JP2005216763A - Ionization airflow generator - Google Patents

Ionization airflow generator Download PDF

Info

Publication number
JP2005216763A
JP2005216763A JP2004024265A JP2004024265A JP2005216763A JP 2005216763 A JP2005216763 A JP 2005216763A JP 2004024265 A JP2004024265 A JP 2004024265A JP 2004024265 A JP2004024265 A JP 2004024265A JP 2005216763 A JP2005216763 A JP 2005216763A
Authority
JP
Japan
Prior art keywords
dielectric tube
wire conductor
electrode
outer cylinder
inner electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004024265A
Other languages
Japanese (ja)
Inventor
Hiroshi Motokawa
寛 本川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004024265A priority Critical patent/JP2005216763A/en
Publication of JP2005216763A publication Critical patent/JP2005216763A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe static eliminator improved in problems of a service life and efficiency of a conventional corona discharge type static eliminator; an ionization device; and an ionization airflow generator suitable for an ozonizer as well. <P>SOLUTION: This ionization airflow generator comprises: a dielectric tube 1; an inner electrode 2 inserted into the dielectric tube; a thin-wire conductor 4 adjacent to the dielectric tube and installed so as to surround the dielectric tube; an outer tube 3 installed so as to surround the dielectric tube and the thin-wire conductor; an introduction port 5 of a gas to a space between the dielectric tube 1 and the outer tube 3; and an exhaust port 6 of the gas to the outside. The ionization airflow generator is characteristically structured to generate dielectric barrier discharge between the thin-wire conductor 4 and the inner electrode 2 through the dielectric tube by applying a voltage between the inner electrode 2 and the thin-wire conductor 4, and an airflow entraining generated ions is discharged to the outside. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば除電装置、イオン化装置等として使用されるイオン化気流発生装置に関する。   The present invention relates to an ionized airflow generator used as, for example, a static eliminator or an ionizer.

プラスチック等の絶縁体(誘電体)の表面に滞留する静電気は、人体に対してしばしば不快感を与えるのみならず、ほこりの吸着、放電による火災の発生、印刷、塗布、真空蒸着、スパッタリング等の表面処理における表面処理むら、写真フィルムの感光ムラ等の、生活環境ならびに工業プロセスにおける多大な障害の原因となっており、その除去、すなわち除電の必要性には大なるものがある。   Static electricity that accumulates on the surface of insulators (dielectrics) such as plastic often causes discomfort to the human body, as well as dust adsorption, fire occurrence due to discharge, printing, coating, vacuum deposition, sputtering, etc. It is a cause of great obstacles in the living environment and industrial processes, such as unevenness in surface treatment and unevenness of photographic film, and there is a great need for removal, that is, neutralization.

従来、最も広く使用されている除電装置は、針状電極を用いたコロナ放電方式であるが、この方式にはコロナ放電の継続により、針状電極の先端が摩耗し、1万時間程度まで使用を継続すると、処理能力が急速に低下するという基本的な問題点がある。このような針状電極を用いるコロナ放電方式除電装置における電極の摩耗という問題を緩和すべく、ワイヤー電極を用いる除電装置も提案されてはいるが、ワイヤー電極の場合、接地近傍では、針状電極程には電界の集中が起らず、高電界の形成が困難のため効率的なコロナ放電を実現し難いという難点がある。
林 泉著「高電圧プラズマ工学」第35頁、 (株)丸善発行(1996)。 岡崎幸子ほか「大気圧グロー放電とプラズマ技術」、工業技術、 Vol.27、No.1、5〜16頁。
Conventionally, the most widely used static eliminator is a corona discharge method using a needle-like electrode, but this method uses the tip of the needle-like electrode to wear due to the continuation of the corona discharge, and is used for about 10,000 hours. There is a basic problem that the processing capacity decreases rapidly if the process is continued. In order to alleviate the problem of electrode wear in the corona discharge type static eliminator using such a needle electrode, a static eliminator using a wire electrode has also been proposed. The concentration of the electric field does not occur as much, and it is difficult to realize an efficient corona discharge because it is difficult to form a high electric field.
Izumi Hayashi, “High Voltage Plasma Engineering”, p. 35, published by Maruzen Co., Ltd. (1996). Sachiko Okazaki et al. “Atmospheric pressure glow discharge and plasma technology”, Industrial Technology, Vol. 27, no. 1, pages 5-16.

本発明の主要な目的は、従来のコロナ放電式除電装置の寿命、効率上の問題点について改善した除電装置としても好適に用いられるコロナ放電式イオン化気流発生装置を提供することにある。   A main object of the present invention is to provide a corona discharge type ionized airflow generator that can be suitably used as a static elimination device that has improved the life and efficiency problems of a conventional corona discharge type static elimination device.

すなわち、本発明は、誘電体管と、該誘電体管中に挿入された内側電極と、該誘電体管に近接し且つ該誘電体管を包囲するように配設された細線導体と、該誘電体管および細線導体を包囲するように配設された外筒と、該誘電体管と外筒の間隙への気体の導入口と、気体の外部への排出口とを有し;前記内側電極と細線導体間に電圧を印加することにより、細線導体と誘電体管を介して内側電極との間で誘電体バリア放電を起し、発生したイオンを同伴する気流を外部へ放出するように構成したことを特徴とするイオン化気流発生装置を提供するものである。   That is, the present invention includes a dielectric tube, an inner electrode inserted in the dielectric tube, a thin wire conductor disposed so as to be adjacent to and surround the dielectric tube, An outer cylinder disposed so as to surround the dielectric tube and the thin wire conductor, a gas inlet to a gap between the dielectric tube and the outer cylinder, and a gas outlet to the outside; By applying a voltage between the electrode and the thin wire conductor, a dielectric barrier discharge is caused between the thin wire conductor and the inner electrode via the dielectric tube, and an air flow accompanied by the generated ions is released to the outside. It is an object of the present invention to provide an ionized airflow generator characterized by being configured.

好ましくは、前記外筒が、導体金属からなる外筒電極を構成し、前記細線導体と電気的に接触するように配設されることにより、前記内側電極と外筒電極間に電圧を印加して該外筒電極を介して細線導体に給電し、細線導体と誘電体管を介して内側電極との間で誘電体バリア放電を起すように構成される。また、好ましくは前記細線導体は金属細線(ワイヤ)であり、誘電体管の外周に適宜の間隔でコイル状に巻き付けられる。また、前記外筒ないし外筒電極には、その長手方向に沿ってスリット状または複数の気体排出口が設けられる。   Preferably, the outer cylinder constitutes an outer cylinder electrode made of a conductive metal, and is disposed so as to be in electrical contact with the thin wire conductor, thereby applying a voltage between the inner electrode and the outer cylinder electrode. Thus, power is supplied to the fine wire conductor via the outer cylindrical electrode, and a dielectric barrier discharge is generated between the fine wire conductor and the inner electrode via the dielectric tube. Preferably, the fine wire conductor is a metal fine wire (wire), and is wound around the outer periphery of the dielectric tube in a coil shape at an appropriate interval. The outer cylinder or the outer cylinder electrode is provided with a slit shape or a plurality of gas outlets along the longitudinal direction thereof.

本発明のイオン化気流発生装置においては、誘電体を介して内側電極の対向電極として作用する細線導体(金属細線)が誘電体に極めて近接して配設されるため、内側電極との間に安定的な高電界の発生が可能である。このため、低電流の誘電体バリア放電(すなわち、一対の電極の少なくとも一方を覆う誘電体表面で起こる気体放電(バリア放電);非特許文献1)による安定なコロナ放電が可能になり、そこを接触通過する気流の効率的なイオン化が可能になる。   In the ionized airflow generator of the present invention, the thin wire conductor (metal thin wire) that acts as the counter electrode of the inner electrode through the dielectric is disposed very close to the dielectric, so that it is stable between the inner electrode and the inner electrode. It is possible to generate a high electric field. For this reason, a stable corona discharge by a low-current dielectric barrier discharge (that is, a gas discharge (barrier discharge) that occurs on the surface of the dielectric covering at least one of the pair of electrodes; Non-Patent Document 1) becomes possible. Efficient ionization of the airflow passing through the contact becomes possible.

以下、本発明のイオン化気流発生装置を実施例に基づいて、より具体的に説明する。   Hereinafter, the ionized airflow generator of the present invention will be described more specifically based on examples.

(実施例1)
図1は、除電装置として構成された本発明の一実施例に係る管状イオン化気流発生装置の長手方向一部切欠模式断面図であり、図2は図1のII−II線矢視方向模式断面図である。
(Example 1)
FIG. 1 is a partially cutaway schematic cross-sectional view in the longitudinal direction of a tubular ionized airflow generator according to an embodiment of the present invention configured as a static eliminator, and FIG. 2 is a schematic cross-sectional view in the direction of arrows II-II in FIG. FIG.

図1および2を参照して、この例のイオン化気流発生装置は、一端を封じた誘電体管1(例えば石英ガラス管(外径:5mmφ、厚さ:1.0mm、長さ:約300mm))と、該誘電体管1に挿入された内側電極2(シリコーン樹脂被覆電線の被覆を除いたものであり、0.2mmの銅芯線26本の撚り線で外径は約1.6mm)と、前記誘電体管1を包囲する外筒としての外筒電極3(真鍮製細管(外径:約8mmφ、厚さ:約0.5mm))と、該誘電体管1と外筒電極3との間に誘電体管1の周囲に巻き回され外筒電極3に接触するように配置された細線導体としてのコイル状ワイヤ電極4(0.2mmφのタングステン線ないしSUS線)とを有する。更に外筒電極3の誘電体管1の封じられた一端の側の一端は気体導入口として機能する開口5を有し、外筒電極3の長手方向の図示下側部には一列に適宜の間隔(例えば約10mm)で複数の気体排出口4(径約1.5mmφ)が設けられており、外筒電極3の開口5と逆側の基部は、誘電体管1および内側電極2の基部ならびに内側電極2の被覆2aとともに樹脂モールド7により固定されている。また、内側電極2および外筒電極3には、スイッチ9を介して交流電源8(例えば家庭用電源から昇圧して9kV、60Hzの電圧を供給するもの)が結線され、交流電圧が印加可能とされている。また外筒電極3は、接地され、露出しても(もちろん、樹脂被覆等が適宜なされてもよい)、安全なように配慮されている。   Referring to FIGS. 1 and 2, an ionized airflow generator of this example includes a dielectric tube 1 (for example, a quartz glass tube (outer diameter: 5 mmφ, thickness: 1.0 mm, length: about 300 mm) sealed at one end. ) And the inner electrode 2 inserted into the dielectric tube 1 (excluding the coating of the silicone resin-coated electric wire, the outer diameter is about 1.6 mm with 26 stranded wires of 0.2 mm copper core wire) The outer tube electrode 3 (brass thin tube (outer diameter: about 8 mmφ, thickness: about 0.5 mm)) as an outer tube surrounding the dielectric tube 1, the dielectric tube 1 and the outer tube electrode 3 And a coiled wire electrode 4 (0.2 mmφ tungsten wire or SUS wire) as a thin wire conductor which is wound around the dielectric tube 1 and arranged so as to be in contact with the outer cylinder electrode 3. Further, one end of the outer tube electrode 3 on the side of the sealed one end of the dielectric tube 1 has an opening 5 functioning as a gas inlet, and the outer tube electrode 3 has an appropriate length in the lower side in the longitudinal direction. A plurality of gas discharge ports 4 (diameter: about 1.5 mmφ) are provided at intervals (for example, about 10 mm), and the base portion opposite to the opening 5 of the outer cylindrical electrode 3 is the base portion of the dielectric tube 1 and the inner electrode 2. In addition, the resin mold 7 is fixed together with the coating 2 a of the inner electrode 2. Further, the inner electrode 2 and the outer cylinder electrode 3 are connected to an AC power source 8 (for example, a voltage boosted from a household power source to supply a voltage of 9 kV and 60 Hz) via the switch 9 so that an AC voltage can be applied. Has been. Further, the outer cylinder electrode 3 is grounded and exposed (of course, resin coating or the like may be appropriately performed), and consideration is given to safety.

操作の一例においては、上記例示の寸法を有する装置に対して、ロータリーポンプ((株)安永鉄工所製「DRB−35」;図示せず)を用いて開口5から圧縮空気(約0.15kg/cm・G)を約25〜30リットル/分の割合で導入し、電源8から交流電圧を印加して、交流の半サイクル毎に正負の符号の交番するイオンを同伴する空気流を孔6から排出させた。そして、このイオン化空気流を、予め綿布で摩擦して約−2〜−3kV(SIMCO社製「FMX−002型」静電気測定器により測定)に帯電させ、図1の装置の下部から約10mm離して置いた約50mm×100mmのポリエチレンテレフタレート(PET)フィルムに瞬間的に(1秒未満)吹き付けたところ、表面電位はほぼ零Vとなり、実質的に完全に除電された。 In an example of operation, compressed air (about 0.15 kg) from the opening 5 using a rotary pump (“DRB-35” manufactured by Yasunaga Iron Works Co., Ltd .; not shown) for the apparatus having the above-described exemplary dimensions. / Cm 2 · G) is introduced at a rate of about 25 to 30 liters / minute, an AC voltage is applied from the power source 8, and an air flow accompanied by alternating ions of positive and negative signs is provided every half cycle of the AC. 6 was discharged. Then, this ionized air flow is preliminarily rubbed with a cotton cloth to be charged to about −2 to −3 kV (measured by “FMX-002 type” static electricity measuring device manufactured by SIMCO) and separated from the lower part of the apparatus of FIG. When sprayed instantaneously (less than 1 second) on a polyethylene terephthalate (PET) film of about 50 mm × 100 mm placed on the surface, the surface potential was almost zero V, and the charge was substantially completely eliminated.

(実施例2)
実施例1の装置を用い、但し、正負のバランスした完全AC電源8(9kV,60Hz)の代わりに、該AC電源8に加えて、これと直列に、2kVのDC電源(図示せず)を外筒電極3側が負極となるように接続して、DC重畳AC電圧を印加し、孔6から吹き出される負イオンに富むイオン化気流を排出させ、実質的に非帯電のPETフィルムに吹き付けた。その結果、処理されたPETフィルムには、約−100〜−200Vの表面電位が一様に観測された。
(Example 2)
The apparatus of Example 1 was used, except that a 2 kV DC power supply (not shown) was connected in series with the AC power supply 8 instead of the positive and negative balanced complete AC power supply 8 (9 kV, 60 Hz). The outer cylinder electrode 3 side was connected so as to be a negative electrode, a DC superimposed AC voltage was applied, an ionized air stream rich in negative ions blown out from the hole 6 was discharged, and sprayed onto a substantially uncharged PET film. As a result, a surface potential of about −100 to −200 V was uniformly observed on the treated PET film.

(実施例3)
実施例2と同様に、但し2kVのDC電源を今度は極性を逆転して、外筒電極3側が正極となるようにAC電源8(9kV,60Hz)と直列に接続して、DC重畳AC電圧を印加し、孔6から吹き出される正イオンに富むイオン化気流を排出させ、実質的に非帯電のPETフィルムに吹き付けた。その結果、処理されたPETフィルムには、約+100〜+200Vの表面電位が一様に観測された。
(Example 3)
As in Example 2, except that a 2 kV DC power supply is now reversed in polarity and connected in series with an AC power supply 8 (9 kV, 60 Hz) so that the outer cylinder electrode 3 side is positive. Was applied, and the ionized air stream rich in positive ions blown out from the holes 6 was discharged, and sprayed onto a substantially uncharged PET film. As a result, a surface potential of about +100 to +200 V was uniformly observed on the treated PET film.

(変形例)
上記実施例1〜3において、除電装置およびイオン化装置として機能する本発明のイオン化気流発生装置の特定的な実施例を示した。しかしながら、このような実施例は単なる例示に過ぎず、本発明の範囲内で、多様な変形が可能である。特に、上記実施例で説明した各部の寸法は、処理対象によって大幅に変更可能であることならび材質も適宜変更可能であることは、当業者に自明と考えられる。
(Modification)
In the said Examples 1-3, the specific Example of the ionization airflow generator of this invention which functions as a static elimination apparatus and an ionization apparatus was shown. However, such an embodiment is merely an example, and various modifications are possible within the scope of the present invention. In particular, it is obvious to those skilled in the art that the dimensions of the respective parts described in the above embodiments can be changed greatly depending on the object to be processed, and the material can be changed as appropriate.

例えば上記実施例1に先立って、開口5からより少ない風量として、約8リットル/分の空気を送り込んだ場合に比べて、上記実施例1のように約25〜30リットル/分と増量したほうがより良い除電効果が確認されている。処理されるべき対象に応じて、更に大容量空気が送られ、また場合により装置の複数並列使用が必要になり得ることは、当然理解されよう。また上記実施例1では、家庭用電気を用いたため、交流電源8の周波数は60Hzと比較的低かったが、1〜10kHzあるいはそれ以上の高周波交流電圧を印加することにより、より高速の除電ならびにイオン化処理が可能になることは、当業者には自明のことである。また、電源8による印加電圧は、上記例の9kVに限らず、一般に
比較的安全に絶縁が確保できる1〜20kV程度の電圧が好適に用いられる。
For example, prior to the first embodiment, as compared with the case where about 8 liters / minute of air is sent as a smaller air volume from the opening 5, the amount is increased to about 25-30 liters / minute as in the first embodiment. A better static elimination effect has been confirmed. It will of course be understood that larger volumes of air can be delivered depending on the object to be treated, and possibly multiple parallel use of the device. Further, in the first embodiment, since household electricity was used, the frequency of the AC power supply 8 was relatively low at 60 Hz. However, by applying a high frequency AC voltage of 1 to 10 kHz or more, higher speed static elimination and ionization are possible. It will be obvious to those skilled in the art that processing is possible. The voltage applied by the power supply 8 is not limited to 9 kV in the above example, and generally a voltage of about 1 to 20 kV that can ensure insulation relatively safely is suitably used.

更に本発明者の知見によれば、以下のような変形が可能である。   Furthermore, according to the knowledge of the present inventor, the following modifications are possible.

(1)上記の例においては、細線導体4と、内側電極2間に電圧を印加するに際して、金属製の外筒電極3を介して細線導体4に給電する構成としている。この構成は、装置の長手方向における細線導体4の抵抗による電圧の低下を防ぎ、一様な電圧分布(電位)を形成する上で好ましい態様であり、細線導体4自体の電気的連続性を要求しない(途中で切断してもよい)利点があるが、外筒3を介さずに、細線導体4に直接給電することもできる。この場合は、外筒3は樹脂製でもよい。またこの場合は、装置の長手方向の電圧低下を防ぐために、細線導体4は、コイル状電極というよりは、網状電極(あるいは螺旋巻き方向が互いに逆である2条のコイル状導体の重ね巻き)の方が好ましく、また長手方向の両端の少なくとも一方にはリング状の端子を設けて、細線導体4への給電を改善することが好ましい。   (1) In the above example, when a voltage is applied between the fine wire conductor 4 and the inner electrode 2, power is supplied to the fine wire conductor 4 via the metal outer cylinder electrode 3. This configuration is a preferable mode for preventing a voltage drop due to the resistance of the thin wire conductor 4 in the longitudinal direction of the apparatus and forming a uniform voltage distribution (potential), and requires electrical continuity of the thin wire conductor 4 itself. Although there is an advantage that it may not be cut (may be cut off in the middle), power can be directly supplied to the thin wire conductor 4 without going through the outer cylinder 3. In this case, the outer cylinder 3 may be made of resin. Also, in this case, in order to prevent a voltage drop in the longitudinal direction of the apparatus, the thin wire conductor 4 is not a coil electrode, but a mesh electrode (or a lap winding of two coil conductors whose spiral winding directions are opposite to each other). It is preferable to provide a ring-shaped terminal at at least one of both ends in the longitudinal direction to improve the power supply to the thin wire conductor 4.

(2)細線導体4と内側電極2との間に印加する電圧の種類は、直流あるいは交流パルス電圧であってもよい。   (2) The type of voltage applied between the thin wire conductor 4 and the inner electrode 2 may be a direct current or an alternating pulse voltage.

(3)細線導体4は、金属線に限らず、炭素線等、任意の導体の細線であり得る。   (3) The thin wire conductor 4 is not limited to a metal wire, and may be a thin wire of any conductor such as a carbon wire.

また細線導体の外径は、高電界を確保するには細いほうが好ましく、上記の例では0.2mmとしたが、用途や設置場所における機械的郷土も考慮して、一般に0.1〜0.8mm程度の範囲から適宜選択可能である。   Further, the outer diameter of the thin wire conductor is preferably thinner in order to secure a high electric field. In the above example, the outer diameter is set to 0.2 mm. It can be appropriately selected from a range of about 8 mm.

(4)上記図1および図2の装置は、電源、細線導体等の詳細は図3((a)は図2相当、(b)は図1相当)のように集約できる。そして、イオン化気流の流量を増大するために、外側電極管3とは別途の気流配管3a(図4)を設けたり、該気流配管を拡径した気流配管3b(図5)を設けることができる。   (4) The apparatus shown in FIGS. 1 and 2 can be summarized as shown in FIG. 3 (FIG. 3 (a) is equivalent to FIG. 2, (b) is equivalent to FIG. 1). In order to increase the flow rate of the ionized airflow, an airflow pipe 3a (FIG. 4) separate from the outer electrode pipe 3 can be provided, or an airflow pipe 3b (FIG. 5) obtained by expanding the airflow pipe can be provided. .

(5)また装置内において、誘電体管1と外筒電極3との間での気体流通が確保される限りにおいて、気体の導入口5と排出口6の配置には多様な任意性がある。例えば、以下のような変形が可能である。   (5) In the apparatus, as long as the gas flow between the dielectric tube 1 and the outer cylinder electrode 3 is ensured, the arrangement of the gas introduction port 5 and the discharge port 6 has various options. . For example, the following modifications are possible.

(イ) 図1および2(従って図3)の態様においては、外筒電極管3の図示下側に一列にのみ、複数の小孔を間隔を置いて設けてあるが、小孔を外筒電極管の全周に亘って設けることもできる。これは、例えば、外筒電極管から周囲媒体(例えば空気あるいは絶縁性液体)に効率的にイオン化気流を分配するようなときには適している。また上記例で用いたような一列に配列した複数の小孔の代りに、外筒3の長手方向に沿って延長するスリット状の開口(たとえば上記実施例1において溝幅1.5mm、長さ250mmのもの)を設けることにより、却ってイオン化気流の流出状況が改善されて除電効果が向上することも確認されている。   (A) In the embodiment shown in FIGS. 1 and 2 (therefore, FIG. 3), a plurality of small holes are provided at intervals on the lower side of the outer tube electrode tube 3 in the figure. It can also be provided over the entire circumference of the electrode tube. This is suitable, for example, when the ionized air stream is efficiently distributed from the outer tube electrode tube to the surrounding medium (for example, air or insulating liquid). Further, instead of the plurality of small holes arranged in a line as used in the above example, a slit-like opening extending along the longitudinal direction of the outer cylinder 3 (for example, a groove width of 1.5 mm and a length in Example 1 above) On the other hand, it has also been confirmed that the flow of the ionized airflow is improved and the static elimination effect is improved.

(ロ) また図3(b)に対応して図6に示すように、外筒電極管3を包囲してジャケット管10を設け開口5aから気体を導入すれば、上記例では気体排出口6として作用した小孔が外筒電極管3内への気体導入口として作用し、上記例では気体導入口5として作用した開口が気体排出口6aとしてイオン化気体流の排出に用いられる。また、この気体導入口は、ジャケット管10(ならび口5aおよび5b)を設けずに、開口6aとは逆側の端部の樹脂モールド部7中に設けてもよい。この際、気体導入口はらせん孔として外側電極管中に旋回流を導入する構成とすることもできる。但し、この例のように外側電極管3の一端からイオン化気流を排出する構成では、気体のイオン化部(ワイヤ4と誘電体管1の間隙部)から気流排出口6aまでの距離が増大するために排出気流中のイオンは減少することとなるが、途中で発生したイオンが作動気体に有用な変化を与える(例えば空気を作動気体とする場合に、オゾン(O)に富んだ空気流が発生する。これは非特許文献2の第14〜15頁に開示されるオゾナイザと類似の機能と解することもできる。)場合には、排出気流を有用に利用することができる。このように本発明の「イオン化気流発生装置」とは、装置内でイオン化気流が発生するが、装置から排出する気流中にはイオンが減少しているような装置(例えばオゾナイザ)をも包含するものである。例えばオゾナイザを構成する場合には、排出口6aから排出されたオゾンに富んだ空気流は、排液等のオゾン処理に好適に用いられる。 (B) Further, as shown in FIG. 6 corresponding to FIG. 3B, if the jacket tube 10 is provided so as to surround the outer tube electrode tube 3 and gas is introduced from the opening 5a, the gas outlet 6 in the above example. The small hole that acted as the gas inlet port into the outer tube electrode 3 is used, and in the above example, the opening that acted as the gas inlet port 5 is used as the gas outlet 6a for discharging the ionized gas flow. Further, this gas inlet may be provided in the resin mold portion 7 at the end opposite to the opening 6a without providing the jacket tube 10 (and the openings 5a and 5b). At this time, the gas inlet may be configured to introduce a swirl flow into the outer electrode tube as a spiral hole. However, in the configuration in which the ionized airflow is discharged from one end of the outer electrode tube 3 as in this example, the distance from the gas ionization portion (the gap between the wire 4 and the dielectric tube 1) to the airflow outlet 6a increases. However, the ions generated in the middle give useful changes to the working gas (for example, when air is used as the working gas, an air flow rich in ozone (O 3 ) This can be interpreted as a function similar to that of the ozonizer disclosed on pages 14 to 15 of Non-Patent Document 2. In this case, the exhaust airflow can be used effectively. As described above, the “ionized airflow generator” of the present invention includes an apparatus (for example, an ozonizer) in which an ionized airflow is generated in the apparatus, but ions are reduced in the airflow discharged from the apparatus. Is. For example, in the case of configuring an ozonizer, the ozone-rich air flow discharged from the discharge port 6a is preferably used for ozone treatment such as drainage.

(6)上記においては、主として空気を作動気体として説明したが、作動気体としては、コロナ放電(誘電体バリア放電)によりイオン化可能な任意の気体が用いられる。   (6) In the above description, air is mainly used as the working gas. However, any gas that can be ionized by corona discharge (dielectric barrier discharge) is used as the working gas.

(7)上記実施例2の排出口6から排出された負イオンに富んだ空気流は、人体への環境衛生上好ましいとされ、従って実施例2の装置は負イオンの発生器としても使用できることはもちろんである。   (7) An air flow rich in negative ions discharged from the outlet 6 of the second embodiment is considered favorable for environmental health to the human body, and therefore the apparatus of the second embodiment can also be used as a negative ion generator. Of course.

(8)誘電体管1及び外筒3は真円状である必要はなく、特に外筒3の被処理物に対向する面が幅広ないし平面(結果として断面が馬蹄形状になる)とすることもイオン化気流の排出及びこれによる処理効率の向上のために好ましいこともある。   (8) The dielectric tube 1 and the outer cylinder 3 do not have to be perfect circles, and in particular, the surface of the outer cylinder 3 facing the object to be processed should be wide or flat (as a result, the cross section becomes a horseshoe shape). May be preferable for discharging the ionized air flow and improving the processing efficiency.

(9)誘電体管1は、石英製に限らず一般にセラミック製誘電体製のものが用いられるが、強度の許す限り薄い方が高電界の発生には有利であり、用途に応じて、0.7mmあるいはそれ以下から、上限は3mm程度までの範囲から適宜選択し得る。   (9) The dielectric tube 1 is not limited to quartz, but is generally made of a ceramic dielectric. However, as thin as the strength permits, the thinner one is advantageous for generating a high electric field. The upper limit can be appropriately selected from a range of about 7 mm or less to about 3 mm.

(10)内側電極2は、上記例のより線に限らず、比較的太い導体単線も用いられる。内側電極2は、誘電体管1への挿入が可能な限りにおいてできるだけ誘電体管1に密着していることが好ましく、従って、誘電体管1の内側に蒸着された金属電極としても形成可能である。   (10) The inner electrode 2 is not limited to the stranded wire in the above example, and a relatively thick conductor single wire is also used. The inner electrode 2 is preferably as close as possible to the dielectric tube 1 as long as it can be inserted into the dielectric tube 1. Therefore, the inner electrode 2 can also be formed as a metal electrode deposited inside the dielectric tube 1. is there.

上述したように、本発明によれば、従来のコロナ放電式除電装置の寿命、効率上の問題点について改善した除電装置、更にはイオン化装置、オゾナイザとしても好適なイオン化気流発生装置が提供される。この装置は、上記実施例からも明らかなように、極めてコンパクトに構成可能であり、また外筒(電極)あるいは細線導体を接地することにより、高電圧を使用する場合でも極めて安全に取り扱い可能である。   As described above, according to the present invention, there is provided an ionization airflow generator that is improved as a lifetime and efficiency problem of a conventional corona discharge static eliminator, and that is also suitable as an ionizer and an ozonizer. . As is clear from the above embodiments, this device can be configured extremely compactly, and can be handled extremely safely even when using high voltages by grounding the outer cylinder (electrode) or thin wire conductor. is there.

除電装置として構成された本発明の一実施例に係る管状イオン化気流発生装置の長手方向一部切欠模式断面図。The longitudinal direction partial notch schematic cross section of the tubular ionization airflow generator which concerns on one Example of this invention comprised as a static elimination apparatus. 図1のII−II線矢視方向模式断面図。FIG. 2 is a schematic cross-sectional view taken along the line II-II in FIG. 1. 図1および図2の集約模式図。The aggregation schematic diagram of FIG. 1 and FIG. 図3の装置の変形例を示す模式図。FIG. 4 is a schematic diagram showing a modification of the apparatus in FIG. 3. 図3の装置の変形例を示す模式図。FIG. 4 is a schematic diagram showing a modification of the apparatus in FIG. 3. 気体導入口および排出口の変形配置例を示す模式図。The schematic diagram which shows the deformation | transformation arrangement example of a gas inlet and an outlet.

符号の説明Explanation of symbols

1 誘電体(石英ガラス)管
2 内側電極(高電圧用シリコーンゴム被覆銅線)
2a 内側電極被覆
3 外筒(電極)
3a,3b 気体流動管
4 細線導体(コイル状ワイヤ電極)
5,5a,5b 気体導入口
6,6a 気体排出口
7 樹脂モールド
8 (交流)電源
9 スイッチ
1 Dielectric (quartz glass) tube 2 Inner electrode (high voltage silicone rubber coated copper wire)
2a Inner electrode coating 3 Outer cylinder (electrode)
3a, 3b Gas flow tube 4 Fine wire conductor (coiled wire electrode)
5, 5a, 5b Gas inlet 6, 6a Gas outlet 7 Resin mold 8 (AC) power supply 9 Switch

Claims (7)

誘電体管と、該誘電体管中に挿入された内側電極と、該誘電体管に近接し且つ該誘電体管を包囲するように配設された細線導体と、該誘電体管および細線導体を包囲するように配設された外筒と、該誘電体管と外筒の間隙への気体の導入口と、気体の外部への排出口とを有し;前記内側電極と細線導体間に電圧を印加することにより、細線導体と誘電体管を介して内側電極との間で誘電体バリア放電を起し、発生したイオンを同伴する気流を外部へ放出するように構成したことを特徴とするイオン化気流発生装置。 A dielectric tube, an inner electrode inserted into the dielectric tube, a thin wire conductor disposed adjacent to and surrounding the dielectric tube, and the dielectric tube and the thin wire conductor An outer cylinder disposed so as to surround the gas pipe, a gas inlet into the gap between the dielectric tube and the outer cylinder, and a gas outlet to the outside; between the inner electrode and the thin wire conductor By applying voltage, dielectric barrier discharge is caused between the thin wire conductor and the inner electrode via the dielectric tube, and the air current accompanying the generated ions is discharged to the outside. Ionized airflow generator. 前記外筒が、導体金属からなる外筒電極を構成し、前記細線導体と電気的に接触するように配設されることにより、前記内側電極と外筒電極間に電圧を印加して該外筒電極を介して細線導体に給電し、細線導体と誘電体管を介して内側電極との間で誘電体バリア放電を起すように構成した請求項1に記載の装置。 The outer cylinder constitutes an outer cylinder electrode made of a conductive metal and is disposed so as to be in electrical contact with the fine wire conductor, thereby applying a voltage between the inner electrode and the outer cylinder electrode to 2. The apparatus according to claim 1, wherein the device is configured to feed power to the thin wire conductor via the cylindrical electrode and to cause a dielectric barrier discharge between the thin wire conductor and the inner electrode via the dielectric tube. 前記内側電極と外筒電極間には交流電圧が印加され且つ外筒電極が接地される請求項2に記載の装置。 The apparatus according to claim 2, wherein an alternating voltage is applied between the inner electrode and the outer cylinder electrode, and the outer cylinder electrode is grounded. 前記交流電圧が直流重畳交流電圧である請求項3に記載の装置。 The apparatus according to claim 3, wherein the AC voltage is a DC superimposed AC voltage. 前記外筒の長手方向に沿って複数の気体排出口が設けられている請求項1〜4のいずれかに記載の装置。 The apparatus in any one of Claims 1-4 in which the several gas exhaust port is provided along the longitudinal direction of the said outer cylinder. 前記外筒の長手方向に沿って延長するスリット状の気体排出口が設けられている請求項1〜4のいずれかに記載の装置。 The apparatus in any one of Claims 1-4 in which the slit-shaped gas exhaust port extended along the longitudinal direction of the said outer cylinder is provided. 前記細線導体が金属細線であり、誘電体管の外周に適宜の間隔でコイル状に巻き付けられている請求項1〜6のいずれかに記載の装置。 The apparatus according to any one of claims 1 to 6, wherein the thin wire conductor is a thin metal wire and is wound around the outer periphery of the dielectric tube in a coil shape at an appropriate interval.
JP2004024265A 2004-01-30 2004-01-30 Ionization airflow generator Pending JP2005216763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024265A JP2005216763A (en) 2004-01-30 2004-01-30 Ionization airflow generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024265A JP2005216763A (en) 2004-01-30 2004-01-30 Ionization airflow generator

Publications (1)

Publication Number Publication Date
JP2005216763A true JP2005216763A (en) 2005-08-11

Family

ID=34907004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024265A Pending JP2005216763A (en) 2004-01-30 2004-01-30 Ionization airflow generator

Country Status (1)

Country Link
JP (1) JP2005216763A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326260A (en) * 2006-06-07 2007-12-20 Showa Denko Packaging Co Ltd Method for producing laminated film excellent in antistatic properties and method for producing bag excellent in antistatic properties
JP2009030699A (en) * 2007-07-26 2009-02-12 Toshiba Corp Diffuser
WO2011002006A1 (en) * 2009-06-30 2011-01-06 新東ホールディングス株式会社 Ion-generating device and ion-generating element
JP2011231928A (en) * 2011-04-27 2011-11-17 Toshiba Corp Diffuser
WO2012023586A1 (en) * 2010-08-18 2012-02-23 京セラ株式会社 Ionic wind generating body and ionic wind generating device
JP2013174355A (en) * 2013-04-04 2013-09-05 Toshiba Corp Diffuser
KR101525423B1 (en) * 2015-04-14 2015-06-03 주식회사 브이씨알 Ion source and ion implanter having the same
WO2016076998A1 (en) * 2014-11-10 2016-05-19 Illinois Tool Works Inc. Balanced barrier discharge neutralization in variable pressure environments
KR20160105785A (en) * 2013-11-26 2016-09-07 스미스 디텍션 몬트리올 인코포레이티드 Dielectric barrier discharge ionization source for spectrometry
JP2017228485A (en) * 2016-06-24 2017-12-28 ウシオ電機株式会社 Ion generation method and ion generator
CN109640499A (en) * 2019-01-16 2019-04-16 上海安平静电科技有限公司 A kind of static eliminator and its working method
KR102596202B1 (en) * 2023-02-06 2023-10-30 주식회사 저스템 High vacuum static electricity removing device with elbow structure

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326260A (en) * 2006-06-07 2007-12-20 Showa Denko Packaging Co Ltd Method for producing laminated film excellent in antistatic properties and method for producing bag excellent in antistatic properties
JP4668847B2 (en) * 2006-06-07 2011-04-13 昭和電工パッケージング株式会社 Manufacturing method of laminate film excellent in antistatic property and manufacturing method of bag body excellent in antistatic property
JP2009030699A (en) * 2007-07-26 2009-02-12 Toshiba Corp Diffuser
WO2011002006A1 (en) * 2009-06-30 2011-01-06 新東ホールディングス株式会社 Ion-generating device and ion-generating element
JP4918628B2 (en) * 2009-06-30 2012-04-18 新東ホールディングス株式会社 Ion generator and ion generator
WO2012023586A1 (en) * 2010-08-18 2012-02-23 京セラ株式会社 Ionic wind generating body and ionic wind generating device
CN102959813A (en) * 2010-08-18 2013-03-06 京瓷株式会社 Ionic wind generating body and ionic wind generating device
JP5491632B2 (en) * 2010-08-18 2014-05-14 京セラ株式会社 Ion wind generator and ion wind generator
US9036325B2 (en) 2010-08-18 2015-05-19 Kyocera Corporation Ion wind generator and ion wind generating device
JP2011231928A (en) * 2011-04-27 2011-11-17 Toshiba Corp Diffuser
JP2013174355A (en) * 2013-04-04 2013-09-05 Toshiba Corp Diffuser
KR20160105785A (en) * 2013-11-26 2016-09-07 스미스 디텍션 몬트리올 인코포레이티드 Dielectric barrier discharge ionization source for spectrometry
KR102259026B1 (en) 2013-11-26 2021-05-31 스미스 디텍션 몬트리올 인코포레이티드 Dielectric barrier discharge ionization source for spectrometry
KR102384936B1 (en) 2013-11-26 2022-04-08 스미스 디텍션 몬트리올 인코포레이티드 Dielectric barrier discharge ionization source for spectrometry
KR20210064419A (en) * 2013-11-26 2021-06-02 스미스 디텍션 몬트리올 인코포레이티드 Dielectric barrier discharge ionization source for spectrometry
JP2017500557A (en) * 2013-11-26 2017-01-05 スミスズ ディテクション モントリオール インコーポレイティド Dielectric barrier discharge ionization source for spectroscopic measurements
KR20170084130A (en) * 2014-11-10 2017-07-19 일리노이즈 툴 워크스 인코포레이티드 Balanced barrier discharge neutralization in variable pressure environments
CN107430975A (en) * 2014-11-10 2017-12-01 伊利诺斯工具制品有限公司 Balance barrier discharge in variable pressure environment neutralizes
JP2018500723A (en) * 2014-11-10 2018-01-11 イリノイ トゥール ワークス インコーポレイティド Balanced barrier discharge neutralization in variable pressure environments
TWI655881B (en) * 2014-11-10 2019-04-01 美商伊利諾工具工程公司 Balanced barrier discharge neutralization in a variable pressure environment
CN107430975B (en) * 2014-11-10 2019-06-28 伊利诺斯工具制品有限公司 Balance barrier discharge in variable pressure environment neutralizes
WO2016076998A1 (en) * 2014-11-10 2016-05-19 Illinois Tool Works Inc. Balanced barrier discharge neutralization in variable pressure environments
US9357624B1 (en) 2014-11-10 2016-05-31 Illinois Tool Works Inc. Barrier discharge charge neutralization
KR102509754B1 (en) * 2014-11-10 2023-03-13 일리노이즈 툴 워크스 인코포레이티드 Balanced barrier discharge neutralization in variable pressure environments
KR101525423B1 (en) * 2015-04-14 2015-06-03 주식회사 브이씨알 Ion source and ion implanter having the same
JP2017228485A (en) * 2016-06-24 2017-12-28 ウシオ電機株式会社 Ion generation method and ion generator
CN109640499A (en) * 2019-01-16 2019-04-16 上海安平静电科技有限公司 A kind of static eliminator and its working method
KR102596202B1 (en) * 2023-02-06 2023-10-30 주식회사 저스템 High vacuum static electricity removing device with elbow structure

Similar Documents

Publication Publication Date Title
TWI386110B (en) Wire electrode type ionizer
TWI429154B (en) Ion generation method and apparatus
CN1847736B (en) Discharge device and air conditioner having said device
JP2005216763A (en) Ionization airflow generator
WO2011002006A1 (en) Ion-generating device and ion-generating element
KR102014892B1 (en) Plasma generating device used for water treatment apparatus or the like
KR100606721B1 (en) Device for air-purifying in air conditioner
JP3490911B2 (en) Ion generator
JP3580294B2 (en) Creeping discharge electrode, gas processing apparatus and gas processing method using the same
CN105101603A (en) Dielectric barrier discharge plasma gas jet apparatus
KR102162219B1 (en) Plasma generating device having double structure of dielectric pipe
JP2007035310A (en) Atmospheric pressure corona discharge generating device
KR20150143075A (en) Air cleaning device using dielectric barrier discharge
KR101841555B1 (en) Apparatus for hairdressing and beautycare using plasma
KR100600756B1 (en) Surface discharge type air cleaning device
JP7020785B2 (en) Ozone generator
JP2003142228A (en) Negative ion generating device
JP2929768B2 (en) Cylindrical plasma generator
JP2003020206A (en) Apparatus for generating ozone
CN216501240U (en) Plasma generator and washing device
US20040256225A1 (en) Air purification system and device
CN214544891U (en) Low-temperature plasma electrode structure, sterilization device and air purification device
RU2179150C2 (en) Device for producing ozone
US11912570B2 (en) Long-life discharge tube for ozone generator
JP2010177137A (en) High-density plasma source, and forming method of high density plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Effective date: 20090812

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309