JP2010225422A - Discharge electrode - Google Patents

Discharge electrode Download PDF

Info

Publication number
JP2010225422A
JP2010225422A JP2009071610A JP2009071610A JP2010225422A JP 2010225422 A JP2010225422 A JP 2010225422A JP 2009071610 A JP2009071610 A JP 2009071610A JP 2009071610 A JP2009071610 A JP 2009071610A JP 2010225422 A JP2010225422 A JP 2010225422A
Authority
JP
Japan
Prior art keywords
electrode
metal
discharge
diffusion
hardened layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009071610A
Other languages
Japanese (ja)
Inventor
Haruyuki Mine
治幸 鋒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harada Sangyo Co Ltd
Original Assignee
Harada Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harada Sangyo Co Ltd filed Critical Harada Sangyo Co Ltd
Priority to JP2009071610A priority Critical patent/JP2010225422A/en
Publication of JP2010225422A publication Critical patent/JP2010225422A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a discharge electrode applicable as an ionizer electrode or as various other discharge application electrodes having high ion generating efficiency, excellent durability with very long life, no trouble for occurrence of dust by interface peeling of a covered layer, and being capable of manufacturing with low-cost. <P>SOLUTION: The discharge electrode is a metal electrode 1 on a surface portion of which a diffusion-hardened layer of metal 11 is formed by a penetron treatment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、静電気除去に用いるイオナイザー用電極、放電加工用電極、グローランプ用電極、ガスレーザー用電極等の種々の放電を行う用途に好適な放電用電極に関する。   The present invention relates to a discharge electrode suitable for various discharge applications such as an ionizer electrode, an electric discharge machining electrode, a glow lamp electrode, and a gas laser electrode used for static electricity removal.

一般的に、クリーンルームの如き清浄空間内で行われる半導体集積回路、液晶ディスプレイ、精密電子機器等の製造工程では、静電吸着による微粒子の被加工物への付着が重大な欠陥に繋がると共に、被加工物自体の回路や絶縁層の帯電破壊によって歩留り低下を招くことから、イオナイザーと称される静電気除電装置が使用されている。このイオナイザーは、針状の電極間に高電圧を印加することにより、コロナ放電を発生させて気体分子をイオン化し、生成した正、負のイオンによって除電対象物の逆極性の電荷を中和するものである。   In general, in the manufacturing process of a semiconductor integrated circuit, a liquid crystal display, a precision electronic device, etc. performed in a clean space such as a clean room, the adhesion of fine particles to a workpiece due to electrostatic adsorption leads to a serious defect and An electrostatic charge eliminating device called an ionizer is used because the yield of the workpiece itself is reduced due to electrostatic breakdown of the circuit and the insulating layer. This ionizer generates a corona discharge by applying a high voltage between the needle-like electrodes to ionize gas molecules, and neutralizes the reverse polarity charge of the object to be neutralized by the generated positive and negative ions. Is.

ところが、上記イオナイザーの針状電極は、放電に伴って次第に減耗してゆくが、この減耗による先端形状の変化でイオン発生効率が低下すると共に、電極材料の飛散による逆汚染を生じる懸念があった。また、該針状電極の単価は概して低いが、減耗によって早期に寿命が尽きる場合、液晶工程用等の使用本数が多いイオナイザーでは、減耗電極を新品と交換するのに非常に手間がかかるため、メンテナンス費用が嵩むという問題もある。   However, the needle electrode of the ionizer is gradually depleted with the discharge, but there is a concern that the ion generation efficiency is lowered due to the change of the tip shape due to this depletion, and the back contamination is caused by scattering of the electrode material. . In addition, the unit price of the acicular electrode is generally low, but when the lifetime is exhausted early due to depletion, it is very troublesome to replace the depleted electrode with a new one in the ionizer that is used in a large number for the liquid crystal process etc. There is also a problem that maintenance costs increase.

そこで、従来においては、イオナイザー用電極として、その減耗を抑えるために、金属電極の表面をセラミックスチューブ(特許文献1)、ニッケルメッキ層(特許文献2)、ダイヤモンド(特許文献3)等で覆ったもの、電極材料に酸化チタン系の導電性酸化物(特許文献4,5)や炭化シリコンの如き炭化物(特許文献6)を用いたもの、珪素からなる棒材の外周面に炭化珪素層12を設けたもの(特許文献7)、多結晶珪素からなる棒材の外周面に導電層を設けたもの(特許文献8)等が提案され、そのいくつかは実用化されている。   Therefore, conventionally, as an ionizer electrode, the surface of the metal electrode is covered with a ceramic tube (Patent Document 1), a nickel plating layer (Patent Document 2), diamond (Patent Document 3), etc., in order to suppress the wear. A silicon oxide layer 12 on the outer peripheral surface of a rod made of silicon, a material using a titanium oxide-based conductive oxide (Patent Documents 4 and 5) or a carbide (Patent Document 6) such as silicon carbide as an electrode material. Proposed ones (Patent Document 7), those provided with a conductive layer on the outer peripheral surface of a rod made of polycrystalline silicon (Patent Document 8), etc. have been proposed, some of which have been put into practical use.

特開平3−230499号公報JP-A-3-230499 特開平5−21131号公報JP-A-5-21131 特開2005−19164号公報JP-A-2005-19164 特開平6−243951号公報JP-A-6-243951 特開2001−217095号公報JP 2001-217095 A 特開2006−108101号公報JP 2006-108101 A 特開平6−84581号公報JP-A-6-84581 特開平6−140127号公報JP-A-6-140127

しかしながら、上記従来の金属電極の表面をセラミックスチューブで覆った電極では、電極の金属とセラミックスとの熱膨張率の違いにより、セラミックスチューブが割れ易いという問題がある。また、電極材料に導電性酸化物、炭化物、珪素、多結晶珪素等を用いた電極では、材質的に熱拡散性に乏しいため、熱劣化の進行が早く耐久性に難がある。更に、金属電極の表面をニッケルメッキ層やダイヤモンド(特許文献3)等で覆った電極では、被覆層によって減耗の進行は遅くなるが、経時的に被覆層が薄くなって母材金属の一部が露呈した段階で、その露呈部分から一挙に減耗が進むと共に、その周辺部において被覆層が母材金属との界面で剥離して発塵するという問題があり、また被覆層の形成コストが高くつくという難点もある。   However, in the electrode in which the surface of the conventional metal electrode is covered with a ceramic tube, there is a problem that the ceramic tube is easily broken due to the difference in thermal expansion coefficient between the metal of the electrode and the ceramic. In addition, an electrode using a conductive oxide, carbide, silicon, polycrystalline silicon, or the like as an electrode material has a poor thermal diffusivity, so that the thermal deterioration progresses quickly and the durability is difficult. Furthermore, in the electrode in which the surface of the metal electrode is covered with a nickel plating layer or diamond (Patent Document 3), the progress of wear is slowed down by the coating layer, but the coating layer becomes thinner with time and part of the base metal At the stage of exposure, there is a problem that the wear proceeds at a stroke from the exposed part, and there is a problem that the coating layer peels off at the interface with the base metal at the peripheral part and generates dust, and the formation cost of the coating layer is high. There is also the difficulty of attaching.

本発明は、上述の事情に鑑みて、イオナイザー用電極を始めとする種々の放電用途に適用する放電用電極として、イオン発生効率が高い上、耐久性に優れて非常に長寿命であり、且つ被覆層の界面剥離による発塵を生じる懸念がなく、しかも安価に製作できるものを提供することを目的としている。   In view of the above-mentioned circumstances, the present invention has a high ion generation efficiency as a discharge electrode to be applied to various discharge applications including an ionizer electrode, and is excellent in durability and has a very long life, and An object of the present invention is to provide a product that does not cause the generation of dust due to interfacial peeling of the coating layer and can be manufactured at low cost.

上記目的を達成するために、本発明の請求項1に係る放電用電極は、金属電極の表面部に、ペネトロン処理による金属の拡散硬化層が形成されてなるものとしている。   In order to achieve the above object, a discharge electrode according to claim 1 of the present invention is such that a metal diffusion hardened layer is formed on the surface of the metal electrode by penetron treatment.

請求項2の発明は、上記請求項1の放電用電極において、電極母材がチタン、タングステン、ステンレス鋼から選ばれる一種であると共に、拡散硬化層の拡散金属がチタン、タングステン、ニッケル、銅、金から選ばれる一種からなるものとしている。   The invention according to claim 2 is the discharge electrode according to claim 1, wherein the electrode base material is a kind selected from titanium, tungsten, and stainless steel, and the diffusion metal of the diffusion hardened layer is titanium, tungsten, nickel, copper, It consists of a kind selected from gold.

請求項3の発明は、上記請求項1の放電用電極において、電極母材がチタンであり、拡散硬化層の拡散金属がタングステンであるものとしている。   According to a third aspect of the present invention, in the discharge electrode according to the first aspect, the electrode base material is titanium, and the diffusion metal of the diffusion hardened layer is tungsten.

請求項4の発明は、上記請求項1〜3の何れかの放電用電極において、金属電極がイオナイザー用電極であるものとしている。   According to a fourth aspect of the present invention, in the discharge electrode according to any one of the first to third aspects, the metal electrode is an ionizer electrode.

請求項1の発明に係る放電用電極では、金属電極の表面部にペネトロン処理による金属の拡散硬化層を有するが、この拡散硬化層が打ち込まれた金属によって高密度化(比重増大)している上、この打ち込まれた金属が電極表面から深くなるほど密度を低くするように拡散した状態で、母材との間で隔絶した界面を形成せずに該母材と完全に一体化している。従って、この放電用電極によれば、その表面部を含む全体が金属材質であるために高いイオン発生効率を確保でき、しかも上記の拡散硬化層が高硬度で減耗しにくいことに加え、放電の際に飛び出す電子数が上記拡散硬化層のない場合と同じであっても、上記の高密度化によって減耗に伴う形状変化が少なく、且つ経時的に拡散硬化層が薄くなっても急速な減耗や発塵に繋がる界面剥離を生じることがなく、もって非常に長寿命になると共に電極材料の飛散による逆汚染の懸念もなく、また電極表面が極めて硬いので取り扱い中に傷付くこともない。一方、拡散硬化層を形成するペネトロン処理では、母材金属を負極として、この負電極と拡散させる金属材料からなる正極とを直流電界の印加状態で電磁的振動によって離接させるだけで、その離間時の両極間の放電に伴って正極側の金属材料が負極側へ打ち込まれて拡散硬化層を生成するから、操作的に極めて簡単で且つ短時間で処理を行え、メッキやCVD法等で被覆層を形成するのに比較して放電用電極の製作コストが格段に低減されると共に生産能率も大きく向上する。   The discharge electrode according to the invention of claim 1 has a metal diffusion hardened layer formed by penetron treatment on the surface portion of the metal electrode, and the diffusion hardened layer is densified (increased specific gravity) by the implanted metal. In addition, in a state where the implanted metal is diffused so as to decrease in density as it becomes deeper from the electrode surface, the implanted metal is completely integrated with the base material without forming an isolated interface with the base material. Therefore, according to this discharge electrode, since the entire surface including the surface portion is made of a metal material, high ion generation efficiency can be secured, and the diffusion hardened layer has high hardness and is not easily worn out. Even when the number of electrons popping out is the same as the case without the diffusion hardened layer, there is little change in shape due to wear due to the above densification, and rapid wear and tear even if the diffusion hardened layer becomes thinner over time Interfacial delamination that leads to dust generation does not occur, so it has a very long life, there is no fear of back-contamination due to scattering of the electrode material, and the electrode surface is extremely hard and is not damaged during handling. On the other hand, in the Penetron process for forming a diffusion hardened layer, the base metal is a negative electrode, and the negative electrode and the positive electrode made of a metal material to be diffused are separated from each other only by electromagnetic vibration in a state where a DC electric field is applied. Because the metal material on the positive electrode side is driven into the negative electrode side with the discharge between the two electrodes at the time to generate a diffusion hardened layer, it is extremely easy to operate and can be processed in a short time, and it can be coated by plating, CVD method, etc. Compared with the formation of the layer, the manufacturing cost of the discharge electrode is remarkably reduced and the production efficiency is greatly improved.

請求項2の発明によれば、電極母材及び拡散硬化層の拡散金属として特定の金属材料を用いることから,表面部に拡散硬化層を有する放電用電極をペネトロン処理によって確実に容易に製作できる。   According to the second aspect of the invention, since a specific metal material is used as the diffusion metal of the electrode base material and the diffusion hardened layer, the discharge electrode having the diffusion hardened layer on the surface portion can be reliably and easily manufactured by the penetron process. .

請求項3の発明によれば、電極母材がチタンで、拡散硬化層の拡散金属がタングステンであるため、1600Hvといった高硬度の表面部を有する放電用電極が提供される。   According to the invention of claim 3, since the electrode base material is titanium and the diffusion metal of the diffusion hardened layer is tungsten, a discharge electrode having a high hardness surface portion of 1600 Hv is provided.

請求項4の発明によれば、イオナイザー用電極として、イオン発生効率が高く、耐久性に優れて非常に長寿命であり、且つ被覆層の界面剥離による発塵を生じる懸念がなく、安価に製作できるものが提供される。   According to the invention of claim 4, the ionizer electrode has high ion generation efficiency, is excellent in durability, has a very long life, and does not cause the generation of dust due to interface peeling of the coating layer, and is manufactured at a low cost. What you can do is provided.

本発明を適用するイオナイザー用電極の一例を示す側面図である。It is a side view which shows an example of the electrode for ionizers to which this invention is applied. 本発明を適用したイオナイザー用電極の先端側の軸方向断面図である。It is an axial direction sectional view of the tip side of the electrode for ionizers to which the present invention is applied. 本発明の実施例における放電試験に用いたイオナイザーの背面図である。It is a rear view of the ionizer used for the discharge test in the Example of this invention. 本発明の実施例に係る放電用電極の表面からの深さと硬度との関係を示す相関図である。It is a correlation diagram which shows the relationship between the depth from the surface of the electrode for discharge which concerns on the Example of this invention, and hardness. 同放電試験における実施例の放電用電極の初期及び1カ月経過後の先端側の拡大写真図である。It is an enlarged photograph figure of the tip side after the initial stage and 1 month progress of the electrode for discharge of the example in the same discharge test. 同放電試験における比較例の放電用電極の初期及び1カ月経過後の先端側の拡大写真図である。It is the enlarged photograph figure of the front end side after the initial stage and 1 month progress of the electrode for discharge of the comparative example in the same discharge test. 図5における番号2の写真図を更に拡大した写真図である。FIG. 6 is a photographic diagram further enlarging the photographic diagram of number 2 in FIG. 5. 図6における番号4の写真図を更に拡大した写真図である。It is the photograph figure which expanded further the photograph figure of the number 4 in FIG.

本発明の放電用電極は、既述のように金属電極の表面部に、ペネトロン処理による金属の拡散硬化層が形成されている。この拡散硬化層は、打ち込まれた金属によって高密度化(比重増大)及び高硬度化している上、この打ち込まれた金属が電極表面から深くなるほど密度を低くするように拡散した状態で、母材との間で隔絶した界面を形成せずに該母材と完全に一体化している。従って、この放電用電極においては、その表面部を含む全体が金属材質であるために高いイオン発生効率を確保でき、しかも該表面部が高硬度で減耗しにくいことに加え、放電の際に飛び出す電子数が上記拡散硬化層のない場合と同じであっても、上記の高密度化している分だけ減耗に伴う形状変化が少なくなり、且つ経時的に拡散硬化層が薄くなっても急速な減耗や発塵に繋がる界面剥離を生じることがなく、もって非常に耐久性に優れて長寿命であると共に電極材料の飛散による逆汚染の懸念もなく、また電極表面が極めて硬いので取り扱い中に傷付くこともない。   As described above, the discharge electrode of the present invention has a metal diffusion hardened layer formed by penetron treatment on the surface of the metal electrode. This diffusion hardened layer has a higher density (increased specific gravity) and higher hardness due to the implanted metal, and the base metal is diffused so that the density decreases as the implanted metal becomes deeper from the electrode surface. It is completely integrated with the base material without forming an isolated interface. Therefore, in this discharge electrode, since the entire surface portion including the surface portion is made of a metal material, high ion generation efficiency can be secured, and in addition to the surface portion being hard and difficult to wear out, it jumps out during discharge. Even if the number of electrons is the same as the case without the diffusion hardened layer, the shape change due to wear is reduced as much as the density is increased, and rapid wear is reduced even if the diffusion hardened layer becomes thinner over time. No interfacial delamination that leads to dust generation, extremely durable and long life, no fear of back contamination due to scattering of electrode material, and the electrode surface is extremely hard and will be damaged during handling There is nothing.

そして、上記の拡散硬化層を形成するペネトロン処理は、放電硬化処理とも称され、従来より金属切削用工具類、金属成形用ダイス、刃物等の表面部の硬度を高めて長寿命化する手段として利用されている。このペネトロン処理では、被処理物を負極、拡散させる金属材料を正極とし、両極間に直流電界を印加した状態で、両極を電磁的振動で離接させて短絡と離間を繰り返すことにより、その離間時の放電に伴って負極の被処理物の表面層に正極の金属物質が移行して拡散し、極めて高硬度の拡散硬化層が形成される。なお、処理は一般的に大気中で行うが、上記放電によって負極表面が局部的な超高温(通常15,000℃以上)でイオン化して大気中の酸化性ガスの作用を排除する雰囲気を生じ、同時に局部的な超高温で膨張した負極物質の原子間にイオン化した正極物質が打ち込まれて拡散し、この打ち込まれた正極物質が冷却収縮に伴って転移して負極の原子と置換する。   The Penetron treatment for forming the diffusion hardened layer is also referred to as an electric discharge hardening treatment, and as a means to increase the hardness of the surface portion of metal cutting tools, metal forming dies, blades, etc., and extend the life. It's being used. In this penetron treatment, the object to be treated is a negative electrode, the metal material to be diffused is a positive electrode, and a DC electric field is applied between the two electrodes. With the discharge of time, the metal material of the positive electrode migrates and diffuses to the surface layer of the object to be processed of the negative electrode, and a diffusion hardened layer with extremely high hardness is formed. The treatment is generally performed in the atmosphere, but the discharge causes the negative electrode surface to be ionized at a local ultrahigh temperature (usually 15,000 ° C. or higher) to create an atmosphere that eliminates the action of oxidizing gas in the atmosphere. At the same time, the ionized positive electrode material is implanted and diffused between the atoms of the negative electrode material expanded at a local ultra-high temperature, and the implanted positive electrode material is transferred with cooling contraction to replace the negative electrode atoms.

本発明の放電用電極は、金属母材を負極側、拡散させる金属材料を正極側として上記のペネトロン処理を行うことにより、金属電極の表面部に金属の拡散硬化層を形成したものであり、メッキやCVD法等で被覆層を形成するのに比較し、操作的に簡単で且つ短時間で拡散硬化層を形成できるから、その製作コストが格段に低減されると共に生産能率も大きく向上する。   The discharge electrode of the present invention is a metal diffusion hardened layer formed on the surface of the metal electrode by performing the above Penetron treatment with the metal base material on the negative electrode side and the metal material to be diffused on the positive electrode side, Compared to forming a coating layer by plating, CVD, or the like, the diffusion hardened layer can be formed easily and in a short time, so that the production cost is remarkably reduced and the production efficiency is greatly improved.

この放電用電極の母材金属としては、電極の用途によって適合性が異なるために特に制約されないが、チタン、タングステン、ステンレス鋼が好適なものとして挙げられる。また、拡散硬化層の拡散金属としては、同様に特に制約されないが、チタン、タングステン、ニッケル、銅、金等が好適なものとして挙げられる。なお、母材金属と拡散硬化層の拡散金属とは同じものであってもよい。しかして、イオナイザー用電極としては、特にチタンを母材金属として、拡散金属にタングステンを用いた構成が最適である。   The base metal of the discharge electrode is not particularly limited because compatibility varies depending on the use of the electrode, but titanium, tungsten, and stainless steel are preferable. Similarly, the diffusion metal of the diffusion hardened layer is not particularly limited, but preferred examples include titanium, tungsten, nickel, copper, and gold. The base metal and the diffusion metal of the diffusion hardened layer may be the same. Thus, the ionizer electrode is most preferably configured with titanium as a base metal and tungsten as a diffusion metal.

ペネトロン処理の条件としては、放電用電極のサイズと形態、電極母材及び拡散硬化層の拡散金属の種類等によって好適範囲が異なるが、出力が0.5〜2mmA程度、正負電極の離接サイクルが10〜200Hz程度の範囲が一般的である。また、拡散硬化層の厚さは、やはり放電用電極のサイズや電極母材及び拡散硬化層の拡散金属の種類等によって好適範囲が異なるが、電極表面から拡散最深部までの厚さとして1〜50μm程度が好ましい。   Penetron treatment conditions vary depending on the size and form of the discharge electrode, the electrode base material and the type of diffusion metal in the diffusion hardened layer, etc., but the output is about 0.5 to 2 mmA, the positive / negative electrode separation cycle Is generally in the range of about 10 to 200 Hz. The thickness of the diffusion hardened layer varies depending on the size of the discharge electrode, the electrode base material, the type of the diffusion metal of the diffusion hardened layer, etc., but the thickness from the electrode surface to the deepest diffusion portion is 1 to 1. About 50 μm is preferable.

なお、ペネトロン処理を施すことよって電極表面に凹凸や尖端の歪みを生じることがあるが、その対策として処理後の電極表面を研磨しても差し支えない。   Note that the penetron treatment may cause unevenness and distortion of the tip of the electrode surface, but the treated electrode surface may be polished as a countermeasure.

次に、本発明をイオナイザー用電極に適用した実施例について、比較例と対比して具体的に説明する。   Next, an example in which the present invention is applied to an ionizer electrode will be specifically described in comparison with a comparative example.

図1は実施例及び比較例のイオナイザー用電極を示す。このイオナイザー用電極1は、全長22mm、径2.0mmの丸軸状で、長さ6.5mmの先端部1aが円錐状をなし、チタンにて形成されている。しかして、実施例のイオナイザー用電極については、ペネトロン装置(スイス国ユニツール社製、電源AC100/200V、50/60Hz)により、このチタン製の金属電極を負極、タングステン電極を正極として、出力1.0mmA,離接サイクル100Hzでペネトロン処理を施すことにより、図2で示すように、チタンからなる母材10の表面部に、タングステンを打ち込んで電極表面から拡散最深部までの厚さが約30μmの拡散硬化層11を形成した。   FIG. 1 shows an ionizer electrode of an example and a comparative example. The ionizer electrode 1 has a round shaft shape having a total length of 22 mm and a diameter of 2.0 mm, and a tip portion 1 a having a length of 6.5 mm is conical and is formed of titanium. Thus, with respect to the ionizer electrode of the example, with a Penetron device (manufactured by Unitool, Switzerland, power supply AC100 / 200V, 50/60 Hz), the titanium metal electrode was used as the negative electrode and the tungsten electrode as the positive electrode. By performing a penetron process at 0 mmA and a separation / contact cycle of 100 Hz, as shown in FIG. 2, the thickness from the electrode surface to the deepest diffusion portion is about 30 μm by implanting tungsten into the surface portion of the base material 10 made of titanium. A diffusion hardened layer 11 was formed.

なお、上記の拡散硬化層11を形成した実施例のイオナイザー用電極について、その表面からの深さ(mm)と硬度(マイクロピッカース硬度Hv)との関係を調べたところ、図4で示す結果が得られた。この図4で示すように、硬度は表面から深くなるに従って低下するが、表面では1,600Hv以上もの高硬度を示し、深さ50μm付近でも1,200Hv程度の硬さを有している。   The relationship between the depth (mm) from the surface and the hardness (micro Pickers hardness Hv) of the ionizer electrode of the example in which the diffusion hardened layer 11 was formed was as shown in FIG. was gotten. As shown in FIG. 4, the hardness decreases with increasing depth from the surface, but the surface shows a high hardness of 1,600 Hv or more, and has a hardness of about 1,200 Hv even at a depth of about 50 μm.

〔イオナイザーでの電極減耗試験〕
上記実施例(処理品)及び比較例(未処理品・・・ペネトロン処理なし)の各4本のイオナイザー用電極1を用い、各々2本ずつを正負の対として、図3に示すように、イオナイザー2(MKS社製イオナイザー5802)の通気口3の周囲に装着し、風速LOWの設定で、各電極に5〜6Vの正又は負の電圧が常時印加されてコロナ放電を発生する状態で1カ月間の連続運転を行い、各電極の先端形状の変化を調べた。
[Electrode depletion test with ionizer]
As shown in FIG. 3, each of the four ionizer electrodes 1 of the above-described example (treated product) and comparative example (untreated product ... no penetron treatment) is used as a positive / negative pair. Installed around the vent 3 of the ionizer 2 (MKS Ionizer 5802) and with a setting of wind speed LOW, a positive or negative voltage of 5 to 6 V is constantly applied to each electrode to generate a corona discharge. Monthly continuous operation was performed, and changes in the tip shape of each electrode were examined.

その結果、実施例の処理品の電極(番号1,2,5,6)では、図5の写真図(50倍拡大)に示すように、正負極共に1カ月後でも先端形状の変化がなく、殆ど減耗を生じていないことが判明した。これに対し、比較例の未処理品の電極(番号3,4,7,8)では、図6の写真図(50倍拡大)に示すように、1カ月後の先端形状は初期に比べて欠けるように変化しており、とりわけ正極(番号4,8)の変化が大きく、かなりの減耗を生じていることが確認された。なお、実施例の番号2の処理品と比較例の番号4の未処理品について、図7及び図8で示す更に拡大(150倍)した写真図に基づいて初期からの減耗量を算出したところ、番号2の処理品の減耗量が約0.01mm3 であったのに対し、番号4の未処理品の減耗量は約0.07mm3 であった。なお、図5,6の写真図は、撮影前に電極を10分間超音波洗浄している。 As a result, the electrodes (numbers 1, 2, 5, and 6) of the processed products of the examples have no change in the tip shape even after one month for both the positive and negative electrodes, as shown in the photograph of FIG. It was found that there was almost no wear. On the other hand, in the unprocessed product electrodes (Nos. 3, 4, 7, and 8) of the comparative example, the tip shape after one month is larger than the initial shape as shown in the photograph of FIG. It was confirmed that the positive electrode (Nos. 4 and 8) had a large change, resulting in considerable wear. In addition, about the processed goods of the number 2 of an Example, and the unprocessed goods of the number 4 of a comparative example, when the amount of wear from the initial stage was computed based on the further enlarged (150 times) photograph shown in FIG.7 and FIG.8 The depletion amount of the treated product of No. 2 was about 0.01 mm 3 , whereas the depletion amount of the untreated product of No. 4 was about 0.07 mm 3 . 5 and 6, the electrodes are ultrasonically cleaned for 10 minutes before photographing.

本発明の放電用電極は、イオナイザー用電極として特に好適であるが、このイオナイザー用電極に限らず、放電加工用電極、グローランプ用電極、ガスレーザー用電極等の種々の放電を行う用途に供し得る。そして、放電用電極のサイズ及び形態は、これら用途に応じて種々設定できる。   The discharge electrode of the present invention is particularly suitable as an ionizer electrode, but is not limited to this ionizer electrode and is used for various discharge applications such as an electric discharge machining electrode, a glow lamp electrode, and a gas laser electrode. obtain. And the size and form of the electrode for discharge can be variously set according to these uses.

1 イオナイザー用電極
10 母材
11 拡散硬化層
2 イオナイザー
DESCRIPTION OF SYMBOLS 1 Ionizer electrode 10 Base material 11 Diffusion hardening layer 2 Ionizer

Claims (4)

金属電極の表面部に、ペネトロン処理による金属の拡散硬化層が形成されてなる放電用電極。   A discharge electrode in which a metal diffusion hardened layer is formed on the surface of a metal electrode by penetron treatment. 電極母材がチタン、タングステン、ステンレス鋼から選ばれる一種であると共に、拡散硬化層の拡散金属がチタン、タングステン、ニッケル、銅、金から選ばれる一種からなる請求項1に記載の放電用電極。   2. The discharge electrode according to claim 1, wherein the electrode base material is one kind selected from titanium, tungsten, and stainless steel, and the diffusion metal of the diffusion hardened layer is one kind selected from titanium, tungsten, nickel, copper, and gold. 電極母材がチタンであり、拡散硬化層の拡散金属がタングステンである請求項1に記載の放電用電極。   The discharge electrode according to claim 1, wherein the electrode base material is titanium, and the diffusion metal of the diffusion hardened layer is tungsten. 金属電極がイオナイザー用電極である請求項1〜3の何れかに記載の放電用電極。   The discharge electrode according to any one of claims 1 to 3, wherein the metal electrode is an ionizer electrode.
JP2009071610A 2009-03-24 2009-03-24 Discharge electrode Withdrawn JP2010225422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071610A JP2010225422A (en) 2009-03-24 2009-03-24 Discharge electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071610A JP2010225422A (en) 2009-03-24 2009-03-24 Discharge electrode

Publications (1)

Publication Number Publication Date
JP2010225422A true JP2010225422A (en) 2010-10-07

Family

ID=43042399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071610A Withdrawn JP2010225422A (en) 2009-03-24 2009-03-24 Discharge electrode

Country Status (1)

Country Link
JP (1) JP2010225422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577726A (en) * 2015-01-30 2015-04-29 济南新活电器有限公司 Superconductive anion release electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577726A (en) * 2015-01-30 2015-04-29 济南新活电器有限公司 Superconductive anion release electrode

Similar Documents

Publication Publication Date Title
Jain et al. On the machining of alumina and glass
TWI360529B (en) Methods of finishing quartz glass surfaces and com
JP4739368B2 (en) Sputtering target with less generation of particles, backing plate, apparatus in sputtering apparatus, and roughening method
WO2010082606A1 (en) Electrostatic chuck and method for manufacturing electrostatic chuck
JP4236292B2 (en) Wafer adsorption apparatus and method for manufacturing the same
Mishra et al. Effect of tool electrode-workpiece gap in the microchannel formation by electrochemical discharge machining
JP4677612B2 (en) Cleaning method for workpieces coated with carbon materials
JP4312372B2 (en) Electrostatic chuck and manufacturing method thereof
JP2010225422A (en) Discharge electrode
JP2008177339A (en) Electrostatic chuck
US20100140508A1 (en) Coated graphite liners
JP2013013995A (en) Method for roughening metal surface and article manufactured thereby
JP2017135124A (en) Electrode assembly
JP4065303B1 (en) Needle-shaped discharge electrode and discharge device
JP2010170937A (en) Discharge electrode for ionizer
JPS58190037A (en) Electrostatic chuck device and preparation of the same
JP2002373887A (en) Etching system for high dielectric
JP2005072286A (en) Electrostatic chuck
JP3965469B2 (en) Electrostatic chuck
JP2008240067A (en) Discharge surface treatment method
JP2011121846A (en) Member coated with thick film dlc and method for producing the same
JP2006128372A (en) Silicon ring for plasma etcher
Das et al. Advanced machining processes
JP5441738B2 (en) Diamond blade manufacturing method
JP2011047036A (en) Surface processing method and surface processing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605