JP2010170937A - Discharge electrode for ionizer - Google Patents

Discharge electrode for ionizer Download PDF

Info

Publication number
JP2010170937A
JP2010170937A JP2009014154A JP2009014154A JP2010170937A JP 2010170937 A JP2010170937 A JP 2010170937A JP 2009014154 A JP2009014154 A JP 2009014154A JP 2009014154 A JP2009014154 A JP 2009014154A JP 2010170937 A JP2010170937 A JP 2010170937A
Authority
JP
Japan
Prior art keywords
metal
electrode
discharge electrode
ionizer
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009014154A
Other languages
Japanese (ja)
Inventor
Masanori Suzuki
政典 鈴木
Tomokatsu Sato
朋且 佐藤
Takashi Matsuda
喬 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Ryowa Ltd
Original Assignee
Techno Ryowa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Ryowa Ltd filed Critical Techno Ryowa Ltd
Priority to JP2009014154A priority Critical patent/JP2010170937A/en
Publication of JP2010170937A publication Critical patent/JP2010170937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a discharge electrode for an ionizer, capable of preventing a fine metal particle from being scattered, and capable of enhancing stability of ion generation. <P>SOLUTION: Surface layer metal 2 is laminated on a tip part surface of base material metal 1 constituting a needle electrode. metal having 100 W/mK or more of thermal conductivity is preferably used as the base material metal 1, and metal having a work function larger than a work function of the base material metal 1, and having 1,000&deg;C or more of melting point, is preferably used as the surface layer metal 2. For example, tungsten (W) and a tungsten alloy (Th-W alloy, La-W alloy) are used preferably as the base material metal 1, nickel (Ni) is most preferably used as the surface layer metal 2, and platinum (Pt), gold (Au), palladium (Pd) and the like are preferably used as the surface layer metal 2. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、クリーンルーム内等で発生する静電気を除去するために使用されるイオナイザーの放電電極に関するものである。   The present invention relates to a discharge electrode of an ionizer used for removing static electricity generated in a clean room or the like.

半導体製造のクリーンルームでは、相対湿度が静電気の発生し易い40%程度となる低湿度環境であることや、ウェハ及び半導体素子を運搬するために電気抵抗の高いプラスチック容器が多用されていることなどにより、静電気が容易に発生する。この静電気はウェハ表面上に塵埃を付着させたり、ウェハ上のICや半導体素子を破壊するため、製品の歩留まりを低下させている。しかも、最近の半導体素子の高密度化に伴い、クリーンルームの超高清浄度化が望まれると共に半導体素子の静電気耐性も低下しているため、この様な静電気による生産障害がますます問題となっている。   In a clean room for semiconductor manufacturing, the relative humidity is a low-humidity environment where the generation of static electricity is about 40%, and plastic containers with high electrical resistance are frequently used to transport wafers and semiconductor elements. Static electricity is easily generated. This static electricity causes dust to adhere to the wafer surface and destroys ICs and semiconductor elements on the wafer, thus reducing the product yield. In addition, with the recent increase in the density of semiconductor elements, it is desired to have a clean room with an ultra-high cleanliness, and the static resistance of semiconductor elements has also decreased. Yes.

そこで、従来より、上記のようなクリーンルームにおける静電気を除去する対策として、イオナイザーが利用されている。このイオナイザーでは、これに設けられた電極に高電圧を印加してコロナ放電を起こさせ、その時発生するイオンによって帯電体上の電荷を中和させて除電を行っている。   Therefore, conventionally, an ionizer has been used as a countermeasure for removing static electricity in the clean room as described above. In this ionizer, a high voltage is applied to an electrode provided on the ionizer to cause corona discharge, and the charge generated on the charged body is neutralized by ions generated at that time to perform static elimination.

しかしながら、上記のようなコロナ放電式イオナイザーにおいては、その針状電極が摩耗して、微細な金属粒子が飛散することが問題になっていた。そこで、本出願人は、先に特許文献1に示すような、タングステン電極の表面がニッケルに被覆された積層構造を有する針状のイオン発生電極を備えたクリーンルーム用イオナイザーを提案した。
特許第3321187号
However, in the corona discharge ionizer as described above, there has been a problem that the needle-shaped electrode is worn and fine metal particles are scattered. Therefore, the present applicant previously proposed an ionizer for a clean room provided with a needle-like ion generating electrode having a laminated structure in which the surface of a tungsten electrode is covered with nickel as shown in Patent Document 1.
Japanese Patent No. 3321187

本発明者等は、上記のようなクリーンルーム用イオナイザーの放電電極からの発塵のメカニズムについてさらに検討を重ねた結果、以下に述べるような知見を得た。すなわち、本発明者等は、従来の放電電極(トリウム・タングステン合金(Th−W)電極)について摩耗防止効果を調べたところ、図4に示すような結果が得られた。なお、試験条件は、上記の放電電極を、印加電圧:15kV、放電電流:3μA、正負一対の電極を持つ直流パルスタイプのイオナイザーで約100時間使用し、超音波洗浄したものである。また、図4(A)〜(C)は、走査型電子顕微鏡(日本電子製 JSM−840、倍率:175倍)により電極の先端部を撮影したものである。   As a result of further studies on the mechanism of dust generation from the discharge electrode of the clean room ionizer as described above, the present inventors have obtained the following knowledge. That is, the present inventors examined the wear prevention effect of the conventional discharge electrode (thorium-tungsten alloy (Th-W) electrode), and the result shown in FIG. 4 was obtained. The test conditions were that the above discharge electrode was ultrasonically cleaned using a DC pulse type ionizer having an applied voltage of 15 kV, a discharge current of 3 μA, and a pair of positive and negative electrodes for about 100 hours. 4A to 4C are images of the tip of the electrode taken with a scanning electron microscope (JSM-840, manufactured by JEOL Ltd., magnification: 175 times).

図4(B)及び図4(C)に示すように、正極は負極に比べて明らかに摩耗が著しいことが分かった。これは、正極においては、腐食を伴う化学スパッタリングが支配的であるためであると考えられる。すなわち、正極は、酸素イオンのスパッタを受けるため、表層部分に脆弱な酸化膜(腐食層)が形成され、それが再度スパッタを受けるため、より早くスパッタリングが進行するものと考えられる。   As shown in FIGS. 4B and 4C, it was found that the positive electrode was obviously significantly worn compared to the negative electrode. This is presumably because chemical sputtering with corrosion is dominant in the positive electrode. That is, since the positive electrode is sputtered with oxygen ions, a fragile oxide film (corrosion layer) is formed on the surface layer portion, which is sputtered again, so that it is considered that sputtering proceeds faster.

一方、図4(C)に示すように、負極はあまり摩耗していないことから、負極においては物理スパッタリングが支配的であると考えられる。また、電極の摩耗により電極の先端形状が図4(B)に示すように丸くなることにより、安定に放電しにくくなり、イオン発生が不安定になると考えられる。   On the other hand, as shown in FIG. 4C, since the negative electrode is not worn much, it is considered that physical sputtering is dominant in the negative electrode. Moreover, it is considered that the tip shape of the electrode becomes round as shown in FIG. 4B due to wear of the electrode, so that stable discharge is difficult and ion generation becomes unstable.

そこで、本発明者等は、イオンのスパッタリングにより電極自身が飛散すること(電極の摩耗)が、電極からの発塵の原因の1つであるとの知見に基づいて、針状電極の摩耗を防止することにより微細な金属粒子の飛散を防止することができ、また、安定した放電によりイオン発生の安定性を高めることができる放電電極の研究を重ねた。   Therefore, the present inventors, based on the knowledge that the scattering of the electrode itself due to ion sputtering (electrode wear) is one of the causes of dust generation from the electrode, Research has been conducted on a discharge electrode that can prevent the scattering of fine metal particles by preventing it and can improve the stability of ion generation by stable discharge.

本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、針状電極の摩耗を防止することにより微細な金属粒子の飛散を防止することができ、また、安定した放電によりイオン発生の安定性を高めることができるイオナイザーの放電電極を提供することにある。   The present invention has been proposed to solve the above-described problems of the prior art, and its purpose is to prevent the scattering of fine metal particles by preventing the wear of the needle-like electrode. Another object of the present invention is to provide a discharge electrode of an ionizer that can improve the stability of ion generation by stable discharge.

上記目的を達成するため、請求項1に記載のイオナイザーの放電電極は、熱伝導率が100W/mK以上の金属を基材金属として針状電極が構成され、その仕事関数が前記基材金属の仕事関数より大きく、且つ、融点が1000℃以上の金属が、表層金属として前記針状電極の先端部表面に積層されていることを特徴とするものである。   In order to achieve the above object, the discharge electrode of the ionizer according to claim 1 is configured such that a needle-like electrode is formed using a metal having a thermal conductivity of 100 W / mK or more as a base metal, and a work function thereof is that of the base metal. A metal having a work function and a melting point of 1000 ° C. or higher is laminated on the surface of the tip of the needle electrode as a surface layer metal.

上記のような構成を有する請求項1に記載の発明によれば、熱伝導率の大きな金属を基材として針状電極を構成し、その先端部の表面に、その仕事関数が基材金属の仕事関数より大きく、且つ、融点が1000℃以上の金属を積層することによって、電極の表面が酸化されにくくなると共に、熱がこもりやすい表層金属の短所を基材金属によってカバーすることができるので、針状電極の摩耗を防止することができる。   According to the invention described in claim 1 having the above-described configuration, the needle electrode is configured using a metal having a high thermal conductivity as a base material, and the work function of the base metal is the surface of the tip portion. By laminating a metal larger than the work function and having a melting point of 1000 ° C. or higher, the surface of the electrode is less likely to be oxidized, and the disadvantage of the surface layer metal that tends to accumulate heat can be covered by the base metal. Wear of the needle electrode can be prevented.

請求項2に記載の発明は、請求項1に記載のイオナイザーの放電電極において、前記針状電極の先端部が、円錐台形とされていることを特徴とするものである。
上記のような構成を有する請求項2に記載の発明によれば、針状電極の先端部に電界集中が起こることを防止できるので、イオンのスパッタリングがその一点に集中することがない。その結果、電極先端の摩耗をより効果的に防止することができる。
According to a second aspect of the present invention, in the discharge electrode of the ionizer according to the first aspect, the tip of the needle-like electrode has a truncated cone shape.
According to the second aspect of the invention having the above-described configuration, it is possible to prevent electric field concentration from occurring at the tip portion of the needle-like electrode, so that ion sputtering does not concentrate at one point. As a result, wear of the electrode tip can be more effectively prevented.

請求項3に記載の発明は、請求項1又は請求項2に記載のイオナイザーの放電電極において、前記基材金属が、タングステン又はタングステン合金であり、前記表層金属が、ニッケル、白金、金、パラジウムのいずれかであることを特徴とするものである。
請求項3に記載の発明は、基材金属及び表層金属を具体的に規定したものであって、これらの金属を用いて放電電極を構成することにより、針状電極の摩耗を防止することができる。
The invention according to claim 3 is the discharge electrode of the ionizer according to claim 1 or 2, wherein the base metal is tungsten or a tungsten alloy, and the surface metal is nickel, platinum, gold, palladium. It is either of these.
The invention according to claim 3 specifically defines the base metal and the surface metal, and by using these metals to form the discharge electrode, it is possible to prevent wear of the needle electrode. it can.

本発明によれば、針状電極の摩耗を防止することにより微細な金属粒子の飛散を防止することができ、また、安定した放電によりイオン発生の安定性を高めることができるイオナイザーの放電電極を提供することができる。   According to the present invention, a discharge electrode of an ionizer that can prevent the scattering of fine metal particles by preventing the wear of the needle-shaped electrode and can improve the stability of ion generation by stable discharge. Can be provided.

以下、本発明に係るイオナイザーの放電電極の具体的な実施の形態(以下、実施形態という)を、図面を参照して説明する。   Hereinafter, specific embodiments (hereinafter referred to as embodiments) of discharge electrodes of an ionizer according to the present invention will be described with reference to the drawings.

(1)第1実施形態
(1−1)構成
(1−1−1)基材金属及び表層金属
本実施形態の放電電極は、図1に示すように、針状電極を構成する基材金属1の先端部表面に表層金属2が積層されて構成されている。前記基材金属1としては、熱伝導率が100W/mK以上の金属を用いることが好ましく、また、前記表層金属2としては、金属の腐食性を示す仕事関数がおよそ5eV以上の化学的に安定な金属(酸化されにくい金属)で、且つ、融点が1000℃以上の金属を用いることが好ましい。
(1) First Embodiment (1-1) Configuration (1-1-1) Base Metal and Surface Metal As shown in FIG. 1, the discharge electrode of the present embodiment is a base metal constituting a needle electrode. The surface layer metal 2 is laminated on the surface of the tip of 1. As the base metal 1, it is preferable to use a metal having a thermal conductivity of 100 W / mK or more, and as the surface metal 2, the work function indicating the corrosiveness of the metal is chemically stable of about 5 eV or more. It is preferable to use a metal having a melting point of 1000 ° C. or higher, which is a strong metal (a metal that is not easily oxidized).

続いて、本実施形態に用いられる金属についてより具体的に説明する。すなわち、表1に示した各種金属の物性値において、前記基材金属1としては、熱伝導率が100W/mK以上の金属であって、且つ、表層金属2よりはるかに融点が高い金属を用いることが好ましい。例えば、表1に示したように、基材金属1としては、タングステン(W)やタングステン合金(Th−W合金、La−W合金)を用いることが好ましい。
Next, the metal used in this embodiment will be described more specifically. That is, in the physical property values of various metals shown in Table 1, as the base metal 1, a metal having a thermal conductivity of 100 W / mK or more and a melting point much higher than that of the surface metal 2 is used. It is preferable. For example, as shown in Table 1, it is preferable to use tungsten (W) or a tungsten alloy (Th—W alloy, La—W alloy) as the base metal 1.

一方、前記表層金属2としては、その仕事関数が前記基材金属1の仕事関数より大きい金属、言い換えれば、前記基材金属1より腐食しにくい金属であって、且つ、融点が1000℃以上の金属を用いることが好ましい。例えば、表1に示したように、表層金属2としては、ニッケル(Ni)が最も好ましく、白金(Pt)、金(Au)、パラジウム(Pd)等が好ましい。   On the other hand, the surface metal 2 is a metal whose work function is higher than that of the base metal 1, in other words, a metal that is less susceptible to corrosion than the base metal 1 and has a melting point of 1000 ° C. or higher. It is preferable to use a metal. For example, as shown in Table 1, as the surface metal 2, nickel (Ni) is most preferable, and platinum (Pt), gold (Au), palladium (Pd), and the like are preferable.

このように、基材金属1の先端部に表層金属2を積層することの意義は、以下の通りである。例えば、仕事関数の大きなニッケル(Ni)は酸化されにくいが、熱伝導率が小さいため電極先端に熱がこもりやすく、Ni単体で電極を構成した場合には摩耗しやすいが、比較的熱伝導率の大きなタングステン(W)を基材とし、その上にNiを積層することで、熱がこもりやすいNiの短所を基材のWがカバーして摩耗を防止することができるからである。   Thus, the significance of laminating the surface metal 2 on the tip of the base metal 1 is as follows. For example, nickel (Ni), which has a high work function, is difficult to oxidize, but because the thermal conductivity is small, heat tends to be trapped at the tip of the electrode. This is because, by using a large tungsten (W) as a base material and laminating Ni thereon, the base material W can cover the shortcomings of Ni, where heat is easily trapped, and wear can be prevented.

(1−1−2)放電電極の製造方法
続いて、本実施形態の放電電極の製造方法について説明する。すなわち、本実施形態においては、上記基材金属1より融点の低い表層金属2を該基材金属1の表面に3〜6μmの厚さにメッキしてから、酸素を含まないガス中で高温(800〜900℃)にして焼き締め、段階的に温度を下げて、表層金属2と基材金属1を密着させる。
(1-1-2) Manufacturing Method of Discharge Electrode Subsequently, a manufacturing method of the discharge electrode of the present embodiment will be described. That is, in this embodiment, after surface metal 2 having a melting point lower than that of base metal 1 is plated on the surface of base metal 1 to a thickness of 3 to 6 μm, it is heated in a gas containing no oxygen ( The surface metal 2 and the base metal 1 are brought into close contact with each other by reducing the temperature stepwise.

(1−2)作用・効果
上記のような製造方法により作製した本実施形態の放電電極(表層金属:Ni、基材金属:La−W合金)と、従来の放電電極(Th−W)について、摩耗防止効果を調べたところ、図2に示すような結果が得られた。なお、試験条件は、上記の放電電極を、印加電圧:15kV、放電電流:3μA、正負一対の電極を持つ直流パルスタイプのイオナイザーで使用し、従来の放電電極については100時間使用し、本実施形態の放電電極については1年間使用した。図2から明らかなように、本実施形態の放電電極は、従来の放電電極に比べて、著しく摩耗が少ないことが分かる。
(1-2) Actions / Effects About the discharge electrode (surface metal: Ni, base metal: La—W alloy) of the present embodiment and the conventional discharge electrode (Th—W) produced by the manufacturing method as described above. When the anti-wear effect was examined, the results shown in FIG. 2 were obtained. The test conditions were as follows: the above discharge electrode was used in a DC pulse type ionizer having an applied voltage of 15 kV, a discharge current of 3 μA, and a pair of positive and negative electrodes, and the conventional discharge electrode was used for 100 hours. The form of discharge electrode was used for one year. As can be seen from FIG. 2, the discharge electrode of the present embodiment is significantly less worn than the conventional discharge electrode.

このように本実施形態によれば、熱伝導率の大きな金属を基材とし、その上に、その仕事関数が基材金属の仕事関数より大きく、且つ、融点が1000℃以上の金属を積層することによって、電極の表面が酸化されにくくなると共に、熱がこもりやすい表層金属の短所を基材金属によってカバーすることができるので、針状電極の摩耗を防止することができる。   As described above, according to this embodiment, a metal having a high thermal conductivity is used as a base material, and a metal having a work function larger than that of the base metal and having a melting point of 1000 ° C. or higher is laminated thereon. As a result, the surface of the electrode is less likely to be oxidized, and the disadvantage of the surface metal that is likely to accumulate heat can be covered by the base metal, so that the wear of the needle electrode can be prevented.

(2)第2実施形態
本実施形態の放電電極は、図3に示すように、上記第1実施形態の変形例であって、電界の一点集中を避けるため、積層構造の電極の先端を円錐台形としたことを特徴とするものである。先の尖った電極は、その先端に電界集中が起こり、イオンのスパッタリングがその一点に集中するため、電極先端が摩耗しやすくなるからである。
(2) Second Embodiment As shown in FIG. 3, the discharge electrode of the present embodiment is a modification of the first embodiment, and in order to avoid the concentration of one point of the electric field, the tip of the electrode of the laminated structure is a cone. It is characterized by a trapezoidal shape. This is because the pointed electrode is subject to electric field concentration at the tip, and ion sputtering is concentrated at one point, so that the electrode tip is easily worn.

上記のような構成を有する本実施形態の放電電極によれば、電極の先端を円錐台形とすることにより、先端部に電界集中が起こることを防止できるので、イオンのスパッタリングがその一点に集中することがない。その結果、電極先端の摩耗をより効果的に防止することができる。   According to the discharge electrode of the present embodiment having the above-described configuration, it is possible to prevent electric field concentration from occurring at the tip by making the tip of the electrode a truncated cone, so that ion sputtering is concentrated at one point. There is nothing. As a result, wear of the electrode tip can be more effectively prevented.

本発明に係るイオナイザーの放電電極の第1実施形態の構成を示す断面図。Sectional drawing which shows the structure of 1st Embodiment of the discharge electrode of the ionizer which concerns on this invention. 本実施形態の放電電極(表層金属:Ni、基材金属:La−W合金)と、従来の放電電極(Th−W)について、摩耗防止効果を調べた結果を示す写真であって、(A)は従来の放電電極、(B)は本実施形態の放電電極。It is the photograph which shows the result which investigated the wear prevention effect about the discharge electrode (surface layer metal: Ni, base metal: La-W alloy) of this embodiment, and the conventional discharge electrode (Th-W), (A ) Is a conventional discharge electrode, and (B) is a discharge electrode of this embodiment. 本発明に係るイオナイザーの放電電極の第2実施形態の構成を示す断面図。Sectional drawing which shows the structure of 2nd Embodiment of the discharge electrode of the ionizer which concerns on this invention. 従来の放電電極(トリウム・タングステン合金(Th−W)電極)について摩耗防止効果を調べた結果を示す写真であって、(A)は未使用電極、(B)は超音波洗浄後の正電極、(C)は超音波洗浄後の負電極。It is the photograph which shows the result of having investigated the wear prevention effect about the conventional discharge electrode (Thorium tungsten alloy (Th-W) electrode), (A) is an unused electrode, (B) is a positive electrode after ultrasonic cleaning. , (C) is a negative electrode after ultrasonic cleaning.

1…基材金属
2…表層金属
1 ... Base metal 2 ... Surface metal

Claims (3)

熱伝導率が100W/mK以上の金属を基材金属として針状電極が構成され、
その仕事関数が前記基材金属の仕事関数より大きく、且つ、融点が1000℃以上の金属が、表層金属として前記針状電極の先端部表面に積層されていることを特徴とするイオナイザーの放電電極。
The needle electrode is composed of a metal having a thermal conductivity of 100 W / mK or more as a base metal,
A discharge electrode of an ionizer, characterized in that a metal having a work function larger than the work function of the base metal and a melting point of 1000 ° C. or more is laminated as a surface metal on the tip end surface of the needle electrode. .
前記針状電極の先端部が、円錐台形とされていることを特徴とする請求項1に記載のイオナイザーの放電電極。   The discharge electrode of the ionizer according to claim 1, wherein a tip portion of the needle-like electrode has a truncated cone shape. 前記基材金属が、タングステン又はタングステン合金であり、前記表層金属が、ニッケル、白金、金、パラジウムのいずれかであることを特徴とする請求項1又は請求項2に記載のイオナイザーの放電電極。   The discharge electrode of the ionizer according to claim 1 or 2, wherein the base metal is tungsten or a tungsten alloy, and the surface layer metal is any one of nickel, platinum, gold, and palladium.
JP2009014154A 2009-01-26 2009-01-26 Discharge electrode for ionizer Pending JP2010170937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014154A JP2010170937A (en) 2009-01-26 2009-01-26 Discharge electrode for ionizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014154A JP2010170937A (en) 2009-01-26 2009-01-26 Discharge electrode for ionizer

Publications (1)

Publication Number Publication Date
JP2010170937A true JP2010170937A (en) 2010-08-05

Family

ID=42702859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014154A Pending JP2010170937A (en) 2009-01-26 2009-01-26 Discharge electrode for ionizer

Country Status (1)

Country Link
JP (1) JP2010170937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416221A1 (en) 2010-07-29 2012-02-08 Brother Kogyo Kabushiki Kaisha Image forming apparatus with a plurality of scorotron chargers
JP2012133934A (en) * 2010-12-20 2012-07-12 Techno Ryowa Ltd Discharge electrode for ionizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521131A (en) * 1991-07-12 1993-01-29 Techno Ryowa:Kk Ionizer for clean room
JPH06325894A (en) * 1993-03-19 1994-11-25 Techno Ryowa:Kk Ionizer for clean room
JPH09208315A (en) * 1996-02-07 1997-08-12 Toyo Tanso Kk Carbon electrode for dry cleaning of semiconductor
JP2008308372A (en) * 2007-06-15 2008-12-25 Ooensu:Kk Ozone generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521131A (en) * 1991-07-12 1993-01-29 Techno Ryowa:Kk Ionizer for clean room
JPH06325894A (en) * 1993-03-19 1994-11-25 Techno Ryowa:Kk Ionizer for clean room
JPH09208315A (en) * 1996-02-07 1997-08-12 Toyo Tanso Kk Carbon electrode for dry cleaning of semiconductor
JP2008308372A (en) * 2007-06-15 2008-12-25 Ooensu:Kk Ozone generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416221A1 (en) 2010-07-29 2012-02-08 Brother Kogyo Kabushiki Kaisha Image forming apparatus with a plurality of scorotron chargers
JP2012133934A (en) * 2010-12-20 2012-07-12 Techno Ryowa Ltd Discharge electrode for ionizer

Similar Documents

Publication Publication Date Title
TWI437235B (en) Contact probe
JP2016508608A5 (en)
JP2011038859A (en) Contact probe pin
JP2010170937A (en) Discharge electrode for ionizer
TWI457570B (en) Electrical contact components
TWI513982B (en) Electrical contact components and inspection connection devices
JP5662792B2 (en) Ionizer discharge electrode
TW200838071A (en) Needle-like discharging electrode and discharging device
TW201237423A (en) Contact probe pin and test method
JP4901237B2 (en) High voltage charging device for electric dust collector
JP2006038641A (en) Contact probe
TWI363407B (en) Probe
JP2006184081A (en) Probe pin for probe card
JP5125790B2 (en) Electric dust collector
JP4863915B2 (en) Static neutralizer
JP2011202970A (en) Probe needle and method for manufacturing the probe needle
JP2010225422A (en) Discharge electrode
JP5264514B2 (en) Feeding die for wire electric discharge machine
JP2019057363A (en) Discharge reactor, and manufacturing method thereof
JP2010101662A (en) Method and apparatus for cleaning probe
JP2006504528A5 (en)
KR101310295B1 (en) Thermoelectric device and method for manufacturing the same
JP2006098274A (en) Probe pin for probe card
JP4295698B2 (en) Coherer using highly functional material, lightning detector and lightning ground fault detector using the same
JP2011076719A (en) Discharge electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111226

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Effective date: 20130411

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20130618

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130805

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910