and 2b, and argon is introduced from the gas inlet 11i, the electrodes 2a and 2b are separated by 4 cm. Even so, plasma was confirmed.
The plasma generator 110 can improve the degree of adhesion of the ACF to the substrate by cleaning the portion of the glass substrate of the liquid crystal display where the anisotropic conductive film (ACF) is attached before attaching the ACF. it can.
Further, when the length between the electrodes 2a and 2b was set to 4 cm and the length of one side of the cross section of the plasma region P was changed, the discharge was stably performed at 5 mm or less. Further, when the length of one side of the cross section of the plasmified region P was 5 mm and the length between the electrodes 2a and 2b was changed, the discharge was stably performed at a distance of 4 cm or less.

100、110:プラズマ発生装置
10、11:筐体部
10i、11i:ガス導入口
10o、11o:ガス噴出口
2a、2b:各々向き合った表面に凹部(ホロー)を有する一対の電極
P:プラズマ化領域
H:一対の電極2a及び2bの互いに向き合った表面に形成された凹部(ホロー)
DESCRIPTION OF SYMBOLS 100,110: Plasma generator 10, 11: Housing | casing part 10i, 11i: Gas inlet 10o, 11o: Gas jet 2a, 2b: A pair of electrode which has a recessed part (hollow) in the surface which faces each other P: Plasma-ized Region H: recesses (hollows) formed on the surfaces of the pair of electrodes 2a and 2b facing each other

Claims (6)

大気圧プラズマ発生装置において、
長手方向を有する柱状のプラズマ化領域を形成する絶縁体から成る筐体部と、
前記筐体部に内包される前記プラズマ化領域に、長手方向に離間して配設された1対の電極と、
前記プラズマ化領域の長手方向に沿って、プラズマ発生用ガスを前記プラズマ化領域に導入するプラズマ発生用ガスの導入口と、
前記プラズマ化領域の長手方向に沿って、前記少なくとも一部がプラズマ化したガスを噴出し、前記プラズマ化領域の長手方向に沿って配設された噴出口と
を有し、
前記プラズマ化領域は、長手方向の長さが、1cm以上50cm以下であり、長手方向に垂直な断面積は、3mm2 以上25mm2 以下である
ことを特徴とする大気圧プラズマ発生装置。
In the atmospheric pressure plasma generator,
A casing made of an insulator that forms a columnar plasma region having a longitudinal direction;
A pair of electrodes disposed in the longitudinal direction in the plasma region included in the housing;
A plasma generating gas inlet for introducing a plasma generating gas into the plasma generating region along the longitudinal direction of the plasma generating region;
Along with the longitudinal direction of the plasmatized region, the at least a part of the gasified gas is ejected, and a jet port disposed along the longitudinal direction of the plasmatized region,
The plasma generation region has a longitudinal length of 1 cm or more and 50 cm or less, and a cross-sectional area perpendicular to the longitudinal direction is 3 mm 2 or more and 25 mm 2 or less.
前記プラズマ化領域の長手方向及びガス流方向に垂直な幅は、2mm以上5mm以下であることを特徴とする請求項1に記載の大気圧プラズマ発生装置。   2. The atmospheric pressure plasma generator according to claim 1, wherein a width perpendicular to the longitudinal direction and the gas flow direction of the plasma region is 2 mm or more and 5 mm or less. 前記筐体内部を、加圧も減圧もしない、大気圧プラズマ発生源とすることを特徴とする請求項1又は請求項2に記載の大気圧プラズマ発生装置。 The atmospheric pressure plasma generation apparatus according to claim 1 or 2, wherein the inside of the casing is an atmospheric pressure plasma generation source that is neither pressurized nor depressurized. 前記1対の電極が、1cm以上50cm以下の距離で離間して配置されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の大気圧プラズマ発生装置。   The atmospheric pressure plasma generation apparatus according to any one of claims 1 to 3, wherein the pair of electrodes are spaced apart by a distance of 1 cm or more and 50 cm or less. 前記1対の電極の少なくとも一方には、他方の電極と対向する表面に凹凸が形成されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の大気圧プラズマ発生装置。   The atmospheric pressure plasma generator according to any one of claims 1 to 4, wherein at least one of the pair of electrodes is provided with irregularities on a surface facing the other electrode. . 前記柱状のプラズマ化領域の長手方向の長さLcmと、長手方向に垂直な断面積σmm2の関係は、2≦Lσ≦100且つ3≦σ≦25であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の大気圧プラズマ発生装置。 The relationship between the length Lcm in the longitudinal direction of the columnar plasma region and the cross-sectional area σmm 2 perpendicular to the longitudinal direction is 2 ≦ Lσ ≦ 100 and 3 ≦ σ ≦ 25. The atmospheric pressure plasma generator according to claim 5.
JP2009088989A 2009-04-01 2009-04-01 Plasma generator Active JP5126983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088989A JP5126983B2 (en) 2009-04-01 2009-04-01 Plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088989A JP5126983B2 (en) 2009-04-01 2009-04-01 Plasma generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007255314A Division JP4296523B2 (en) 2007-09-28 2007-09-28 Plasma generator

Publications (2)

Publication Number Publication Date
JP2009158491A JP2009158491A (en) 2009-07-16
JP5126983B2 true JP5126983B2 (en) 2013-01-23

Family

ID=40962234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088989A Active JP5126983B2 (en) 2009-04-01 2009-04-01 Plasma generator

Country Status (1)

Country Link
JP (1) JP5126983B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617818B2 (en) * 2011-10-27 2014-11-05 パナソニック株式会社 Inductively coupled plasma processing apparatus and inductively coupled plasma processing method
JP5617817B2 (en) * 2011-10-27 2014-11-05 パナソニック株式会社 Inductively coupled plasma processing apparatus and inductively coupled plasma processing method
CN103094038B (en) 2011-10-27 2017-01-11 松下知识产权经营株式会社 Plasma processing apparatus and plasma processing method
JP6591735B2 (en) * 2014-08-05 2019-10-16 株式会社Fuji Plasma generator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121105B2 (en) * 1992-03-03 2000-12-25 株式会社きもと Glow discharge plasma generating electrode and reactor using this electrode
JPH10188834A (en) * 1996-12-27 1998-07-21 Tekumaato:Kk Ion gun
JP2003019433A (en) * 2001-07-06 2003-01-21 Sekisui Chem Co Ltd Discharge plasma treating apparatus and treating method using the same
CA2651200C (en) * 2005-03-07 2015-11-03 Old Dominion University Plasma generator
JP2006302652A (en) * 2005-04-20 2006-11-02 Univ Nagoya Plasma treatment device

Also Published As

Publication number Publication date
JP2009158491A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5145076B2 (en) Plasma generator
JP4296523B2 (en) Plasma generator
JP2004006211A (en) Plasma treatment device
JP6625728B2 (en) Plasma generator
JP5126983B2 (en) Plasma generator
JP2009054557A (en) In-liquid plasma generating device
JP4705891B2 (en) Atmospheric pressure plasma generator with electrode structure to prevent useless discharge
JP2008098128A (en) Atmospheric pressure plasma generating and irradiating device
JP2009505342A (en) Plasma generating apparatus and plasma generating method
JP5725993B2 (en) Surface treatment equipment
US11309167B2 (en) Active gas generation apparatus and deposition processing apparatus
US20100258247A1 (en) Atmospheric pressure plasma generator
JP2003109799A (en) Plasma treatment apparatus
JP2004319285A (en) Plasma processing device and plasma processing method
JP5559292B2 (en) Plasma generator
JP2002008895A (en) Plasma treatment device and plasma treatment method
KR101273233B1 (en) Apparatus for plasma treatment
JP2017054943A (en) Plasma processing device
Fang et al. Atmospheric plasma jet-enhanced anodization and nanoparticle synthesis
JP4284861B2 (en) Surface treatment method and method for manufacturing head for inkjet printer
JP2004211161A (en) Plasma generating apparatus
JP4501272B2 (en) Surface treatment method
JP7144753B2 (en) Plasma device
JP4079056B2 (en) Plasma processing method and plasma processing apparatus
KR100488359B1 (en) Atmospheric Pressure Parallel Plate Bulk Plasma Generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5126983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250