JP4705891B2 - Atmospheric pressure plasma generator with electrode structure to prevent useless discharge - Google Patents

Atmospheric pressure plasma generator with electrode structure to prevent useless discharge Download PDF

Info

Publication number
JP4705891B2
JP4705891B2 JP2006197647A JP2006197647A JP4705891B2 JP 4705891 B2 JP4705891 B2 JP 4705891B2 JP 2006197647 A JP2006197647 A JP 2006197647A JP 2006197647 A JP2006197647 A JP 2006197647A JP 4705891 B2 JP4705891 B2 JP 4705891B2
Authority
JP
Japan
Prior art keywords
electrode
dielectric
discharge
atmospheric pressure
pressure plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006197647A
Other languages
Japanese (ja)
Other versions
JP2007059385A (en
Inventor
ジェワック ピョ
ボンチョル ジャン
ユナン キム
ジェウォン キム
サンロ リー
Original Assignee
エスイー プラズマ インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスイー プラズマ インク filed Critical エスイー プラズマ インク
Publication of JP2007059385A publication Critical patent/JP2007059385A/en
Application granted granted Critical
Publication of JP4705891B2 publication Critical patent/JP4705891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32348Dielectric barrier discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/335Cleaning

Description

本発明は、無駄な放電を防止するための電極構造の大気圧プラズマ発生装置に関し、さらに詳細には、電極と誘電体との間に間隔を隔てて、第1電極と誘電体との間に液体誘電体を充填することによって、無駄な放電が生じるのを防止する大気圧プラズマ電極構造に関する。   The present invention relates to an atmospheric pressure plasma generator having an electrode structure for preventing useless discharge, and more specifically, a gap between an electrode and a dielectric, and a gap between the first electrode and the dielectric. The present invention relates to an atmospheric pressure plasma electrode structure that prevents generation of useless discharge by filling a liquid dielectric.

プラズマ発生装置は、2つの電極間に放電を起こし、その間に注入されたガスをイオン化させることによって、プラズマを発生させる。このように形成されたプラズマは、化学反応を容易にするので、有機汚染物の洗浄及び表面処理などの工程に用いられる。   The plasma generator generates a plasma by causing a discharge between two electrodes and ionizing a gas injected therebetween. Since the plasma thus formed facilitates chemical reaction, it is used for processes such as cleaning organic contaminants and surface treatment.

最近、注目されつつある大気圧プラズマ発生装置は、従来の真空システムを必要とせず、1気圧(760torr)において反応チャンバーなしで、従来の生産ラインに直接適用できるため、連続的な工程により処理できるものである。しかしながら、大気圧プラズマは、真空ではない常圧で放電を起こさなければならないため、低圧と比較して、かなり高い電圧が両電極の間に印加されることによって、Arcが生じ、このようなArcは、電極及び被処理物の損傷を引き起こすという問題がある。   Recently, atmospheric pressure plasma generators that have been attracting attention do not require a conventional vacuum system and can be directly applied to a conventional production line without a reaction chamber at 1 atm (760 torr), so that they can be processed in a continuous process. Is. However, since atmospheric pressure plasma must discharge at a normal pressure that is not a vacuum, an arc is generated when a considerably high voltage is applied between both electrodes compared to a low pressure, and such an Arc is generated. Has a problem of causing damage to the electrode and the workpiece.

上記の問題を解決するための方式として、電極間に誘電体層を形成する方法が知られている。2つの電極の一方又は両方電極の表面に、セラミックなどの絶縁体又は誘電体を被服又は密着して高電圧を印加すれば、2つの電極から直接放電が発生せず、誘電体と電極との間又は誘電体と誘電体との間で放電が発生することになるが、これを誘電体バリア放電(Dielectric−barrier Discharge)又は無声放電(Silent Discharge)という。   As a method for solving the above problem, a method of forming a dielectric layer between electrodes is known. If a high voltage is applied by applying an insulator or dielectric such as ceramic to the surface of one or both of the two electrodes and applying a high voltage, the two electrodes do not generate a direct discharge, and the dielectric and the electrode A discharge occurs between the dielectrics and between the dielectrics, and this is called a dielectric-barrier discharge or silent discharge.

図1は、従来の誘電体バリア放電方式を用いた大気圧プラズマ発生装置の電極構造を示す断面図である。
同図に示すように、電源供給手段5が、第1電極1と第2電極2との間に電圧を印加し、誘電体3が、第1電極1及び第2電極の面にそれぞれ平板状に形成されている。両誘電体3の間には、一定間隔が維持される空間が形成されており、電源供給手段5により電圧が印加されると、両誘電体3の間の空間においてプラズマ6が生成される。
FIG. 1 is a cross-sectional view showing an electrode structure of an atmospheric pressure plasma generator using a conventional dielectric barrier discharge method.
As shown in the figure, the power supply means 5 applies a voltage between the first electrode 1 and the second electrode 2, and the dielectric 3 is flat on the surfaces of the first electrode 1 and the second electrode, respectively. Is formed. A space in which a constant interval is maintained is formed between both dielectrics 3, and when voltage is applied by the power supply means 5, plasma 6 is generated in the space between both dielectrics 3.

両電極1、2の間に位置する誘電体3は、放電により伝達される電荷の量を制限し、放電を電極全体に拡散させる役割を果たす。このような誘電体バリア放電方式には、主に数〜数十kHzの交流電圧やパルス状の電圧が印加され、電圧の大きさは数kV程度である。誘電体バリア放電方式は、電極間の電圧が高いため、従来に用いられていた不活性ガスのみならず、空気のような放電電圧の高いガスを用いることによっても容易にプラズマを発生させることができる。   The dielectric 3 positioned between the electrodes 1 and 2 serves to limit the amount of charge transmitted by the discharge and diffuse the discharge throughout the electrode. In such a dielectric barrier discharge method, an AC voltage of several to several tens of kHz or a pulsed voltage is mainly applied, and the magnitude of the voltage is about several kV. In the dielectric barrier discharge method, since the voltage between the electrodes is high, plasma can be easily generated not only by using an inert gas conventionally used, but also by using a gas having a high discharge voltage such as air. it can.

図2は、従来の誘電体バリア放電方式を用いた大気圧プラズマ電極構造のさらに他の実施の形態を示す断面図である。
同図に示すように、両電極1、2の間に誘電体3が形成され、放電によりプラズマ6が生成されるという点は図1と同じであるが、第1電極1及び第2電極2の断面が、円状に形成され、その内部に誘電体3層が接して形成されたという特徴がある。また、第1電極1の内部に冷却水4を充填し得る空間が形成されているという特徴もある。図1と図2において、いずれか一方の誘電体は省略できる。
FIG. 2 is a sectional view showing still another embodiment of an atmospheric pressure plasma electrode structure using a conventional dielectric barrier discharge system.
As shown in the figure, the first electrode 1 and the second electrode 2 are the same as in FIG. 1 in that the dielectric 3 is formed between the electrodes 1 and 2 and the plasma 6 is generated by the discharge. The cross section is formed in a circular shape, and the dielectric 3 layer is formed in contact therewith. In addition, there is a feature that a space that can be filled with the cooling water 4 is formed inside the first electrode 1. In FIGS. 1 and 2, either one of the dielectrics can be omitted.

図1及び図2に示すような従来の放電構造では、第1電極及び第2電極1、2と誘電体3とが互いに密着されているため、第1電極1と第2電極2との間に電源が印加されると、第1電極及び第2電極1、2とそれに接した誘電体3との間の微細な隙間及び電極周辺の境界領域でも放電が発生し、無駄なプラズマ7が生じることによって、電力損失を引き起こすという問題があった。   In the conventional discharge structure as shown in FIG. 1 and FIG. 2, the first and second electrodes 1 and 2 and the dielectric 3 are in close contact with each other. When a power source is applied, a discharge occurs in a minute gap between the first and second electrodes 1 and 2 and the dielectric 3 in contact therewith and a boundary region around the electrode, and a useless plasma 7 is generated. As a result, there is a problem of causing power loss.

また、第1電極及び第2電極1、2に誘電体3を被覆して用いる場合は、被覆層の内部又は被覆層と第1電極及び第2電極1、2との間に微細な気泡が存在すれば、気泡から放電が発生するようになり、被覆層が壊れる等、電極の寿命に致命的な影響を及ぼすという問題もあった。   In addition, when the dielectric 3 is coated on the first electrode and the second electrode 1 and 2, fine bubbles are formed inside the coating layer or between the coating layer and the first electrode and the second electrode 1 and 2. If present, there is a problem that the discharge is generated from the bubbles and the life of the electrode is fatally affected, for example, the coating layer is broken.

本発明は、上述の問題点に鑑みてなされたもので、その目的は、第1電極や第2電極に誘電体を形成するとき、電極と誘電体との間に空間を形成し、液体誘電体や冷却水を充填することによって、第1電極と第2電極の周囲に無駄な放電が発生することを防止するプラズマ発生装置を提供することにある。
冷却水も誘電体であるため、以下では「液体誘電体や冷却水」の代りに、便宜上「液体誘電体」と略称する。
The present invention has been made in view of the above-described problems, and an object of the present invention is to form a space between the electrode and the dielectric when the dielectric is formed on the first electrode or the second electrode. An object of the present invention is to provide a plasma generator that prevents unnecessary discharge from occurring around the first electrode and the second electrode by filling the body and cooling water.
Since the cooling water is also a dielectric, it will be abbreviated as “liquid dielectric” for convenience instead of “liquid dielectric or cooling water”.

上記目的を達成すべく、本発明に係る、無駄な放電を防止するための電極構造の大気圧プラズマ発生装置によれば、電源供給手段から放電電圧が印加される第1電極と、前記第1電極と所定間隔が離隔され、前記第1電極を取り囲む誘電体と、前記第1電極と前記誘電体との間の空間に充填される液体誘電体と、前記誘電体と所定間隔が離隔されるように設置される第2電極と、を備える。   In order to achieve the above object, according to the atmospheric pressure plasma generator of the electrode structure for preventing wasteful discharge according to the present invention, the first electrode to which a discharge voltage is applied from a power supply means, and the first electrode A predetermined interval is separated from the electrode, a dielectric surrounding the first electrode, a liquid dielectric filled in a space between the first electrode and the dielectric, and a predetermined interval from the dielectric. A second electrode that is installed as described above.

また、前記第2電極と所定間隔が離隔され、前記第2電極を取り囲む第2誘電体と、前記第2電極と前記第2誘電体との間の空間に充填される第2液体誘電体とをさらに備える。   A second dielectric that is spaced apart from the second electrode and surrounds the second electrode; and a second liquid dielectric that fills a space between the second electrode and the second dielectric. Is further provided.

本発明によれば、誘電体を利用して両電極間に放電を発生させてプラズマを生成する過程において、電極と誘電体との境界面間の無駄な放電発生を遮断することによって、表面処理や洗浄などの実際作業に利用できない無駄な放電プラズマが生成されるのを防止できるという効果がある。これによって、このような無駄な放電による電力損失などの各種浪費を防止でき、電極に局部的な加熱が発生することを遮断することによって、電極の寿命を長く維持できるという効果がある。   According to the present invention, in the process of generating a plasma by generating a discharge between both electrodes using a dielectric, surface treatment is performed by blocking unnecessary discharge generation between the interface between the electrode and the dielectric. It is possible to prevent generation of useless discharge plasma that cannot be used for actual work such as cleaning and cleaning. As a result, various kinds of waste such as power loss due to such wasteful discharge can be prevented, and it is possible to maintain a long life of the electrode by blocking the local heating of the electrode.

また、液体誘電体を、電極と誘電体との間の無駄な放電を遮断する用途と冷却のための用途として共に活用することによって、別の冷却水を使用する必要がないという効果もある。   In addition, by utilizing the liquid dielectric as an application for blocking useless discharge between the electrode and the dielectric and an application for cooling, there is an effect that it is not necessary to use another cooling water.

以下、本発明の好ましい実施の形態を、添付図面に基づき詳細に説明する。
図3は、本発明の第1実施の形態に係る大気圧プラズマ発生装置の電極構造を示す断面図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 3 is a cross-sectional view showing an electrode structure of the atmospheric pressure plasma generator according to the first embodiment of the present invention.

同図に示すように、導体で構成される第1電極10が、円柱状に電源供給手段50に接続されている。そして、誘電体30が、第1電極10と所定間隔Dが離隔され、円柱状に第1電極10を取り囲んでおり、第1電極10と誘電体30との間の空間Dには、液体誘電体40が充填される。また、第2電極20が、誘電体30から所定間隔が離隔され、誘電体30を円柱状に取り囲むように設置されている。第1電極10は、電源供給手段50から電力を供給される電力印加電極として作用する。第2電極20は、接地させても良く、又はフローティング状態にしても良い。   As shown in the figure, the first electrode 10 made of a conductor is connected to the power supply means 50 in a cylindrical shape. The dielectric 30 is spaced apart from the first electrode 10 by a predetermined distance D and surrounds the first electrode 10 in a cylindrical shape. In the space D between the first electrode 10 and the dielectric 30, liquid dielectric The body 40 is filled. The second electrode 20 is disposed so as to be spaced apart from the dielectric 30 by a predetermined distance and surround the dielectric 30 in a columnar shape. The first electrode 10 acts as a power application electrode to which power is supplied from the power supply means 50. The second electrode 20 may be grounded or in a floating state.

そして、第2電極にも第1電極と同様に、(第2)誘電体及び(第2)液体誘電体を付加できる。   In addition, the (second) dielectric and the (second) liquid dielectric can be added to the second electrode as well as the first electrode.

ここで、第1電極10と第2電極20との間に位置する誘電体30には、酸化マグネシウム(MgO)、酸化アルミニウム(Al)、酸化チタニウム(TiO)、酸化ケイ素(SiO)などの酸化物系のセラミック物質が主に用いられる。そして、第1電極10と誘電体30との間には、液体誘電体40が充填されるが、誘電体30と液体誘電体40は、放電により伝達される電荷の量を制限し、放電が電極全体に拡散させる役割を果たす。液体誘電体40は、また大気圧プラズマ発生装置の駆動過程において発生する高い熱を冷却させる役割も果たし、水の誘電性を用いて水を液体誘電体40として用いることができる。 Here, the dielectric 30 positioned between the first electrode 10 and the second electrode 20 includes magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ). Oxide ceramic materials such as 2 ) are mainly used. The liquid dielectric 40 is filled between the first electrode 10 and the dielectric 30. The dielectric 30 and the liquid dielectric 40 limit the amount of charge transmitted by the discharge, and the discharge It plays the role of diffusing throughout the electrode. The liquid dielectric 40 also serves to cool high heat generated in the driving process of the atmospheric pressure plasma generator, and water can be used as the liquid dielectric 40 by using the dielectric property of water.

第1電極10と誘電体30との間の間隔Dは、放電電極の幅、長さ、液体誘電体40の誘電率及び冷却能力によって異なり得るが、液体誘電体40のスムーズな供給及び排出のためには、0.1〜30.0mmの範囲の間隔が好ましい。   The distance D between the first electrode 10 and the dielectric 30 may vary depending on the width and length of the discharge electrode, the dielectric constant of the liquid dielectric 40, and the cooling capacity. For this purpose, an interval in the range of 0.1 to 30.0 mm is preferred.

電源供給手段50から第1電極10と第2電極20との間に放電電圧が印加されると、誘電体30と第2電極20との間の空間から放電が発生し、プラズマ60が生成される。
図4は、本発明の第2実施の形態に係る大気圧プラズマ発生装置の電極構造を示す断面図である。
When a discharge voltage is applied between the first electrode 10 and the second electrode 20 from the power supply means 50, a discharge is generated from the space between the dielectric 30 and the second electrode 20, and a plasma 60 is generated. The
FIG. 4 is a cross-sectional view showing the electrode structure of the atmospheric pressure plasma generator according to the second embodiment of the present invention.

同図に示すように、導体で構成される第1電極10が平板状に電源供給手段50に接続されている。そして、誘電体30が第1電極10と所定間隔が離隔Dされ、4角柱状に第1電極を取り囲んでおり、第1電極10と誘電体30との間の空間Dには、液体誘電体40が充填される。また、第2電極20が誘電体30から所定間隔が離隔されて、広い平板状に設置されている。第1電極10は、電源供給手段50から電力を供給される電力印加電極として作用する。第2電極20は、接地させても良く、又はフローティング状態にしても良い。   As shown in the figure, the first electrode 10 made of a conductor is connected to the power supply means 50 in a flat plate shape. The dielectric 30 is spaced apart from the first electrode 10 by a predetermined distance D and surrounds the first electrode in a quadrangular prism shape. In the space D between the first electrode 10 and the dielectric 30, a liquid dielectric is provided. 40 is filled. Further, the second electrode 20 is spaced apart from the dielectric 30 by a predetermined distance and is installed in a wide flat plate shape. The first electrode 10 acts as a power application electrode to which power is supplied from the power supply means 50. The second electrode 20 may be grounded or in a floating state.

第2電極にも第1電極と同様に、(第2)誘電体及び(第2)液体誘電体を適用できることは言うまでもない。   It goes without saying that (second) dielectric and (second) liquid dielectric can be applied to the second electrode as well as the first electrode.

誘電体30は、第1実施の形態と同様に、酸化マグネシウム(MgO)、酸化アルミニウム(Al))、酸化チタニウム(TiO)、酸化ケイ素(SiO)などの酸化物系のセラミック物質が主に用いられ、第1電極10と誘電体30との間には、液体誘電体40が充填される。 As in the first embodiment, the dielectric 30 is an oxide-based ceramic such as magnesium oxide (MgO), aluminum oxide (Al 2 O 3 )), titanium oxide (TiO 2 ), or silicon oxide (SiO 2 ). A substance is mainly used, and a liquid dielectric 40 is filled between the first electrode 10 and the dielectric 30.

誘電体30と液体誘電体40の役割は、第1実施の形態と同様に、放電により伝達される電荷の量を制限し、放電を電極全体に拡散させる役割を果たす。液体誘電体40は、また大気圧プラズマ発生装置の駆動過程において発生する高い熱を冷却させる役割も果たし、水の誘電性を用いて水を液体誘電体40として用いることもできる。   As in the first embodiment, the roles of the dielectric 30 and the liquid dielectric 40 are to limit the amount of charge transmitted by the discharge and to diffuse the discharge throughout the electrode. The liquid dielectric 40 also serves to cool high heat generated in the driving process of the atmospheric pressure plasma generator, and water can be used as the liquid dielectric 40 by using the dielectric property of water.

第1電極10と誘電体30との間の平行な面間の間隔Dは、放電電極の幅、長さ、液体誘電体40の誘電率及び冷却能力によって異なり得るが、液体誘電体40のスムーズな供給及び排出のためには、0.1〜30.0mmの範囲の間隔が好ましい。   The distance D between the parallel surfaces between the first electrode 10 and the dielectric 30 may vary depending on the width and length of the discharge electrode, the dielectric constant of the liquid dielectric 40 and the cooling capacity, but the smoothness of the liquid dielectric 40 For proper supply and discharge, an interval in the range of 0.1 to 30.0 mm is preferred.

そして、平板状の第2電極20の幅は、必要によって誘電体30の横面Wより大きいときもあるし、小さいときもある。
電源供給手段50から第1電極10と第2電極20との間に放電電圧が印加されると、誘電体30と第2電極20との間の空間から放電が発生し、プラズマ60が生成される。
And the width | variety of the flat 2nd electrode 20 may be larger than the horizontal surface W of the dielectric material 30 as needed, and may be small.
When a discharge voltage is applied between the first electrode 10 and the second electrode 20 from the power supply means 50, a discharge is generated from the space between the dielectric 30 and the second electrode 20, and a plasma 60 is generated. The

以上、本発明の好ましい2種類の実施の形態について説明したが、該当分野における通常の知識を有する者であれば、本発明の本質的技術思想を維持したまま、多様な変形又は隣接分野への適用が可能である。すなわち、電極及び誘電体形状の変更(円柱状、チューブ状、平板4角柱状)等を通した変形や大気圧プラズマの他にも、電極間の放電を利用した他の全てのプラズマ発生装置への適用が可能である。   As described above, the two preferred embodiments of the present invention have been described. However, those who have ordinary knowledge in the relevant field can make various modifications or modifications to adjacent fields while maintaining the essential technical idea of the present invention. Applicable. That is, to other plasma generators using the discharge between electrodes in addition to deformation and atmospheric pressure plasma through changes in electrode and dielectric shapes (columnar, tube, flat quadrangular prism), etc. Can be applied.

上述した本発明の好ましい実施の形態は、例示の目的のために開示されたものであり、本発明の属する技術の分野における通常の知識を有する者であれば、本発明の技術的思想を逸脱しない範囲内で、様々な置換、変形、及び変更が可能であり、このような置換、変更などは、特許請求の範囲に属するものである。   The above-described preferred embodiments of the present invention have been disclosed for the purpose of illustration, and those having ordinary knowledge in the technical field to which the present invention pertains depart from the technical idea of the present invention. Various substitutions, modifications, and alterations are possible within the scope of not being included, and such substitutions, alterations, and the like belong to the scope of the claims.

従来の大気圧プラズマ発生装置の電極構造を示す断面図である。It is sectional drawing which shows the electrode structure of the conventional atmospheric pressure plasma generator. 従来の大気圧プラズマ発生装置の電極構造の他の実施の形態を示す断面図である。It is sectional drawing which shows other embodiment of the electrode structure of the conventional atmospheric pressure plasma generator. 本発明の第1の実施の形態に係る大気圧プラズマ発生装置の電極構造を示す断面図である。It is sectional drawing which shows the electrode structure of the atmospheric pressure plasma generator which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る大気圧プラズマ発生装置の電極構造を示す断面図である。It is sectional drawing which shows the electrode structure of the atmospheric pressure plasma generator which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1,10 第1電極
2,20 第2電極
3,30 誘電体
4 冷却水
40 液体誘電体
5,50 電源供給手段
6,60 プラズマ
7 無駄な放電プラズマ
DESCRIPTION OF SYMBOLS 1,10 1st electrode 2,20 2nd electrode 3,30 Dielectric material 4 Cooling water 40 Liquid dielectric material 5,50 Power supply means 6,60 Plasma 7 Wasteful discharge plasma

Claims (4)

プラズマ発生装置であって、
電源供給手段から放電電圧が印加される第1電極と、
前記第1電極と1mm〜30mmの間隔をもって離隔され、前記第1電極を取り囲む誘電体と、
前記第1電極と前記誘電体との境界面間の無駄な放電発生を遮断するため、前記第1電極と前記誘電体との間の空間に充填される冷却機能を併せもつ液体誘電体と、
前記誘電体と所定間隔離隔されるように設置され、前記誘電体との間で放電によるプラズマを生成する第2電極と、を備える無駄な放電を防止するための電極構造の大気圧プラズマ発生装置。
A plasma generator,
A first electrode to which a discharge voltage is applied from a power supply means;
A dielectric that is spaced apart from the first electrode by an interval of 1 mm to 30 mm and surrounds the first electrode;
A liquid dielectric having a cooling function to be filled in a space between the first electrode and the dielectric in order to block generation of useless discharge between the interface between the first electrode and the dielectric;
An atmospheric pressure plasma generation of an electrode structure for preventing useless discharge, comprising: a second electrode that is disposed so as to be separated from the dielectric at a predetermined interval , and generates a plasma due to discharge with the dielectric. apparatus.
前記電源供給手段からの放電電圧が、前記第2電極に印加され、前記第1電極が、接地又はフローティング状態になったことを特徴とする請求項1に記載の無駄な放電を防止するための電極構造の大気圧プラズマ発生装置。   The discharge voltage from the power supply means is applied to the second electrode, and the first electrode is grounded or in a floating state. An atmospheric pressure plasma generator with electrode structure. 前記第2電極と1mm〜30mmの間隔をもって離隔され、前記第2電極を取り囲む第2誘電体と、
前記第2電極と前記第2誘電体との境界面間の無駄な放電発生を遮断するため、前記第2電極と前記第2誘電体との間の空間に充填される冷却機能を併せもつ第2液体誘電体と、
をさらに備えることを特徴とする請求項1又は2に記載の無駄な放電を防止するための電極構造の大気圧プラズマ発生装置。
A second dielectric that is spaced apart from the second electrode by an interval of 1 mm to 30 mm and surrounds the second electrode;
In order to block the generation of useless discharge between the boundary surface between the second electrode and the second dielectric, a first cooling function is provided to fill the space between the second electrode and the second dielectric. Two liquid dielectrics;
The atmospheric pressure plasma generator with an electrode structure for preventing wasteful discharge according to claim 1 or 2, further comprising:
前記液体誘電体として水を使用することを特徴とする請求項1,2または3に記載の無駄な放電を防止するための電極構造の大気圧プラズマ発生装置。 Atmospheric pressure plasma generator electrode structure for preventing wasteful discharge of claim 1, 2 or 3, characterized in that water is used as the liquid dielectric.
JP2006197647A 2005-08-22 2006-07-20 Atmospheric pressure plasma generator with electrode structure to prevent useless discharge Expired - Fee Related JP4705891B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050076828A KR100749406B1 (en) 2005-08-22 2005-08-22 Atmospheric plasma generating apparatus with electrode structure for preventing unnecessary discharge
KR10-2005-0076828 2005-08-22

Publications (2)

Publication Number Publication Date
JP2007059385A JP2007059385A (en) 2007-03-08
JP4705891B2 true JP4705891B2 (en) 2011-06-22

Family

ID=37778875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197647A Expired - Fee Related JP4705891B2 (en) 2005-08-22 2006-07-20 Atmospheric pressure plasma generator with electrode structure to prevent useless discharge

Country Status (4)

Country Link
JP (1) JP4705891B2 (en)
KR (1) KR100749406B1 (en)
CN (1) CN1921250B (en)
TW (1) TWI318545B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296526A (en) * 2007-06-04 2008-12-11 Tohoku Ricoh Co Ltd Base material carrying system and printing device
KR101103349B1 (en) * 2009-10-22 2012-01-05 (주)에스이피 Atmospheric Plasma Etching Device for Opening Of Pad Region On TFT Substrate, And Plasma Etching Method Using The Same
JP5940239B2 (en) * 2009-11-02 2016-06-29 株式会社イー・スクエア Plasma surface treatment apparatus and manufacturing method thereof
JP5916086B2 (en) * 2010-01-31 2016-05-11 国立大学法人九州大学 Plasma oxidation-reduction method, animal and plant growth promotion method using the same, and plasma generation apparatus used for animal and plant growth promotion method
EP2779803B1 (en) 2011-11-11 2020-01-08 Saga University Plasma generation device for suppressing localised discharges
KR101845767B1 (en) 2016-09-30 2018-04-05 주식회사 에이아이코리아 Electrode for plasma apparatus and method of manufacturing the same
JP7159694B2 (en) * 2018-08-28 2022-10-25 日本電産株式会社 Plasma processing equipment
KR102014892B1 (en) * 2018-09-20 2019-08-27 주식회사 경동냉열산업 Plasma generating device used for water treatment apparatus or the like
EP3930427B1 (en) * 2020-02-27 2023-12-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Active gas generation apparatus
JP7240362B2 (en) * 2020-08-26 2023-03-15 川田工業株式会社 dielectric barrier discharge reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102199A (en) * 1999-07-27 2001-04-13 Matsushita Electric Works Ltd Plasma treatment apparatus and method therefor
JP2002522212A (en) * 1998-08-03 2002-07-23 東京エレクトロン株式会社 ESRF chamber cooling system and method
JP2004247223A (en) * 2003-02-14 2004-09-02 Nittetsu Mining Co Ltd Electrode for gas excitation
JP2005175460A (en) * 2003-11-19 2005-06-30 Matsushita Electric Ind Co Ltd Plasma treatment apparatus
JP2006525627A (en) * 2003-05-05 2006-11-09 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション Plasma processing apparatus and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079260A (en) * 1976-07-20 1978-03-14 Andrei Vladimirovich Dmitriev Ozone generator
JPS6424835A (en) * 1987-07-22 1989-01-26 Sankyo Dengyo Kk Discharge process and apparatus for modifying surface of solid
JP3930625B2 (en) * 1997-10-31 2007-06-13 芝浦メカトロニクス株式会社 Plasma processing equipment
CN2312518Y (en) * 1997-11-28 1999-03-31 复旦大学 Low temp. plasma discharging tube
KR100499917B1 (en) * 2001-12-04 2005-07-25 이동훈 Plasma device using underwater discharge and underoil discharge
KR100481492B1 (en) 2004-04-22 2005-04-07 주식회사 피에스엠 Apparatus and method for plasma formation of micro arc prevention type

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522212A (en) * 1998-08-03 2002-07-23 東京エレクトロン株式会社 ESRF chamber cooling system and method
JP2001102199A (en) * 1999-07-27 2001-04-13 Matsushita Electric Works Ltd Plasma treatment apparatus and method therefor
JP2004247223A (en) * 2003-02-14 2004-09-02 Nittetsu Mining Co Ltd Electrode for gas excitation
JP2006525627A (en) * 2003-05-05 2006-11-09 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション Plasma processing apparatus and method
JP2005175460A (en) * 2003-11-19 2005-06-30 Matsushita Electric Ind Co Ltd Plasma treatment apparatus

Also Published As

Publication number Publication date
CN1921250A (en) 2007-02-28
TW200719772A (en) 2007-05-16
TWI318545B (en) 2009-12-11
KR100749406B1 (en) 2007-08-14
CN1921250B (en) 2010-05-12
KR20070022527A (en) 2007-02-27
JP2007059385A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4705891B2 (en) Atmospheric pressure plasma generator with electrode structure to prevent useless discharge
KR100541867B1 (en) Manufacturing method of electrode for atmospheric pressure plasma and electrode structure and atmospheric pressure plasma apparatus using it
JP2011154973A (en) Plasma treatment device and plasma treatment method
US20050217798A1 (en) Plasma processing apparatus
JP2003303814A (en) Plasma treatment apparatus and method therefor
US20070037408A1 (en) Method and apparatus for plasma processing
JP2005320223A (en) Ozone generating unit
US11309167B2 (en) Active gas generation apparatus and deposition processing apparatus
KR100723019B1 (en) Plasma generator
JP2009087697A (en) Plasma generator
JP5030850B2 (en) Plasma processing equipment
JP5126983B2 (en) Plasma generator
KR100606451B1 (en) High pressure plasma discharge device
JP4161533B2 (en) Plasma processing method and plasma processing apparatus
JP4714557B2 (en) Plasma processing equipment
JP2011108615A (en) Plasma treatment device
JP2005129662A (en) Normal pressure plasma etching method
JP2002008895A (en) Plasma treatment device and plasma treatment method
KR100507334B1 (en) Plasma accelerating generator in atmosphere condition
KR20100011246A (en) Plasma generator
JP2006127925A (en) Plasma processing device
JP4501272B2 (en) Surface treatment method
JP2010177137A (en) High-density plasma source, and forming method of high density plasma
JP2009062276A (en) Ozone generating apparatus and ozone generating method
JP2003147535A (en) Plasma processing method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090416

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090416

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090515

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090520

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090615

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4705891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees