JP2004247223A - Electrode for gas excitation - Google Patents

Electrode for gas excitation Download PDF

Info

Publication number
JP2004247223A
JP2004247223A JP2003037293A JP2003037293A JP2004247223A JP 2004247223 A JP2004247223 A JP 2004247223A JP 2003037293 A JP2003037293 A JP 2003037293A JP 2003037293 A JP2003037293 A JP 2003037293A JP 2004247223 A JP2004247223 A JP 2004247223A
Authority
JP
Japan
Prior art keywords
electrode
gas
protective
cylindrical
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003037293A
Other languages
Japanese (ja)
Other versions
JP4046224B2 (en
Inventor
Akira Mizuno
彰 水野
Kazuhiro Inaba
一弘 稲葉
Akimitsu Iida
暁光 飯田
Nobuhiko Yoki
伸彦 瑶樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP2003037293A priority Critical patent/JP4046224B2/en
Publication of JP2004247223A publication Critical patent/JP2004247223A/en
Application granted granted Critical
Publication of JP4046224B2 publication Critical patent/JP4046224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for gas excitation capable of extending its service life, and of reducing its cost. <P>SOLUTION: This electrode 40 for gas excitation includes: a cylindrical core electrode 41; and a cylindrical insulation sheath 42 surrounding the core electrode 41. The cross-sectional area of the sheath 42 is not less than 70% of the area of the cross-sectional circle of the electrode 40. A code 43 is a void part and filled with air. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、気体励起用の電極に関する。本発明の気体励起用電極によれば、耐用期間を長期化することができる。
【0002】
【従来の技術】
交流高圧放電条件下に気体を誘導して気体分子を励起し、低温プラズマを発生させる気体励起装置としては種々の装置が知られており、例えば、特開平9−199261号公報(特許文献1)や米国特許第5,483,117号明細書(特許文献2)にも、気体励起装置が記載されている。こうした従来公知の気体励起装置の代表的な態様を図1に示す。図1は、気体励起装置50のハウジング51の側壁の一部を切り欠いて示す模式的斜視図である。前記気体励起装置50は、被処理気体Gの流入用開口部52と処理済み気体Cの排出用開口部53とを備えた大略直方体状のハウジング51を有し、前記ハウジング51の内部には、多数の保護電極54を備えている。前記の保護電極54は、図2の模式的断面図に示すとおり、芯電極55と、その芯電極55の周囲を包囲する円筒状鞘体56とを含み、前記の円筒状鞘体56は、絶縁体材料からなる。更に、前記の保護電極54は、2系列の電極群54A,54Bに分かれており、それぞれ電線57A,57Bに接続し、電線57A,57Bは交流電源58と接続している。また、一方の系列の電極群54Bに接続する電線57Bは、アースされている。なお、図2に示すとおり、ハウジング51内部において最も外側に配置され、ハウジング51の内壁と対向する各保護電極54Bは、それぞれ、ハウジング51の内壁との間で放電が発生しないように、アースされる電線57Bに接続するのが好ましい。原理的にはハウジング51それ自体をアースする必要はないが、安全上の観点からハウジング51それ自体をアースするのが好ましい。
【0003】
更に、前記の気体励起装置によって発生する低温非平衡プラズマを利用する脱臭装置や空気浄化装置が知られている。例えば、特開2001−293079号公報(特許文献3)には、低温プラズマを発生する高圧放電部と、その下流に配置され、酸化促進触媒が充填されている触媒部とを有する低温プラズマ脱臭装置が記載されている。前記高圧放電部では、被処理気体に対して高圧放電により解離エネルギーを与えることによりラジカルを発生させる。すなわち、放電により気体中に放出された電子が、臭気ガス中の気体分子に射突し、分子を活性化させる。その活性分子の一部は解離してラジカルとなり、臭気ガス中の悪臭物質を酸化分解したり、あるいは、オゾンを生成させるものと考えられる。ラジカルにより生成された前記オゾンも、悪臭物質を酸化させ、悪臭物質の処理に貢献するものと考えられる。また、放電そのものの有するエネルギーによっても、悪臭物質の酸化分解が行われる。
【0004】
【特許文献1】
特開平9−199261号公報
【特許文献2】
米国特許第5,483,117号明細書
【特許文献3】
特開2001−293079号公報
【0005】
【発明が解決しようとする課題】
図1に示すタイプの気体励起装置においては、従来から絶縁体鞘体として比較的廉価なガラス管が広く使用されていた。しかしながら、従来のガラス管では、連続運転を約4ヶ月程度継続すると、ガラス管の破損発生率が急激に上昇していた。従って、電極交換作業が必要となり、ランニングコストが高価になると共に、気体励起装置もその都度停止させなければならないという欠点があった。
従って、本発明の課題は、図1に示すタイプの気体励起用電極の寿命を延長させ、コスト低減を図ることにある。特には、比較的廉価なガラス製鞘体を有する電極の寿命を延長させることにある。
【0006】
【課題を解決するための手段】
前記の課題は、本発明により、円柱状芯電極と、その円柱状芯電極を取り囲む円筒状絶縁体鞘体とを含む、気体励起用の電極であって、前記電極の横断面の円の面積に対して、前記円筒状絶縁体鞘体の断面積が70%以上であることを特徴とする、前記の電極によって解決することができる。
【0007】
【発明の実施の形態】
本発明による気体励起用電極は、気体励起装置に装着して使用することができる。一般的な気体励起装置は、被処理気体の流入用開口部と処理済み気体の排出用開口部とを有するハウジング内に、交流電源と接続する少なくとも一対の電極を備える。そして、前記の一対の電極の組み合わせは、例えば、
(A)芯電極と、その芯電極の周囲を包囲する絶縁体鞘体とを含み、その絶縁体鞘体の外側表面が被処理気体と接触する保護電極同士の組み合わせ(すなわち、保護電極同士の組み合わせ)であるか、又は
(B)(1)前記の保護電極と、(2)被処理気体と直接に接触する露出電極との組み合わせ(すなわち、保護電極と露出電極との組み合わせ)である。なお、前記組み合わせ(B)においては、前記露出電極と前記ハウジングとが共にアースされている。
本発明による気体励起用電極は、前記の気体励起装置において、保護電極として使用される。
【0008】
本明細書において、前記組み合わせ(A)の電極を有する装置を、以下に「保護電極型装置」と称し、前記組み合わせ(B)の電極を有する装置を、以下に「露出電極型装置」と称することにする。前記の保護電極型装置は、従来から公知であるが、前記の露出電極型装置は、従来は知られていない(特願2002−341158号明細書参照)。前記の「保護電極型装置」は、例えば、特開平9−199261号公報(前記特許文献1)や米国特許第5,483,117号明細書(前記特許文献2)に記載されている気体の励起装置と同様の装置である。
【0009】
最初に、前記の保護電極型装置の代表的態様について、添付図面に沿って説明する。図1は、保護電極型装置50のハウジング51の側壁の一部を切り欠いて示す模式的斜視図である。前記保護電極型装置50は、大略直方体状のハウジング51の上面に相当する部分に被処理汚染気体(例えば大気)Gの流入用開口部52を備え、前記ハウジング51の底面に相当する部分に処理済み気体(例えば大気)Cの排出用開口部53を備えている。また、高圧放電処理が実施される前記ハウジング51の内部には、多数の保護電極54を備えている。前記の保護電極54は、図2の模式的断面図に示すとおり、円柱状芯電極55と、その芯電極55の周囲を包囲する円筒状鞘体56とを含む。多数の保護電極54は、それぞれ相互に間隔を隔てて平行に、しかも被処理汚染気体の流れ方向に対して垂直方向に配置されており、それら各電極の両端部は、それぞれハウジング51の支持壁51A,51Bで支持されている。
【0010】
複数の保護電極54は2系統に分割されており、それぞれがグループ化されて電線57A,57Bに一括して接続し、電線57A,57Bは交流電源58と接続している。また、一方の系列の保護電極54Bに接続する電線57Bは、アースされている。なお、図2に示すとおり、ハウジング51内部において最も外側に配置され、ハウジング51の内壁と対向する各保護電極54Bは、それぞれ、ハウジング51の内壁との間で放電が発生しないように、アースされる電線57Bに接続するのが好ましい。原理的にはハウジング51それ自体をアースする必要はないが、安全上の観点からハウジング51それ自体をアースするのが好ましい。
【0011】
こうした保護電極型装置50の流入用開口部52から、例えば被処理気体(例えば大気)Gを流入し、2系統の電極群54A,54Bに交流電源58によって高電圧を印加すると、2系統の電極群54A,54B間で放電が起こり、気体分子が励起状態となってラジカルが発生する。これらのラジカルにより、被処理気体中の悪臭物質が酸化分解されたり、あるいは、オゾンを生成させるので、被処理気体は酸化処理される。また、こうして発生したラジカル及びオゾンと共に被処理気体を排出用開口部53から排出し、酸化促進触媒が充填されている触媒部(図示せず)に送付して、ラジカル及びオゾンと被処理気体との反応を更に進行させ、気体の処理を続行することができる。更に、2系統の電極群54A,54Bに交流電源58によって高電圧を印加すると、2系統の電極群54A,54B間で放電が起こり、各電極の表面、すなわち、それぞれの円筒状鞘体56の表面に被処理気体(例えば大気)中の浮遊粒子、特には浮遊粒子状物質(SPM)を付着させることができる。
【0012】
前記の保護電極型装置内で、複数の保護電極群の配置は、ハウジング内部で放電がほぼ均等に発生し、各電極間を通過する被処理気体がほぼ均等に処理されるように配置されている。しかしながら、複数の保護電極群を、相互に間隔を隔てて平行に、しかも被処理気体の流れ方向に対して垂直方向に配置すると共に、一方の電極系列54Aの1つの保護電極が、もう一方の電極系列54Bの4つの保護電極により包囲され、逆に、もう一方の電極系列54Bの1つの保護電極が、一方の電極系列54Aの4つの保護電極により包囲される状態で配置するのが好ましい。
【0013】
次に、露出電極型装置を添付図面に沿って説明する。露出電極型装置は、前記図1及び図2に示すタイプの従来型装置を改良した装置である。最初に、露出電極型装置と前記保護電極型装置との基本構造の差異を図3及び図4に沿って説明する。
図3は、前記図1及び図2に示す保護電極型装置の基本的構造を示す模式的断面図である。保護電極型装置50は、前記のとおり、被処理汚染気体Gの流入用開口部52と処理済み気体Cの排出用開口部53とを備えたハウジング51を有し、前記ハウジング51の内部には、保護電極54A,54B,54Bを備えている。前記の保護電極54A,54B,54Bは、それぞれ芯電極55と、その芯電極55の周囲を包囲する鞘体56とを含む。前記電極54Aは電線57Aに接続し、前記電極54B,54Bはそれぞれ電線57Bに接続し、電線57A,57Bは交流電源58と接続している。また、電極54B,54Bは、ハウジング51内の外側に配置され、ハウジング51の内壁と対向するので、それらと接続する電線57Bは、アースされている。
【0014】
一方、図4は、露出電極型装置の基本的構造を示す模式的断面図である。露出電極型装置10は、被処理汚染気体Gの流入用開口部2と処理済み気体Cの排出用開口部3とを備えたハウジング1を有し、前記ハウジング1の内部には、保護電極4Aと、露出電極4B,4Bとを備えている。保護電極型装置50は、前記のとおり、保護電極54A,54B,54Bを備えているのに対し、露出電極型装置10は、保護電極54B,54Bの代わりに、露出電極4B,4Bを備えている点で異なる。前記の保護電極4Aは、保護電極型装置50と同様に、芯電極5と、その芯電極5の周囲を包囲する鞘体6とを含む。また、保護電極4Aは電線7Aと接続し、露出電極4B,4Bは、それぞれ電線7Bに接続し、電線7A,7Bは交流電源8と接続している。また、露出電極4B,4Bに接続する電線7Bは、アースされている。更に、露出電極型装置10では、ハウジング1もアースする必要があり、この点でも保護電極型装置50と相違する。なお、露出電極型装置10においては、保護電極4A側に高電圧を印可するのが好ましいので、保護電極4Aをハウジング1内部において最も外側に配置するのは好ましくない。すなわち、図4に示すとおり、露出電極4B,4Bをハウジング1内部において最も外側に配置して、ハウジング1の内壁と対向させるのが好ましい。
【0015】
図3に示す保護電極型装置では、保護電極54A内の芯電極55と両側の各保護電極54B内の芯電極55との間で放電が起こる。この放電では、1対の芯電極55,55の間に、2つの鞘体56の絶縁体層の2層が介在する。一方、図4に示す露出電極型装置10では、保護電極4A内の芯電極5と両側の各露出電極4Bとの間で放電が起こる。この放電では、1つの芯電極5と露出電極4Bとの間には、1つの鞘体6の絶縁体層の1層のみが介在するだけであり、励起能力が向上するので、ラジカル発生量が増大し、オゾンの生成量も増大する。なお、図4に示す露出電極型装置10では、ハウジング1と露出電極4B,4Bとがいずれもアースされているので、ハウジング1と露出電極4B,4Bとの間で放電が発生しない。
【0016】
図4に示すとおり、露出電極型装置10においては、図1及び図2に示す保護電極型装置50における一対の保護電極54A,54Bの代わりに、保護電極4Aと露出電極4Bとの組み合わせを用いる点が異なるだけある。そこで、前記の露出電極型装置の或る態様を、図5及び図6に沿って説明する。すなわち、図5は、露出電極型装置10のハウジング1の側壁の一部を切り欠いて示す模式的斜視図であり、図6はその模式的断面図である。
【0017】
図5及び図6に示すように、露出電極型装置10は、保護電極型装置50と同様に、大略直方体状のハウジング1の上面に相当する部分に被処理気体(例えば大気)Gの流入用開口部2を備え、前記ハウジング1の底面に相当する部分に処理済み気体(例えば大気)Cの排出用開口部3を備えている。また、高圧放電処理が実施される前記ハウジング1の内部には、複数の円筒状保護電極4A及び複数の円筒状露出電極4Bが、それぞれ相互に間隔を隔てて平行に、しかも被処理汚染気体(例えば大気)の流れ方向に対して垂直方向に配置されており、それら各電極の両端部は、それぞれハウジング1の支持壁1A,1Bで支持されている。
【0018】
一方、円筒状露出電極4Bは、前記保護電極4の円筒状鞘体6とほぼ同様の寸法を有し、電極表面が露出しているので、被処理気体(例えば大気)と直接に接触する。複数の保護電極4Aと複数の露出電極4Bとは、それぞれがグループ化されて電線7A,7Bに一括して接続し、電線7A,7Bは交流電源8と接続している。また、ハウジング1内の最も外側には露出電極4Bが配置され、複数の露出電極4Bに接続する電線7Bは、アースされている。更に、ハウジング1もアースする。
【0019】
こうした露出電極型装置10の流入用開口部2から被処理汚染気体(例えば大気)Gを流入し、2系統の電極群4A,4Bに交流電源8によって高電圧を印加すると、2系統の電極群4A,4B間で放電が起こり、気体分子が励起状態となってラジカルが発生する。これらのラジカルにより、被処理気体中の悪臭物質が酸化分解されたり、あるいは、オゾンを生成させるので、被処理気体は酸化処理される。また、こうして発生したラジカル及びオゾンと共に被処理気体を排出用開口部3から排出し、酸化促進触媒が充填されている触媒部(図示せず)に送付して、ラジカル及びオゾンと被処理気体との反応を更に進行させ、気体の処理を続行することができる。更に、2系統の電極群4A,4Bに交流電源8によって高電圧を印加すると、2系統の電極群4A,4B間で放電が起こり、露出電極4Bの表面、及び保護電極4Aの表面、すなわち、円筒状鞘体6の表面に気体(例えば大気)中の浮遊粒子、特には浮遊粒子状物質(SPM)を付着させることができる。
【0020】
前記の露出電極型装置で用いる露出電極は、任意の導電性材料から構成することができ、例えば、アルミニウム若しくはその合金、銅、炭素質材料、鉄若しくはその合金、あるいはタングステンを挙げることができる。なお、前記の露出電極は、被処理気体(例えば汚染大気)と直接に接触するので、耐蝕性を有し、清浄操作や取替え操作などのメンテナンスが容易な金属、例えば、ステンレススチール(例えば、SUS)を用いるのが好ましい。
また、前記の露出電極の形状も特に限定されるものではないが、棒状体(例えば、筒状体若しくは柱状体、特には、円筒状体若しくは円柱状体)、あるいは、導線を撚って製造した撚り線型電極であることもできる。
【0021】
前記の露出電極型装置内で、複数の露出電極群と複数の保護電極群との配置は、それぞれハウジング内部で放電がほぼ均等に発生し、各電極間を通過する被処理汚染大気がほぼ均等に処理されるように配置されている。しかしながら、複数の露出電極群と複数の保護電極群とを、相互に間隔を隔てて平行に、しかも被処理汚染大気の流れ方向に対して垂直方向に配置すると共に、1つの露出電極が4つの保護電極により包囲され、しかも1つの保護電極が4つの露出電極により包囲される状態で配置するのが好ましい。
【0022】
本発明による気体励起用電極は、前記の通り、例えば、前記の保護電極型や露出電極型の気体励起装置において、保護電極として使用することができる。
本発明による気体励起用電極の構造を、模式的に図7(断面図)に示す。すなわち、本発明による気体励起用電極40は、円柱状芯電極41と、その円柱状芯電極41を取り囲む円筒状絶縁体鞘体42とを含む。また、円柱状芯電極41と円筒状絶縁体鞘体42との間には、空隙部43を含むことがある。
【0023】
本発明による気体励起用電極は、横断面の円の面積に対して、前記円筒状絶縁体鞘体が占める断面積が70%以上である。前記円筒状絶縁体鞘体が占める断面積が70%未満になると、長期間の連続的使用に対する耐用期間が短くなる。前記円筒状絶縁体鞘体が占める断面積は、好ましくは75%以上であり、より好ましくは80%以上である。
【0024】
前記円筒状絶縁体鞘体は、絶縁体製である限り、特に限定されないが、円筒状鞘体の外側表面は、被処理気体(例えば、汚染大気)と直接に接触する。従って、耐蝕性を有し、清浄操作や取替え操作などのメンテナンスが容易な材料、例えば、合成樹脂(例えば、ポリテトラフルオロエチレン)、又はセラミックスを用いるのが好ましく、ガラス製であることが、強度及びコスト面からはより好ましい。ガラスとしては、任意のガラスを用いることができるが、例えば、ホウ珪酸ガラスを用いると、耐熱性と強度の点で好ましい。
【0025】
前記円柱状芯電極は、任意の導電性材料から構成することができ、例えば、アルミニウム若しくはその合金、銅、炭素質材料、鉄若しくはその合金、あるいはタングステンを挙げることができる。なお、前記の芯電極は、被処理汚染気体と直接に接触しないので、特に耐蝕性を有する必要はない。また、前記の芯電極の形状も特に限定されるものではないが、棒状体(例えば、筒状体若しくは柱状体、特には、円筒状体若しくは円柱状体)、あるいは、導線を撚って製造した撚り線型電極であることもできる。
【0026】
芯電極は、放電時に一般的には膨張するので、芯電極の表面と円筒状鞘体の内側表面との間には、空隙部を設けて、少なくとも0.05mmの間隔を設けるのが好ましい。その空隙部には空気又は適当な不活性ガス(例えば、窒素ガス、アルゴンガス)、あるいは絶縁性液体(例えば、フッ素系不活性液体)を充填することができ、あるいは減圧若しくは真空状態にすることもできる。後述するように、空気を充填するのが好ましい。なお、芯電極の表面と円筒状鞘体の内側表面との間が広くなり過ぎ、例えば、1.0mm以上になると、芯電極の表面と円筒状鞘体の内側表面との間で放電が発生する場合があるので好ましくない。
【0027】
本発明による気体励起用電極において、電極の寸法も特に限定されるものではないが、一般的に広く使用されている電極では、電極外径が約3mm〜10mmである。また、電極の長さも特に限定されないが、一般的に広く使用されている電極では、長さが約50mm〜1000mmである。
【0028】
【実施例】
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
【電極破壊試験】
電極破壊試験は、実際の気体励起装置よりも厳しい条件下で放電を実施し、短時間で耐久性を評価した。具体的には、図8に示すように、円柱状芯電極41Aと円筒状絶縁体鞘体42Aとを含む試験対象保護電極40Aをカッター60の刃61の上に直角に載置し、保護電極40Aの一方の端部に設けた端子45を交流電源48と接続し、更に、その交流電源48から前記カッター60の端部62と接続させた。前記交流電源48と前記カッター60との間でアースした。なお、円柱状芯電極41Aと円筒状絶縁体鞘体42Aと間の空隙部は図示していない。
【0029】
【ガラス厚の評価例】
(1)アルミニウム製芯電極(直径=1.5mm)とその芯電極を包囲するガラス製円筒状保護鞘体(外径=4mm;ガラス厚さ=1.2mm)とから電極10本を製造した。前記電極の断面積に占める芯電極の面積は14%であり、円筒状保護鞘体の面積は84%であり、空隙部の占める面積は2%であった。なお、前記空隙部には、空気を充填した。これらの電極について、図8に示す方法で、試験電圧18.1kV(一定)を印加して、電極破壊試験を実施し、ガラス製円筒状保護鞘体が破壊するまでの時間を測定した。
【0030】
(2)アルミニウム製芯電極(直径=2mm)とその芯電極を包囲するガラス製円筒状保護鞘体(外径=4mm;ガラス厚さ=0.8mm)とから電極10本を製造した。前記電極の断面積に占める芯電極の面積は25%であり、円筒状保護鞘体の面積は64%であり、空隙部の占める面積は11%であった。なお、前記空隙部には、空気を充填した。これらの電極について、前項(1)と同様に、図8に示す方法で、試験電圧18.1kV(一定)を印加して、電極破壊試験を実施し、ガラス製円筒状保護鞘体が破壊するまでの時間を測定した。
【0031】
(3)結果を以下の表1に示す。
【表1】

Figure 2004247223
【0032】
【充填物の評価例】
(1)アルミニウム製芯電極(直径=1.5mm)とその芯電極を包囲するガラス製円筒状保護鞘体(外径=4mm;ガラス厚さ=1.2mm)とから電極を製造した。前記電極の断面積に占める芯電極の面積は14%であり、円筒状保護鞘体の面積は84%であり、空隙部の占める面積は2%であった。なお、前記空隙部には、空気又はフッ素系不活性液体(フロリナート;3M社,米国)を充填した。
また、アルミニウム製芯電極(直径=2mm)とその芯電極を包囲するガラス製円筒状保護鞘体(外径=4mm;ガラス厚さ=0.8mm)とから電極を製造した。前記電極の断面積に占める芯電極の面積は25%であり、円筒状保護鞘体の面積は64%であり、空隙部の占める面積は11%であった。なお、前記空隙部には、空気又はフッ素系不活性液体(フロリナート;3M社,米国)を充填した。
これらの各電極について、図8に示す方法で、試験電圧18kV(一定)又は18.5kV(一定)を印加し、電極破壊試験を実施した。
【0033】
(2)結果を以下の表2に示す。
【表2】
Figure 2004247223
試験の結果、高電圧側電極の保護鞘体のガラス面積比が84%である電極は、64%の電極よりもはるかに寿命が長いことがわかった。
【0034】
【発明の効果】
本発明によれば、気体励起用電極の寿命を延長させ、コスト低減を達成することができる。特には、比較的廉価なガラス製鞘体を有する電極の寿命を延長させることができる。
【図面の簡単な説明】
【図1】本発明の電極が使用可能な保護電極型気体励起装置のハウジングの側壁の一部を切り欠いて示す模式的斜視図である。
【図2】図1の保護電極型気体励起装置の模式的断面図である。
【図3】保護電極型気体励起装置の基本的構造を示す模式的断面図である。
【図4】本発明装置の基本的構造を示す模式的断面図である。
【図5】本発明の電極が使用可能な露出電極型気体励起装置のハウジングの側壁の一部を切り欠いて示す模式的斜視図である。
【図6】図5の露出電極気体励起装置の模式的断面図である。
【図7】本発明による気体励起用電極の構造を模式的に示す断面図である。
【図8】気体励起用電極の破壊試験の実施方法を模式的に示す斜視図である。
【符号の説明】
1・・・ハウジング;1A,1B・・・支持壁;2・・・流入用開口部;
3・・・排出用開口部;4A・・・保護電極;
4A−10,4A−20・・・保護電極列;
4a−11,4a−12・・・保護電極群;
4a−21,4a−22・・・保護電極群;
4B・・・露出電極;5・・・芯電極;6・・・円筒状鞘体;
7A,7B・・・電線;8,48・・・交流電源;10・・・気体励起装置;
40・・・気体励起用電極;40A・・・試験対象保護電極;
41,41A・・・円柱状芯電極;42,42A・・・円筒状絶縁体鞘体;
43・・・空隙部;45・・・端子;50・・・気体励起装置;
51・・・ハウジング;52・・・流入用開口部;
53・・・排出用開口部;54(54A,54B)・・・保護電極;
55・・・芯電極;56・・・円筒状鞘体;57A,57B・・・電線;
58・・・交流電源;60・・・カッター;61・・・カッターの刃;
62・・・カッターの端部;
G・・・被処理気体;C・・・処理済み気体。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode for gas excitation. According to the gas excitation electrode of the present invention, the service life can be extended.
[0002]
[Prior art]
Various devices are known as gas excitation devices that generate gas at low temperatures by inducing gas under AC high-pressure discharge conditions, for example, Japanese Patent Application Laid-Open No. 9-199261 (Patent Document 1). And US Pat. No. 5,483,117 (Patent Document 2) also describe a gas excitation device. A typical embodiment of such a conventionally known gas excitation device is shown in FIG. FIG. 1 is a schematic perspective view in which a part of the side wall of the housing 51 of the gas excitation device 50 is cut away. The gas excitation device 50 includes a substantially rectangular parallelepiped housing 51 having an inflow opening 52 for the gas to be processed G and an opening 53 for discharging the processed gas C. In the housing 51, A large number of protective electrodes 54 are provided. As shown in the schematic cross-sectional view of FIG. 2, the protective electrode 54 includes a core electrode 55 and a cylindrical sheath 56 that surrounds the periphery of the core electrode 55. Made of insulator material. Further, the protective electrode 54 is divided into two groups of electrode groups 54A and 54B, which are connected to electric wires 57A and 57B, respectively, and the electric wires 57A and 57B are connected to an AC power source 58. Further, the electric wire 57B connected to the electrode group 54B of one series is grounded. As shown in FIG. 2, each protective electrode 54 </ b> B that is disposed on the outermost side inside the housing 51 and faces the inner wall of the housing 51 is grounded so that no discharge occurs between the inner wall of the housing 51. It is preferable to connect to the electric wire 57B. In principle, it is not necessary to ground the housing 51 itself, but it is preferable to ground the housing 51 from the viewpoint of safety.
[0003]
Furthermore, a deodorizing device and an air purifying device using low temperature non-equilibrium plasma generated by the gas excitation device are known. For example, Japanese Patent Laid-Open No. 2001-293079 (Patent Document 3) discloses a low-temperature plasma deodorization apparatus having a high-pressure discharge section that generates low-temperature plasma and a catalyst section that is disposed downstream of the high-pressure discharge section and is filled with an oxidation promoting catalyst. Is described. In the high-pressure discharge section, radicals are generated by giving dissociation energy to the gas to be treated by high-pressure discharge. That is, the electrons released into the gas by the discharge strike the gas molecules in the odor gas and activate the molecules. Some of the active molecules are dissociated into radicals, which are considered to oxidize and decompose malodorous substances in the odor gas or generate ozone. The ozone generated by radicals is also considered to oxidize malodorous substances and contribute to the treatment of malodorous substances. Also, the odorous substance is oxidatively decomposed by the energy of the discharge itself.
[0004]
[Patent Document 1]
JP-A-9-199261 [Patent Document 2]
US Pat. No. 5,483,117 [Patent Document 3]
Japanese Patent Laid-Open No. 2001-293079
[Problems to be solved by the invention]
In the gas exciter of the type shown in FIG. 1, a relatively inexpensive glass tube has been widely used as an insulator sheath. However, in the conventional glass tube, when the continuous operation is continued for about four months, the breakage rate of the glass tube is rapidly increased. Therefore, electrode replacement work is required, and the running cost is expensive, and the gas excitation device has to be stopped each time.
Therefore, the subject of this invention is extending the lifetime of the electrode for gas excitation of the type shown in FIG. 1, and aiming at cost reduction. In particular, it is to extend the life of an electrode having a relatively inexpensive glass sheath.
[0006]
[Means for Solving the Problems]
According to the present invention, the subject is an electrode for gas excitation including a cylindrical core electrode and a cylindrical insulator sheath surrounding the cylindrical core electrode, and an area of a circle in a cross section of the electrode On the other hand, it can be solved by the electrode, wherein the cylindrical insulator sheath has a cross-sectional area of 70% or more.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The gas excitation electrode according to the present invention can be used by being attached to a gas excitation device. A general gas excitation device includes at least a pair of electrodes connected to an AC power source in a housing having an opening for inflow of a gas to be processed and an opening for discharge of a processed gas. The combination of the pair of electrodes is, for example,
(A) A combination of protective electrodes that includes a core electrode and an insulator sheath that surrounds the core electrode, and the outer surface of the insulator sheath is in contact with the gas to be treated (that is, between the protective electrodes) Or a combination of (B) (1) the protective electrode and (2) an exposed electrode that is in direct contact with the gas to be treated (that is, a combination of the protective electrode and the exposed electrode). In the combination (B), both the exposed electrode and the housing are grounded.
The electrode for gas excitation according to the present invention is used as a protective electrode in the gas excitation device.
[0008]
In the present specification, the device having the electrode of the combination (A) is hereinafter referred to as “protective electrode type device”, and the device having the electrode of the combination (B) is hereinafter referred to as “exposed electrode type device”. I will decide. The protective electrode type device is conventionally known, but the exposed electrode type device is not known conventionally (see Japanese Patent Application No. 2002-341158). The “protective electrode type device” is, for example, a gas described in Japanese Patent Application Laid-Open No. 9-199261 (Patent Document 1) and US Pat. No. 5,483,117 (Patent Document 2). It is the same device as the excitation device.
[0009]
First, typical aspects of the protective electrode type device will be described with reference to the accompanying drawings. FIG. 1 is a schematic perspective view in which a part of the side wall of the housing 51 of the protective electrode type device 50 is cut away. The protective electrode type device 50 includes an opening 52 for inflow of a contaminated gas (for example, atmosphere) G to be processed in a portion corresponding to the upper surface of a substantially rectangular parallelepiped housing 51, and processing is performed in a portion corresponding to the bottom surface of the housing 51. An opening 53 for discharging the finished gas (for example, the atmosphere) C is provided. In addition, a large number of protective electrodes 54 are provided in the housing 51 where high-pressure discharge treatment is performed. As shown in the schematic cross-sectional view of FIG. 2, the protective electrode 54 includes a cylindrical core electrode 55 and a cylindrical sheath 56 surrounding the core electrode 55. The plurality of protective electrodes 54 are arranged parallel to each other with a space therebetween and in a direction perpendicular to the flow direction of the contaminated gas to be treated, and both ends of each electrode are respectively supported by the support walls of the housing 51. It is supported by 51A and 51B.
[0010]
The plurality of protective electrodes 54 are divided into two systems, each of which is grouped and connected together to the electric wires 57A and 57B, and the electric wires 57A and 57B are connected to the AC power source 58. In addition, the electric wire 57B connected to the protective electrode 54B of one series is grounded. As shown in FIG. 2, each protective electrode 54 </ b> B that is disposed on the outermost side inside the housing 51 and faces the inner wall of the housing 51 is grounded so that no discharge occurs between the inner wall of the housing 51. It is preferable to connect to the electric wire 57B. In principle, it is not necessary to ground the housing 51 itself, but it is preferable to ground the housing 51 from the viewpoint of safety.
[0011]
When, for example, a gas to be processed (for example, the atmosphere) G flows from the inflow opening 52 of the protective electrode type device 50 and a high voltage is applied to the two electrode groups 54A and 54B by the AC power source 58, the two electrode systems A discharge occurs between the groups 54A and 54B, and gas molecules are excited to generate radicals. By these radicals, malodorous substances in the gas to be treated are oxidatively decomposed or ozone is generated, so that the gas to be treated is oxidized. Further, the gas to be treated is discharged from the discharge opening 53 together with the radicals and ozone thus generated, and sent to a catalyst part (not shown) filled with the oxidation promoting catalyst. The reaction can proceed further and the gas treatment can be continued. Further, when a high voltage is applied to the two electrode groups 54A and 54B by the AC power source 58, a discharge occurs between the two electrode groups 54A and 54B, and the surface of each electrode, that is, the cylindrical sheath 56 Suspended particles, particularly suspended particulate matter (SPM) in a gas to be treated (for example, the atmosphere) can be attached to the surface.
[0012]
In the protective electrode type device, the plurality of protective electrode groups are arranged so that discharges are generated almost uniformly in the housing and the gas to be processed passing between the electrodes is processed almost evenly. Yes. However, the plurality of protective electrode groups are arranged parallel to each other with a space therebetween and perpendicular to the flow direction of the gas to be processed, and one protective electrode of one electrode series 54A is connected to the other. It is preferable that the four protective electrodes of the electrode series 54B are surrounded, and conversely, one protective electrode of the other electrode series 54B is arranged in a state of being surrounded by the four protective electrodes of one electrode series 54A.
[0013]
Next, the exposed electrode type device will be described with reference to the accompanying drawings. The exposed electrode type device is an improved version of the conventional type device shown in FIGS. First, differences in the basic structure between the exposed electrode type device and the protective electrode type device will be described with reference to FIGS.
FIG. 3 is a schematic cross-sectional view showing the basic structure of the protective electrode type device shown in FIGS. As described above, the protective electrode type device 50 includes the housing 51 having the inflow opening 52 for the contaminated gas G to be processed and the opening 53 for discharging the processed gas C. , Protective electrodes 54A, 54B, 54B are provided. The protective electrodes 54 </ b> A, 54 </ b> B, 54 </ b> B each include a core electrode 55 and a sheath body 56 that surrounds the core electrode 55. The electrode 54A is connected to the electric wire 57A, the electrodes 54B and 54B are connected to the electric wire 57B, and the electric wires 57A and 57B are connected to the AC power source 58. Moreover, since the electrodes 54B and 54B are arrange | positioned on the outer side in the housing 51, and oppose the inner wall of the housing 51, the electric wire 57B connected to them is earth | grounded.
[0014]
On the other hand, FIG. 4 is a schematic cross-sectional view showing the basic structure of the exposed electrode type device. The exposed electrode type device 10 includes a housing 1 having an inflow opening 2 for a contaminated gas G to be treated and an opening 3 for discharging a treated gas C. Inside the housing 1, a protective electrode 4A is provided. And exposed electrodes 4B and 4B. As described above, the protective electrode type device 50 includes the protective electrodes 54A, 54B, and 54B, whereas the exposed electrode type device 10 includes the exposed electrodes 4B and 4B instead of the protective electrodes 54B and 54B. Is different. The protective electrode 4 </ b> A includes a core electrode 5 and a sheath body 6 that surrounds the core electrode 5, similarly to the protective electrode type device 50. The protective electrode 4A is connected to the electric wire 7A, the exposed electrodes 4B and 4B are connected to the electric wire 7B, and the electric wires 7A and 7B are connected to the AC power source 8. Moreover, the electric wire 7B connected to the exposed electrodes 4B and 4B is grounded. Further, in the exposed electrode type device 10, the housing 1 also needs to be grounded, which is also different from the protective electrode type device 50 in this respect. In the exposed electrode type device 10, since it is preferable to apply a high voltage to the protective electrode 4A side, it is not preferable to dispose the protective electrode 4A on the outermost side inside the housing 1. That is, as shown in FIG. 4, the exposed electrodes 4 </ b> B and 4 </ b> B are preferably arranged on the outermost side inside the housing 1 so as to face the inner wall of the housing 1.
[0015]
In the protective electrode type device shown in FIG. 3, discharge occurs between the core electrode 55 in the protective electrode 54A and the core electrodes 55 in the protective electrodes 54B on both sides. In this discharge, two layers of insulator layers of the two sheath bodies 56 are interposed between the pair of core electrodes 55 and 55. On the other hand, in the exposed electrode type device 10 shown in FIG. 4, discharge occurs between the core electrode 5 in the protective electrode 4A and the exposed electrodes 4B on both sides. In this discharge, only one insulator layer of one sheath body 6 is interposed between one core electrode 5 and the exposed electrode 4B, and the excitation capability is improved. The amount of ozone generated increases. In the exposed electrode type device 10 shown in FIG. 4, since the housing 1 and the exposed electrodes 4B and 4B are both grounded, no discharge occurs between the housing 1 and the exposed electrodes 4B and 4B.
[0016]
As shown in FIG. 4, in the exposed electrode type device 10, a combination of the protective electrode 4A and the exposed electrode 4B is used instead of the pair of protective electrodes 54A and 54B in the protective electrode type device 50 shown in FIGS. There are only differences. Therefore, a certain aspect of the exposed electrode type device will be described with reference to FIGS. That is, FIG. 5 is a schematic perspective view in which a part of the side wall of the housing 1 of the exposed electrode type apparatus 10 is cut away, and FIG. 6 is a schematic cross-sectional view thereof.
[0017]
As shown in FIGS. 5 and 6, the exposed electrode type device 10, like the protective electrode type device 50, is used for inflow of a gas to be processed (for example, atmospheric air) G into a portion corresponding to the upper surface of the substantially rectangular parallelepiped housing 1. An opening 2 is provided, and a portion corresponding to the bottom surface of the housing 1 is provided with an opening 3 for discharging treated gas (for example, the atmosphere) C. In addition, in the housing 1 where the high-pressure discharge treatment is performed, a plurality of cylindrical protective electrodes 4A and a plurality of cylindrical exposed electrodes 4B are parallel to each other with a space therebetween, and the contamination gas to be treated ( For example, both ends of each electrode are supported by support walls 1A and 1B of the housing 1, respectively.
[0018]
On the other hand, the cylindrical exposed electrode 4B has substantially the same dimensions as the cylindrical sheath 6 of the protective electrode 4, and the electrode surface is exposed, so that it directly contacts the gas to be treated (for example, the atmosphere). The plurality of protective electrodes 4 </ b> A and the plurality of exposed electrodes 4 </ b> B are grouped and connected together to the electric wires 7 </ b> A and 7 </ b> B, and the electric wires 7 </ b> A and 7 </ b> B are connected to the AC power supply 8. The exposed electrode 4B is disposed on the outermost side in the housing 1, and the electric wire 7B connected to the plurality of exposed electrodes 4B is grounded. Furthermore, the housing 1 is also grounded.
[0019]
When a contaminated gas (for example, the atmosphere) G is introduced from the inflow opening 2 of the exposed electrode type device 10 and a high voltage is applied to the two electrode groups 4A and 4B by the AC power supply 8, the two electrode groups. A discharge occurs between 4A and 4B, and gas molecules are excited to generate radicals. By these radicals, malodorous substances in the gas to be treated are oxidatively decomposed or ozone is generated, so that the gas to be treated is oxidized. Further, the gas to be treated is discharged from the discharge opening 3 together with the radicals and ozone thus generated, and sent to a catalyst part (not shown) filled with the oxidation promoting catalyst. The reaction can proceed further and the gas treatment can be continued. Further, when a high voltage is applied to the two electrode groups 4A and 4B by the AC power supply 8, a discharge occurs between the two electrode groups 4A and 4B, and the surface of the exposed electrode 4B and the surface of the protective electrode 4A, that is, Suspended particles in gas (for example, the atmosphere), in particular, suspended particulate matter (SPM) can be attached to the surface of the cylindrical sheath body 6.
[0020]
The exposed electrode used in the exposed electrode type device can be composed of any conductive material, and examples thereof include aluminum or an alloy thereof, copper, a carbonaceous material, iron or an alloy thereof, and tungsten. The exposed electrode is in direct contact with the gas to be treated (for example, contaminated atmosphere), and thus has corrosion resistance and is easy to perform maintenance such as cleaning operation and replacement operation, such as stainless steel (for example, SUS). ) Is preferably used.
Further, the shape of the exposed electrode is not particularly limited, but is manufactured by twisting a rod-shaped body (for example, a cylindrical body or a columnar body, particularly a cylindrical body or a columnar body), or a conductive wire. It can also be a stranded wire electrode.
[0021]
In the exposed electrode type apparatus, the plurality of exposed electrode groups and the plurality of protective electrode groups are arranged so that discharges are generated almost uniformly in the housing, and the contaminated atmosphere to be processed passing between the electrodes is substantially uniform. Are arranged to be processed. However, a plurality of exposed electrode groups and a plurality of protective electrode groups are arranged parallel to each other with a space therebetween, and in a direction perpendicular to the flow direction of the contaminated atmosphere to be treated. It is preferable that the protective electrode is disposed so as to be surrounded by the protective electrode, and that one protective electrode is surrounded by the four exposed electrodes.
[0022]
As described above, the gas excitation electrode according to the present invention can be used as a protective electrode in, for example, the protective electrode type or exposed electrode type gas excitation device.
The structure of the gas excitation electrode according to the present invention is schematically shown in FIG. 7 (cross-sectional view). That is, the gas excitation electrode 40 according to the present invention includes a columnar core electrode 41 and a cylindrical insulator sheath 42 surrounding the columnar core electrode 41. Further, a gap 43 may be included between the columnar core electrode 41 and the cylindrical insulator sheath 42.
[0023]
In the gas excitation electrode according to the present invention, the cross-sectional area occupied by the cylindrical insulator sheath is 70% or more with respect to the area of the circle of the cross section. When the cross-sectional area occupied by the cylindrical insulator sheath is less than 70%, the service life for long-term continuous use is shortened. The cross-sectional area occupied by the cylindrical insulator sheath is preferably 75% or more, and more preferably 80% or more.
[0024]
The cylindrical insulator sheath is not particularly limited as long as it is made of an insulator, but the outer surface of the cylindrical sheath is in direct contact with the gas to be treated (for example, contaminated atmosphere). Therefore, it is preferable to use a material having corrosion resistance and easy maintenance such as a cleaning operation and a replacement operation, for example, a synthetic resin (for example, polytetrafluoroethylene) or ceramics, and is made of glass, And it is more preferable from the viewpoint of cost. Although any glass can be used as the glass, for example, borosilicate glass is preferable in terms of heat resistance and strength.
[0025]
The cylindrical core electrode can be made of any conductive material, and examples thereof include aluminum or an alloy thereof, copper, a carbonaceous material, iron or an alloy thereof, and tungsten. In addition, since the said core electrode does not contact with a to-be-processed contaminated gas directly, it does not need to have corrosion resistance in particular. The shape of the core electrode is not particularly limited, but is manufactured by twisting a rod-shaped body (for example, a cylindrical body or a columnar body, particularly a cylindrical body or a columnar body), or a conductive wire. It can also be a stranded wire electrode.
[0026]
Since the core electrode generally expands at the time of discharge, it is preferable to provide a gap between the surface of the core electrode and the inner surface of the cylindrical sheath body so as to provide an interval of at least 0.05 mm. The void can be filled with air, a suitable inert gas (eg, nitrogen gas, argon gas), or an insulating liquid (eg, a fluorine-based inert liquid), or a reduced pressure or vacuum state. You can also. As will be described later, it is preferable to fill with air. In addition, the space between the surface of the core electrode and the inner surface of the cylindrical sheath is too wide. For example, when the thickness is 1.0 mm or more, discharge occurs between the surface of the core electrode and the inner surface of the cylindrical sheath. This is not preferable.
[0027]
In the gas excitation electrode according to the present invention, the size of the electrode is not particularly limited, but in an electrode that is generally widely used, the outer diameter of the electrode is about 3 mm to 10 mm. Further, the length of the electrode is not particularly limited, but in the case of a generally widely used electrode, the length is about 50 mm to 1000 mm.
[0028]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
[Electrode breakdown test]
In the electrode breakdown test, discharge was performed under conditions more severe than those of an actual gas excitation device, and durability was evaluated in a short time. Specifically, as shown in FIG. 8, a test object protection electrode 40A including a columnar core electrode 41A and a cylindrical insulator sheath 42A is placed on the blade 61 of the cutter 60 at a right angle, and the protection electrode A terminal 45 provided at one end of 40 </ b> A was connected to an AC power supply 48, and further connected to an end 62 of the cutter 60 from the AC power supply 48. The AC power supply 48 and the cutter 60 were grounded. Note that the gap between the cylindrical core electrode 41A and the cylindrical insulator sheath 42A is not shown.
[0029]
[Evaluation example of glass thickness]
(1) Ten electrodes were manufactured from an aluminum core electrode (diameter = 1.5 mm) and a glass cylindrical protective sheath (outer diameter = 4 mm; glass thickness = 1.2 mm) surrounding the core electrode. . The area of the core electrode in the cross-sectional area of the electrode was 14%, the area of the cylindrical protective sheath body was 84%, and the area occupied by the gap was 2%. The gap was filled with air. About these electrodes, the test voltage 18.1 kV (constant) was applied by the method shown in FIG. 8, the electrode destruction test was implemented, and the time until a glass-made cylindrical protective sheath body destroyed was measured.
[0030]
(2) Ten electrodes were manufactured from an aluminum core electrode (diameter = 2 mm) and a glass cylindrical protective sheath (outer diameter = 4 mm; glass thickness = 0.8 mm) surrounding the core electrode. The area of the core electrode in the cross-sectional area of the electrode was 25%, the area of the cylindrical protective sheath body was 64%, and the area occupied by the gap was 11%. The gap was filled with air. For these electrodes, as in the previous item (1), a test voltage of 18.1 kV (constant) was applied by the method shown in FIG. 8 to conduct an electrode destruction test, and the glass cylindrical protective sheath body was destroyed. The time until was measured.
[0031]
(3) The results are shown in Table 1 below.
[Table 1]
Figure 2004247223
[0032]
[Evaluation example of packing]
(1) An electrode was manufactured from an aluminum core electrode (diameter = 1.5 mm) and a glass cylindrical protective sheath (outer diameter = 4 mm; glass thickness = 1.2 mm) surrounding the core electrode. The area of the core electrode in the cross-sectional area of the electrode was 14%, the area of the cylindrical protective sheath body was 84%, and the area occupied by the gap was 2%. The voids were filled with air or a fluorine-based inert liquid (Fluorinert; 3M Company, USA).
In addition, an electrode was manufactured from an aluminum core electrode (diameter = 2 mm) and a glass cylindrical protective sheath (outer diameter = 4 mm; glass thickness = 0.8 mm) surrounding the core electrode. The area of the core electrode in the cross-sectional area of the electrode was 25%, the area of the cylindrical protective sheath body was 64%, and the area occupied by the gap was 11%. The voids were filled with air or a fluorine-based inert liquid (Fluorinert; 3M Company, USA).
About each of these electrodes, the test voltage 18 kV (constant) or 18.5 kV (constant) was applied by the method shown in FIG. 8, and the electrode destruction test was implemented.
[0033]
(2) The results are shown in Table 2 below.
[Table 2]
Figure 2004247223
As a result of the test, it was found that the electrode having the glass area ratio of the protective sheath body of the high voltage side electrode of 84% has a much longer life than the electrode of 64%.
[0034]
【The invention's effect】
According to the present invention, it is possible to extend the life of the gas excitation electrode and achieve cost reduction. In particular, the life of an electrode having a relatively inexpensive glass sheath can be extended.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a part of a side wall of a housing of a protective electrode type gas excitation device in which an electrode of the present invention can be used.
2 is a schematic cross-sectional view of the protective electrode type gas excitation device of FIG. 1. FIG.
FIG. 3 is a schematic cross-sectional view showing the basic structure of a protective electrode type gas excitation device.
FIG. 4 is a schematic cross-sectional view showing the basic structure of the device of the present invention.
FIG. 5 is a schematic perspective view showing a part of a side wall of a housing of an exposed electrode type gas excitation device in which the electrode of the present invention can be used.
6 is a schematic cross-sectional view of the exposed electrode gas excitation device of FIG.
FIG. 7 is a cross-sectional view schematically showing the structure of a gas excitation electrode according to the present invention.
FIG. 8 is a perspective view schematically showing a method for carrying out a destructive test of a gas excitation electrode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Housing; 1A, 1B ... Support wall; 2 ... Inflow opening part;
3 ... opening for discharge; 4A ... protective electrode;
4A-10, 4A-20 ... protective electrode array;
4a-11, 4a-12 ... protective electrode group;
4a-21, 4a-22 ... protective electrode group;
4B ... exposed electrode; 5 ... core electrode; 6 ... cylindrical sheath;
7A, 7B ... Electric wires; 8, 48 ... AC power supply; 10 ... Gas excitation device;
40 ... Electrode for gas excitation; 40A ... Protective electrode to be tested;
41, 41A ... cylindrical core electrode; 42, 42A ... cylindrical insulator sheath;
43: Gaps; 45 ... Terminals; 50 ... Gas excitation device;
51 ... Housing; 52 ... Inflow opening;
53 ... opening for discharge; 54 (54A, 54B) ... protective electrode;
55 ... core electrode; 56 ... cylindrical sheath; 57A, 57B ... electric wire;
58 ... AC power supply; 60 ... Cutter; 61 ... Cutter blade;
62 ... end of cutter;
G: treated gas; C: treated gas.

Claims (4)

円柱状芯電極と、その円柱状芯電極を取り囲む円筒状絶縁体鞘体とを含む、気体励起用の電極であって、前記電極の横断面の円の面積に対して、前記円筒状絶縁体鞘体の断面積が70%以上であることを特徴とする、前記の電極。A gas excitation electrode comprising a cylindrical core electrode and a cylindrical insulator sheath surrounding the cylindrical core electrode, wherein the cylindrical insulator has an area of a circle of a cross section of the electrode. The electrode described above, wherein the sheath has a cross-sectional area of 70% or more. 前記円筒状絶縁体鞘体がガラス製である、請求項1に記載の電極。The electrode according to claim 1, wherein the cylindrical insulator sheath is made of glass. 前記電極の横断面の円の面積に対して、前記円柱状芯電極と前記円筒状絶縁体鞘体との空隙部の占める断面積が2〜30%である、請求項1又は2に記載の電極。The cross-sectional area which the space | gap part of the said cylindrical core electrode and the said cylindrical insulator sheath occupies is 2 to 30% with respect to the area of the circle | round | yen of the cross section of the said electrode. electrode. 前記円柱状芯電極と前記円筒状絶縁体鞘体との空隙部に空気を充填する、請求項1〜3のいずれか一項に記載の電極。The electrode according to any one of claims 1 to 3, wherein air is filled in a gap between the columnar core electrode and the cylindrical insulator sheath.
JP2003037293A 2003-02-14 2003-02-14 Electrode for gas excitation Expired - Lifetime JP4046224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037293A JP4046224B2 (en) 2003-02-14 2003-02-14 Electrode for gas excitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037293A JP4046224B2 (en) 2003-02-14 2003-02-14 Electrode for gas excitation

Publications (2)

Publication Number Publication Date
JP2004247223A true JP2004247223A (en) 2004-09-02
JP4046224B2 JP4046224B2 (en) 2008-02-13

Family

ID=33022155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037293A Expired - Lifetime JP4046224B2 (en) 2003-02-14 2003-02-14 Electrode for gas excitation

Country Status (1)

Country Link
JP (1) JP4046224B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059385A (en) * 2005-08-22 2007-03-08 Se Plasma Inc Atmospheric pressure plasma generating apparatus of electrode structure for inhibiting useless electric discharge
KR100726709B1 (en) * 2004-12-30 2007-06-13 한국전기연구원 Antenna in inductively coupled plasma
KR100775911B1 (en) 2005-03-24 2007-11-15 한국기계연구원 High Temperature Plasma Generator
JP2008130343A (en) * 2006-11-20 2008-06-05 Kyoto Univ Plasma production device, surface treatment device, display device and fluid reformer
JP2012001284A (en) * 2010-06-14 2012-01-05 Murata Mfg Co Ltd Gas conveying device
JP2012104486A (en) * 2011-11-24 2012-05-31 Kyoto Univ Plasma generation device, surface treatment device, display device, and fluid reformer
CN104244558A (en) * 2014-09-02 2014-12-24 大连民族学院 Atmospheric pressure low-temperature plasma generation device and application thereof
JP2018200877A (en) * 2018-07-13 2018-12-20 株式会社和廣武 Discharge electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220895A (en) * 1994-01-31 1995-08-18 Ii C Kagaku Kk Atmospheric pressure glow discharge electrode and plasma processing method therewith
US5483117A (en) * 1993-02-19 1996-01-09 Ernst Rohrer Device for non-thermal excitation and ionization of vapors and gases
JP2001102364A (en) * 1999-10-01 2001-04-13 Matsushita Electric Works Ltd Plasma treatment apparatus and method
JP2001102199A (en) * 1999-07-27 2001-04-13 Matsushita Electric Works Ltd Plasma treatment apparatus and method therefor
JP2004167315A (en) * 2002-11-18 2004-06-17 Nittetsu Mining Co Ltd Gas exciting apparatus and gas exciting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483117A (en) * 1993-02-19 1996-01-09 Ernst Rohrer Device for non-thermal excitation and ionization of vapors and gases
JPH07220895A (en) * 1994-01-31 1995-08-18 Ii C Kagaku Kk Atmospheric pressure glow discharge electrode and plasma processing method therewith
JP2001102199A (en) * 1999-07-27 2001-04-13 Matsushita Electric Works Ltd Plasma treatment apparatus and method therefor
JP2001102364A (en) * 1999-10-01 2001-04-13 Matsushita Electric Works Ltd Plasma treatment apparatus and method
JP2004167315A (en) * 2002-11-18 2004-06-17 Nittetsu Mining Co Ltd Gas exciting apparatus and gas exciting method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100726709B1 (en) * 2004-12-30 2007-06-13 한국전기연구원 Antenna in inductively coupled plasma
KR100775911B1 (en) 2005-03-24 2007-11-15 한국기계연구원 High Temperature Plasma Generator
JP2007059385A (en) * 2005-08-22 2007-03-08 Se Plasma Inc Atmospheric pressure plasma generating apparatus of electrode structure for inhibiting useless electric discharge
JP4705891B2 (en) * 2005-08-22 2011-06-22 エスイー プラズマ インク Atmospheric pressure plasma generator with electrode structure to prevent useless discharge
JP2008130343A (en) * 2006-11-20 2008-06-05 Kyoto Univ Plasma production device, surface treatment device, display device and fluid reformer
JP2012001284A (en) * 2010-06-14 2012-01-05 Murata Mfg Co Ltd Gas conveying device
JP2012104486A (en) * 2011-11-24 2012-05-31 Kyoto Univ Plasma generation device, surface treatment device, display device, and fluid reformer
CN104244558A (en) * 2014-09-02 2014-12-24 大连民族学院 Atmospheric pressure low-temperature plasma generation device and application thereof
JP2018200877A (en) * 2018-07-13 2018-12-20 株式会社和廣武 Discharge electrode

Also Published As

Publication number Publication date
JP4046224B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
KR20070083762A (en) Gas excitation device having insulation film layer carrying electrode and gas excitation method
US7799290B2 (en) Decontamination of fluids or objects contaminated with chemical or biological agents using a distributed plasma reactor
KR100625425B1 (en) Discharge device and air purifier
JP4046224B2 (en) Electrode for gas excitation
US20070053805A1 (en) Gas decomposition apparatus
JP6072007B2 (en) Device for processing gases using surface plasma
JP3580294B2 (en) Creeping discharge electrode, gas processing apparatus and gas processing method using the same
US20060071608A1 (en) Device and method for gas treatment using pulsed corona discharges
JP4235580B2 (en) Dielectric
US20110000432A1 (en) One atmospheric pressure non-thermal plasma reactor with dual discharging-electrode structure
JP4139676B2 (en) Gas excitation device and excitation method
JP2005032700A (en) Gas excitation device with plate-shaped electrode, and gas excitation method
JP2005216763A (en) Ionization airflow generator
JP2005144445A (en) Method for treating gas with non-equilibrium plasma, discharge electrode and gas treatment apparatus equipped therewith
KR101692218B1 (en) Dielectric barrier plasma generation device for removing volatile organic compounds and method for removing them using same
WO2021130882A1 (en) Water treatment device and water treatment method
JP5369448B2 (en) Discharge electrode and air purification apparatus using the same
JP2006247582A (en) Air purifier and air conditioning apparatus
JPH04370699A (en) Cylindrical plasma generating device
JP2005307832A (en) Exhaust gas purifying device
JP2006214392A (en) Exhaust emission control device
JP2004174320A (en) Ac dust collector and dust ac dust collection method
JP2005270849A (en) Plasma processing apparatus and its method
US20120219465A1 (en) Floating electrode ozone generator
JP2006021080A (en) Discharge type gas treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4046224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term