JPH0521131A - Ionizer for clean room - Google Patents

Ionizer for clean room

Info

Publication number
JPH0521131A
JPH0521131A JP17280991A JP17280991A JPH0521131A JP H0521131 A JPH0521131 A JP H0521131A JP 17280991 A JP17280991 A JP 17280991A JP 17280991 A JP17280991 A JP 17280991A JP H0521131 A JPH0521131 A JP H0521131A
Authority
JP
Japan
Prior art keywords
electrode
clean room
ionizer
wear
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17280991A
Other languages
Japanese (ja)
Other versions
JP3321187B2 (en
Inventor
Masanori Suzuki
政典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Ryowa Ltd
Original Assignee
Techno Ryowa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Ryowa Ltd filed Critical Techno Ryowa Ltd
Priority to JP17280991A priority Critical patent/JP3321187B2/en
Publication of JPH0521131A publication Critical patent/JPH0521131A/en
Application granted granted Critical
Publication of JP3321187B2 publication Critical patent/JP3321187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

PURPOSE:To provide an ionizer for a clean room which reduces contamination within the clean room due to scattered heavy metals, and also prevents electrodes from being worn without lowering electricity-eliminating performance lowered even when discharge is induced with high voltage applied to the electrodes. CONSTITUTION:Each needle electrode 2 of an ionizer 1 for a clean room is formed into a laminated structure where a nickel layer 3 is laminated by means of plating and the like. By this constitution, the wear resistance of nickel is enhanced, the wear rate of each electrode is thereby reduced to a great extent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、クリーンルーム内で発
生する静電気を除去するために使用されるイオナイザの
改良に関する。
FIELD OF THE INVENTION The present invention relates to improvements in ionizers used to remove static electricity generated in clean rooms.

【0002】[0002]

【従来の技術】従来より、半導体製造のクリーンルーム
では、静電気の発生し易い相対湿度が40%程度となる
低湿度環境であることや、ウェハ及び半導体素子を運搬
するために電気抵抗の高いプラスチック容器が多用され
ていることなどにより、容易に静電気が発生している。
この静電気はウェハ表面上に塵埃を付着させたり、ウェ
ハ上のICや半導体素子を破壊してしまい、製品の歩留
まりを低下させている。しかも、最近の半導体素子の高
密度化に伴い、クリーンルームの超高清浄度化が望まれ
ると共に半導体素子の静電気耐性も低下し、この様な静
電気による生産障害が、益々問題となっている。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing clean room, a relative humidity in which static electricity is easily generated is about 40%, and a plastic container having a high electric resistance for transporting wafers and semiconductor elements is used. Static electricity is easily generated due to the heavy use of.
This static electricity causes dust to adhere to the surface of the wafer, destroys ICs and semiconductor elements on the wafer, and reduces the yield of products. Moreover, with the recent increase in the density of semiconductor elements, it is desired to make the clean room ultra-clean, and the electrostatic resistance of the semiconductor elements is also lowered, and such production failures due to static electricity are becoming more and more problems.

【0003】そこで従来より、クリーンルームにおける
静電気を除去する対策として、イオナイザが利用されて
いる。このイオナイザでは、これに設けられた電極に高
電圧を印加してコロナ放電を起こさせ、その時発生する
イオンによって帯電体上の電荷を中和させて除電を行っ
ている。
Therefore, conventionally, an ionizer has been used as a measure for removing static electricity in a clean room. In this ionizer, a high voltage is applied to the electrodes provided on the ionizer to cause corona discharge, and the ions generated at that time neutralize the charge on the charged body to remove the charge.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記の
ようなイオナイザでは、そのイオン発生電極に高電圧を
印加してコロナ放電を起こさせる毎に電極が摩耗し、そ
の摩耗した電極材が飛散することになる。電極材は重金
属によって構成されるため、重金属汚染が引き起こされ
る。
However, in the above-mentioned ionizer, each time the high voltage is applied to the ion generating electrode to cause corona discharge, the electrode is worn and the worn electrode material is scattered. become. Since the electrode material is composed of heavy metal, heavy metal contamination is caused.

【0005】このため、一部には電極を摩耗しにくい石
英管で覆うことにより重金属の飛散を防止することが行
われている。この石英管は誘電体として作用し、まず石
英管内の金属電極に高電圧が印加されると、その金属を
覆っている石英管が分極して石英管表面に電荷が誘起さ
れ、電荷密度の高い部分でコロナ放電を生じる。しか
し、誘電体からの放電では、全電荷を放出しないで誘電
体表面が帯電した状態(分極状態)のままとなる。この
ため、この分極状態の石英管で覆われた電極に極性の変
わらない電圧を印加しても、石英管表面の電荷密度は高
まらないので、安定して放電することができない。
Therefore, a part of the electrode is covered with a quartz tube which is hard to wear to prevent scattering of heavy metals. The quartz tube acts as a dielectric, and when a high voltage is applied to the metal electrode in the quartz tube, the quartz tube covering the metal is polarized and electric charges are induced on the surface of the quartz tube, resulting in high charge density. Corona discharge occurs at the part. However, in discharging from the dielectric, the surface of the dielectric remains charged (polarized state) without discharging all charges. Therefore, even if a voltage whose polarity does not change is applied to the electrode covered with the polarized quartz tube, the charge density on the surface of the quartz tube does not increase, and stable discharge cannot be performed.

【0006】更に、電極表面の誘電体でコロナ放電を起
こさせるためには、直流電源やパルス直流電源のように
極性の変わらない電源では、安定して定常的にイオンを
発生することは難しい。即ち、石英管でコロナ放電を起
こさせるためには、交流電源に限定されることになる。
しかし、交流電源を用いたイオナイザは、直流電源やパ
ルス直流電源を用いたものに比べ除電性能が劣ることは
公知のことである。即ち、交流電源では、直流やパルス
直流の電源を用いて印加する方法と異なり、空間電界に
よるイオンの拡散が無いため、イオナイザの有効範囲が
狭く、有効に利用できるイオンの量が少ない。このた
め、イオナイザとしての除電性能の低下が引き起こされ
ている。
Further, in order to cause corona discharge in the dielectric on the electrode surface, it is difficult to stably and constantly generate ions with a power source whose polarity does not change, such as a DC power source or a pulse DC power source. That is, in order to cause corona discharge in the quartz tube, it is limited to the AC power source.
However, it is well known that an ionizer using an AC power supply is inferior in static elimination performance to those using a DC power supply or a pulse DC power supply. That is, in the AC power supply, unlike the method of applying using a DC or pulsed DC power supply, since there is no diffusion of ions due to a spatial electric field, the effective range of the ionizer is narrow and the amount of ions that can be effectively used is small. Therefore, the static elimination performance of the ionizer is deteriorated.

【0007】本発明は、上記のような従来技術の課題を
解決するために提供されたもので、その目的は、電極に
高電圧を印加し放電を起こさせる時に、その電源の種類
を限定されず、また、除電性能を低下することなく、更
に、電極の摩耗が防止され、電極材の飛散によるクリー
ンルーム内の重金属汚染を低減することのできるクリー
ンルーム用イオナイザを提供することである。
The present invention has been provided in order to solve the above-mentioned problems of the prior art, and its object is to limit the type of power supply when a high voltage is applied to electrodes to cause discharge. It is also an object of the present invention to provide an ionizer for a clean room, which is capable of preventing abrasion of the electrodes and reducing heavy metal contamination in the clean room due to scattering of the electrode material without lowering the charge removal performance.

【0008】[0008]

【課題を解決するため手段】本発明の請求項1記載のク
リーンルーム用イオナイザは、静電気除去のためのクリ
ーンルーム用イオナイザにおいて、表面に本体の構成材
料以外の金属を重ね合わせて積層構造としたイオン発生
電極を備えたことを特徴とする。
The ionizer for a clean room according to claim 1 of the present invention is an ionizer for a clean room for removing static electricity, in which a metal other than the constituent material of the main body is superposed on the surface to generate ions. It is characterized by having electrodes.

【0009】また、請求項2記載のクリーンルーム用イ
オナイザは、請求項1記載の電極の表層がニッケルによ
り構成されたことを特徴とする。
A clean room ionizer according to a second aspect is characterized in that the surface layer of the electrode according to the first aspect is made of nickel.

【0010】[0010]

【作用】以上のような構成を有する本発明の請求項1記
載のクリーンルーム用イオナイザは、イオン発生電極に
性質の異なる金属をメッキ等により重ね合わせ積層構造
としたことにより、電極表層の耐摩耗性が向上され、電
極の摩耗を防止することができる。従って、電極材の飛
散によるクリーンルーム内の重金属汚染が低減される。
In the ionizer for a clean room according to claim 1 of the present invention having the above-mentioned structure, the ion generating electrode has a layered structure in which metals having different properties are superposed by plating or the like, so that the abrasion resistance of the electrode surface layer is improved. Is improved and wear of the electrodes can be prevented. Therefore, heavy metal contamination in the clean room due to scattering of the electrode material is reduced.

【0011】また、請求項2記載のクリーンルーム用イ
オナイザは、電極にニッケルを重ね合わせ積層構造とし
たことによって、ニッケル電極に比べて耐摩耗性とな
り、電極の摩耗を防止することができる。従って、電極
材の飛散によるクリーンルーム内の重金属汚染が低減さ
れる。
In the clean room ionizer according to the second aspect of the present invention, since nickel is superposed on the electrodes to form a laminated structure, the ionizer has more wear resistance than nickel electrodes, and wear of the electrodes can be prevented. Therefore, heavy metal contamination in the clean room due to scattering of the electrode material is reduced.

【0012】[0012]

【実施例】以下、本発明のクリーンルーム用イオナイザ
の一実施例を図1及び図2に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the clean room ionizer of the present invention will be described below with reference to FIGS.

【0013】即ち、クリーンルーム用イオナイザ1は、
図1に示すように、一対の正負の針状電極2が取付けら
れている。この電極2は、タングステン電極2aの表面
にニッケルによる被覆3がメッキにより設けられ、積層
構造となっている。
That is, the clean room ionizer 1 is
As shown in FIG. 1, a pair of positive and negative needle electrodes 2 is attached. The electrode 2 has a laminated structure in which a coating 3 made of nickel is provided on the surface of a tungsten electrode 2a by plating.

【0014】この様なニッケル被覆された電極2の摩耗
率を調べるために、この電極の設けられたクリーンルー
ム用イオナイザ1を図2に示すようなクリーンルーム4
に設置した。
In order to investigate the wear rate of the electrode 2 coated with nickel as described above, the ionizer 1 for a clean room provided with this electrode is used as a clean room 4 as shown in FIG.
Installed in.

【0015】即ち、このクリーンルーム4は、クリーン
ルーム4内に清浄化空気を供給するための高性能フィル
タ5が天井に備えられ、その下部に本実施例のクリーン
ルーム用イオナイザ1が設置されている。クリーンルー
ム4内部には、上部に静電荷+,−を有する帯電体12
が設けられている。また、クリーンルーム4内部には、
イオナイザ1の電極2に清浄化度の高い空気を供給する
ための清浄化装置が設けられている。この装置は、室内
に吸気口7と、イオナイザ1の電極2近傍に供給口とを
有する空気供給路6の管路上に、エアポンプ9と、イオ
ナイザを備える微粒子析出装置10及びメンブレンフィ
ルタ11が設けられている。この様な清浄化装置によっ
て、針状電極2には、供給口8から約0.005μm未
満の超微粒子も制御された清浄化度の高い空気が供給さ
れる。即ち、電極2周囲の雰囲気中には超微粒子も皆無
となるので、微粒子が電極上に付着する等の影響が無い
状態で電極の摩耗率を調べることができる。
That is, in this clean room 4, a high performance filter 5 for supplying purified air into the clean room 4 is provided on the ceiling, and the clean room ionizer 1 of this embodiment is installed below the high performance filter 5. Inside the clean room 4, a charged body 12 having an electrostatic charge +,-on the upper part.
Is provided. In addition, inside the clean room 4,
A cleaning device for supplying highly clean air to the electrode 2 of the ionizer 1 is provided. In this device, an air pump 9, a fine particle deposition device 10 equipped with an ionizer, and a membrane filter 11 are provided on a pipe of an air supply passage 6 having an intake port 7 inside the chamber and a supply port near the electrode 2 of the ionizer 1. ing. By such a cleaning device, the needle electrode 2 is supplied from the supply port 8 with highly clean air in which ultrafine particles of less than about 0.005 μm are also controlled. That is, since there are no ultrafine particles in the atmosphere around the electrode 2, it is possible to check the wear rate of the electrode without any influence such as adhesion of the fine particles to the electrode.

【0016】ところで、この様なイオナイザ1に±13
〜±20kVの直流電圧が1〜11秒間隔で印加される
と、正負の針状電極2から交互に正イオン+と負イオン
−が発生する。この生じた正負のイオン+,−は、一定
方向の循環空気流により帯電体12に搬送される。これ
により、帯電体12上の静電荷−,+が、それぞれ逆極
性のイオン+,−により中和され、除電される。
By the way, in such an ionizer 1, ± 13
When a direct current voltage of ± 20 kV is applied at intervals of 1 to 11 seconds, positive ions + and negative ions − are alternately generated from the positive and negative needle electrodes 2. The generated positive and negative ions + and − are transported to the charging body 12 by a circulating air flow in a fixed direction. As a result, the electrostatic charges − and + on the charged body 12 are neutralized by the ions of opposite polarities + and −, respectively, and the charge is removed.

【0017】以上の様なクリーンルーム4内で、針状電
極2に一定時間高電圧を印加して放電を起こさせた後、
実体顕微鏡(Nikon製 SMZ−2T、倍率:8
0)、一部走査型電子顕微鏡(日本電子製 JSM−8
40、倍率:200)により電極を撮影した。その影像
から、幾何学的に電極の摩耗量(体積)を計算により求
めた。電極の摩耗量は、高電圧の印加時間に比例するの
で、電極の耐摩耗性の評価には単位時間当たりの摩耗量
(摩耗率)を用いた。この時、比較のためにトリウム・
タングステン合金(W−Th)電極、アルミニウム(A
l)電極、ニッケル(Ni)電極、チタン(Ti)電
極、ニオブ(Nb)電極に関しても、同様にして摩耗量
を測定した。また、この時の摩耗率を、従来クリーンル
ーム用として使用されているトリウム・タングステン合
金(W−Th)電極の摩耗率により基準化し、このW−
Th電極の摩耗率を1として表現する。
In the clean room 4 as described above, a high voltage is applied to the needle-shaped electrode 2 for a certain period of time to cause discharge,
Stereomicroscope (Nikon SMZ-2T, magnification: 8
0), partial scanning electron microscope (JSM-8 manufactured by JEOL Ltd.)
The electrode was photographed at 40, magnification: 200). The wear amount (volume) of the electrode was geometrically calculated from the image. Since the wear amount of the electrode is proportional to the application time of the high voltage, the wear amount (wear rate) per unit time was used to evaluate the wear resistance of the electrode. At this time, for comparison, thorium
Tungsten alloy (W-Th) electrode, aluminum (A
The amount of wear was similarly measured for the l) electrode, the nickel (Ni) electrode, the titanium (Ti) electrode, and the niobium (Nb) electrode. In addition, the wear rate at this time is standardized by the wear rate of the thorium-tungsten alloy (W-Th) electrode that has been conventionally used for clean rooms.
The wear rate of the Th electrode is expressed as 1.

【0018】上述した測定により、図3に示す様な結果
が得られた。即ち、ニッケルのみのNi電極の摩耗率
は、従来のW−Th電極より大きいが、タングステンに
ニッケルを被覆したNi被覆電極は、他の各種電極材に
比べて摩耗率が大幅に低い値となった。この値は、従来
のW−Th電極に比べ約1/100にまで低下してい
る。ところで、タングステンのみの電極の摩耗率は、図
中にないが従来のW−Th電極より大きいことは公知の
ことである。従って、Ni電極と、タングステン電極の
いずれも単体では従来のW−Th電極より摩耗率が大き
いが、2つの金属材料を積層構造とし、表層の金属の欠
点を補うことにより摩耗率が大幅に低減されている。
From the above measurement, the results shown in FIG. 3 were obtained. That is, the wear rate of the Ni electrode containing only nickel is higher than that of the conventional W-Th electrode, but the wear rate of the Ni-coated electrode in which nickel is coated on tungsten is significantly lower than that of other various electrode materials. It was This value is reduced to about 1/100 of that of the conventional W-Th electrode. By the way, it is well known that the wear rate of the electrode containing only tungsten is higher than that of the conventional W-Th electrode, which is not shown in the figure. Therefore, both the Ni electrode and the tungsten electrode alone have a larger wear rate than the conventional W-Th electrode, but the wear rate is significantly reduced by using a laminated structure of two metal materials and compensating for the defects of the metal of the surface layer. Has been done.

【0019】以上のような本実施例のクリーンルーム用
イオナイザによれば、従来の各種電極材では放電による
摩耗を避けられないが、これらの電極にニッケルをメッ
キ等により重ね合わせ積層構造とすることにより、表層
のニッケルの欠点を補い、耐摩耗性とすることができ、
電極の摩耗を大幅に低減することができる。
According to the ionizer for a clean room of the present embodiment as described above, wear due to electric discharge cannot be avoided with various conventional electrode materials, but nickel is plated on these electrodes to form a laminated structure. , Can compensate for the defects of nickel in the surface layer and make it wear resistant,
The wear of the electrodes can be significantly reduced.

【0020】しかも、本実施例の摩耗率の測定は直流パ
ルス電圧印加方式のイオナイザで行ったが、直流電圧印
加及び交流電圧印加のそれぞれの電極の場合でも電極表
面が金属であるため、同様の効果を得ることができる。
Moreover, the wear rate of this embodiment was measured with an ionizer of the DC pulse voltage application system. However, even in the case of each of the DC voltage application electrode and the AC voltage application electrode, since the electrode surface is a metal, the same result is obtained. The effect can be obtained.

【0021】さらに、安定して定常的にイオンを発生す
ることができるので、静電気の除電性能を損なうことが
ない。
Further, since the ions can be stably and constantly generated, the static elimination performance is not impaired.

【0022】なお、本発明は上述した実施例に限定され
るものではなく、具体的な各部材の形状、或いは各々の
取付け位置及び方法は適宜変更可能である。
The present invention is not limited to the above-mentioned embodiments, and the specific shapes of the respective members, or the mounting positions and methods of the respective members can be appropriately changed.

【0023】例えば、電極材及び表層の金属の種類は限
定されない。即ち、単一の金属だけでは放電による摩耗
を避けられないが、他の金属とメッキ等により重ね合わ
せ積層構造とすることにより、表層の金属の欠点を補
い、耐摩耗生とすることができ、電極に高電圧を印加す
る方式を限定されず、静電気の除電性能を損なうこと無
く、電極の摩耗を大幅に低減することができる。
For example, the types of the electrode material and the surface metal are not limited. That is, wear due to discharge cannot be avoided with only a single metal, but by forming a laminated structure by stacking with another metal by plating or the like, the defects of the metal of the surface layer can be compensated and wear resistance can be obtained. The method of applying a high voltage to the electrodes is not limited, and the wear of the electrodes can be significantly reduced without impairing the static elimination performance.

【0024】また、積層構造とする方法はメッキに限定
されず、スパッタリング等の薄膜生成方法により積層構
造とすることも可能である。
The method of forming a laminated structure is not limited to plating, and a laminated structure can be formed by a thin film forming method such as sputtering.

【0025】ところで、摩耗率の測定は清浄化装置の設
けられたクリーンルームで行われたが、本発明によれ
ば、清浄化装置の有無やクリーンルームの構造等に関係
なく、電極の摩耗率は大幅に低減することができる。
The wear rate was measured in a clean room equipped with a cleaning device. According to the present invention, however, the wear rate of the electrode is significantly increased regardless of the presence or absence of the cleaning device and the structure of the clean room. Can be reduced to

【0026】[0026]

【発明の効果】本発明のクリーンルーム用イオナイザに
よれば、イオナイザの電極に他の金属を重ね合わせ積層
構造とし、表層の金属の欠点を補い耐摩耗性としたこと
によって、電極に高電圧を印加し放電を起こさせる時
に、その電源の種類を限定されず、また、除電性能を低
下することなく、更に、電極の摩耗が防止され、電極材
の飛散によるクリーンルーム内の重金属汚染を低減する
ことができる。
According to the ionizer for a clean room of the present invention, another metal is laminated on the electrode of the ionizer so as to have a laminated structure, and the defect of the metal of the surface layer is compensated to make it wear resistant, so that a high voltage is applied to the electrode. When generating a discharge, the type of power source is not limited, the charge removal performance is not reduced, and further, the wear of the electrode is prevented, and the heavy metal contamination in the clean room due to the scattering of the electrode material can be reduced. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のクリーンルーム用イオナイザの実施例
を示す側面図及び要部拡大断面図。
FIG. 1 is a side view showing an embodiment of a clean room ionizer of the present invention and an enlarged sectional view of a main part.

【図2】図1のクリーンルーム用イオナイザを取り付け
たクリーンルームの構成説明図。
FIG. 2 is a structural explanatory view of a clean room to which the clean room ionizer of FIG. 1 is attached.

【図3】W−Th電極の摩耗率で規準化された各種電極
材の摩耗率を示すグラフ。
FIG. 3 is a graph showing the wear rates of various electrode materials normalized by the wear rate of W-Th electrodes.

【符号の説明】[Explanation of symbols]

1 クリーンルーム用イオナイザ 2 針状電極 3 ニッケル被覆 4 クリーンルーム 5 高性能フィルタ 6 空気供給路 7 吸気口 8 供給口 9 エアポンプ 10 微粒子析出装置 11 メンブレンフィルタ 12 帯電体 1 Ionizer for clean room 2 needle electrodes 3 Nickel coating 4 clean room 5 High-performance filter 6 air supply path 7 Intake port 8 supply ports 9 Air pump 10 Fine particle deposition equipment 11 Membrane filter 12 Charged body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 静電気除去のためのクリーンルーム用イ
オナイザにおいて、表面に本体の構成材料以外の金属を
重ね合わせ積層構造としたイオン発生電極を備えたこと
を特徴とするクリーンルーム用イオナイザ。
1. An ionizer for a clean room for removing static electricity, comprising an ion generating electrode having a laminated structure in which a metal other than a constituent material of the main body is superposed on a surface thereof.
【請求項2】 表層がニッケルにより構成されたことを
特徴とする請求項1記載のクリーンルーム用イオナイ
ザ。
2. The clean room ionizer according to claim 1, wherein the surface layer is made of nickel.
JP17280991A 1991-07-12 1991-07-12 Clean room ionizer Expired - Fee Related JP3321187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17280991A JP3321187B2 (en) 1991-07-12 1991-07-12 Clean room ionizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17280991A JP3321187B2 (en) 1991-07-12 1991-07-12 Clean room ionizer

Publications (2)

Publication Number Publication Date
JPH0521131A true JPH0521131A (en) 1993-01-29
JP3321187B2 JP3321187B2 (en) 2002-09-03

Family

ID=15948778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17280991A Expired - Fee Related JP3321187B2 (en) 1991-07-12 1991-07-12 Clean room ionizer

Country Status (1)

Country Link
JP (1) JP3321187B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532708A (en) * 2005-03-15 2008-08-21 ザ プロクター アンド ギャンブル カンパニー Instrument for treating hair with steam
JP2010170937A (en) * 2009-01-26 2010-08-05 Techno Ryowa Ltd Discharge electrode for ionizer
JP2016010706A (en) * 2003-05-15 2016-01-21 シャープ株式会社 Ion generation element and electric apparatus
WO2017138356A1 (en) * 2016-02-08 2017-08-17 国立研究開発法人産業技術総合研究所 Structure for removing static electricity in low-humidity space

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010706A (en) * 2003-05-15 2016-01-21 シャープ株式会社 Ion generation element and electric apparatus
JP2008532708A (en) * 2005-03-15 2008-08-21 ザ プロクター アンド ギャンブル カンパニー Instrument for treating hair with steam
JP2010170937A (en) * 2009-01-26 2010-08-05 Techno Ryowa Ltd Discharge electrode for ionizer
WO2017138356A1 (en) * 2016-02-08 2017-08-17 国立研究開発法人産業技術総合研究所 Structure for removing static electricity in low-humidity space
JPWO2017138356A1 (en) * 2016-02-08 2018-02-15 国立研究開発法人産業技術総合研究所 Static electricity removal structure in low humidity space
TWI645144B (en) * 2016-02-08 2018-12-21 國立研究開發法人產業技術總合研究所 Static elimination structure in low humidity space
EP3416461A4 (en) * 2016-02-08 2019-08-21 National Institute of Advanced Industrial Science and Technology Structure for removing static electricity in low-humidity space
US10798807B2 (en) 2016-02-08 2020-10-06 Nihon Spindle Manufacturing Co., Ltd. Structure of removing static electricity in low-humidity space

Also Published As

Publication number Publication date
JP3321187B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
JP2520311B2 (en) Ion generator and static elimination equipment for charged articles in clean space using the same
EP0386317B1 (en) Equipment for removing static electricity from charged articles existing in clean space
TWI585883B (en) Plasma processing device
US5982102A (en) Device for transport of air and/or cleaning of air using a so called ion wind
JP2001189199A (en) Ion generator and charge neutralizing device
JP2528550Y2 (en) Ionizer using needle electrodes
WO2007102191A1 (en) Neutralization apparatus having minute electrode ion generation element
JPH0521131A (en) Ionizer for clean room
Cooper et al. Surface cleaning by electrostatic removal of particles
US20040065545A1 (en) Sputtering target producing very few particles, backing plate or apparatus within spruttering device and roughening method by electric discharge machining
JP4409641B2 (en) Air ionization apparatus and method
JPS62141578A (en) Electrostatic discharging and charging method
JP4463942B2 (en) Method and apparatus for removing static electricity from long film-forming substrate
US5254229A (en) Electrified object neutralizing method and neutralizing device
JP2838856B2 (en) Corona air ionizer
US10657999B2 (en) Plasma CVD device and method of manufacturing magnetic recording medium
US6215248B1 (en) Germanium emitter electrodes for gas ionizers
JP2541857B2 (en) Ion generator and static elimination equipment for charged articles in clean space using the same
US5087856A (en) Discharge electrode having a thin wire core and surface coating of amorphous alloy for a discharger
TWI400996B (en) Apparatus for treating a substrate
JPH07155641A (en) Electrostatic precipitator
JPH01111872A (en) Sputtering device
JPH03101763A (en) Fine wire for discharge electrode
JPH0316661A (en) Dustless air ionizing device
JPH07245336A (en) Electrostatic chuck and its surface treating method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080621

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110621

LAPS Cancellation because of no payment of annual fees