JP2003019433A - Discharge plasma treating apparatus and treating method using the same - Google Patents

Discharge plasma treating apparatus and treating method using the same

Info

Publication number
JP2003019433A
JP2003019433A JP2001206531A JP2001206531A JP2003019433A JP 2003019433 A JP2003019433 A JP 2003019433A JP 2001206531 A JP2001206531 A JP 2001206531A JP 2001206531 A JP2001206531 A JP 2001206531A JP 2003019433 A JP2003019433 A JP 2003019433A
Authority
JP
Japan
Prior art keywords
discharge
electrodes
plasma
discharge plasma
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001206531A
Other languages
Japanese (ja)
Inventor
Takeshi Uehara
剛 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001206531A priority Critical patent/JP2003019433A/en
Publication of JP2003019433A publication Critical patent/JP2003019433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a discharge plasmas treating apparatus having an electrode by which high density plasma is generated in a remote type plasma treating apparatus capable of dealing with high speed large surface area treatment and free from giving damage to a base material. SOLUTION: In the plasma treating apparatus in which the discharge plasma obtained by mounting a solid dielectric at least on one counter surface of the counter electrodes, introducing a treating gas in-between the electrodes and applying pulse like electric field under a nearly atmospheric pressure is guided to a material to be treated which is arranged outside the discharge space and brought into contact with the material. The counter surface of the electrode has projecting and recessed portions in such manner that rectangular parallelepipeds are arranged vertically to the flowing direction of a treating gas, and the surfaces of the electrodes which face each other are arranged so as to face the projecting surfaces each other and the recessed surfaces each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大気圧近傍の圧力
下における常圧プラズマ処理装置に関し、特に、放電空
間から離れた位置にある被処理体を常圧プラズマ処理す
る装置における対向電極間の距離を部分的に異ならせた
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atmospheric pressure plasma processing apparatus under a pressure near atmospheric pressure, and in particular, between opposing electrodes in an apparatus for performing atmospheric pressure plasma processing on an object to be processed which is located away from the discharge space. The present invention relates to a device having a partially different distance.

【0002】[0002]

【従来の技術】従来から、低圧条件下でグロー放電プラ
ズマを発生させて被処理体の表面改質、又は被処理体上
に薄膜形成を行う方法が実用化されている。しかし、こ
れらの低圧条件下における処理は、真空チャンバー、真
空排気装置等が必要であり、表面処理装置は高価なもの
となり、大面積基板等を処理する際にはほとんど用いら
れていなかった。このため、大気圧近傍の圧力下で放電
プラズマを発生させる方法が提案されてきている。
2. Description of the Related Art Conventionally, a method of generating a glow discharge plasma under a low pressure condition to modify the surface of an object to be processed or to form a thin film on the object to be processed has been put into practical use. However, the treatment under these low pressure conditions requires a vacuum chamber, a vacuum exhaust device, etc., and the surface treatment device becomes expensive, and it has hardly been used when treating a large area substrate or the like. Therefore, a method of generating discharge plasma under a pressure near atmospheric pressure has been proposed.

【0003】一般的な常圧プラズマ処理方法では、特開
平6−2149号公報、特開平7−85997号公報等
に記載されているように、主に処理槽内部において、固
体誘電体等で被覆した平行平板型電極間に被処理体を設
置し、処理槽に処理ガスを導入し、電極間に電圧を印加
し、発生したプラズマで被処理体を処理する方法が採ら
れている。これらの方法は、平らな電極を平行に対向さ
せ、この電極間の空間中に被処理体を配置させて処理を
行うものであり、被処理体全体を放電空間に置くために
処理強度は得やすいが、被処理体にダメージを与えるこ
とになりやすいという問題があった。
In a general atmospheric pressure plasma processing method, as described in JP-A-6-2149, JP-A-7-85997, etc., the inside of the processing tank is mainly covered with a solid dielectric or the like. The object to be processed is installed between the parallel plate electrodes, the processing gas is introduced into the processing tank, a voltage is applied between the electrodes, and the object to be processed is treated with the generated plasma. In these methods, flat electrodes are made to face each other in parallel, and an object to be processed is placed in a space between the electrodes to perform processing. Although it is easy, there is a problem that it tends to damage the object to be processed.

【0004】一方、被処理体の特定部分のみにプラズマ
処理を行いやすく、しかも被処理物を連続的に処理する
ことができる装置として、先端にプラズマガス吹き出し
口を有するリモート型プラズマ処理装置が開発されてき
ている。リモート型とは、電極間で発生させたプラズマ
を放電空間外に配置された被処理体に向けて吹き出すも
ので、被処理体へのダメージは軽減されるが、従来のタ
イプと同程度のプラズマでは処理強度が得にくいという
問題があり、より高密度のプラズマが必要である。この
ような装置においては、外側電極を備えた筒状の反応管
及び反応管の内部に内側電極を具備した反応管型プラズ
マ発生装置や一対の固体誘電体等で被覆した平行平板型
電極を用いるプラズマ発生装置を具備した放電プラズマ
処理装置があるが、対向する電極表面は凹凸のない面に
していた。特に、平らな電極を平行に対向させて常圧で
プラズマを発生させた場合には、電極内全体に均一なプ
ラズマを得ることができるように、対向する面を平面に
していたが、なかなか高密度のプラズマが得られないと
いう問題があった。
On the other hand, a remote plasma processing apparatus having a plasma gas outlet at its tip has been developed as an apparatus that can easily perform plasma processing only on a specific portion of an object to be processed and can continuously process the object. Has been done. The remote type is a type that blows out the plasma generated between the electrodes toward the object to be processed located outside the discharge space.It reduces damage to the object to be processed, but it is similar to the conventional type. In that case, there is a problem that the treatment strength is difficult to obtain, and a higher density plasma is required. In such an apparatus, a cylindrical reaction tube having an outer electrode, a reaction tube type plasma generator having an inner electrode inside the reaction tube, and a parallel plate type electrode coated with a pair of solid dielectrics are used. Although there is a discharge plasma processing apparatus equipped with a plasma generator, the opposing electrode surfaces are flat surfaces. In particular, when flat electrodes were made to face each other in parallel and plasma was generated at atmospheric pressure, the facing surfaces were made flat so that uniform plasma could be obtained throughout the electrodes, but it was quite high. There was a problem that a plasma of high density could not be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題に
鑑み、高速処理及び大面積処理に対応可能でかつ、基材
にダメージを与えないリモート型プラズマ処理装置にお
いて、高密度のプラズマを発生させる電極を有する放電
プラズマ処理装置を提供することを目的とする。
In view of the above problems, the present invention generates a high density plasma in a remote type plasma processing apparatus which can cope with high speed processing and large area processing and does not damage the base material. It is an object of the present invention to provide a discharge plasma processing apparatus having an electrode for causing a discharge.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、大気圧条件下で発生さ
せたプラズマを放電空間外に配置した被処理基材に接触
させて、基材にダメージを与えない均一で高速処理を行
う装置において、対向する電極間の距離を面内で部分的
に異ならせることにより、高密度のプラズマを発生させ
得ることを見出し、本発明を完成させた。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have made it possible to bring a plasma generated under atmospheric pressure into contact with a substrate to be treated arranged outside the discharge space. In a device that performs uniform and high-speed processing that does not damage the base material, it has been found that high density plasma can be generated by partially varying the distance between opposing electrodes in the plane, and the present invention Completed

【0007】すなわち、本発明の第1の発明は、大気圧
近傍の圧力下、対向する電極の少なくとも一方の対向面
に固体誘電体を設置し、当該電極間に処理ガスを導入し
パルス状の電界を印加することにより得られる放電プラ
ズマを、放電空間外に配置された被処理基材に誘導して
接触させることを特徴とする放電プラズマ処理装置であ
って、電極の対向表面が処理ガスの流れ方向に垂直に直
方体をならべたような凹凸を有し、両電極の互いに向き
合う面が凸面同士及び凹面同士となるように配置されて
なることを特徴とする放電プラズマ処理装置である。
That is, according to the first aspect of the present invention, under a pressure in the vicinity of atmospheric pressure, a solid dielectric is provided on at least one of opposing surfaces of opposing electrodes, and a processing gas is introduced between the electrodes to form a pulsed state. Discharge plasma obtained by applying an electric field is a discharge plasma treatment apparatus characterized by inducing and contacting a substrate to be treated arranged outside the discharge space, the opposing surface of the electrode of the treatment gas The discharge plasma processing apparatus is characterized in that it has an unevenness in which a rectangular parallelepiped is arranged perpendicularly to the flow direction, and the surfaces of both electrodes facing each other are convex and concave.

【0008】また、本発明の第2の発明は、電極の対向
表面の凹凸差が0.1〜5mmであることを特徴とする
第1の発明に記載の放電プラズマ処理装置である。
A second invention of the present invention is the discharge plasma processing apparatus according to the first invention, characterized in that the unevenness of the opposing surfaces of the electrodes is 0.1 to 5 mm.

【0009】また、本発明の第3の発明は、大気圧近傍
の圧力下、対向する電極の少なくとも一方の対向面に固
体誘電体を設置し、当該電極間に処理ガスを導入しパル
ス状の電界を印加することにより得られる放電プラズマ
を、放電空間外に配置された被処理基材に誘導して接触
させることを特徴とする放電プラズマ処理装置であっ
て、電極の表面が処理ガスの流れ方向に垂直に円柱を並
べたような形状で、互いに向き合う面が円周の頂点同士
となるように配置されてなることを特徴とする放電プラ
ズマ処理装置である。
Further, in a third aspect of the present invention, under a pressure near atmospheric pressure, a solid dielectric is provided on at least one of the facing surfaces of the facing electrodes, and a processing gas is introduced between the electrodes to form a pulsed shape. A discharge plasma processing apparatus, characterized in that discharge plasma obtained by applying an electric field is guided to and brought into contact with a substrate to be processed arranged outside the discharge space, wherein the surface of the electrode is a flow of processing gas. The discharge plasma processing apparatus is characterized in that it has a shape in which cylinders are arranged perpendicularly to the direction, and the surfaces facing each other are arranged so as to be apexes of the circumference.

【0010】また、本発明の第4の発明は、電極の対向
表面を構成する円柱の直径が0.1〜10mmであるこ
とを特徴とする第4の発明に記載の放電プラズマ処理装
置である。
Further, a fourth invention of the present invention is the discharge plasma processing apparatus according to the fourth invention, wherein the diameter of the cylinder forming the facing surface of the electrode is 0.1 to 10 mm. .

【0011】また、本発明の第5の発明は、パルス状の
電界が、パルス立ち上がり及び/又は立ち下がり時間が
10μs以下であることを特徴とする第1〜4のいずれ
かの発明に記載の放電プラズマ処理装置である。
The fifth aspect of the present invention is any one of the first to fourth aspects, wherein the pulsed electric field has a pulse rise and / or fall time of 10 μs or less. It is a discharge plasma processing apparatus.

【0012】また、本発明の第6の発明は、パルス状の
電界が、電界強度が10〜1000kV/cmであるこ
とを特徴とする第1〜5のいずれかの発明に記載の放電
プラズマ処理装置である。
The sixth aspect of the present invention is the discharge plasma treatment according to any one of the first to fifth aspects, wherein the pulsed electric field has an electric field intensity of 10 to 1000 kV / cm. It is a device.

【0013】また、本発明の第7の発明は、第1〜6の
いずれかの発明に記載の放電プラズマ処理装置を用いて
被処理基材を処理する放電プラズマ処理方法である。
A seventh invention of the present invention is a discharge plasma processing method for processing a substrate to be processed using the discharge plasma processing apparatus according to any one of the first to sixth inventions.

【0014】[0014]

【発明の実施の形態】本発明は、大気圧近傍の圧力下、
対向する電極の少なくとも一方の対向面に固体誘電体を
設置し、当該電極間に処理ガスを導入し、該電極間に電
界を印加することにより得られる放電プラズマを、放電
空間から離れた位置に配置された被処理基材に誘導して
接触させて処理する放電プラズマ装置であって、該電極
の対向表面が処理ガスの流れ方向に垂直に直方体をなら
べたような凹凸を有し、両電極の互いに向き合う面が凸
面同士及び凹面同士となるように配置されているか、又
は、円柱を並べたような形状で、互いに向き合う面が円
周の頂点同士となるように配置されてなる放電プラズマ
処理装置である。以下に詳細に本発明を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, under a pressure near atmospheric pressure,
Discharge plasma obtained by disposing a solid dielectric on at least one of the facing surfaces of the facing electrodes, introducing a processing gas between the electrodes, and applying an electric field between the electrodes, creates a discharge plasma at a position away from the discharge space. A discharge plasma device for inducing and contacting a disposed substrate to be treated, wherein the opposing surfaces of the electrodes have an unevenness like a rectangular parallelepiped arranged perpendicularly to the flow direction of the treatment gas, and both electrodes Discharge plasma treatment in which the surfaces facing each other are arranged so that they are convex surfaces and concave surfaces, or in a shape in which cylinders are arranged, and the surfaces facing each other are the apexes of the circumference. It is a device. The present invention will be described in detail below.

【0015】本発明の装置の一例を図で説明する。図1
及び2は、対向する電極間で発生したプラズマを被処理
基材の表面に誘導して接触処理する装置を説明する模式
的断面図である。図1において、対向する電極2及び3
で構成する平行平板型電極間に、処理ガスを矢印方向
に、処理ガス導入口4から導入し、電源1より電極2と
3に電界を印加し、放電空間5でプラズマを発生させ、
プラズマ吹き出し口6から処理ガスのプラズマを吹き出
し、被処理基材7の表面を処理する装置である。
An example of the device of the present invention will be described with reference to the drawings. Figure 1
2 and 2 are schematic cross-sectional views illustrating an apparatus that guides plasma generated between opposing electrodes to the surface of a substrate to be treated to perform contact treatment. In FIG. 1, opposing electrodes 2 and 3
The processing gas is introduced in the direction of the arrow from the processing gas introduction port 4 between the parallel plate type electrodes configured by, an electric field is applied to the electrodes 2 and 3 from the power source 1, and plasma is generated in the discharge space 5.
This is an apparatus for processing the surface of the substrate 7 to be processed by blowing plasma of the processing gas from the plasma outlet 6.

【0016】本発明の装置による処理方法は、被処理基
材が直接高密度プラズマ空間にさらされることが少な
く、基材への電気的熱的負担が軽減された優れた方法で
ある。
The treatment method using the apparatus of the present invention is an excellent method in which the substrate to be treated is rarely directly exposed to the high-density plasma space and the electrical and thermal load on the substrate is reduced.

【0017】本発明において用いる電極の形状として
は、平行平板型であって、電極の対向表面は、図1にそ
の断面が示されているように、処理ガスの流れ方向に垂
直に直方体をならべたような凹凸を有している。電極の
対向する表面には、直方体状の複数の凸部10が設けら
れている。凸部の高さhは0.05〜5mmが好まし
く、凸部の幅wは0.1〜20mmが好ましく、凸部か
ら次の凸部までの距離である凹部の幅sは0.1〜20
mmが好ましい。電極2及び3は、互いに向き合う面が
凸部面同士及び凹部面同士となるように配置されてお
り、電極間距離dは0.1〜10mmが好ましい。な
お、凸部10の端部はアーク放電の発生を避けるためエ
ッジを落とすようにするのが好ましい。また、両電極の
凹部面同士間の距離は、大気圧でもプラズマが発生する
ことが可能な距離以下である。
The shape of the electrode used in the present invention is a parallel plate type, and the opposing surfaces of the electrode are arranged in a rectangular parallelepiped perpendicular to the flow direction of the processing gas as shown in the cross section of FIG. It has such unevenness. A plurality of rectangular parallelepiped protrusions 10 are provided on the opposing surfaces of the electrodes. The height h of the convex portion is preferably 0.05 to 5 mm, the width w of the convex portion is preferably 0.1 to 20 mm, and the width s of the concave portion which is the distance from one convex portion to the next convex portion is 0.1 to 10. 20
mm is preferred. The electrodes 2 and 3 are arranged such that the surfaces facing each other are the convex surfaces and the concave surfaces, and the inter-electrode distance d is preferably 0.1 to 10 mm. In addition, it is preferable that the edge of the convex portion 10 has a dropped edge in order to avoid occurrence of arc discharge. The distance between the recessed surfaces of both electrodes is equal to or less than the distance at which plasma can be generated even at atmospheric pressure.

【0018】また、本発明においては、電極の対向表面
が図2にその断面が示されているように、処理ガスの流
れ方向に垂直に複数の円柱を並べたような形状で、互い
に向き合う面が円周の頂点同士となるように配置されて
なる電極も用いることができる。処理ガスは矢印方向に
流され、電極1’及び2’の対向する表面には、円柱状
の複数の凸部10’が設けられている。円柱部分の直径
lは0.2〜10mmが好ましい。電極2’及び3’
は、互いに向き合う面が円周の頂点同士となるように配
置されており、電極間距離dは0.1〜10mmが好ま
しい。なお、図1及び2において、電極1及び2の対向
する面は、固体誘電体で被覆されているが、図示してい
ない。
Further, in the present invention, the opposing surfaces of the electrodes have a shape in which a plurality of cylinders are arranged perpendicularly to the flow direction of the processing gas as shown in the cross section of FIG. It is also possible to use an electrode in which the electrodes are arranged so that they are at the vertices of the circumference. The processing gas is flowed in the direction of the arrow, and a plurality of columnar protrusions 10 'are provided on the surfaces of the electrodes 1'and 2'which face each other. The diameter l of the cylindrical portion is preferably 0.2 to 10 mm. Electrodes 2'and 3 '
Are arranged so that the surfaces facing each other are the vertices of the circumference, and the inter-electrode distance d is preferably 0.1 to 10 mm. Note that, in FIGS. 1 and 2, the opposing surfaces of the electrodes 1 and 2 are covered with a solid dielectric, but not shown.

【0019】本発明において、電極を上記のような形状
にし対向する電極間の距離を面内で部分的に異ならせる
ことにより、電極間距離の短いところでは、強いプラズ
マが発生し、全体として本発明の装置であるリモートソ
ースから吹き出すプラズマの密度を高くすることができ
る。また、放電空間内で処理ガスの流れに乱れを発生さ
せるので、プラズマ反応の効率を高めることができ、さ
らに、電極自身の強度をますことができる。
In the present invention, by forming the electrodes as described above and making the distance between the opposing electrodes partially different in the plane, a strong plasma is generated at a place where the distance between the electrodes is short, and as a whole, the It is possible to increase the density of the plasma blown from the remote source that is the device of the invention. Further, since the flow of the processing gas is disturbed in the discharge space, the efficiency of the plasma reaction can be increased and the strength of the electrode itself can be increased.

【0020】また、プラズマ吹き出し口は、放電空間の
外に配置された被処理基材の目的とする場所に向けて吹
き付け易いように、固体誘電体が延長されてプラズマ誘
導ノズルを形成してもよく、吹き出し口から被処理基材
に向けて略垂直にガイドを設けることが好ましい。この
ガイドにより、プラズマの拡散を防止することができ
る。
Further, the plasma outlet may be formed by extending the solid dielectric to form a plasma induction nozzle so that the plasma outlet can be easily blown toward a target location of the substrate to be treated which is disposed outside the discharge space. Often, it is preferable to provide a guide substantially vertically from the blowout port toward the substrate to be treated. This guide can prevent plasma diffusion.

【0021】上記対向する電極の材質としては、銅、ア
ルミニウム等の金属単体、ステンレス、真鍮等の合金、
金属間化合物等からなるものが挙げられる。
The materials of the electrodes facing each other include simple metals such as copper and aluminum, alloys such as stainless steel and brass,
Those made of intermetallic compounds and the like can be mentioned.

【0022】上記固体誘電体は、電極の対向面の一方又
は双方に設置する必要がある。固体誘電体と接地される
側の電極が密着し、かつ、接する電極の対向面を完全に
覆うようにする。固体誘電体によって覆われずに電極同
士が直接対向する部位があると、そこからアーク放電が
生じやすい。
The solid dielectric should be placed on one or both of the facing surfaces of the electrode. The solid dielectric and the grounded electrode are in close contact with each other, and the opposing surfaces of the contacting electrodes are completely covered. If there is a portion where the electrodes directly face each other without being covered with the solid dielectric, arc discharge easily occurs from there.

【0023】上記固体誘電体の形状は、シート状でもフ
ィルム状でもよく、厚みが0.01〜4mmであること
が好ましい。厚すぎると放電プラズマを発生するのに高
電圧を要することがあり、薄すぎると電圧印加時に絶縁
破壊が起こり、アーク放電が発生することがある。ま
た、固体誘電体の形状として、容器型のものも用いるこ
とができる。
The solid dielectric may have a sheet shape or a film shape, and preferably has a thickness of 0.01 to 4 mm. If it is too thick, a high voltage may be required to generate discharge plasma, and if it is too thin, dielectric breakdown may occur when a voltage is applied and arc discharge may occur. A container type can also be used as the shape of the solid dielectric.

【0024】固体誘電体の材質としては、例えば、ポリ
テトラフルオロエチレン、ポリエチレンテレフタレート
等のプラスチック、ガラス、二酸化珪素、酸化アルミニ
ウム、二酸化ジルコニウム、二酸化チタン等の金属酸化
物、チタン酸バリウム等の複酸化物等が挙げられる。
Examples of the material for the solid dielectric include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, metal oxides such as silicon dioxide, aluminum oxide, zirconium dioxide and titanium dioxide, and double oxidation such as barium titanate. Things etc. are mentioned.

【0025】特に、25℃環境下における比誘電率が1
0以上のものである固体誘電体を用いれば、低電圧で高
密度の放電プラズマを発生させることができ、処理効率
が向上する。比誘電率の上限は特に限定されるものでは
ないが、現実の材料では18,500程度のものが入手
可能であり、本発明に使用出来る。特に好ましくは比誘
電率が10〜100の固体誘電体である。上記比誘電率
が10以上である固体誘電体の具体例としては、二酸化
ジルコニウム、二酸化チタン等の金属酸化物、チタン酸
バリウム等の複酸化物を挙げることが出来る。
Particularly, the relative permittivity in the environment of 25 ° C. is 1
If a solid dielectric material of 0 or more is used, a high density discharge plasma can be generated at a low voltage, and the processing efficiency is improved. The upper limit of the relative permittivity is not particularly limited, but as a practical material, about 18,500 is available and can be used in the present invention. A solid dielectric having a relative dielectric constant of 10 to 100 is particularly preferable. Specific examples of the solid dielectric having a relative dielectric constant of 10 or more include metal oxides such as zirconium dioxide and titanium dioxide, and complex oxides such as barium titanate.

【0026】なお、上記固体誘電体を設けられた対向す
る電極は、一対のみでなく、複数の電極を対向して配置
することにより複数の放電空間を設けることができる。
複数の放電空間を設けることにより、大容量の処理ガス
のプラズマを発生させることができ、高速処理を行うこ
とができる。
The opposed electrodes provided with the solid dielectric are not limited to a pair, but a plurality of discharge spaces can be provided by disposing a plurality of electrodes opposed to each other.
By providing a plurality of discharge spaces, plasma of a large amount of processing gas can be generated and high-speed processing can be performed.

【0027】本発明では、上記電極間に、電界が印加さ
れ、プラズマを発生させるが、パルス電界を印加するこ
とが好ましく、特に、電界の立ち上がり及び/又は立ち
下がり時間が、10μs以下である電界が好ましい。1
0μsを超えると放電状態がアークに移行しやすく不安
定なものとなり、パルス電界による高密度プラズマ状態
を保持しにくくなる。また、立ち上がり時間及び立ち下
がり時間が短いほどプラズマ発生の際のガスの電離が効
率よく行われるが、40ns未満の立ち上がり時間のパ
ルス電界を実現することは、実際には困難である。より
好ましくは50ns〜5μsである。なお、ここでいう
立ち上がり時間とは、電圧(絶対値)が連続して増加す
る時間、立ち下がり時間とは、電圧(絶対値)が連続し
て減少する時間を指すものとする。
In the present invention, an electric field is applied between the electrodes to generate plasma, but it is preferable to apply a pulsed electric field, and in particular, an electric field having a rise and / or fall time of 10 μs or less. Is preferred. 1
If it exceeds 0 μs, the discharge state easily shifts to an arc and becomes unstable, and it becomes difficult to maintain the high-density plasma state due to the pulsed electric field. Further, the shorter the rise time and the fall time are, the more efficiently the gas is ionized at the time of plasma generation, but it is actually difficult to realize a pulsed electric field having a rise time of less than 40 ns. It is more preferably 50 ns to 5 μs. Note that the rising time referred to here means the time when the voltage (absolute value) continuously increases, and the falling time means the time when the voltage (absolute value) continuously decreases.

【0028】上記パルス電界の電界強度は、10〜10
00kV/cmとなるようにするのが好ましい。電界強
度が10kV/cm未満であると処理に時間がかかりす
ぎ、1000kV/cmを超えるとアーク放電が発生し
やすくなる。より好ましくは50kV/cm以上であ
る。
The electric field strength of the pulse electric field is 10 to 10
It is preferably set to 00 kV / cm. If the electric field strength is less than 10 kV / cm, the treatment takes too long, and if it exceeds 1000 kV / cm, arc discharge is likely to occur. More preferably, it is 50 kV / cm or more.

【0029】上記パルス電界の周波数は、0.5〜10
0kHzであることが好ましい。0.5kHz未満であ
るとプラズマ密度が低いため処理に時間がかかりすぎ、
100kHzを超えるとアーク放電が発生しやすくな
る。より好ましくは、1〜100kHzであり、このよ
うな高周波数のパルス電界を印加することにより、処理
速度を大きく向上させることができる。
The frequency of the pulsed electric field is 0.5 to 10
It is preferably 0 kHz. If the frequency is less than 0.5 kHz, the plasma density is low, so it takes too much time to process,
If it exceeds 100 kHz, arc discharge is likely to occur. More preferably, the frequency is 1 to 100 kHz, and by applying such a high frequency pulse electric field, the processing speed can be greatly improved.

【0030】また、上記パルス電界におけるひとつのパ
ルス継続時間は、0.5〜200μsであることが好ま
しい。0.5μs未満であると放電が不安定なものとな
り、200μsを超えるとアーク放電に移行しやすくな
る。より好ましくは、3〜200μsである。ここで、
ひとつのパルス継続時間とは、ON、OFFの繰り返し
からなるパルス電界における、ひとつのパルスの連続す
るON時間を言う。
Further, one pulse duration in the above pulsed electric field is preferably 0.5 to 200 μs. If it is less than 0.5 μs, the discharge becomes unstable, and if it exceeds 200 μs, the arc discharge is likely to occur. More preferably, it is 3 to 200 μs. here,
One pulse duration means a continuous ON time of one pulse in a pulse electric field consisting of repeated ON and OFF.

【0031】上記大気圧近傍の圧力下とは、1.333
×104〜10.664×104Paの圧力下を指す。中
でも、圧力調整が容易で、装置が簡便になる9.331
×104〜10.397×104Paの範囲が好ましい。
Under the pressure near the above atmospheric pressure is 1.333.
It refers to under a pressure of × 10 4 to 10.664 × 10 4 Pa. Among them, the pressure adjustment is easy, and the device is simple.
The range of × 10 4 to 10.397 × 10 4 Pa is preferable.

【0032】大気圧近傍の圧力下では、ヘリウム、ケト
ン等の特定のガス以外は安定してプラズマ放電状態が保
持されずに瞬時にアーク放電状態に移行することが知ら
れているが、パルス状の電界を印加することにより、ア
ーク放電に移行する前に放電を止め、再び放電を開始す
るというサイクルが実現されると考えられる。
It is known that under a pressure in the vicinity of the atmospheric pressure, except for a specific gas such as helium and ketone, the plasma discharge state is not maintained stably and the arc discharge state is instantaneously transferred. It is considered that a cycle of stopping the discharge before starting the arc discharge and restarting the discharge is realized by applying the electric field of.

【0033】大気圧近傍の圧力下においては、本発明の
パルス状の電界を印加する方法によって、初めて、ヘリ
ウム等のプラズマ放電状態からアーク放電状態に至る時
間が長い成分を含有しない雰囲気において、安定して放
電プラズマを発生させることが可能となる。
Under a pressure in the vicinity of atmospheric pressure, the method of applying a pulsed electric field according to the present invention makes it stable for the first time in an atmosphere containing no components such as helium, which takes a long time from a plasma discharge state to an arc discharge state. Then, discharge plasma can be generated.

【0034】なお、本発明の方法によれば、プラズマ発
生空間中に存在する気体の種類を問わずグロー放電プラ
ズマを発生させることが可能である。公知の低圧条件下
におけるプラズマ処理はもちろん、特定のガス雰囲気下
の大気圧プラズマ処理においても、外気から遮断された
密閉容器内で処理を行うことが必須であったが、本発明
のグロー放電プラズマ処理方法によれば、開放系、ある
いは、気体の自由な流失を防ぐ程度の低気密系での処理
が可能となる。
According to the method of the present invention, glow discharge plasma can be generated regardless of the type of gas existing in the plasma generation space. Not only plasma treatment under known low-pressure conditions, but also atmospheric pressure plasma treatment under a specific gas atmosphere, it was essential to perform treatment in a closed container shielded from the outside air, but glow discharge plasma of the present invention According to the treatment method, it is possible to perform treatment in an open system or a low airtight system that prevents free flow of gas.

【0035】本発明で用いる処理ガスとしては、電界、
好ましくはパルス電界を印加することによってプラズマ
を発生するガスであれば、特に限定されず、処理目的に
より種々のガスを使用できる。
The processing gas used in the present invention is an electric field,
There is no particular limitation as long as it is a gas that generates plasma by applying a pulsed electric field, and various gases can be used depending on the processing purpose.

【0036】本発明で処理できる被処理基材としては、
ポリエチレン、ポリプロピレン、ポリスチレン、ポリカ
ーボネート、ポリエチレンテレフタレート、ポリテトラ
フルオロエチレン、アクリル樹脂等のプラスチック、ガ
ラス、セラミック、金属等が挙げられる。基材の形状と
しては、板状、フィルム状等のものが挙げられるが、特
にこれらに限定されない。本発明の表面処理方法によれ
ば、様々な形状を有する基材の処理に容易に対応するこ
とができる。
As the substrate to be treated by the present invention,
Examples thereof include polyethylene, polypropylene, polystyrene, polycarbonate, polyethylene terephthalate, polytetrafluoroethylene, plastic such as acrylic resin, glass, ceramic, metal and the like. Examples of the shape of the substrate include a plate shape and a film shape, but are not particularly limited thereto. According to the surface treatment method of the present invention, it is possible to easily deal with the treatment of substrates having various shapes.

【0037】上記処理においては、放電プラズマ発生空
間に存在する気体(以下、処理用ガスという。)の選択
により任意の処理が可能である。
In the above processing, any processing can be performed by selecting the gas existing in the discharge plasma generation space (hereinafter referred to as processing gas).

【0038】上記処理用ガスとして、CF4、C26
CClF3、SF6等のフッ素含有化合物ガスを用いるこ
とによって、撥水性表面を得ることができる。
As the processing gas, CF 4 , C 2 F 6 ,
A water repellent surface can be obtained by using a fluorine-containing compound gas such as CClF 3 or SF 6 .

【0039】また、処理用ガスとして、O2、O3、水、
空気等の酸素元素含有化合物、N2、NH3等の窒素元素
含有化合物、SO2、SO3等の硫黄元素含有化合物を用
いて、基材表面にカルボニル基、水酸基、アミノ基等の
親水性官能基を形成させて表面エネルギーを高くし、親
水性表面を得ることができる。また、アクリル酸、メタ
クリル酸等の親水基を有する重合性モノマーを用いて親
水性重合膜を堆積することもできる。
Further, as the processing gas, O 2 , O 3 , water,
Hydrophilicity of carbonyl group, hydroxyl group, amino group, etc. on the surface of the base material by using oxygen element-containing compounds such as air, nitrogen element-containing compounds such as N 2 , NH 3 and sulfur element-containing compounds such as SO 2 , SO 3 A hydrophilic surface can be obtained by forming a functional group to increase the surface energy. Further, the hydrophilic polymer film can be deposited by using a polymerizable monomer having a hydrophilic group such as acrylic acid or methacrylic acid.

【0040】さらに、Si、Ti、Sn等の金属の金属
−水素化合物、金属−ハロゲン化合物、金属アルコラー
ト等の処理用ガスを用いて、SiO2、TiO2、SnO
2等の金属酸化物薄膜を形成させ、基材表面に電気的、
光学的機能を与えることができ、ハロゲン系ガスを用い
てエッチング処理、ダイシング処理を行ったり、酸素系
ガスを用いてレジスト処理や有機物汚染の除去を行った
り、アルゴン、窒素等の不活性ガスによるプラズマで表
面クリーニングや表面改質を行うこともできる。
Further, by using a processing gas such as a metal-hydrogen compound of a metal such as Si, Ti, Sn or the like, a metal-halogen compound, a metal alcoholate or the like, SiO 2 , TiO 2 or SnO 2 is used.
A metal oxide thin film such as 2 is formed and is electrically and
Optical function can be given, and halogen gas is used for etching and dicing, oxygen gas is used for resist treatment and removal of organic contaminants, and inert gas such as argon and nitrogen is used. Surface cleaning and surface modification can also be performed with plasma.

【0041】経済性及び安全性の観点から、上記処理用
ガス単独雰囲気よりも、以下に挙げるような希釈ガスに
よって希釈された雰囲気中で処理を行うことが好まし
い。希釈ガスとしては、ヘリウム、ネオン、アルゴン、
キセノン等の希ガス、窒素気体等が挙げられる。これら
は単独でも2種以上を混合して用いてもよい。また、希
釈ガスを用いる場合、処理用ガスの割合は1〜10体積
%であることが好ましい。
From the viewpoint of economy and safety, it is preferable to carry out the treatment in an atmosphere diluted with a diluent gas as described below, rather than in the atmosphere for the treatment gas alone. As the diluent gas, helium, neon, argon,
Examples include rare gases such as xenon, nitrogen gas, and the like. You may use these individually or in mixture of 2 or more types. When a diluting gas is used, the proportion of the processing gas is preferably 1-10% by volume.

【0042】なお、上述したように、雰囲気ガスとして
は電子を多く有する化合物の方がプラズマ密度を高め高
速処理を行う上で有利である。よって入手の容易さと経
済性、処理速度を考慮した上で最も望ましい選択は、ア
ルゴン及び/又は窒素を希釈ガスとして含有する雰囲気
である。
As described above, the compound having a large number of electrons is more preferable as the atmospheric gas in order to increase the plasma density and perform high-speed processing. Therefore, the most desirable choice in consideration of availability, economy, and processing speed is an atmosphere containing argon and / or nitrogen as a diluent gas.

【0043】本発明のパルス電界を用いた大気圧放電で
は、全くガス種に依存せず、電極間において直接大気圧
下で放電を生じせしめることが可能であり、より単純化
された電極構造、放電手順による大気圧プラズマ装置、
及び処理手法でかつ高速処理を実現することができる。
また、パルス周波数、電圧、電極間隔等のパラメータに
より処理に関するパラメータも調整できる。
In the atmospheric pressure discharge using the pulsed electric field of the present invention, it is possible to cause the discharge directly between the electrodes under the atmospheric pressure without depending on the gas species at all, and a more simplified electrode structure, Atmospheric pressure plasma device by discharge procedure,
It is also possible to realize high-speed processing with the processing method.
In addition, parameters related to processing can be adjusted by parameters such as pulse frequency, voltage, and electrode interval.

【0044】[0044]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明はこれら実施例のみに限定されるもので
はない。
EXAMPLES The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

【0045】実施例1図1に示す形状の電極を用いてス
ライドガラスのエッチング処理を行った。対向電極は、
表面に0.5mm厚のアルミナをコーティングした幅1
50mm×長さ100mmのSUS製平行平板型電極を
用い、電極表面の凸部の高さhが0.2mm、凸部の幅
wが2mm、凸部から次の凸部までの距離sが2mm、
対向させた凸部同士の距離dが1.8mmとした。ただ
し、凸部のエッジが鋭角であるとアーク放電になりやす
いので凸部エッジを落とした形状とした。処理ガスとし
て、CF4=800cc/min+O2=200cc/m
inで導入し、VP-P18kV、周波数10KHz、パ
ルス立ち上がり速度5μs、処理時間60secで処理
を行った。処理後のスライドガラス表面のエッチング深
さをDektakで測定したところ1ミクロンであっ
た。
Example 1 A slide glass was etched by using an electrode having the shape shown in FIG. The counter electrode is
Width 1 with 0.5mm thick alumina coating on the surface
A 50 mm × 100 mm length SUS parallel plate electrode is used, the height h of the convex portion on the electrode surface is 0.2 mm, the width w of the convex portion is 2 mm, and the distance s from the convex portion to the next convex portion is 2 mm. ,
The distance d between the convex portions facing each other was set to 1.8 mm. However, if the edge of the convex portion is an acute angle, arc discharge is likely to occur, so the shape of the convex edge is dropped. As a processing gas, CF 4 = 800 cc / min + O 2 = 200 cc / m
In, the process was performed at V PP of 18 kV, frequency of 10 KHz, pulse rising speed of 5 μs, and processing time of 60 sec. The etching depth on the surface of the slide glass after the treatment was measured by Dektak and found to be 1 micron.

【0046】比較例1電極間距離を1.8mmに設定し
た表面が平らな電極を対向させたリモートソースを用い
る以外は、実施例とっ同様にしてスライドガラスのエッ
チング処理を行った。処理後のスライドガラス表面のエ
ッチング深さをDektakで測定したところ0.85
ミクロンであった。
Comparative Example 1 A slide glass was etched in the same manner as in Example except that a remote source in which electrodes having flat surfaces were opposed to each other with an interelectrode distance set to 1.8 mm was used. The etching depth of the slide glass surface after the treatment was measured by Dektak to be 0.85.
It was micron.

【0047】[0047]

【発明の効果】本発明の常圧プラズマ処理装置は、高速
処理及び大面積処理に対応可能でかつ、被処理基材に熱
的、電気的ダメージを与えない簡便な装置構成であり、
そこで用いる電極は、対向する電極間の距離を面内で部
分的に異ならせ、電極間距離の短いところでは、強いプ
ラズマを発生させ、放電空間内で処理ガスの流れに乱れ
を発生させるので、全体として密度の高いプラズマを発
生させプラズマ反応の効率を高めることができる。した
がって、この処理装置を用いたプラズマ処理方法におい
て、インライン化及び高速化を実現するのに有効に用い
ることができる。これにより、処理時間の短縮化、コス
ト低下が可能になり、従来では不可能あるいは困難であ
った様々な用途への展開が可能となる。
EFFECT OF THE INVENTION The atmospheric pressure plasma processing apparatus of the present invention has a simple apparatus configuration that can be applied to high-speed processing and large-area processing and that does not cause thermal or electrical damage to the substrate to be processed.
The electrodes used there make the distance between the opposing electrodes partly different in the plane, and generate strong plasma in the place where the distance between the electrodes is short, causing turbulence in the flow of the processing gas in the discharge space. Plasma having a high density can be generated as a whole to enhance the efficiency of plasma reaction. Therefore, in the plasma processing method using this processing apparatus, it can be effectively used to realize in-line and high-speed processing. As a result, the processing time can be shortened and the cost can be reduced, and it can be applied to various uses that were impossible or difficult in the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極の形状を説明する図である。FIG. 1 is a diagram illustrating the shape of an electrode of the present invention.

【図2】本発明の電極の形状を説明する図である。FIG. 2 is a diagram illustrating the shape of an electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 電源(高電圧パルス電源) 2、2’、3、3’ 電極 4 処理ガス導入口 5 放電空間 6 プラズマ吹き出し口 7 被処理基材 10、10’ 電極表面凸部 1 power supply (high voltage pulse power supply) 2,2 ', 3,3' electrodes 4 Processing gas inlet 5 discharge space 6 Plasma outlet 7 Base material 10, 10 'Electrode surface protrusion

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G059 AA08 AB19 AC30 BB01 BB13 4G075 AA03 AA24 AA30 AA42 BA05 BC06 BD14 CA14 CA15 CA16 CA47 CA63 DA02 EB42 EC21 EE01 EE12 FB02 FB04 FB06 FB12 FC15 4K030 AA02 AA05 AA11 BA44 BA45 BA46 FA03 JA09 JA14 KA15 KA30    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G059 AA08 AB19 AC30 BB01 BB13                 4G075 AA03 AA24 AA30 AA42 BA05                       BC06 BD14 CA14 CA15 CA16                       CA47 CA63 DA02 EB42 EC21                       EE01 EE12 FB02 FB04 FB06                       FB12 FC15                 4K030 AA02 AA05 AA11 BA44 BA45                       BA46 FA03 JA09 JA14 KA15                       KA30

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 大気圧近傍の圧力下、対向する電極の少
なくとも一方の対向面に固体誘電体を設置し、当該電極
間に処理ガスを導入しパルス状の電界を印加することに
より得られる放電プラズマを、放電空間外に配置された
被処理基材に誘導して接触させることを特徴とする放電
プラズマ処理装置であって、電極の対向表面が処理ガス
の流れ方向に垂直に直方体をならべたような凹凸を有
し、両電極の互いに向き合う面が凸面同士及び凹面同士
となるように配置されてなることを特徴とする放電プラ
ズマ処理装置。
1. A discharge obtained by placing a solid dielectric on at least one opposing surface of opposing electrodes under a pressure near atmospheric pressure, introducing a processing gas between the electrodes, and applying a pulsed electric field. A discharge plasma processing apparatus characterized in that plasma is guided to and brought into contact with a substrate to be processed arranged outside a discharge space, in which opposing surfaces of electrodes form a rectangular parallelepiped perpendicular to the flow direction of a processing gas. A discharge plasma processing apparatus having such irregularities, wherein the electrodes are arranged such that the surfaces facing each other are convex surfaces and concave surfaces.
【請求項2】 電極の対向表面の凹凸差が0.1〜5m
mであることを特徴とする請求項1に記載の放電プラズ
マ処理装置。
2. The unevenness of the opposing surface of the electrode is 0.1 to 5 m.
The discharge plasma processing apparatus according to claim 1, wherein m is m.
【請求項3】 大気圧近傍の圧力下、対向する電極の少
なくとも一方の対向面に固体誘電体を設置し、当該電極
間に処理ガスを導入しパルス状の電界を印加することに
より得られる放電プラズマを、放電空間外に配置された
被処理基材に誘導して接触させることを特徴とする放電
プラズマ処理装置であって、電極の表面が処理ガスの流
れ方向に垂直に円柱を並べたような形状で、互いに向き
合う面が円周の頂点同士となるように配置されてなるこ
とを特徴とする放電プラズマ処理装置。
3. A discharge obtained by placing a solid dielectric on at least one of opposing surfaces of opposing electrodes under a pressure near atmospheric pressure, introducing a processing gas between the electrodes, and applying a pulsed electric field. A discharge plasma processing apparatus, characterized in that plasma is guided to and brought into contact with a substrate to be processed arranged outside the discharge space, wherein the surface of the electrode is formed by arranging cylinders perpendicular to the flow direction of the processing gas. Discharge plasma processing apparatus, wherein the discharge plasma processing apparatus is arranged in such a manner that the surfaces facing each other are the apexes of the circumference.
【請求項4】 電極の対向表面を構成する円柱の直径が
0.1〜10mmであることを特徴とする請求項3に記
載の放電プラズマ処理装置。
4. The discharge plasma processing apparatus according to claim 3, wherein the diameter of the cylinder forming the facing surface of the electrode is 0.1 to 10 mm.
【請求項5】 パルス状の電界が、パルス立ち上がり及
び/又は立ち下がり時間が10μs以下であることを特
徴とする請求項1〜4のいずれか1項に記載の放電プラ
ズマ処理装置。
5. The discharge plasma processing apparatus according to claim 1, wherein the pulsed electric field has a pulse rise and / or fall time of 10 μs or less.
【請求項6】 パルス状の電界が、電界強度が10〜1
000kV/cmであることを特徴とする請求項1〜5
のいずれか1項に記載の放電プラズマ処理装置。
6. A pulsed electric field having an electric field strength of 10 to 1
It is 000 kV / cm, It is characterized by the above-mentioned.
The discharge plasma processing apparatus according to any one of 1.
【請求項7】 請求項1〜6のいずれか1項に記載の放
電プラズマ処理装置を用いて被処理基材を処理する放電
プラズマ処理方法。
7. A discharge plasma treatment method for treating a substrate to be treated using the discharge plasma treatment apparatus according to claim 1. Description:
JP2001206531A 2001-07-06 2001-07-06 Discharge plasma treating apparatus and treating method using the same Pending JP2003019433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206531A JP2003019433A (en) 2001-07-06 2001-07-06 Discharge plasma treating apparatus and treating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206531A JP2003019433A (en) 2001-07-06 2001-07-06 Discharge plasma treating apparatus and treating method using the same

Publications (1)

Publication Number Publication Date
JP2003019433A true JP2003019433A (en) 2003-01-21

Family

ID=19042646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206531A Pending JP2003019433A (en) 2001-07-06 2001-07-06 Discharge plasma treating apparatus and treating method using the same

Country Status (1)

Country Link
JP (1) JP2003019433A (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270022A (en) * 2003-02-18 2004-09-30 Ngk Insulators Ltd Method for manufacturing thin film and thin film
KR100673597B1 (en) 2004-09-21 2007-01-24 (주)아이씨디 Plasma chamber
JP2007505450A (en) * 2003-09-10 2007-03-08 ユナキス・バルツェルス・アクチェンゲゼルシャフト Voltage non-uniformity compensation method for RF plasma reactor for processing rectangular large area substrates
WO2007086430A1 (en) * 2006-01-26 2007-08-02 Research Institute Of Innovative Technology For The Earth Plasma discharge reactor and plasma discharge generation method
JP2009158491A (en) * 2009-04-01 2009-07-16 Nu Eco Engineering Kk Plasma generating device
US7767024B2 (en) 2004-02-26 2010-08-03 Appplied Materials, Inc. Method for front end of line fabrication
US7780793B2 (en) 2004-02-26 2010-08-24 Applied Materials, Inc. Passivation layer formation by plasma clean process to reduce native oxide growth
JP2011011183A (en) * 2009-07-06 2011-01-20 Toshiba Mitsubishi-Electric Industrial System Corp Activated gas generator and remote plasma coating device
US20140053777A1 (en) * 2012-08-23 2014-02-27 Samsung Display Co., Ltd. Vapor deposition apparatus
US8679983B2 (en) 2011-09-01 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and nitrogen
US8679982B2 (en) 2011-08-26 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and oxygen
US20140110059A1 (en) * 2012-10-19 2014-04-24 Hefei Boe Optoelectronics Technology Co., Ltd. Atmospheric-pressure plasma processing apparatus for substrates
US8765574B2 (en) 2012-11-09 2014-07-01 Applied Materials, Inc. Dry etch process
US8771539B2 (en) 2011-02-22 2014-07-08 Applied Materials, Inc. Remotely-excited fluorine and water vapor etch
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
JP5679513B2 (en) * 2009-05-07 2015-03-04 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
WO2019193831A1 (en) * 2018-04-03 2019-10-10 株式会社デンソー Ozone generator
KR102098002B1 (en) * 2018-10-19 2020-04-07 세메스 주식회사 Apparatus for processing substrate
KR102097984B1 (en) * 2018-10-19 2020-05-26 세메스 주식회사 Apparatus and method for processing substrate

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883750B2 (en) 2003-02-18 2011-02-08 Ngk Insulators, Ltd. Thin films and a method for producing the same
JP2004270022A (en) * 2003-02-18 2004-09-30 Ngk Insulators Ltd Method for manufacturing thin film and thin film
JP2007505450A (en) * 2003-09-10 2007-03-08 ユナキス・バルツェルス・アクチェンゲゼルシャフト Voltage non-uniformity compensation method for RF plasma reactor for processing rectangular large area substrates
JP4710020B2 (en) * 2003-09-10 2011-06-29 エリコン・ソーラー・アクチェンゲゼルシャフト,トリュープバッハ Vacuum processing apparatus and processing method using the same
US10593539B2 (en) 2004-02-26 2020-03-17 Applied Materials, Inc. Support assembly
US7780793B2 (en) 2004-02-26 2010-08-24 Applied Materials, Inc. Passivation layer formation by plasma clean process to reduce native oxide growth
US8343307B2 (en) 2004-02-26 2013-01-01 Applied Materials, Inc. Showerhead assembly
US7767024B2 (en) 2004-02-26 2010-08-03 Appplied Materials, Inc. Method for front end of line fabrication
KR100673597B1 (en) 2004-09-21 2007-01-24 (주)아이씨디 Plasma chamber
WO2007086430A1 (en) * 2006-01-26 2007-08-02 Research Institute Of Innovative Technology For The Earth Plasma discharge reactor and plasma discharge generation method
JP2009158491A (en) * 2009-04-01 2009-07-16 Nu Eco Engineering Kk Plasma generating device
JP5679513B2 (en) * 2009-05-07 2015-03-04 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
JP2011011183A (en) * 2009-07-06 2011-01-20 Toshiba Mitsubishi-Electric Industrial System Corp Activated gas generator and remote plasma coating device
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US8771539B2 (en) 2011-02-22 2014-07-08 Applied Materials, Inc. Remotely-excited fluorine and water vapor etch
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9236266B2 (en) 2011-08-01 2016-01-12 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US8679982B2 (en) 2011-08-26 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and oxygen
US8679983B2 (en) 2011-09-01 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and nitrogen
US9012302B2 (en) 2011-09-26 2015-04-21 Applied Materials, Inc. Intrench profile
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8975152B2 (en) 2011-11-08 2015-03-10 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US20140053777A1 (en) * 2012-08-23 2014-02-27 Samsung Display Co., Ltd. Vapor deposition apparatus
KR101969066B1 (en) * 2012-08-23 2019-04-16 삼성디스플레이 주식회사 Vapor deposition apparatus
KR20140025919A (en) * 2012-08-23 2014-03-05 삼성디스플레이 주식회사 Vapor deposition apparatus
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US20140110059A1 (en) * 2012-10-19 2014-04-24 Hefei Boe Optoelectronics Technology Co., Ltd. Atmospheric-pressure plasma processing apparatus for substrates
US9892907B2 (en) * 2012-10-19 2018-02-13 Boe Technology Group Co., Ltd. Atmospheric-pressure plasma processing apparatus for substrates
US8765574B2 (en) 2012-11-09 2014-07-01 Applied Materials, Inc. Dry etch process
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US9093390B2 (en) 2013-03-07 2015-07-28 Applied Materials, Inc. Conformal oxide dry etch
US9093371B2 (en) 2013-03-15 2015-07-28 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9153442B2 (en) 2013-03-15 2015-10-06 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9991134B2 (en) 2013-03-15 2018-06-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9184055B2 (en) 2013-03-15 2015-11-10 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9023732B2 (en) 2013-03-15 2015-05-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US9209012B2 (en) 2013-09-16 2015-12-08 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9299582B2 (en) 2013-11-12 2016-03-29 Applied Materials, Inc. Selective etch for metal-containing materials
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
WO2019193831A1 (en) * 2018-04-03 2019-10-10 株式会社デンソー Ozone generator
KR102098002B1 (en) * 2018-10-19 2020-04-07 세메스 주식회사 Apparatus for processing substrate
KR102097984B1 (en) * 2018-10-19 2020-05-26 세메스 주식회사 Apparatus and method for processing substrate

Similar Documents

Publication Publication Date Title
JP2003019433A (en) Discharge plasma treating apparatus and treating method using the same
JP5021877B2 (en) Discharge plasma processing equipment
JP3823037B2 (en) Discharge plasma processing equipment
JP2003217898A (en) Discharge plasma processing device
JP2003338399A (en) Discharge plasma processing device
JP3782708B2 (en) Discharge plasma processing apparatus and discharge plasma processing method using the same
JP2003318000A (en) Discharge plasma treatment apparatus
JP2003218099A (en) Method and system for discharge plasma processing
JP2002110397A (en) Generating method of normal pressure pulse plasma
JP2003166065A (en) Discharge plasma treatment apparatus
JP2003338398A (en) Discharge plasma processing method and apparatus therefor
JP2003317998A (en) Discharge plasma treatment method and apparatus therefor
JP3722733B2 (en) Discharge plasma processing equipment
JP2002320845A (en) Normal pressure plasma treatment device
JP2004207145A (en) Discharge plasma processing device
JP2003059909A (en) Discharge plasma treatment apparatus and processing method using the same
JP2002155370A (en) Method and system for atmospheric pressure plasma treatment
JP2003049276A (en) Discharge plasma treatment device and treatment method using the same
JP2003129246A (en) Discharge plasma treatment apparatus
JPH1036537A (en) Discharge plasma treatment
JP3793451B2 (en) Discharge plasma processing equipment
JP2004115896A (en) Discharge plasma treatment device, and discharge plasma treatment method
JP3984514B2 (en) Plasma processing apparatus and plasma processing method
JP2003303699A (en) Discharge plasma treatment method and device
JP2003249399A (en) Discharge plasma processing device