JP4463942B2 - Method and apparatus for removing static electricity from long film-forming substrate - Google Patents

Method and apparatus for removing static electricity from long film-forming substrate Download PDF

Info

Publication number
JP4463942B2
JP4463942B2 JP2000169113A JP2000169113A JP4463942B2 JP 4463942 B2 JP4463942 B2 JP 4463942B2 JP 2000169113 A JP2000169113 A JP 2000169113A JP 2000169113 A JP2000169113 A JP 2000169113A JP 4463942 B2 JP4463942 B2 JP 4463942B2
Authority
JP
Japan
Prior art keywords
forming substrate
film
long film
static electricity
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000169113A
Other languages
Japanese (ja)
Other versions
JP2001351795A (en
Inventor
直樹 日比野
勲 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000169113A priority Critical patent/JP4463942B2/en
Publication of JP2001351795A publication Critical patent/JP2001351795A/en
Application granted granted Critical
Publication of JP4463942B2 publication Critical patent/JP4463942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、合成樹脂フィルムや金属薄板などの長尺基体に薄膜を形成した長尺成膜基体から静電気を除去する方法と装置に関する。
【0002】
【従来の技術】
従来、合成樹脂等の長尺基体に、スパッタリングや真空蒸着などで誘電体或いは導電体の薄膜を形成して長尺成膜基体を製造することは一般的に行われている。また、長尺成膜基体には静電気が帯電し、これをロール状に巻き取るときやロールから解放するときに、基体の折れ曲がりや放電を生じ、製品に損傷をもたらす不都合があるので、該長尺成膜基体にプラズマを浴びせ、プラズマ中のイオンにより静電気を中和することも行われている。
【0003】
【発明が解決しようとする課題】
しかし、プラズマを浴びせても、誘電体の長尺基体に形成される膜が、アルミニウムのような導電体である場合には静電気を十分に除去することが困難で、基体のべた付きによる折れ曲がりや放電の不都合は解消できない。
【0004】
本発明は、長尺基体に形成される膜の種類にかかわらず静電気を除去できる方法を提供すること及びその方法の実施に適した装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明では、上記目的を達成するため、蒸着その他により成膜が施された長尺成膜基体に、プラズマを浴びせて該基体の静電気を除去する方法に於いて、極性が異なる1対のDCマグネトロン放電電極間に該長尺成膜基体を通過させてその表裏両面の電位をゼロを含む同種の電位にした。該極性が異なる1対のDCマグネトロン放電電極は複数組を設ける。この場合、該長尺成膜基体の片面には同極のDCマグネトロン放電電極を対向させると導電膜を形成した長尺成膜基体の静電気を十分に除去でき、該長尺成膜基体の片面に交互に極性の異なるDCマグネトロン放電電極を対向させると誘電体を形成した長尺成膜基体の静電気を十分に除去できる。これらの方法の実施には、請求項3又は4に記載の装置構成により適切に実施できる。
【0006】
【発明の実施の形態】
図面に基づき本発明の実施の形態を説明すると、図1は真空蒸着装置に本発明を適用した例を示し、同図の符号1は真空排気口2から真空排気された真空成膜室、符号3は該真空成膜室1内の下方に設置された蒸発源で、該蒸発源3の上方をロール4aから引き出したポリエチレンテレフタレートフィルムや金属薄板などの長尺基体4を移動させ、これに蒸発粒子の薄膜を形成し、その形成を終えた長尺成膜基体5がロール4bに巻き取られる。該蒸発源3には、AlOXなどの誘電体やAlなどの導電物が蒸発物質6として用意される。
【0007】
こうした成膜方法は一般に行われており、成膜された長尺成膜基体5には静電気が帯電して前記したような不都合をもたらすので、プラズマを浴びせてそのプラズマ中のイオンにより静電気を中和するが、本発明では、該長尺成膜基体5の移動経路に沿って極性が異なる1対のDCマグネトロン放電電極7、8を設け、これらの放電電極7、8を放電作動させてその間に該長尺成膜基体5を通過させることにより、その静電気を中和するようにした。
【0008】
該DCマグネトロン放電電極7、8の構成は図2に示す如くであり、スリット9を設けたケース10内に、2本の長手の水冷電極11、12を並行に設け、各水冷電極の内部に軸線方向にNS極が交互になるように複数個のドーナツ型の磁石13を配置し、供給口14、15から冷却水を水冷電極の内部に循環させてこれを冷却するようにしたもので、該水冷電極の一方を直流電源16の陽極に接続してプラス電位にすると共に他方の電極を直流電源17の陰極に接続してマイナス電位とし、両電極間で放電を発生するようにした。該ケース10内に設けた多数の小孔を備えたノズル18を介して、放電用のアルゴンガスが導入される。なお、これらの水冷電極は、アース電位のケース10との間で放電が発生するようにしてもよい。
【0009】
各直流電源から水冷電極への通電によりプラズマ放電を発生させると、磁石13の磁界により電子が拘束されて水冷電極の周囲のプラズマ密度が高まり、プラス電位の放電電極の回りにはマイナスイオンが集まり、マイナス電位の放電電極の回りにはプラスイオンが集まる。このような極性が異なる2本の放電電極間に、成膜により静電気が帯電した長尺成膜基体5を、その表面の帯電状態を考慮して通過させることで、帯電した静電気をその後の処理に支障のない程度に十分に除去できる。
【0010】
該長尺成膜基体5の帯電状態を詳細に観察すると、成膜した膜が誘電体であるか導電体であるかにより相違し、例えばポリエチレンテレフタレートの長尺成膜基体にAlOXなどの誘電体を成膜した場合には、その成膜面に正電位と負電位の静電気が混在した状態に帯電し、Alなどの導電体を成膜した場合には成膜面に負電位の静電気が帯電すると共に裏面の基体側には正電位に帯電することが知見され、かかる帯電状態を従来のような画一的なプラズマで除去することは難しく、本発明のように異極のDCマグネトロン放電電極によりプラスイオン或いはマイナスイオンを個別に長尺成膜基体5に照射することで、該長尺成膜基体5の表裏の電位をゼロ電位を含む同電位となし得られ、かくすることにより該長尺成膜基体5が静電気でべた付くことがなくなり、これをロール状に巻き取るときに巻きがきつくなる不都合や、ロールから解きほぐす際の基体間の吸着や放電の不都合が解消される。
【0011】
1対のDCマグネトロン放電電極7、8の複数組を該長尺成膜基体5の移動経路に沿って設け、これらを順次に通過させることで帯電量の大きな静電気を除去でき、この場合、該長尺成膜基体5の片面に、図3に示したように各組のDCマグネトロン放電電極の同極が揃うように配置し、或いは図4に示したように該片面に交互に異極が対向するように配置する。こうした電極の極性の配置は、長尺基体4に成膜される膜の電気特性により決定され、導電体の膜を形成した場合には、図3の如く成膜面5aに各CDマグネトロン放電電極のうちの陽極の方を対向させると共に陰極の方を長尺基体4の面5bに対向させ、誘電体の膜を形成した場合には、図4の如く成膜面5aおよび長尺基体4の面5bへ各CDマグネトロン放電電極の陽極と陰極とが夫々交互に対向するように配置する。これにより、長尺成膜基体5の面に帯電する静電気の種類すなわち正又は負の静電気と逆の極性のイオンを照射して帯電電位を効率よく下げ、且つ電位を同種類とすることができる。尚、成膜の方法はスパッタリング法であってもよい。
【0012】
【実施例】
[実施例1]
真空蒸着室内に用意した厚さ12μm、幅1650mmのポリエチレンテレフタレートフィルムの長尺基体の片面に、Al膜を真空蒸着により成膜して長尺成膜基体5を作製した。該成膜室内には直流電源16、17により400Vの正と負の極性が与えられた1対のDCマグネトロン放電電極7、8を3組設け、これらの間にロールに巻き取るまでの長尺成膜基体5を通過させた。
【0013】
そして、各DCマグネトロン放電電極の極性が、図4のように該長尺成膜基体5の片面に於いて交互になるように配置し、各放電電極のケース10内に500SCCMのアルゴンガスを流すと共にボンバード電流を6.0Aとした。該長尺成膜基体5の移動速度は200m/sec、Al膜の厚さは480Åである。これらの放電電極を通過したときの該基板5の静電気電位を測定したところ、Al膜を形成した成膜面5a側が270〜280V、基体側の背面5bが−300〜−350Vであった。この長尺成膜基体5をロール状に巻き取ったとき、残存する静電気のため基体同士の吸着が著しかった。
【0014】
次に、各DCマグネトロン放電電極を2組とし、各放電電極の極性が、図3のように該長尺成膜基体5の片面に於いて同一になるように配置した。そして各放電電極のケース10内に500SCCMのアルゴンガスを流すと共にボンバード電流を8.0Aとした。これら放電電極の間を535Åの厚さでAlを形成した長尺成膜基体5を200m/secで通過させ、該基体5の静電気電位を測定したところ、Al膜を形成した成膜面5a側が−40〜45V、基体側の背面5bが−15〜−30Vであった。この長尺成膜基体5をロール状に巻き取ったとき、基体同士の吸着は殆どなかった。
【0015】
更に、各DCマグネトロン放電電極を3組とし、各放電電極の極性が、図3のように該長尺成膜基体5の片面に於いて同一になるように配置した。そして各放電電極のケース10内に500SCCMのアルゴンガスを流すと共にボンバード電流を6.0Aとした。これらの放電電極の間を400Åの厚さでAl膜を形成した長尺成膜基体5を500m/secの高速で通過させ、該基体5の静電気電位を測定したところ、Al膜を形成した成膜面5a側が−5〜10V、基体側の背面5bが−0〜−5Vであった。この長尺成膜基体5をロール状に巻き取ったとき、基体同士の吸着は殆どなかった。
【0016】
[実施例2]
2.8×10-8Torrに排気した真空蒸着室内に用意した厚さ12μm、幅1000mmのポリエチレンテレフタレートフィルムの長尺基体の片面に、Al23の絶縁膜を真空蒸着により成膜して長尺成膜基体5を作製した。該成膜室内には直流電源16、17によりの正と負の極性が与えられた1対のDCマグネトロン放電電極7、8を3組設け、これらの間にロールに巻き取るまでの長尺成膜基体5を通過させた。
【0017】
そして、各DCマグネトロン放電電極の極性が、図4のように該長尺成膜基体5の片面に於いて交互になるように配置し、各放電電極のケース10内に100SCCMのアルゴンガスを流すと共に、該基体5が最初に通過するDCマグネトロン放電電極の電位を±326V、ボンバード電流を0.6A、2番目の放電電極の電位を±437V、ボンバード電流を3.8A、3番目の放電電極の電位を±326V、ボンバード電流を1.5Aとした。該長尺成膜基体5の移動速度は100m/sec、Al23膜の厚さは120Åである。これらの放電電極を通過したときの該基板5の静電気電位を測定したところ、Al23膜を形成した成膜面5a側が5.3V、基体側の背面5bが9.8Vであった。この長尺成膜基体5をロール状に巻き取ったとき、静電気による基体同士の吸着即ちべた付きはなかった。
【0018】
次に、前記3組の各DCマグネトロン放電電極の極性が、図3のように該長尺成膜基体5の片面に於いて同一になるように配置した。そして各放電電極のケース10内に100SCCMのアルゴンガスを流すと共に、該基体5が最初に通過するDCマグネトロン放電電極の電位を±327V、ボンバード電流を0.6A、2番目の放電電極の電位を±145V、ボンバード電流を4.0A、3番目の放電電極の電位を±327V、ボンバード電流を0.6Aとした。該長尺成膜基体5の移動速度は100m/sec、Al23膜の厚さは120Åである。これらの放電電極を通過したときの該基板5の静電気電位を測定したところ、Al23膜を形成した成膜面5a側が25.4V、基体側の背面5bが−26.5Vであった。この長尺成膜基体5をロール状に巻き取ったとき、静電気による基体同士の吸着即ちべた付きがあった。
【0019】
【発明の効果】
以上のように本発明によるときは、成膜された長尺成膜基体の静電気を、極性が異なる1対のDCマグネトロン放電電極間に該長尺成膜基体を通過させてその表裏両面の電位をゼロを含む同種の電位とするので、形成された膜の種類に応じてこれに帯電した静電気を除去し、多少の静電気が残存してもその悪影響を被ること防止できる効果があり、該極性の異なるDCマグネトロン放電電極の複数組を設けておくことで帯電量の大きい静電気を除去でき、長尺成膜基体の片面に同極のDCマグネトロン放電電極を対向させることにより導電体の膜を形成した長尺成膜基体の除電を効率よく迅速に行え、該片面に交互に極性の異なるDCマグネトロン放電電極を対向させることで誘電体が成膜された長尺成膜基体の除電を効率よく迅速に行える。また、請求項5の装置構成とすることにより本発明の方法を適切に実施できる。
【図面の簡単な説明】
【図1】本発明の実施に使用した装置の截断側面図
【図2】図1の要部の拡大断面図
【図3】本発明の方法を誘電体が成膜された長尺成膜基体に適用した実施の形態を示す線図
【図4】本発明の方法を導電体が成膜された長尺成膜基体に適用した実施の形態を示す線図
【符号の説明】
4 長尺基体、5 長尺成膜基体、5a 成膜面、7・8 1対のDCマグネトロン放電電極、16・17 直流電源、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for removing static electricity from a long film-forming substrate in which a thin film is formed on a long substrate such as a synthetic resin film or a metal thin plate.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a long film-forming substrate is generally manufactured by forming a dielectric or conductive thin film on a long substrate such as a synthetic resin by sputtering or vacuum deposition. In addition, the long film-forming substrate is charged with static electricity, and when it is rolled up or released from the roll, there is a disadvantage that the substrate is bent or discharged, resulting in damage to the product. It is also practiced that plasma is applied to a long film-forming substrate and static electricity is neutralized by ions in the plasma.
[0003]
[Problems to be solved by the invention]
However, even when exposed to plasma, if the film formed on the long dielectric substrate is a conductor such as aluminum, it is difficult to sufficiently remove static electricity, and bending due to stickiness of the substrate is difficult. The inconvenience of discharge cannot be solved.
[0004]
An object of the present invention is to provide a method capable of removing static electricity regardless of the type of film formed on a long substrate, and to provide an apparatus suitable for carrying out the method.
[0005]
[Means for Solving the Problems]
In the present invention, in order to achieve the above object, a pair of DCs having different polarities is used in a method in which plasma is applied to a long film-formed substrate that has been formed by vapor deposition or the like to remove static electricity from the substrate. The long film-forming substrate was passed between magnetron discharge electrodes, and the potentials on both the front and back surfaces were made the same kind of potential including zero. DC magnetron discharge electrodes of polar different pair Ru provided with a plurality of sets. In this case, when a DC magnetron discharge electrode having the same polarity is opposed to one side of the long film-forming substrate, static electricity of the long film-forming substrate on which the conductive film is formed can be sufficiently removed, and one surface of the long film-forming substrate can be removed. When the DC magnetron discharge electrodes having different polarities are alternately opposed to each other, the static electricity of the long film-forming substrate on which the dielectric is formed can be sufficiently removed. The implementation of these methods can be appropriately performed by the apparatus configuration according to claim 3 or 4 .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example in which the present invention is applied to a vacuum deposition apparatus, and reference numeral 1 in the figure denotes a vacuum film formation chamber evacuated from a vacuum exhaust port 2, Reference numeral 3 denotes an evaporation source installed in the lower part of the vacuum film forming chamber 1, and a long substrate 4 such as a polyethylene terephthalate film or a thin metal plate drawn from the roll 4a is moved above the evaporation source 3 to evaporate. A thin film of particles is formed, and the long film-forming substrate 5 that has been formed is wound around a roll 4b. In the evaporation source 3, a dielectric material such as AlO x or a conductive material such as Al is prepared as the evaporation material 6.
[0007]
Such a film forming method is generally performed, and static electricity is charged on the formed long film forming substrate 5 to cause the disadvantages described above. Therefore, the plasma is exposed to the static electricity by ions in the plasma. However, in the present invention, a pair of DC magnetron discharge electrodes 7 and 8 having different polarities are provided along the movement path of the long film-forming substrate 5, and these discharge electrodes 7 and 8 are operated for discharge. The static electricity is neutralized by passing the elongated film-forming substrate 5 through the substrate.
[0008]
The structure of the DC magnetron discharge electrodes 7 and 8 is as shown in FIG. 2, and two long water-cooled electrodes 11 and 12 are provided in parallel in a case 10 provided with a slit 9, and each water-cooled electrode is provided inside. A plurality of donut-shaped magnets 13 are arranged so that NS poles are alternately arranged in the axial direction, and cooling water is circulated from the supply ports 14 and 15 to the inside of the water-cooled electrode to cool it. One of the water-cooled electrodes was connected to the anode of the DC power source 16 to make it a positive potential, and the other electrode was connected to the cathode of the DC power source 17 to make it a negative potential so that a discharge was generated between both electrodes. Argon gas for discharge is introduced through a nozzle 18 provided with a large number of small holes provided in the case 10. Note that these water-cooled electrodes may generate a discharge between the case 10 and the ground potential.
[0009]
When plasma discharge is generated by energizing each water-cooled electrode from each DC power source, electrons are constrained by the magnetic field of the magnet 13 to increase the plasma density around the water-cooled electrode, and negative ions gather around the discharge electrode having a positive potential. Positive ions collect around the discharge electrode having a negative potential. By passing the long film-forming substrate 5 charged with static electricity by film formation between the two discharge electrodes having different polarities in consideration of the charged state of the surface, the charged static electricity is processed thereafter. Can be removed to the extent that there is no problem.
[0010]
When the charged state of the long film-forming substrate 5 is observed in detail, it differs depending on whether the film formed is a dielectric or a conductor. For example, a long film-forming substrate of polyethylene terephthalate is coated with a dielectric such as AlO x. When a body is formed, the surface is charged with a mixture of positive and negative potential static electricity. When a conductor such as Al is formed, negative potential static electricity is formed on the surface. It has been found that the back side of the substrate is charged with a positive potential, and it is difficult to remove such a charged state with a uniform plasma as in the prior art. By irradiating positive ions or negative ions individually on the long film-forming substrate 5 with the electrodes, the front and back potentials of the long film-forming substrate 5 can be made the same potential including zero potential. The long film-forming substrate 5 is Prevents stick, this or disadvantage that the winding is tight when wound into a roll, suction and discharge disadvantages between the substrates when disentangle from the roll is eliminated.
[0011]
A plurality of sets of a pair of DC magnetron discharge electrodes 7 and 8 are provided along the moving path of the long film-forming substrate 5, and by sequentially passing them, static electricity having a large charge amount can be removed. As shown in FIG. 3, the DC magnetron discharge electrodes of each set are arranged on one side of the long film-forming substrate 5 so that the same poles are aligned. Alternatively, as shown in FIG. Arrange to face each other. The arrangement of the polarities of these electrodes is determined by the electrical characteristics of the film formed on the long substrate 4, and when a conductor film is formed, each CD magnetron discharge electrode is formed on the film forming surface 5a as shown in FIG. When the anode is made to face the cathode and the cathode is made to face the surface 5b of the long base 4 to form a dielectric film, the film forming surface 5a and the long base 4 are formed as shown in FIG. It arrange | positions so that the anode and cathode of each CD magnetron discharge electrode may mutually oppose to the surface 5b. This makes it possible to efficiently lower the charging potential by irradiating the surface of the long film-forming substrate 5 with the type of static electricity that is charged, that is, with the opposite polarity to the positive or negative static electricity, and to make the potential the same type. . The film forming method may be a sputtering method.
[0012]
【Example】
[Example 1]
An Al film was formed on one side of a long substrate of a polyethylene terephthalate film having a thickness of 12 μm and a width of 1650 mm prepared in a vacuum vapor deposition chamber to produce a long film formation substrate 5. Three pairs of DC magnetron discharge electrodes 7 and 8 having a positive and negative polarity of 400 V provided by DC power supplies 16 and 17 are provided in the film forming chamber, and the length of the pair of them is wound up on a roll. The film-forming substrate 5 was passed.
[0013]
Then, the DC magnetron discharge electrodes are arranged so that the polarities of the DC magnetron discharge electrodes are alternately arranged on one side of the long film-forming substrate 5 as shown in FIG. 4, and 500 SCCM of argon gas is allowed to flow in the case 10 of each discharge electrode. In addition, the bombard current was set to 6.0 A. The moving speed of the long film-forming substrate 5 is 200 m / sec, and the thickness of the Al film is 480 mm. When the electrostatic potential of the substrate 5 when passing through these discharge electrodes was measured, the film-forming surface 5a side on which the Al film was formed was 270 to 280V, and the substrate-side back surface 5b was -300 to -350V. When the long film-forming substrate 5 was wound up in a roll shape, the adsorption between the substrates was remarkable due to residual static electricity.
[0014]
Next, two sets of each DC magnetron discharge electrode were arranged so that the polarity of each discharge electrode was the same on one side of the long film-forming substrate 5 as shown in FIG. Then, 500 SCCM of argon gas was allowed to flow into the case 10 of each discharge electrode, and the bombard current was set to 8.0 A. A long film-forming substrate 5 having a thickness of 535 mm formed between these discharge electrodes was passed at 200 m / sec. When the electrostatic potential of the substrate 5 was measured, the film-forming surface 5a side on which the Al film was formed was The back surface 5b on the substrate side was -15 to -30V. When the long film-forming substrate 5 was wound into a roll, there was almost no adsorption between the substrates.
[0015]
Further, three sets of each DC magnetron discharge electrode were arranged so that the polarity of each discharge electrode was the same on one side of the long film-forming substrate 5 as shown in FIG. Then, 500 SCCM of argon gas was allowed to flow into the case 10 of each discharge electrode, and the bombard current was set to 6.0 A. A long film-forming substrate 5 formed with an Al film having a thickness of 400 mm was passed between these discharge electrodes at a high speed of 500 m / sec. When the electrostatic potential of the substrate 5 was measured, the Al film was formed. The film surface 5a side was −5 to 10V, and the back surface 5b on the substrate side was −0 to −5V. When the long film-forming substrate 5 was wound into a roll, there was almost no adsorption between the substrates.
[0016]
[Example 2]
An insulating film of Al 2 O 3 is formed on one side of a long substrate of a polyethylene terephthalate film having a thickness of 12 μm and a width of 1000 mm prepared in a vacuum deposition chamber evacuated to 2.8 × 10 −8 Torr by vacuum deposition. A long film-forming substrate 5 was produced. Three pairs of DC magnetron discharge electrodes 7 and 8 to which positive and negative polarities are given by DC power sources 16 and 17 are provided in the film forming chamber. The membrane substrate 5 was passed.
[0017]
Then, the polarities of the DC magnetron discharge electrodes are alternately arranged on one side of the long film-forming substrate 5 as shown in FIG. 4, and 100 SCCM of argon gas flows in the case 10 of each discharge electrode. In addition, the potential of the DC magnetron discharge electrode through which the substrate 5 first passes is ± 326 V, the bombard current is 0.6 A, the potential of the second discharge electrode is ± 437 V, the bombard current is 3.8 A, and the third discharge electrode. Was set to ± 326V, and the bombard current was set to 1.5A. The moving speed of the long film-forming substrate 5 is 100 m / sec, and the thickness of the Al 2 O 3 film is 120 mm. When the electrostatic potential of the substrate 5 when passing through these discharge electrodes was measured, the film-forming surface 5a side on which the Al 2 O 3 film was formed was 5.3V, and the substrate-side back surface 5b was 9.8V. When this long film-forming substrate 5 was wound up in a roll shape, the substrates were not adsorbed or sticky due to static electricity.
[0018]
Next, the three sets of DC magnetron discharge electrodes were arranged so that the polarities of the DC magnetron discharge electrodes were the same on one side of the long film-forming substrate 5 as shown in FIG. Then, 100 SCCM of argon gas is allowed to flow into the case 10 of each discharge electrode, the potential of the DC magnetron discharge electrode through which the substrate 5 first passes is ± 327 V, the bombard current is 0.6 A, and the potential of the second discharge electrode is set. ± 145 V, the bombard current was 4.0 A, the potential of the third discharge electrode was ± 327 V, and the bombard current was 0.6 A. The moving speed of the long film-forming substrate 5 is 100 m / sec, and the thickness of the Al 2 O 3 film is 120 mm. When the electrostatic potential of the substrate 5 when passing through these discharge electrodes was measured, the film-forming surface 5a side on which the Al 2 O 3 film was formed was 25.4V, and the substrate-side back surface 5b was −26.5V. . When this long film-forming substrate 5 was wound up in a roll shape, the substrates were adsorbed or sticky due to static electricity.
[0019]
【The invention's effect】
As described above, according to the present invention, the static electricity of the formed long film-forming substrate is caused to pass through the long film-forming substrate between a pair of DC magnetron discharge electrodes having different polarities, so Is set to the same kind of potential including zero, so that there is an effect that the static electricity charged to this can be removed according to the type of film formed, and even if some static electricity remains, it can be prevented from being adversely affected. By providing multiple sets of DC magnetron discharge electrodes with different electrical charges, static electricity with a large charge can be removed, and a conductor film is formed by facing the same polarity DC magnetron discharge electrode on one side of a long film-forming substrate The long film-forming substrate can be discharged quickly and efficiently, and the long film-forming substrate on which the dielectric film is formed can be discharged quickly and efficiently by alternately facing the DC magnetron discharge electrodes having different polarities on one side. Can be Moreover, the method of the present invention can be appropriately implemented by adopting the apparatus configuration of claim 5.
[Brief description of the drawings]
FIG. 1 is a cut-away side view of an apparatus used for carrying out the present invention. FIG. 2 is an enlarged cross-sectional view of the main part of FIG. 1. FIG. FIG. 4 is a diagram showing an embodiment in which the method of the present invention is applied to a long film-forming substrate on which a conductor is formed.
4 long substrate, 5 long film formation substrate, 5a film formation surface, 7/8 pair of DC magnetron discharge electrodes, 16/17 DC power supply,

Claims (4)

蒸着その他により成膜が施された長尺成膜基体に、プラズマを浴びせて該基体の静電気を除去する方法に於いて、上記長尺成膜基体に導電体が成膜されている場合には、対向する電極の極性が異なる1対のDCマグネトロン放電電極を、上記長尺成膜基体の片面側において同極が揃うように複数組配置し、上記複数組のDCマグネトロン放電電極間に該長尺成膜基体を通過させてその表裏両面の電位をゼロを含む同種の電位にすることを特徴とする長尺成膜基体の静電気除去方法。In a method in which plasma is applied to a long film-forming substrate on which a film has been formed by vapor deposition or the like to remove static electricity from the substrate, a conductor is formed on the long film-forming substrate. A plurality of pairs of DC magnetron discharge electrodes having different polarities of the opposing electrodes are arranged so that the same poles are aligned on one side of the long film-forming substrate, and the length of the DC magnetron discharge electrodes is set between the plurality of sets of DC magnetron discharge electrodes. A method for removing static electricity from a long film-forming substrate, wherein the film-forming substrate is passed through and the electric potentials on both sides thereof are set to the same potential including zero. 蒸着その他により成膜が施された長尺成膜基体に、プラズマを浴びせて該基体の静電気を除去する方法に於いて、上記長尺成膜基体に誘電体が成膜されている場合には、対向する電極の極性が異なる1対のDCマグネトロン放電電極を、上記長尺成膜基体の片面側において交互に異極となるように複数組配置し、上記複数組のDCマグネトロン放電電極間に該長尺成膜基体を通過させてその表裏両面の電位をゼロを含む同種の電位にすることを特徴とする長尺成膜基体の静電気除去方法。In a method in which plasma is applied to a long film-forming substrate that has been formed by vapor deposition or the like to remove static electricity from the substrate, when a dielectric is formed on the long film-forming substrate. A plurality of pairs of DC magnetron discharge electrodes having different polarities of the opposing electrodes are arranged so as to have different polarities alternately on one side of the long film-forming substrate, and between the plurality of sets of DC magnetron discharge electrodes. A method for removing static electricity from a long film-forming substrate, characterized in that the long film-forming substrate is caused to pass through so that the potentials on both the front and back surfaces are the same potential including zero. 蒸着その他により成膜が施された長尺成膜基体の移動経路に沿って、対向する電極の極性が異なる1対のDCマグネトロン放電電極を、上記長尺成膜基体の片面側において同極が揃うように複数組配置したことを特徴とする長尺成膜基体の静電気除去装置。A pair of DC magnetron discharge electrodes having different polarities of the opposing electrodes along the movement path of the long film-forming substrate on which film formation has been performed by vapor deposition or the like , have the same polarity on one side of the long film-forming substrate. An apparatus for removing static electricity from a long film-forming substrate , wherein a plurality of sets are arranged so as to be aligned . 蒸着その他により成膜が施された長尺成膜基体の移動経路に沿って、対向する電極の極性が異なる1対のDCマグネトロン放電電極を、上記長尺成膜基体の片面側において交互に異極となるように複数組配置したことを特徴とする長尺成膜基体の静電気除去装置。A pair of DC magnetron discharge electrodes having different polarities of the opposing electrodes are alternately arranged on one side of the long film-forming substrate along the moving path of the long film-forming substrate on which the film is formed by vapor deposition or the like. An apparatus for removing static electricity from a long film-forming substrate, wherein a plurality of sets are arranged so as to form a pole .
JP2000169113A 2000-06-06 2000-06-06 Method and apparatus for removing static electricity from long film-forming substrate Expired - Fee Related JP4463942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169113A JP4463942B2 (en) 2000-06-06 2000-06-06 Method and apparatus for removing static electricity from long film-forming substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169113A JP4463942B2 (en) 2000-06-06 2000-06-06 Method and apparatus for removing static electricity from long film-forming substrate

Publications (2)

Publication Number Publication Date
JP2001351795A JP2001351795A (en) 2001-12-21
JP4463942B2 true JP4463942B2 (en) 2010-05-19

Family

ID=18672021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169113A Expired - Fee Related JP4463942B2 (en) 2000-06-06 2000-06-06 Method and apparatus for removing static electricity from long film-forming substrate

Country Status (1)

Country Link
JP (1) JP4463942B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714352B2 (en) * 2001-02-14 2011-06-29 株式会社Trinc Static eliminator
JP4617757B2 (en) * 2003-07-29 2011-01-26 東レ株式会社 Electric insulation sheet neutralizing device and method, method for producing electric insulating sheet, and electric insulating sheet
EP1503614A3 (en) 2003-07-29 2014-10-01 Toray Industries, Inc. A static eliminator and a static eliminating method for an insulating sheet
JP5092198B2 (en) * 2004-05-31 2012-12-05 東レ株式会社 Electrically insulating sheet, method for neutralizing electrical insulating sheet and manufacturing method
JP4617899B2 (en) * 2005-01-28 2011-01-26 東レ株式会社 Electrically insulating sheet, method for removing electricity, and method for manufacturing the same
JP4904786B2 (en) * 2005-01-28 2012-03-28 東レ株式会社 An electrically insulating sheet static eliminator, a static eliminator and a manufacturing method.
US20090009922A1 (en) * 2005-01-28 2009-01-08 Toray Industries, Inc. Electric-insulating sheet neutralizing device, neturalizing method and production method
JP2008012672A (en) * 2006-06-30 2008-01-24 Yushin Precision Equipment Co Ltd Neutralization apparatus
CN110178238B (en) * 2017-01-11 2023-07-28 应用材料公司 Method and apparatus for processing a substrate and corresponding display element

Also Published As

Publication number Publication date
JP2001351795A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
JP2586881B2 (en) Magnetron sputtering apparatus and method for depositing thin film
KR101667642B1 (en) Closed drift magnetic field ion source apparatus containing self-cleaning anode and a process for substrate modification therewith
CN100562602C (en) Reel to reel vacuum sputtering apparatus
US20100181191A1 (en) Sputtering apparatus
MXPA05003537A (en) Device for carrying out a plasma-assisted process.
JPH0633453B2 (en) Equipment for depositing thin layers on substrates by cathodic sputtering
JP4463942B2 (en) Method and apparatus for removing static electricity from long film-forming substrate
US8834685B2 (en) Sputtering apparatus and sputtering method
KR100273326B1 (en) High frequency sputtering apparatus
JPS61221363A (en) Sputtering apparatus
TWI254959B (en) Film-forming apparatus and film-forming method
JP3685670B2 (en) DC sputtering equipment
JP3562595B2 (en) Sputtering equipment
JPS6217175A (en) Sputtering device
JP4032504B2 (en) Sputtering equipment
JPS6112866A (en) Plasma concentration type high-speed sputtering device
RU2101383C1 (en) Cathode spraying method
JP2755776B2 (en) High-speed deposition sputtering equipment
KR20040012264A (en) High effective magnetron sputtering apparatus
KR102350978B1 (en) Plurality electrodes ion beam generating apparatus and surface modifying method using the same
JP2020002441A (en) Facing target sputtering film deposition apparatus
JPH0751750B2 (en) Film forming equipment
JP2013144848A (en) Apparatus for treating substrate
JP4715736B2 (en) Sputtering equipment
JP2000080470A (en) Sputtering device having deflecting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4463942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160226

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees