JP4958736B2 - 二重段間冷却エンジン - Google Patents

二重段間冷却エンジン Download PDF

Info

Publication number
JP4958736B2
JP4958736B2 JP2007287981A JP2007287981A JP4958736B2 JP 4958736 B2 JP4958736 B2 JP 4958736B2 JP 2007287981 A JP2007287981 A JP 2007287981A JP 2007287981 A JP2007287981 A JP 2007287981A JP 4958736 B2 JP4958736 B2 JP 4958736B2
Authority
JP
Japan
Prior art keywords
blade
compressor
stage
turbine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007287981A
Other languages
English (en)
Other versions
JP2008121672A (ja
Inventor
チン−パン・リー
トーマス・オーリー・モニズ
ロバート・ジョセフ・オーランド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2008121672A publication Critical patent/JP2008121672A/ja
Application granted granted Critical
Publication of JP4958736B2 publication Critical patent/JP4958736B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/088Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in a closed cavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • F02C9/52Control of fuel supply conjointly with another control of the plant with control of working fluid flow by bleeding or by-passing the working fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、一般にガスタービンエンジンに関し、特にガスタービンエンジンにおけるタービン冷却に関する。
ガスタービンエンジンでは、空気は、圧縮機内において加圧されるとともに、燃焼器内において燃料と混合されて高温の燃焼ガスを発生させる。エネルギーは、1本の駆動軸を介して圧縮機を動力駆動するとともに、ターボファン航空エンジン用では上流のファンの動力駆動を、または船舶および産業(M&I)用では外部駆動軸を駆動する追加の仕事の生成を行なうタービン段において、燃焼ガスから抽出される。
基本的なコアエンジンは、一般に、列をなす圧縮機ブレードと、周囲空気を段階的に加圧するとともに相応に前記空気の温度を高める対応する案内翼とを有する多段軸流圧縮機を含む。この圧縮機の後側端部から排出される空気は、一般にコンプレッサ排気圧力(CDP)と呼ばれる最大圧力と、相応の高温とを有する。
例証的な構成において、この圧縮機は、7個の段を有して、空気圧を大気圧の何倍も高くすると同時に圧縮サイクルにより温度を何百度も上昇させる。より少数または多数の圧縮段が、特定の設計のガスタービンエンジンとその意図される用途とに合わせて要望どおりに用いられうる。
圧縮機から排出されるCDP空気の大部分は、燃焼器内において燃料と混合されて、高温燃焼ガスを発生させる。これらの燃焼ガスは、その後、いくつかのタービン段において膨張サイクルを経て、前記ガスからエネルギーが抽出され、これにより前記燃焼ガスの圧力と温度とが相応に低下する。高圧タービン(HPT)は、前記燃焼器の直後に設けられるとともに、コアエンジンにおいて圧縮機ブレードを動力駆動するのに用いられる。
低圧タービン(LPT)は、HPTの後に設けられるとともに、第2の軸を駆動して、ターボファンエンジン用では上流のファンの動力駆動を、またはM&I用では外部駆動軸の駆動を行なう。
ガスタービンエンジンの総合効率は、空気圧縮効率と燃焼効率とタービン段における燃焼ガス膨張効率とに依存する。
タービン構成要素は、動作時において高温の燃焼ガスに直接さらされるため、これらの構成要素を適切に冷却して長期の耐用寿命を確保することが必要になる。たとえば、圧縮機の一部の排気は、燃焼プロセスから迂回せしめられて、燃焼器そのもののライナを冷却するだけではなしに、HPTのさまざまな構成要素を冷却する。
各タービン段は、一般に、燃焼ガスを下流方向に、対応する1列のタービン動翼を介して導く1列のノズル翼を有する上流タービンノズルまたはステータを含む。これらの動翼は、一般に、支持ロータディスクの周縁部に、形成される対応するダブテール溝内において取り付けられる。
タービン動翼および静翼は、一般に、動作時において自身の冷却のために圧縮機の排気を受ける対応する内部冷却チャネルを自身内に有する中空の翼型部である。これらの中空の動翼および静翼は、一般に、自身の圧力側および負圧側壁を貫通して消費された内部冷却空気を対応する外部フィルムの形態で排出して翼型部をさらに保護するさまざまな列状のフィルム冷却孔およびその他の排気孔を含む。
さらにまた、第1段のタービン動翼を支持するタービンロータディスクは、動翼が取り付けられるリム部と、前記リム部から半径方向内方に延在して、中央ボア穴を有するより幅広のハブ部で終端する幅狭ウェブを有する相対的に大きい構成要素である。このロータディスクは、動作時において多大な遠心荷重と熱との両方にさらされ、これもまた長寿命が得られるように設計されなければならない。
これに対して、LPTは、膨張サイクル時に燃焼ガスの温度と圧力とが低下することに鑑みて、HTPほど冷却を必要としない。したがって、冷却要件は軽減され、一般に段間ブリード空気を用いて、LPT内のさまざまな構成要素が冷却されうる。
主タービン流路は、燃焼ガスが燃焼器からエンジンを通って流れて温度と圧力とが低下するときに該燃焼ガスを閉じ込めておくように設計される。タービン構成要素用のさまざまな冷却回路は、この主流路から独立しており、動作時において高温燃焼ガスが吸い込まれることを防ぐことができるだけの十分な圧力で冷却空気が供給されなければならない。
たとえば、適切なロータリーシールが、固定状態のタービンノズルと回転するタービン動翼との間に配設されて、高温燃焼ガスが冷却回路内に吸い込まれることまたは逆流することが防がれる。ノズル翼とタービン動翼との翼型部は、一般に、列をなす冷却空気出口孔を含むため、冷却空気に、外部燃焼ガスの圧力より高い十分な圧力を有させて適切な逆流マージンを得て、高温燃焼ガスがタービン翼型部そのものの中に吸い込まれることを防がなければならない。
したがって、HPTの構成要素は、一般に、全圧CDP空気を用いて冷却される一方で、LTP構成要素は、より低圧の段間ブリード空気を用いて冷却されうる。
このようにすると、タービン構成要素を冷却するために用いられる圧縮空気をHPTとLPTとの異なる冷却要件に合致させて、前記空気の使用量を減らすとともに、以ってエンジン効率を高めることができる。
米国特許第3,034,298号 米国特許第4,080,785号 米国特許第4,741,153号 米国特許第5,134,844号 米国特許第5,135,354号 米国特許第5,232,339号 米国特許第5,288,210号 米国特許第5,472,313号 米国特許第5,555,721号 米国特許第5,996,331号 米国特許第6,050,079号 米国特許第6,183,193号 米国特許第6,331,097号 米国特許第6,487,863号 米国特許第6,960,060号 米国特許第6,981,841号 ゼネラル・エレクトリック社, 「CF6−80C2 フルオーソリティーデジタルエンジン制御によるエンジン空気流制御」 2006年9月1日より一年以上前に米国において公に使用され販売されたエンジン, 1頁 ゼネラル・エレクトリック社, 「CFM56−5C2−CDP タービン冷却用空気」 2006年9月1日より一年以上前に米国において公に使用され販売されたエンジン, 2頁
しかし、エンジン効率の向上は、現代のガスタービンエンジンにおける永続的かつ主要な設計目標であり、したがって、圧縮機から抽出される加圧空気を減少させることによりエンジン効率をさらに高めることが望まれる。
ガスタービンエンジンは、互いに動作可能に結合される圧縮機と燃焼器と高圧タービンとを含む。第1の段間ブリード回路は、圧縮機の第1の前最終段とタービン内の中空動翼との間において連通して結合されて、前記動翼に加圧された一次空気を供給する。第2の段間ブリード回路は、圧縮機の第2の前最終段とタービン動翼との間において連通して結合されて、前記動翼に前記一次空気より低い圧力の加圧された二次空気を供給する。
本発明を、好ましい例証的な実施例にしたがって、本発明のさらに他の目的および利点とともに、添付図面と関連して行なわれる以下の詳細な説明に、より具体的に説明する。
図1に、例証的なターボファン航空機用ガスタービンエンジン10の略図が図示されている。このエンジンは、長手方向または軸方向の中心軸12のまわりにおいて軸対称をなすとともに、航空機(図示せず)の翼または胴体に適切に取り付けられて、例証的な用途において飛行中の航空機を動力駆動する。
前記エンジンは、ファン14と低圧またはブースター圧縮機16と高圧(HP)圧縮機18と環状燃焼器20と高圧タービン(HPT)22と低圧タービン(LPT)24とを直列に連通させて含む。
環状ナセル26は、ファン14を取り巻くとともに、ブースター圧縮機16のまわりにおいて後方に延在する環状バイパスダクト28を形成する。第1の駆動軸30は、HPT22をHP圧縮機18に結合し、第2の駆動軸32は、LPT24をファン14とブースター圧縮機16とに結合する。これらの2本の駆動軸は、前記のさまざまなエンジン構成要素が従来的に配置されたエンジン内において、対応するフレーム内の軸受に適切に取り付けられる。
動作時において、周囲空気34は、エンジンの吸気口に流入するとともに、部分的にファン14により加圧され、かつバイパスダクト28を介して排出されて、推進力の大部分を供給する。前記ファンを通過する一部の空気34は、ブースター圧縮機16に流入して、該圧縮機の多数の軸流圧縮段においてさらなる圧縮サイクルを経るとともに、さらにまた他の圧縮がHP圧縮機18内において該圧縮機の多数の軸流圧縮段で行なわれる。
加圧空気34は、前記圧縮機から排出されるとともに、燃焼器20内において燃料36と適切に混合されて、高温燃焼ガス38を発生させる。エネルギーが、HPT22内において前記燃焼ガス38から抽出されて、第1の軸30を駆動するとともに、HP圧縮機18を動力駆動する。追加のエネルギーが、LPT24内において前記燃焼ガスから抽出されて、第2の軸32を駆動するとともに、ファン14とブースター圧縮機16とを動力駆動する。
前記のエンジンは、構成と作用とにおいて従来的であり、多数の圧縮段と多数のタービン段とを含む。たとえば、ブースター圧縮機16は、4列の圧縮機ブレードを4列の入口案内翼と軸方向に交互に配置されて含む4個の軸流圧縮段を有しうる。
高圧圧縮機18は、たとえば、図2に詳細に示されるように、対応する列の入口案内翼40と軸方向に交互に配置される7列の圧縮ブレード1〜7を有するとともに、従来式ディフューザを介してCDP空気を排出する7個の軸流圧縮段を含みうる。
HPT22は、好ましくは、その後にさらに例証的な5段LTP24が配置される単段タービンである。
図2に、直列に連通して配置される高圧圧縮機18と環状燃焼器20とHTP22とを含む基本的なコアエンジンがより詳細に図示されている。
図2に図示されるHPT22は、外側および内側バンドに適切に取り付けられる1列の静翼42を有する第1段またはHPタービンノズルを含む。これらの静翼に続いて、第1段またはHPロータディスク46の周縁部またはリム部に取り外し可能に取り付けられる単一列のHPタービン動翼44がある。ディスク46は、第1の駆動軸30に固定的に結合され、前記駆動軸は、さらに、高圧圧縮機18の圧縮機ブレード1〜7を支持するロータディスクに固定的に結合される。
HP圧縮機18とHPT22との構成および作用は、従来的であって、空気34を加圧するとともに、その後の燃焼ガス38を膨張させて前記燃焼ガスからエネルギーを抽出する。特に、空気34の圧力と温度とは、該空気が下流方向に7段の圧縮機ブレード1〜7を通って流れるときに軸方向に次々と増加する。第7列の圧縮機ブレード7は、この例証的な構成において圧縮機の最終段を形成するとともに、加圧空気を最大圧力P7で、かつ該コンプレッサ排気圧力(CDP)の空気に付随する対応する高温T7で排出する。
このCDP空気は、燃焼器内において燃料と混合されて、燃焼器の出口から第1段のタービンノズル翼42間において排出される高温燃焼ガス38を発生させる。これらのノズル翼は、燃焼器と第1段のタービン動翼44との間において軸方向に配置されるとともに、従来的に構成されて、翼弦に沿って、かつ翼の前縁と後縁とを横切る方向に燃焼ガスの圧力を降下または低下させる。
各ノズル翼42は、上流の前縁と下流の後縁との間において軸方向に翼弦をなして延在する典型的な一般に凹状の圧力側と一般に凸状の対向する負圧側とを有する。ノズル翼42の形状は適切に選択されて、燃焼ガスが下流方向にタービンノズルの入口端部と出口端部との間において流れるときに実質的な圧力降下がもたらされうる。タービンノズルを介して流れるガスは、加速され、かつ方向転換されて、これにより、全圧のわずかな降下と静圧の大きな降下とが引き起こされる。
これに対応して、これもまた図2に図示されている第1段のタービン動翼44は、自身の前縁と後縁との間において軸方向に延在する一般に凹状の圧力側と一般に凸状の反対側の負圧側とを有する。タービン動翼44の形状もまた従来的に選択されて、翼弦に沿って、かつ該翼の前縁と後縁とを横切る方向に燃焼ガス38の圧力をさらに降下または低下させる。仕事またはエネルギーは、タービン動翼間を流れる前記ガスから抽出され、これによって全圧と静圧との両方の大きな降下が引き起こされる。
図3および4に、動作時において高温燃焼ガス38から適切に冷却される必要があるタービン動翼44を含むHPT22がより詳細に図示されている。これらの動翼44は、一般に中空とされて、以下の改良を除いて従来の態様で自身の内部冷却を達成する。
前記動翼は、適切な内部冷却構造を有し得、図4に、軸方向入口ダブテール部の付根部において入口を有するとともに、前縁の直後において翼型の長さにわたる衝突チャネルとなって終端する例証的な三経路前方蛇行冷却チャネル48が図示されている。この前方チャネル48は、翼型前縁を網羅するとともに、消費される冷却空気が一般的な態様で自身から排出されるときに前記翼型前縁をさらにフィルム冷却する1列以上のフィルム冷却孔50への送給を行なう。
図4に図示される例証的なタービン動翼は、さらにまた、薄い後縁の直前において翼型の長さにわたって、消費される空気を圧力側の後端部に沿って排出する1列の後縁冷却孔54への送給を行なう後方冷却チャネル52を含む。この後方冷却チャネル52は、以下にさらに説明されるように、ダブテール部の上方においてシャンクの後端部に適切な入口を有する。
図4に図示される例証的な構成において、動翼44は、さらに、これもまたダブテール部の付根部に対応する入口を有する三経路蛇行中間チャネルを含む。
このようにして、加圧空気は、圧縮機から抽気されるとともに、動翼44のいくつかの内部冷却回路を介して導かれて、何らかの従来式の態様で前記動翼の内部冷却を達成し、その後、消費された空気は、翼型の前縁から後縁まで圧力側および負圧側において配置されるさまざまな列状の出口孔を介して排出される。
圧縮段は、エネルギーが加えられると、空気の圧力と温度とを増加させる一方で、タービン段は、燃焼ガスの圧力と温度とを低下させて、前記燃焼ガスからエネルギーを抽出する。
図2に図示されている単段形HPT22を用いることにより、最初にノズル翼42を横切る方向に、次にはタービン動翼44を横切る方向に燃焼ガスの実質的な圧力降下を起こさせることができるため、HPT22の冷却系統を改良したものを用いて、エンジンの効率をさらに高めることができる。
特に、図2に、最初に、HP圧縮機18の第1の前最終段とHP動翼44の前方冷却チャネル48との間において適切に連通して結合されて、対応する第1の圧力および温度で圧縮機から抽気された加圧一次空気34aを前記動翼に供給する第1の段間ブリード回路56が図示されている。
前最終圧縮段は、燃焼器にCDP空気34を排出する圧縮機の最終段の前の何らかの適切な圧縮段である。前記のように、HP圧縮機18は、第7段を最終段とするとともに、適切な第1の前最終段が第5段ブレード5を含む第5段である7個の例証的な圧縮段を有する。
一次空気34aは、何らかの従来式の態様で、一般に後続の案内翼において、圧縮機の排気の圧力P7および温度T7より実質的に低い対応する第5段圧力P5および第5段温度T5で前記第5段から抽気されうる。
これに対応して、第2の段間ブリード回路58は、圧縮機18の異なる第2の前最終段と同じHP動翼44の後方冷却チャネル52との間において連通して結合されて、前記動翼の二重段間冷却を達成して、エンジンの性能と効率とを高める。この第2の回路58は、一次空気34aの第1の圧力および第1の温度より相応に低い第2の圧力および第2の温度で加圧二次空気34bを抽気する。
たとえば、前記第2の前最終圧縮段は、第3列の圧縮機ブレード3を含む第3段であってもよく、加圧された二次空気34bは、後続の案内翼において、抽出される一次空気34aの対応する第5段圧力P5および第5段温度T5より実質的に低い対応する第3段圧力P3および第3段温度T3を有して抽出されうる。
このようにすると、非CDP空気を用いて第1段HP動翼を適切に冷却して、エンジン効率を高めることができる。前CDP空気は、全圧縮サイクルを経ていないため、CDP空気より低費用であり、これに対応して、前CDP空気の温度は、CDP空気の温度より実質的に最大何百度も低い。
最初に図2に示されたように、第1のブリード回路56は、適切に構成されて、環状燃焼器20の内側の第5段ブレードから半径方向内方に延在して、HP動翼44の支持ロータディスク46に沿ってHP動翼44に達する。
これに対応して、第2のブリード回路58は、適切に構成されて、環状燃焼器20の外側の第3段ブレードから同じ第1段動翼44まで半径方向外方に延在する。
特に、LPT24は、図3および4により詳細に、HPT22と直列に連通して図示されている。前記LPTは、HP動翼44の列の直後に配置される第1段LPノズル60を含む所望の複数段を有する。
前記ノズル60は、半径方向内側および外側の環状バンド64、66間に取り付けられる1列の中空LP翼62を含む。さらに、一列の第1段LP動翼68が、静翼62の後に設けられるとともに、支持ロータディスクから従来的な態様で半径方向外方に延在する。
LPノズル翼62は、第1段HP動翼44に直接結合されるため、二次ブリード空気34bがそれを介して導かれうる効率的な構造となる。
したがって、第2のブリード回路58は、好都合にLPノズル60の1個以上の翼を通って半径方向内方に導かれてHP動翼44に達しうる一方で、静翼62そのものの効果的な冷却を達成する。
図4に最もわかりやすく図示されているように、HP動翼44は、いかなる従来的な構成をも有しうるが、自身の冷却のために2つの前CDP空気源を受けるように改良される。各動翼の翼型部分は、シャンクと軸方向入口ダブテール部とにより支持される前記動翼の半径方向内方プラットフォームによって拘束される燃焼流路内において半径方向に延在する。各動翼ダブテール部は、支持ロータディスク46の周縁リム部に設けられる対応する軸方向ダブテール溝70内において適切に取り付けられる。
全列の動翼44は、対向する前方および後方環状ブレード保持器72、74により軸方向に捕捉される。したがって、異なる圧力および温度下において、第1のブリード回路56は、前方ブレード保持器72において前記列の動翼44に結合されて一次ブリード空気34aを送給しうる一方で、第2のブリード回路58は、後方ブレード保持器74において前記列の動翼44に都合よく結合されて二次ブリード空気34bを送給しうる。
図4に図示されている個別の動翼44は、一般に鋳造により形成されるとともに、ダブテール部の付根部から半径方向外側の先端部まで自身の半径方向の全翼幅に延在する内部冷却チャネルを含む。前方冷却チャネル48とさらにまた中間チャネルとは、ダブテール溝70と直接連通して配置されるダブテール部の付根部において対応する入口を有する。
これに対応して、後方冷却チャネル52もまた、ダブテール部の付根部まで延在するが、該付根部に鋳造される入口は、該入口に適切にろう付けされる薄板により適切に密封されて、ダブテール溝との連通が防がれる。その代わりに、入口孔76が動翼シャンクの後面に、前記動翼内の後方冷却チャネル52と連通して鋳造または穿孔されうる。
このようにすると、動翼の後方冷却チャネル52は、後方ブレード保持器74において自身のシャンクを貫通する適切な入口を有し、前記入口は、LPノズル60と内側バンド64とを介して延在する第2のブリード回路58と連通して都合よく配置されうる。
LPノズルは、好ましくは、自身の前端部において気流インデューサ80を対応するシャンク入口と後方ブレード保持器を貫通する対応する孔部とを介して動翼の後方チャネル52と連通して配置されて有する、内側バンド64の内側に取り付けられる後方環状マニホルド78を含む。この気流インデューサ80は、いかなる従来的な構成を有してもよく、一般に固定状態の後方マニホルド78からの二次空気34bを回転する後方ブレード保持器およびディスク上へと接線方向に加速する1列の翼を含む。これにより、加圧された二次空気34bを回転する動翼へと、該空気の実質的な圧力損失を伴うことなしに導く効率的な機構が達成される。
図2〜4において、第1のブリード回路56は、圧縮機18とHPディスク46との間において軸方向に延在する第1の駆動軸30の内側に都合よく配置されうることが図示されている。前記のように、個別のタービン動翼44は、タービンディスク46の周縁部を横切って軸方向に延在する対応するダブテール溝70内に取り付けられる従来式ダブテール部を有する。ブリード回路56は、好ましくは、一次ブリード空気34aを半径方向外方に、前記ディスクの前面を渡ってダブテール溝70内へと導いてタービンディスクそのものの冷却を向上させるように構成される。
図2および3に図示される燃焼器20は、燃焼器そのものの半径方向内側および外側ライナを冷却するのに用いられる圧縮機からのCDP空気に対して自身のまわりに周方向に内側境界面を構成する環状内側燃焼器ケース82のまわりにおいて半径方向に従来の態様で支持される。したがって、第1のブリード回路56は、好ましくは、燃焼器の内側ケース82を取り巻くCDP空気チャネルから独立している。
図3に示される前方ブレード保持器72は、ディスク前面に沿って半径方向に延在する環状板であって、前記ディスクから軸方向前方に離間して、ディスク周縁部のまわりのダブテール溝70と連通して配置される前方送給路またはマニホルド84を形成する。第1のブリード回路56は、後方にマニホルド84の内側端部と連通して連続する。
このようにして、一次ブリード空気34aは、ディスク46が動作時に回転して前記ブリード空気を全列のダブテール溝70内に送るときに、遠心力の下で半径方向外方に前方マニホルド84を介して導かれる。それが望まれる場合は、空気圧をさらに高めるために、保持板72は、マニホルド84の内側においてインペラ羽根(図示せず)を含みうる。
図3に図示されているタービンディスク46は、軸方向のダブテール溝70が形成される一般的な幅広周縁リム部を有しており、より薄い環状ウェブが、前記リム部から半径方向内方に延在するとともに、中央ボア穴を貫通させて有するより幅広の中央ディスクハブとなって終端する。第1の駆動軸30は、後方フランジ部においてボルト列により前記ディスクウェブに固定的に結合される。
二次ハブ86は、前方ブレード保持器72の付根端部において一体的に結合されるとともに、同じボルトを用いてボルト止めフランジに固定的に取り付けられる。適切な孔が、保持板72と二次ハブ86との接合部を貫通して設けられて、第1のブリード回路56の前方部分とマニホルド84との間における連通が達成される。
第1のブリード回路56は、駆動軸30により外側の境界を定められるとともに、好ましくは、二次ハブ86のボア穴から軸方向前方に圧縮機の中間段まで上流方向に延在する管状バッフル88により内側の境界を定められる。
たとえば、図2に示されるHP圧縮機18の7つの段の各々は、対応するダブテール部およびダブテール溝を従来構成でディスクの周縁部に有する、対応する列の圧縮機ブレード1〜7を支持する対応する圧縮機ロータディスク90を含む。管状バッフル88は、好ましくは前方に、該バッフルと密着する第5段の圧縮機ディスクのハブの中央ボア穴まで延在する。
第1のブリード回路56は、好ましくは、さらにまた、第5段の圧縮機ブレード5の付根部から対応する圧縮機ディスク90に沿って半径方向内方に延在して一次ブリード空気34aをバッフル88のまわりにおいて半径方向内方と軸方向とに導いて出口マニホルド84へと流動させる複数個の周方向に離間する入口管92を含む。これらの入口管92は、従来の構成を有して、段間加圧空気を隣接する列をなす圧縮機ブレード間において、好ましくは前記列間の対応する列の案内翼の部分において、圧縮機ロータの対応する孔部を介して抽気しうる。
動翼44の内部冷却チャネルは、2個のブリード回路56、58によりHP圧縮機18と連通して適切に結合されて、前記圧縮機から加圧空気を受けて各動翼を内部冷却する。しかし、内部の冷却空気の圧力は、外部の燃焼ガスの圧力より十分に高くて、動翼の前縁と後縁との両方および前記縁部間において適切な逆流マージンが維持されて、動作時において燃焼ガスがタービン動翼内に吸い込まれることまたは逆流することを防ぐことができなければならない。
燃焼ガス38の圧力は、タービン動翼44の前縁と後縁との間において実質的に降下するため、2個のブリード回路56、58は、この圧力降下を補完するように選択されうる。特に、圧縮機の第1の前最終段は、好ましくは、圧縮機の最終段より適度に上流に配置されて、前縁孔50において一次空気34aの適切な逆流マージンをもたらす第5段とされる。さらに、前記好適な実施例における第2の前最終段は、第5段より上流に配置されて、後縁孔54において二次ブリード空気34bの対応する逆流マージンをもたらす第3圧縮段とされる。
図4に図示されている例証的な実施例では、前方動翼チャネル48は、前方マニホルド84と連通して配置されて、第1のブリード回路56から一次ブリード空気34aを受ける。このようにすると、第1段のタービン動翼44に、第5段のブリード空気が対応する第5段の圧力P5および温度T5で供給されて、タービン動翼そのものの冷却が高められうるとともに、十分な逆流マージンが得られる。
図2において、第5の圧縮段が、冷却空気をHPTロータに供給するために選択されており、その理由は、第5段は、一次ブリード空気34aにおいて、第1段のタービン動翼44の前縁において対応する列の第1の冷却孔50に近接して、燃焼ガス38の全相対圧(PTR)より高い静圧をもたらしうるためである。
タービン動翼44は、動作時に回転するとともに、最初に自身の前縁に沿って入射する燃焼ガス38を受けるため、前縁孔50から排出される冷却空気の内圧は、適切な逆流マージンを得てタービン動翼内への燃焼ガスの吸い込みを防ぐために、外部の燃焼ガスの全相対圧より適度に高くなければならない。
しかし、動作時にタービン動翼全体において燃焼ガスの圧力が降下するため、第5段の一次ブリード空気34aは、動翼の後縁における燃焼ガスの圧力低下に対して十分すぎる圧力を有する。その代わりとして、第2のブリード回路58を用いて、より低い圧力の二次ブリード空気34bがタービン動翼の後方冷却チャネル52に供給される。例証的な第3段のブリード空気34bは、動翼の後縁孔54において燃焼ガス38の静圧より適度に高い静圧を有して、適切な逆流マージンをもたらす。
タービン動翼44の前縁および後縁における逆流マージン要件が異なる圧力を基本とするため、異なるブリード空気源を圧縮機の異なる段から選択して、これらの相違に最適に合致させることができる。圧縮機の中間段の選択は、HP圧縮機18における圧縮サイクルとHPT22における対応する膨張サイクルとに依存する。
HPT22は、単段タービンであるため、燃焼ガス38の実質的な圧力降下が、該タービンのノズルと動翼とを横切る方向に起こる。CDP空気より低い圧力の段間ブリード空気を圧縮機から抽出するとともに、異なる圧力下で適切にHPTに送る一方で、依然としてタービン動翼44の前縁および後縁のいずれにおいても燃焼ガスの圧力より高い圧力で適切な逆流マージン或いは逆流余裕を維持することができる。
前記のように、空気34の圧力と温度とは、圧縮機ブレード1〜7の対応する列により示されるHP圧縮機18の7つの段の各々において段階的に増加する。圧縮機における空気の圧力の総合的または全体的な増加は、非常に大きくなり得、たとえば10〜30気圧に達しうる。これに対応して、圧縮機18を横切る加圧空気34の温度上昇は、何百度にもなりうる。
このように圧縮機18の多数の段内における圧力および温度の範囲が大きいことにより、2個のブリード回路56、58に関してさまざまな選択肢を得ることができる。ひとつの実施例では、第1のブリード回路56に供給を行なう圧縮機の第1の前最終段は、圧縮機の最終段または第7段より少なくとも2段だけ上流にある第5段である。
これに対応して、第2のブリード回路58に供給を行なう第2の前最終段は、第1のブリード回路に用いられる第5段より少なくとも2段だけ上流にある圧縮機の第3段である。
第3および第5の圧縮段は、相応に異なる圧力および温度の空気を有しており、その圧力を、第1段のタービン動翼44が受ける外圧に最適に合致するように選択して、動作時に高費用の空気または加圧空気を浪費することなしに、十分な逆流マージンを得ることができる。これに対応して、タービン動翼の冷却に用いられるより低温の段間ブリード空気は、より低温であるために、動翼の冷却により効果的である。
前記に開示の2個のブリード回路56、58における非CDP空気の利用により、CDP空気の流用の有意な削減が達成されて、これに対応してエンジン効率が大幅に高められうる。CDP空気は、該空気の高い圧力を達成するために最大限の仕事が行なわれるため、エンジン内において最も高費用の空気であることから、前記空気を燃焼プロセスそのもの以外に少しでも流用することは、エンジン効率を相応に低下させる。さらに、CDP空気のこうした流用を制限することにより、エンジンの総合効率が高められうる。
図3に図示されている例証的な実施例では、CDP空気は、第1段のタービン動翼またはロータディスクの冷却には用いられておらず、したがって、従来式の気流インデューサは、この設計では排除され得、これにより、これに対応する複雑さが解消される。その代わりとして、単純な環状密封フレーム94が内側ケース82から半径方向内方に延在するとともに、自身の中央ボア穴に環状密封パッドを含んで、取付けボルト列の上方において二次ハブ86から半径方向外方に延在するラビリンスシール歯部と密封的に結合する。
前記に開示のように高圧タービン22を改良して独立した第1および第2のブリード回路56、58を設けて前記タービンを冷却する方法は、該改良の利点を享受することができるさまざまな構成を有しうる。段間圧縮空気の抽気は、従来技術において周知であるとともに、さまざまな目的に用いられる。しかし、第1段のタービン動翼の冷却には、前記動翼の実質的な冷却および逆流マージン要件に鑑みて、一般に、CDP空気が用いられる。
ここで、タービン動翼を横切る方向の実質的な圧力降下を認識すると、一次空気34aを圧縮機18の第1の前最終段から抽気してタービン動翼44の前方冷却チャネル48に供給して、適切な逆流マージンを有して前縁冷却孔50を介して排出することができる。
これに対応して、二次ブリード空気34bは、圧縮機18の異なる第2の前最終段である第3段から抽気されてタービン動翼44の後方冷却チャネル52に供給されて、適切な逆流マージンで後縁冷却孔54から排出されうる。
一次ブリード空気34aは、環状燃焼器20より内側において、所望の逆流マージンを得るために動翼前縁孔50における燃焼ガスの全相対圧より適度に大きい静圧を有してタービン動翼44に都合よく導かれうる。さらに、二次ブリード空気34bは、燃焼器20より外側において、所望の逆流マージンを得るために動翼後縁孔54における燃焼ガスの静圧より大きい異なる静圧で下流のノズル翼62を介してタービン動翼44に都合よく導かれうる。
二次ブリード空気34bの静圧は、一次ブリード空気34aの静圧より適度に低く、第1段のタービン動翼44の外側の燃焼ガスの異なる圧力により良好に合致して用いられうる。
非CDP空気を第1段のタービンディスクおよび動翼の冷却に用いることは、これらの冷却を高めるためと、それがエンジンの構成および総合効率の向上にもたらす複合効果のためとに有意義である。高費用のCDP空気がタービンロータの冷却に用いられないため、エンジンの総合効率は高まる。
より低温の空気がタービンロータおよび動翼の冷却に用いられ、したがって冷却空気の所要量が削減されるとともに、動翼の寿命の延長も可能になる。よって、タービンロータの運転温度が低くなることに鑑みて、より低温で動作するタービンロータが、より低費用の超合金により形成されうる。
CDP空気用インデューサ装置は、前記のように排除され、これによってエンジン設計が単純化するとともに、エンジンの低重量化が可能になる。
さらに、タービンロータを冷却するためのCDP空気が不要になることにより、圧縮機18および燃焼器20とともにHPTそのものの再設計が可能になって、全体的な効率がさらに高まる。
本明細書に、好ましいと考えられるものと本発明の例証的な実施例とを説明したが、当業者には、本明細書中の教示から、本発明のその他の改良形態が明らかであり、したがって、添付の特許請求の範囲において、このような全ての改良形態は、本発明の真の精神および範囲内に含まれるものとして保証されることが望まれる。
したがって、以下の特許請求の範囲に記載され、かつ弁別されるところの本発明が、米国特許証により保証されることが望まれる。
ターボファンガスタービンエンジンの部分断面軸方向概略図である。 図1に図示されたコアエンジンの部分拡大軸方向断面図である。 図2に図示された高圧タービンの拡大軸方向断面図である。 図3に示された高圧タービンのさらに拡大された軸方向断面図である。
符号の説明
1〜7 圧縮機ブレード
10 ガスタービンエンジン
12 中心軸
14 ファン
16 ブースター圧縮機
18 HP圧縮機
20 燃焼器
22 高圧タービン(HPT)
24 低圧タービン(LPT)
26 ナセル
28 バイパスダクト
30 第1の駆動軸
32 第2の駆動軸
34 空気
36 燃料
38 燃焼ガス
40 案内翼
42 静翼
44 タービン動翼
46 ロータディスク
48 前方冷却チャネル
50 前縁冷却孔
52 後方冷却チャネル
54 後縁冷却孔
56 第1のブリード回路
58 第2のブリード回路
60 LPノズル
62 LP翼
64 内側バンド
66 外側バンド
68 LP動翼
70 ダブテール溝
72 前方ブレード保持器
74 後方ブレード保持器
76 入口
78 後方マニホルド
80 気流インデューサ
82 燃焼器ケース
84 前方マニホルド
86 二次ハブ
88 バッフル
90 ロータディスク
92 入口管
94 密封フレーム

Claims (8)

  1. ガスタービンエンジン(10)であって、
    直列に連通するファン(14)と圧縮機(18)と燃焼器(20)と高圧(HP)タービン(22)と低圧(LP)タービン(24)とからなり、
    前記圧縮機(18)は、複数列の圧縮機ブレード(1〜7)を含んで、対応する段において連続的に空気(34)を圧縮し、
    前記HPタービン(22)は、支持ロータディスク(46)の周縁部において対応するダブテール溝(70)内に取り付けられる単段の列をなす中空動翼(44)を含み、
    前記LPタービン(24)は、前記HP動翼(44)の後に続く1列の中空第1段LP翼(62)を含み、
    第1の段間ブリード回路(56)が、前記燃焼器(20)より内側において、前記圧縮機(18)の第1の前最終段(5)と前記HP動翼(44)との間に連通して結合され、
    第2の段間ブリード回路(58)が、前記燃焼器(20)より外側において、前記圧縮機(18)の第2の前最終段(3)と前記HP動翼(44)との間に、かつ前記LP翼(62)を介して連通して結合され
    各々の前記HP動翼(44)は、
    前記ダブテール溝(70)から前縁冷却孔(50)に供給を行なう前方チャネル(48)と、
    前記後方ブレード保持器(74)において前記動翼のシャンクから後縁冷却孔(54)に供給を行なう後方冷却チャネル(52)と
    を含み、
    前記ガスタービンエンジン(10)は、前記動翼後方チャネル(52)と連通する後方気流インデューサ(80)を自身の前方端部に配置されて有する、前記LP翼(62)より内側に設けられる環状後方マニホルド(78)をさらに含む
    ことを特徴とする、ガスタービンエンジン(10)。
  2. 前記HP動翼(44)は、前方および後方ブレード保持器(72、74)により、前記ディスク(46)の前記周縁部において対応するダブテール溝(70)内に捕捉され、
    前記第1のブリード回路(56)は、前記前方ブレード保持器(72)において前記列をなす動翼(44)に結合され、
    前記第2のブリード回路(58)は、前記後方ブレード保持器(74)において前記列をなす動翼(44)に結合される請求項1に記載のエンジン。
  3. 前記HP動翼(44)は、前記燃焼器(20)より内側において延在する駆動軸(30)により前記圧縮機ブレード(1〜7)に結合され、
    前記前方ブレード保持器(72)は、前記HPディスク(46)の前面に沿って内方に延在して、前記ディスク周縁部のまわりの前記ダブテール溝(70)と連通して配置される環状マニホルド(84)を形成し、
    前記第1のブリード回路(56)は、前記マニホルド(84)と連通して結合される請求項2に記載のエンジン。
  4. 前記HPタービン(22)は、さらに、前記燃焼器(20)とHP動翼(44)との間に配置される1列の静翼(42)を有して、前記HP翼(42)の前縁と後縁とを横切る方向に燃焼ガス(38)の圧力を降下させる第1段のタービンノズルを含み、
    前記HP動翼(44)は、自身の前縁と後縁とを横切る方向に前記燃焼ガスの圧力をさらに降下させるように構成され、
    前記第1の前最終段(5)は、前記圧縮機の最終段(7)より上流に配置されて、前記圧縮機から一次空気(34a)が第1の圧力で抽気され、
    前記第2の前最終段(3)は、前記第1の前最終段(5)より上流に配置されて、前記圧縮機からより低い第2の圧力で二次空気(34b)が抽気される請求項に記載のエンジン。
  5. 前記第1のブリード回路(56)は、前記一次空気(34a)において、前記動翼前縁孔(50)において前記燃焼ガス(38)の全相対圧より高い静圧をもたらすように構成される請求項に記載のエンジン。
  6. 前記第2のブリード回路(58)は、前記二次空気(34b)において、前記動翼後縁孔(54)において前記燃焼ガス(38)の静圧より高い静圧をもたらすように構成される請求項に記載のエンジン。
  7. 前記第1の前最終段(5)は、前記最終圧縮段より少なくとも2段だけ上流にあり、前記第2の前最終段(3)は、前記第1の前最終段(5)より少なくとも2段だけ上流にある請求項に記載のエンジン。
  8. 前記一次空気(34a)を前記圧縮機(18)から前記HP動翼(44)に導いて、前記動翼前縁孔(50)において逆流マージンを得る段階と;
    前記二次空気(34b)を前記圧縮機(18)から前記HP動翼(44)に導いて、前記後縁孔(54)において逆流マージンを得る段階とからなる請求項に記載の前記エンジン(10)の使用方法。
JP2007287981A 2006-11-10 2007-11-06 二重段間冷却エンジン Expired - Fee Related JP4958736B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/595,670 US7926289B2 (en) 2006-11-10 2006-11-10 Dual interstage cooled engine
US11/595,670 2006-11-10

Publications (2)

Publication Number Publication Date
JP2008121672A JP2008121672A (ja) 2008-05-29
JP4958736B2 true JP4958736B2 (ja) 2012-06-20

Family

ID=39154962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287981A Expired - Fee Related JP4958736B2 (ja) 2006-11-10 2007-11-06 二重段間冷却エンジン

Country Status (6)

Country Link
US (1) US7926289B2 (ja)
EP (1) EP1921256B1 (ja)
JP (1) JP4958736B2 (ja)
CN (1) CN101178014B (ja)
CA (1) CA2607674C (ja)
RU (2) RU2007141689A (ja)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8973374B2 (en) 2007-09-06 2015-03-10 United Technologies Corporation Blades in a turbine section of a gas turbine engine
FR2925131B1 (fr) * 2007-12-14 2010-01-22 Snecma Montage des tubes de pressurisation d'une enceinte interne dans une turbomachine
JP5134680B2 (ja) * 2008-02-27 2013-01-30 三菱重工業株式会社 ガスタービン及びガスタービンの車室開放方法
US8534074B2 (en) 2008-05-13 2013-09-17 Rolls-Royce Corporation Dual clutch arrangement and method
US20100005810A1 (en) * 2008-07-11 2010-01-14 Rob Jarrell Power transmission among shafts in a turbine engine
US8480527B2 (en) 2008-08-27 2013-07-09 Rolls-Royce Corporation Gearing arrangement
US8021267B2 (en) 2008-12-11 2011-09-20 Rolls-Royce Corporation Coupling assembly
US8075438B2 (en) 2008-12-11 2011-12-13 Rolls-Royce Corporation Apparatus and method for transmitting a rotary input into counter-rotating outputs
US8371127B2 (en) * 2009-10-01 2013-02-12 Pratt & Whitney Canada Corp. Cooling air system for mid turbine frame
RU2443869C2 (ru) * 2010-02-19 2012-02-27 Вячеслав Евгеньевич Беляев Устройство для охлаждения ротора газовой турбины
US8382432B2 (en) * 2010-03-08 2013-02-26 General Electric Company Cooled turbine rim seal
JP5216802B2 (ja) * 2010-03-29 2013-06-19 株式会社日立製作所 2軸式ガスタービンの冷却空気供給構造
FR2961250B1 (fr) * 2010-06-14 2012-07-20 Snecma Dispositif de refroidissement des alveoles d'un disque de rotor de turbomachine a l'aval du cone d'entrainement
GB201015029D0 (en) * 2010-09-10 2010-10-20 Rolls Royce Plc Gas turbine engine
GB201015028D0 (en) * 2010-09-10 2010-10-20 Rolls Royce Plc Gas turbine engine
DE102010063071A1 (de) * 2010-12-14 2012-06-14 Rolls-Royce Deutschland Ltd & Co Kg Kühlvorrichtung für ein Strahltriebwerk
US9279341B2 (en) 2011-09-22 2016-03-08 Pratt & Whitney Canada Corp. Air system architecture for a mid-turbine frame module
US9022735B2 (en) 2011-11-08 2015-05-05 General Electric Company Turbomachine component and method of connecting cooling circuits of a turbomachine component
WO2013137960A1 (en) * 2011-12-29 2013-09-19 United Technologies Corporation Turbine blades in a gas turbine engine
WO2013147953A1 (en) * 2011-12-30 2013-10-03 Rolls-Royce North American Technologies Inc. Aircraft propulsion gas turbine engine with heat exchange
US9347374B2 (en) * 2012-02-27 2016-05-24 United Technologies Corporation Gas turbine engine buffer cooling system
US9435259B2 (en) 2012-02-27 2016-09-06 United Technologies Corporation Gas turbine engine cooling system
US9316153B2 (en) 2013-01-22 2016-04-19 Siemens Energy, Inc. Purge and cooling air for an exhaust section of a gas turbine assembly
US9017014B2 (en) * 2013-06-28 2015-04-28 Siemens Energy, Inc. Aft outer rim seal arrangement
US9512780B2 (en) * 2013-07-31 2016-12-06 General Electric Company Heat transfer assembly and methods of assembling the same
US9470422B2 (en) * 2013-10-22 2016-10-18 Siemens Energy, Inc. Gas turbine structural mounting arrangement between combustion gas duct annular chamber and turbine vane carrier
US8869504B1 (en) 2013-11-22 2014-10-28 United Technologies Corporation Geared turbofan engine gearbox arrangement
US9797259B2 (en) * 2014-03-07 2017-10-24 Siemens Energy, Inc. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids
FR3021692B1 (fr) * 2014-05-27 2016-05-13 Snecma Platine d'etancheite a fonction de fusible
US10634055B2 (en) * 2015-02-05 2020-04-28 United Technologies Corporation Gas turbine engine having section with thermally isolated area
RU2589895C1 (ru) * 2015-03-23 2016-07-10 Открытое акционерное общество "Авиадвигатель" Охлаждаемая рабочая лопатка турбомашины
US10400627B2 (en) 2015-03-31 2019-09-03 General Electric Company System for cooling a turbine engine
FR3034474B1 (fr) 2015-04-01 2019-08-09 Safran Aircraft Engines Turbomachine equipee d'un secteur d'aubage et d'un circuit de refroidissement
FR3037617B1 (fr) * 2015-06-17 2019-06-28 Safran Aircraft Engines Conduit de veine de decharge d'une turbomachine comprenant une grille vbv a section variable et actionnement passif
US20170107839A1 (en) * 2015-10-19 2017-04-20 United Technologies Corporation Rotor seal and rotor thrust balance control
GB201521937D0 (en) * 2015-12-14 2016-01-27 Rolls Royce Plc Gas turbine engine turbine cooling system
US10273812B2 (en) 2015-12-18 2019-04-30 Pratt & Whitney Canada Corp. Turbine rotor coolant supply system
US10830097B2 (en) 2016-02-04 2020-11-10 General Electric Company Engine casing with internal coolant flow patterns
JP6647952B2 (ja) * 2016-04-25 2020-02-14 三菱重工業株式会社 ガスタービン
GB201611674D0 (en) * 2016-07-05 2016-08-17 Rolls Royce Plc A turbine arrangement
US11725584B2 (en) * 2018-01-17 2023-08-15 General Electric Company Heat engine with heat exchanger
US10808619B2 (en) 2018-04-19 2020-10-20 Raytheon Technologies Corporation Intercooled cooling air with advanced cooling system
US10830145B2 (en) 2018-04-19 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air fleet management system
US11170140B2 (en) 2018-07-03 2021-11-09 Raytheon Technologies Corporation Aircraft component qualification system and process including variation modeling
US11755791B2 (en) 2018-07-03 2023-09-12 Rtx Corporation Aircraft component qualification system and process
US11281821B2 (en) 2018-07-03 2022-03-22 Raytheon Technologies Corporation Aircraft component qualification system and process for target based inventory qualification
US11021961B2 (en) * 2018-12-05 2021-06-01 General Electric Company Rotor assembly thermal attenuation structure and system
CN110206591A (zh) * 2019-06-04 2019-09-06 中国船舶重工集团公司第七0三研究所 一种用于涡轮动叶供气的槽道式冷却空气导向装置
CN111305952A (zh) * 2020-02-26 2020-06-19 北京航空航天大学 一种基于外涵道加热的混合排气涡扇发动机推进系统
FR3108655B1 (fr) * 2020-03-24 2022-07-15 Safran Aircraft Engines Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement
DE102020115106B4 (de) 2020-06-08 2022-08-25 Man Energy Solutions Se Turbinenleitapparat
JP7463203B2 (ja) 2020-06-22 2024-04-08 東芝エネルギーシステムズ株式会社 タービンロータおよび軸流タービン

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034298A (en) * 1958-06-12 1962-05-15 Gen Motors Corp Turbine cooling system
DE2065334C3 (de) 1969-12-01 1982-11-25 General Electric Co., Schenectady, N.Y. Kühlsystem für die inneren und äußeren massiven Plattformen einer hohlen Leitschaufel
CA1020365A (en) * 1974-02-25 1977-11-08 James E. Johnson Modulating bypass variable cycle turbofan engine
GB2081392B (en) 1980-08-06 1983-09-21 Rolls Royce Turbomachine seal
US4852355A (en) * 1980-12-22 1989-08-01 General Electric Company Dispensing arrangement for pressurized air
FR2514408B1 (fr) * 1981-10-14 1985-11-08 Snecma Dispositif pour controler les dilatations et les contraintes thermiques dans un disque de turbine a gaz
JPH0337302A (ja) * 1989-07-04 1991-02-18 Hitachi Ltd ガスタービン装置
US5134844A (en) * 1990-07-30 1992-08-04 General Electric Company Aft entry cooling system and method for an aircraft engine
US5135354A (en) * 1990-09-14 1992-08-04 United Technologies Corporation Gas turbine blade and disk
US5174105A (en) * 1990-11-09 1992-12-29 General Electric Company Hot day m & i gas turbine engine and method of operation
US5142859A (en) * 1991-02-22 1992-09-01 Solar Turbines, Incorporated Turbine cooling system
US5472313A (en) * 1991-10-30 1995-12-05 General Electric Company Turbine disk cooling system
US5288210A (en) * 1991-10-30 1994-02-22 General Electric Company Turbine disk attachment system
US5340274A (en) 1991-11-19 1994-08-23 General Electric Company Integrated steam/air cooling system for gas turbines
US5232339A (en) * 1992-01-28 1993-08-03 General Electric Company Finned structural disk spacer arm
US5317877A (en) * 1992-08-03 1994-06-07 General Electric Company Intercooled turbine blade cooling air feed system
JPH0754669A (ja) * 1993-08-09 1995-02-28 Mitsubishi Heavy Ind Ltd ガスタービン冷却空気制御装置
US5498126A (en) * 1994-04-28 1996-03-12 United Technologies Corporation Airfoil with dual source cooling
US5555721A (en) * 1994-09-28 1996-09-17 General Electric Company Gas turbine engine cooling supply circuit
US5645397A (en) 1995-10-10 1997-07-08 United Technologies Corporation Turbine vane assembly with multiple passage cooled vanes
US5611197A (en) * 1995-10-23 1997-03-18 General Electric Company Closed-circuit air cooled turbine
JP2941748B2 (ja) * 1997-07-15 1999-08-30 三菱重工業株式会社 ガスタービン冷却装置
US5996331A (en) * 1997-09-15 1999-12-07 Alliedsignal Inc. Passive turbine coolant regulator responsive to engine load
US6050079A (en) * 1997-12-24 2000-04-18 General Electric Company Modulated turbine cooling system
US6092991A (en) * 1998-03-05 2000-07-25 Mitsubishi Heavy Industries, Ltd. Gas turbine blade
US6220814B1 (en) * 1998-07-16 2001-04-24 Siemens Westinghouse Power Corporation Turbine interstage sealing arrangement
EP1000698B1 (de) * 1998-11-09 2003-05-21 ALSTOM (Switzerland) Ltd Gekühlte Komponenten mit konischen Kühlungskanälen
US6183198B1 (en) * 1998-11-16 2001-02-06 General Electric Company Airfoil isolated leading edge cooling
US6183193B1 (en) * 1999-05-21 2001-02-06 Pratt & Whitney Canada Corp. Cast on-board injection nozzle with adjustable flow area
US6331097B1 (en) * 1999-09-30 2001-12-18 General Electric Company Method and apparatus for purging turbine wheel cavities
US6487863B1 (en) * 2001-03-30 2002-12-03 Siemens Westinghouse Power Corporation Method and apparatus for cooling high temperature components in a gas turbine
US6530744B2 (en) 2001-05-29 2003-03-11 General Electric Company Integral nozzle and shroud
EP1306521A1 (de) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Laufschaufel für eine Gasturbine und Gasturbine mit einer Anzahl von Laufschaufeln
JP2004036513A (ja) * 2002-07-04 2004-02-05 Mitsubishi Heavy Ind Ltd ガスタービン冷却装置
DE10310815A1 (de) * 2003-03-12 2004-09-23 Rolls-Royce Deutschland Ltd & Co Kg Wirbelgleichrichter in Röhrenbauweise mit Haltering
FR2858358B1 (fr) 2003-07-28 2005-09-23 Snecma Moteurs Procede de refroidissement, par air refroidi en partie dans un echangeur externe, des parties chaudes d'un turboreacteur, et turboreacteur ainsi refroidi
DE10336432A1 (de) 2003-08-08 2005-03-10 Alstom Technology Ltd Baden Gasturbine und zugehöriges Kühlverfahren
JP4103773B2 (ja) 2003-10-31 2008-06-18 株式会社日立製作所 ガスタービンプラントとガスタービンプラントの冷却方法
US6981841B2 (en) * 2003-11-20 2006-01-03 General Electric Company Triple circuit turbine cooling
US6960060B2 (en) * 2003-11-20 2005-11-01 General Electric Company Dual coolant turbine blade
US7007488B2 (en) 2004-07-06 2006-03-07 General Electric Company Modulated flow turbine nozzle
US7140835B2 (en) 2004-10-01 2006-11-28 General Electric Company Corner cooled turbine nozzle
GB2420155B (en) 2004-11-12 2008-08-27 Rolls Royce Plc Turbine blade cooling system
JP2006283606A (ja) * 2005-03-31 2006-10-19 Mitsubishi Heavy Ind Ltd ガスタービン用高温部材

Also Published As

Publication number Publication date
US20080112795A1 (en) 2008-05-15
JP2008121672A (ja) 2008-05-29
CA2607674A1 (en) 2008-05-10
EP1921256A2 (en) 2008-05-14
CA2607674C (en) 2013-03-12
RU2007141689A (ru) 2009-05-20
EP1921256B1 (en) 2016-01-27
CN101178014A (zh) 2008-05-14
RU2013114865A (ru) 2014-10-10
US7926289B2 (en) 2011-04-19
CN101178014B (zh) 2012-03-28
EP1921256A3 (en) 2010-11-03

Similar Documents

Publication Publication Date Title
JP4958736B2 (ja) 二重段間冷却エンジン
JP4958737B2 (ja) 複合タービン冷却エンジン
JP5166830B2 (ja) 中間冷却タービンエンジン
JP5080943B2 (ja) 複合ノズル冷却式エンジン
US6065928A (en) Turbine nozzle having purge air circuit
JP4492951B2 (ja) 三重回路タービン冷却
US7631484B2 (en) High pressure ratio aft fan
US9091173B2 (en) Turbine coolant supply system
CA2641074C (en) Asymmetric flow extraction system
JP2017072128A (ja) ステータ部品
CA2359288A1 (en) Turbine blade for gas turbine engine and method of cooling same
US20060127212A1 (en) Airfoil platform impingement cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101029

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees