JP4948562B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4948562B2
JP4948562B2 JP2009114233A JP2009114233A JP4948562B2 JP 4948562 B2 JP4948562 B2 JP 4948562B2 JP 2009114233 A JP2009114233 A JP 2009114233A JP 2009114233 A JP2009114233 A JP 2009114233A JP 4948562 B2 JP4948562 B2 JP 4948562B2
Authority
JP
Japan
Prior art keywords
temperature
time
refrigerator
food
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009114233A
Other languages
Japanese (ja)
Other versions
JP2010261677A (en
Inventor
彰 志賀
舞子 柴田
輝男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009114233A priority Critical patent/JP4948562B2/en
Publication of JP2010261677A publication Critical patent/JP2010261677A/en
Application granted granted Critical
Publication of JP4948562B2 publication Critical patent/JP4948562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は冷蔵庫に関し、特に食品を高品質に冷蔵保存するための温度調整機構に関するものである。   The present invention relates to a refrigerator, and more particularly to a temperature adjustment mechanism for refrigerated storage of food with high quality.

一般に、食材を冷蔵保存する際には、低温傷害などを生じる食材を除き、できるだけ低い温度域を維持することが品質維持のために望ましいとされている。しかしながら、0℃以下、特に食材の凍結点以下では、食材が凍結しやすくなり、部分的な凍結が起こった場合には細胞損傷が起きて品質が低下しやすいことが知られている。   In general, when refrigerated storage of foods, it is desirable to maintain a temperature range as low as possible except for foods that cause low-temperature injury or the like in order to maintain quality. However, it is known that at 0 ° C. or lower, especially below the freezing point of the food, the food is likely to freeze, and when partial freezing occurs, cell damage occurs and the quality is likely to deteriorate.

食品を低温保存する際の、品質低下を抑制するための従来技術として、以下のようなものがある。
凍結点以下でありながら未凍結である、過冷却状態を実現させる冷蔵庫として、例えば「通常時には前記断熱箱体の冷蔵庫内の温度設定値は貯蔵される保冷品の凍結点以上、水分を含む食材に対しては0℃以上の冷蔵温度帯で運転され、過冷却運転時には所定の時間、保冷品の凍結点以下の温度設定値である過冷却温度帯で運転し、保冷品を貯蔵する」冷蔵庫がある(例えば、特許文献1参照)。
The following is a conventional technique for suppressing quality deterioration when food is stored at low temperature.
As a refrigerator that realizes a supercooled state that is not frozen while being below the freezing point, for example, “a food set that contains moisture at or above the temperature set value in the refrigerator of the heat insulation box is higher than the freezing point of the stored cold storage product. The refrigerator is operated in a refrigerated temperature zone of 0 ° C. or higher, and is stored in the supercooled temperature zone that is a set temperature below the freezing point of the cold insulated product for a predetermined time during the supercooled operation. (For example, refer to Patent Document 1).

また、できるだけ長期にわたって過冷却状態を維持する方法として、例えば「凍結すると風味が劣化しやすい食品を外気温との断熱性が大きい構造を有する冷却室に素速く収容して密閉し、次いで強低温で前記食品が僅か凍結し始めるか又は凍結開始寸前の状態以内まで急速第1次冷却し、次いで温度を調節して、4℃以下で、しかも前記食品が殆ど又は全く凍結しない温度以上にして第2次冷却する」方法がある(例えば、特許文献2参照)。   In addition, as a method for maintaining the supercooled state for as long as possible, for example, “Food that tends to deteriorate when frozen is quickly stored in a cooling room having a structure with high heat insulation from the outside temperature, and then sealed. Then, the food starts to freeze slightly or quickly cools to a state just before the start of freezing, and then the temperature is adjusted to a temperature not higher than 4 ° C. and higher than the temperature at which the food hardly or not freezes. There is a method of “secondary cooling” (see, for example, Patent Document 2).

さらに、過冷却解除後の凍結開始をセンサで検知するとともに、冷蔵庫の動作を変化させて凍結の進行を防ぐ機能を備えた冷蔵庫として、例えば「過冷却の解除を検知すると、収納物の温度を氷点より上昇させた後に再び過冷却運転を行うように制御する制御装置を備えるか、または、過冷却運転とは異なる運転を行うように制御する制御装置を備えた」冷蔵庫がある(例えば、特許文献3参照)。   Furthermore, as a refrigerator having a function of detecting the start of freezing after the release of supercooling with a sensor and preventing the progress of freezing by changing the operation of the refrigerator, for example, “When the release of supercooling is detected, the temperature of the stored item is changed. There is a refrigerator that includes a control device that controls to perform the supercooling operation again after being raised from the freezing point, or a control device that performs control to perform an operation different from the supercooling operation (for example, patents) Reference 3).

特開2001−4260号公報(請求項1)JP 2001-4260 A (Claim 1) 特開昭62−166872号公報(請求項1)JP-A-62-166872 (Claim 1) 特許第3903066号公報(請求項8及び請求項9)Japanese Patent No. 3903066 (Claim 8 and Claim 9)

しかしながら、特許文献1では、凍結点以下の設定温度帯時間を規定しているが、凍結点以上の設定温度帯時間の規定がなされていないため、保存期間を通じての平均温度が高くなり、品質が低下する可能性があった。特許文献2では、何らかの要因で過冷却状態が解除され凍結した場合の対処策が講じられていないために、品質が低下する食品が発生する可能性があった。特許文献3では、過冷却解除を検知した後にリセット温度として高温温度帯に移行しているが、この高温側の温度や時間について規定がないために、高温による劣化が進行する可能性があった。   However, in Patent Document 1, the set temperature zone time below the freezing point is specified, but since the set temperature zone time above the freezing point is not specified, the average temperature throughout the storage period becomes high and the quality is high. There was a possibility of decline. In patent document 2, since the countermeasure when a supercooled state is cancelled | released and frozen by a certain factor is not taken, the foodstuff which quality deteriorates may generate | occur | produce. In Patent Document 3, the transition to the high temperature zone is detected as the reset temperature after detecting the overcooling cancellation, but there is no provision for the temperature and time on the high temperature side, so there is a possibility that deterioration due to high temperature may proceed. .

本発明は、上記のような課題を解決するためになされたものであり、第1の目的は、食品の過冷却状態を安定に維持することを可能にした冷蔵庫を提供することである。第2の目的は、食品の過冷却状態が解除されて凍結が開始した場合においても、氷結晶が大きな針状結晶に成長するのを回避することを可能にした冷蔵庫を提供することである。   The present invention has been made to solve the above-described problems, and a first object is to provide a refrigerator that can stably maintain a supercooled state of food. The second object is to provide a refrigerator that can prevent ice crystals from growing into large needle-like crystals even when freezing of food is released and freezing starts.

本発明に係る冷蔵庫は、冷室、冷蔵室及び野菜室と、前記保冷室を冷却又は加熱する温度調整機構と、前記温度調整機構を制御する制御手段とを有し、前記保冷室内に置かれた被収容物を過冷却状態にすることが可能な冷蔵庫であって、前記制御手段は、1工程及び第2工程を有し、前記第1工程の終了とともに前記第2工程を開始するよう前記温度調整機構を制御し、前記第1工程は、第1所定時間T1の間、前記保冷室の設定温度を前記被収容物の凍結点よりも低い低温側設定温度θLに設定し、前記第1所定時間T経過後に前記凍結点よりも高い高温側設定温度θHに切替え、第2所定時間の間、前記高温側設定温度θHに設定し、前記高温側設定温度θHに切替え後、前記保冷室内の空気よりも高温な空気を、前記冷蔵室又は前記野菜室から前記保冷室に導入することにより前記被収容物を解凍するという一連の制御から構成され、前記第2工程は、前記第2所定時間経過後に再び前記設定温度を前記θLに切替え、前記保冷室内を前記θLに維持するという一連の制御から構成されることを特徴とする。 Refrigerator according to the present invention, the coercive cold room, a refrigerating compartment and a vegetable compartment, and a temperature adjusting mechanism for cooling or heating the cold chamber, and a control means for controlling the temperature adjusting mechanism, location in the cold chamber the contained object that he a refrigerator capable of subcooled, said control means includes a first step and second step, starting the second step at the end of the first step The temperature adjusting mechanism is controlled, and the first step sets the set temperature of the cold storage chamber to a low temperature side set temperature θL lower than the freezing point of the object for the first predetermined time T1 , serial switching example high temperature side set temperature .theta.H than the freezing point to a first predetermined time T 1 after, during a second predetermined time, and set to the high temperature side set temperature .theta.H, after switching to the high temperature side set temperature .theta.H , Air that is hotter than the air in the cold room, Wherein by introducing a vegetable compartment in the cold chamber consists of a series of control that decompress the contained object, the second step, switching the set temperature again after the second predetermined time to said .theta.L, the It is characterized by comprising a series of controls for maintaining the inside of the cold insulation chamber at the aforementioned θL.

本発明においては、食品の過冷却状態が解除されて食品内部に略一様に微細氷結晶が生成し、凍結が開始した場合でも、予め定められたタイミングで高温温度帯へと昇温することによって、過冷却解除時に短期間に生成した微細氷結晶を溶解させ、その後再び低温温度帯に戻すことによって過冷却状態を実現し、食品の過冷却状態を安定に維持することができる。   In the present invention, even when the supercooled state of the food is released and fine ice crystals are generated almost uniformly inside the food and freezing is started, the temperature is raised to a high temperature zone at a predetermined timing. Thus, the supercooled state can be realized by dissolving the fine ice crystals generated in a short time when the supercooling is released and then returning to the low temperature range again, so that the supercooled state of the food can be maintained stably.

(A)冷却中に安定して過冷却を維持している場合の食品の温度変化を示す図である。(B)冷却途中で過冷却解除して凍結に陥る場合の食品の温度変化を示す図である。(A) It is a figure which shows the temperature change of the foodstuff in the case of maintaining supercooling stably during cooling. (B) It is a figure which shows the temperature change of the foodstuff when it cancels | releases supercooling in the middle of cooling, and falls into freezing. (A)本発明の実施の形態1に係る温度制御での設定温度の時間変化を示す図である。(B)空気温度の時間変化を示す図である。(C)食品温度の時間変化を示す図である。(A) It is a figure which shows the time change of the preset temperature in the temperature control which concerns on Embodiment 1 of this invention. (B) It is a figure which shows the time change of air temperature. (C) It is a figure which shows the time change of food temperature. (A)過冷却解除の発生後解凍が成功する場合の食品温度の時間変化を示す図である。(B)過冷却解除の発生後解凍が失敗する場合の食品温度の時間変化を示す図である。(A) It is a figure which shows the time change of food temperature in case defrosting succeeds after generation | occurrence | production of supercooling cancellation | release. (B) It is a figure which shows the time change of food temperature in case defrosting fails after generation | occurrence | production of supercooling cancellation | release. 本発明の実施の形態1に係る温度制御における空気温度及び食品温度の時間変化を示す図である。It is a figure which shows the time change of the air temperature in the temperature control which concerns on Embodiment 1 of this invention, and food temperature. 本発明の実施の形態2に係る温度制御における食品の温度変化を示す図である。It is a figure which shows the temperature change of the foodstuff in the temperature control which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る保冷室を備えた冷蔵庫の正面図の一例である。It is an example of the front view of the refrigerator provided with the cold storage room which concerns on Embodiment 3 of this invention. 本発明の実施の形態5に係る過冷却繰り返し実験の結果を示す図である。It is a figure which shows the result of the supercooling repetition experiment which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る温度制御における空気温度の時間変化を示す図である。It is a figure which shows the time change of the air temperature in the temperature control which concerns on Embodiment 5 of this invention.

実施の形態1.
図1は、保冷室内を凍結点θf以下に冷却する機構を備えた冷蔵庫内に、食品を入れた場合のその温度変化を示している。
図1(A)は、保冷室に入れた食品が、該食品の凍結点θf以下の設定温度まで冷却された後、該設定温度の状態で安定に推移していることを示している。すなわち、食品の過冷却状態が維持されている場合を示しており、理想的な状態である。
Embodiment 1 FIG.
FIG. 1 shows the temperature change when food is put in a refrigerator provided with a mechanism for cooling the inside of the cold insulation chamber to a freezing point θf or less.
FIG. 1 (A) shows that the food placed in the cold storage chamber has been stably changed at the set temperature after being cooled to the set temperature below the freezing point θf of the food. That is, it shows a case where the supercooled state of the food is maintained, which is an ideal state.

上記の図1(A)の場合、保冷室内におかれた食品は、低温温度帯において過冷却状態となるため、凍結による氷結晶成長にともなう品質低下がおこらない。しかし、扉開閉の衝撃や何らかの要因で急激な温度変動が起こった場合には、過冷却状態が解除され、食品内部に略一様に微細氷結晶が生成し、凍結が開始されることがある。   In the case of FIG. 1A described above, the food placed in the cold storage chamber is supercooled in the low temperature range, so that quality deterioration due to ice crystal growth due to freezing does not occur. However, when a sudden temperature change occurs due to the impact of opening or closing the door or for some reason, the supercooled state is canceled, and fine ice crystals are generated almost uniformly inside the food, which may start freezing. .

図1(B)は、凍結点θf以下のある時点において、過冷却状態が解除されて凍結が開始された場合を示している。過冷却解除によって食品内部に氷結晶が生成し、水及び氷が共存する状態に移行するとともに、食品凍結点θfへと食品の温度が変化する。この後凍結は進行し、凍結完了後は設定温度と等しくなる。このときの設定温度によっては、食品の品質低下がさらに進行するおそれがある。   FIG. 1B shows a case where the supercooling state is canceled and freezing is started at a certain time point below the freezing point θf. When the supercooling is released, ice crystals are generated inside the food, and the state shifts to a state where water and ice coexist, and the temperature of the food changes to the food freezing point θf. After this, freezing proceeds and becomes equal to the set temperature after completion of freezing. Depending on the set temperature at this time, the quality of the food may further deteriorate.

そこで、保冷室内の空気温度を以下のように制御する。図2は、保冷室内の設定温度を高温側と低温側に1つずつ設け、低温側設定温度θLから高温側設定温度θHに切替え制御した場合の、保冷室内の空気及び食品温度の経時変化を示している。
図2(B)に示すような空気温度の経時変化を実現させるよう、保冷室内の設定温度を図2(A)のように制御する。すなわち、空気を高温側設定温度θHから低温側設定温度θLへと冷却し、所定時間、低温側設定温度θLの状態を維持させる。次いで、時刻T1において、高温側設定温度θHへと保冷室内の空気加熱を開始し、時刻T2で1周期を完了させる。
Therefore, the air temperature in the cold room is controlled as follows. FIG. 2 shows the time-dependent changes in the air and food temperature in the cold storage chamber when one set temperature is set in the cold storage chamber on each of the high temperature side and the low temperature side and the low temperature side set temperature θL is switched from the high temperature side set temperature θH. Show.
The set temperature in the cold insulation chamber is controlled as shown in FIG. 2A so as to realize the change with time of the air temperature as shown in FIG. That is, the air is cooled from the high temperature side set temperature θH to the low temperature side set temperature θL, and the state of the low temperature side set temperature θL is maintained for a predetermined time. Next, at time T1, air heating in the cold insulation chamber is started to the high temperature side set temperature θH, and one cycle is completed at time T2.

図2(C)は、図2(A)のように保冷室内の設定温度を制御した際に、食品が過冷却解除しなかった場合の温度変化を示している。食品が過冷却解除を起こさない場合は、保冷室内の空気温度の経時変化よりも時間は遅れるものの、該食品の温度はその熱容量に応じて、高温側設定温度θHと低温側設定温度θLとの間を連続的に温度変化する。   FIG. 2C shows a temperature change when the food does not release the supercooling when the set temperature in the cold insulation chamber is controlled as shown in FIG. If the food does not release the supercooling, the time of the food lags behind the time-dependent change in the air temperature in the cold insulation chamber, but the temperature of the food depends on the heat capacity, and is set between the high temperature side set temperature θH and the low temperature side set temperature θL. The temperature changes continuously.

一方、図3は、食品が過冷却解除した場合の食品の温度変化の例を示している。
保冷室内におかれた食品は、低温温度帯において過冷却状態となるが、扉開閉の衝撃や何らかの要因で急激な温度変動が起こった場合には、過冷却状態が解除されることがある。過冷却が解除されると、食品内部に略一様に微細氷結晶が生成し凍結が開始される。
On the other hand, FIG. 3 shows an example of a change in the temperature of the food when the supercooling is released.
The food placed in the cool room is supercooled in a low temperature range, but the supercooled state may be canceled if a sudden temperature change occurs due to a door opening / closing impact or some factor. When the supercooling is released, fine ice crystals are formed almost uniformly inside the food and freezing is started.

そこで、予め定められたタイミングで、あるいは食材の凍結開始を検知して、高温温度帯へと昇温することによって、過冷却解除時に短期間に生成した微細氷結晶を溶解させることができる。この後、予め定められたタイミングで、あるいは食品の解凍完了を検知して、再び空気温度を低温温度帯に戻すことによって、食品の品質低下を抑制できる。   Therefore, by detecting the start of freezing of the food at a predetermined timing or by raising the temperature to a high temperature zone, it is possible to dissolve the fine ice crystals generated in a short time when the supercooling is released. Thereafter, at a predetermined timing or by detecting the completion of thawing of the food and returning the air temperature to the low temperature range again, it is possible to suppress the quality deterioration of the food.

図3(A)は、食品温度が凍結点θf以下になった時刻Tにおいて、過冷却解除して凍結が開始されることを示している。次いで、時刻T1で保冷室内を高温側設定温度に切り替えることで、食品の内部で解凍が開始され、時刻Tf2において解凍が完了する。そして食品温度が上昇し、時刻T2において、空気温度(=高温側設定温度)θHに到達する様子を示している。   FIG. 3A shows that the supercooling is released and freezing is started at time T when the food temperature becomes equal to or lower than the freezing point θf. Next, thawing is started inside the food by switching the inside of the cold storage room to the high temperature side set temperature at time T1, and thawing is completed at time Tf2. Then, the food temperature rises and reaches the air temperature (= high temperature side set temperature) θH at time T2.

図3(B)は、図3(A)同様に時刻Tから凍結が開始され、時刻T1から解凍が開始されるも、時間T2において解凍が完了していないために、次の周期に入って冷却が開始される場合を示している。これは、食品内部に残存する氷結晶を核として、食品の凍結が速やかに進行するために過冷却状態にならず、該食品の凍結点θf以下に設定された低温側設定温度θLに至る場合である。   In FIG. 3B, as in FIG. 3A, freezing is started from time T and thawing is started from time T1, but since thawing is not completed at time T2, the next cycle starts. The case where cooling starts is shown. This is a case where the ice crystals remaining inside the food are used as a core, and the freezing of the food proceeds rapidly so that the food does not enter a supercooled state and reaches the low temperature side set temperature θL set below the freezing point θf of the food. It is.

このように、過冷却解除後の凍結を回避するために、保冷室の設定温度の上下操作を繰り返す場合において、高温側設定温度θH、低温側設定温度θL、時間T1、時間T2、冷却速度などの設定を十分に考慮しないと、過冷却解除が頻繁に起こったり、凍結に陥ったり、保冷室内の平均温度が上昇してしまうために、食品の品質低下のリスクが増加する。   As described above, in order to avoid the freezing after the supercooling is released, when the up and down operation of the set temperature of the cold insulation chamber is repeated, the high temperature side set temperature θH, the low temperature side set temperature θL, the time T1, the time T2, the cooling rate, etc. If this setting is not fully taken into account, the supercooling release frequently occurs, the freezing occurs, or the average temperature in the cold storage chamber increases, which increases the risk of food quality degradation.

望ましくは、過冷却解除した時点で生成される微細氷結晶が成長して、細胞などへのダメージを与える前に、該微細氷結晶の解凍を開始して過不足なく解凍し終えた後に、直ちに食品を再冷却すればよい。しかし、過冷却の解除は、水分子同士の確率論的な結合状態に依存している。また、冷却能力、食品の種類やサイズ、ユーザーの取り扱い方などは様々であり、さらに冷却中の食品を毎回すべて温度監視することはできないため、必要かつ十分なパラメータを選択し、温度上下制御シーケンスを決定する必要がある。   Desirably, the fine ice crystals generated when the supercooling is released grows, and before damaging the cells, the thawing of the fine ice crystals is started and immediately after thawing without excess or deficiency, What is necessary is just to re-cool food. However, the release of supercooling depends on the stochastic state of binding between water molecules. In addition, the cooling capacity, the type and size of food, the handling method of the user, etc. vary, and since the temperature of all foods being cooled cannot be monitored each time, the necessary and sufficient parameters are selected and the temperature up / down control sequence is selected. Need to be determined.

そこで本発明では、以下に示す温度制御を行う。図4は、本発明の実施の形態1に係る、設定温度の切替え制御による保冷室内の空気及び食品の温度変化を示している。保冷室内の空気温度を制御する制御部により、保冷室内の設定温度を、空気低温設定時間TLの期間は低温側設定温度θLとし、空気高温設定時間THの期間は高温側設定温度θHに制御する。このとき、食品温度のグラフにおいて、領域1では時刻Tで食品の過冷却解除が始まり、過冷却解除時に瞬間的に微量な氷結晶が生成する。領域2では、微量な氷結晶を核として凍結が進行する。領域3では、領域2で生成した氷に熱を与え、解凍が進行する。
なお、図4の食品温度のグラフ上には、水から氷に変化する際に放出される潜熱Q1、凍結進行中に水から奪われる潜熱Q2及び解凍進行中に氷に与える熱Q3を示してある。
Therefore, in the present invention, the following temperature control is performed. FIG. 4 shows temperature changes in the air and food in the cold storage chamber by the preset temperature switching control according to Embodiment 1 of the present invention. The control unit for controlling the air temperature in the cool room is controlled so that the set temperature in the cool room is the low temperature side set temperature θL during the air low temperature set time TL and the high temperature side set temperature θH during the air high temperature set time TH. . At this time, in the food temperature graph, in region 1, the supercooling of the food starts to be released at time T, and a small amount of ice crystals are instantaneously generated when the supercooling is released. In region 2, freezing proceeds with a small amount of ice crystals as nuclei. In region 3, heat is applied to the ice generated in region 2, and thawing proceeds.
In addition, on the graph of the food temperature of FIG. 4, the latent heat Q1 released when changing from water to ice, the latent heat Q2 taken away from the water during the freezing process, and the heat Q3 given to the ice during the thawing process are shown. is there.

上記のような観点から実験を行った結果、これら3つの熱量(Q1、Q2及びQ3)に関し、以下に示す式を満たすような温度制御を行えば、食品が過冷却解除した場合でも十分に解凍の成功が可能で、再び過冷却状態を実現できることが分かった。
すなわち、図4に示すような温度変化をする食品において、
Q3≧Q1+Q2
Q1:過冷却が解除された際の潜熱
=Δ(θT−θL)(K)×W(g)×Cp(J/g・K)
Q2:過冷却解除後、低温温度帯にある間の凍結進行中に蓄積される潜熱
=Δ(θf−θL)(K)×(T1−T)(sec)
×kf(J/sec・K)
Q3:高温温度帯にある間の解凍中に食品に与えられる熱
=Δ(θf−θH)(K)×(Ttw―Tf)(sec)
×ktw(J/sec・K)
θT:過冷却解除する温度
θL:低温側設定温度
W:食品の含水量
Cp:水の熱容量
θf:食品の凍結点
T1:低温設定時間
T:低温設定され冷却開始してから過冷却解除するまでの時間
kf:冷却中の熱伝達係数
θH:高温側設定温度
Ttw:解凍完了時間
Tf:高温設定時に空気温度が上昇中に食品の凍結点に達する時間
ktw:昇温中の熱伝達係数
ここで、熱伝達係数kfは、食品が未凍結の間の冷却速度及び昇温速度から見積もることができる。食品が過冷却解除し始める時刻T及び食品の凍結温度θTfは、冷却対象となる代表的な食品を用いた試験から決定することができる。したがって、簡易的な実験で上記の定数を算出して決定し、高温側設定温度θH、低温側設定温度θL及び低温設定時間T1を、上記関係式を満たすように制御することで、食品の高品質保存が可能となる。
As a result of experiments from the above viewpoint, regarding these three calories (Q1, Q2 and Q3), if the temperature control is performed so as to satisfy the following formula, the food is thawed sufficiently even when the supercooling is released. It was found that the supercooled state can be realized again.
That is, in a food that changes in temperature as shown in FIG.
Q3 ≧ Q1 + Q2
Q1: Latent heat when supercooling is released
= Δ (θT−θL) (K) × W (g) × Cp (J / g · K)
Q2: Latent heat accumulated during freezing while it is in a low temperature zone after overcooling is released
= Δ (θf−θL) (K) × (T1-T) (sec)
× kf (J / sec · K)
Q3: Heat given to food during thawing while in a high temperature zone
= Δ (θf−θH) (K) × (Ttw−Tf) (sec)
× ktw (J / sec · K)
θT: temperature at which supercooling is released θL: low temperature set temperature W: water content of food Cp: heat capacity of water θf: freezing point of food T1: low temperature set time T: from low temperature setting to start cooling until supercooling is released Time kf: heat transfer coefficient during cooling θH: high temperature side set temperature Ttw: thawing completion time Tf: time to reach food freezing point while air temperature is rising at high temperature setting ktw: heat transfer coefficient during temperature rise The heat transfer coefficient kf can be estimated from the cooling rate and the heating rate while the food is not frozen. The time T at which the food starts to be supercooled and the freezing temperature θTf of the food can be determined from a test using a representative food to be cooled. Therefore, the above constants are calculated and determined by a simple experiment, and the high temperature side set temperature θH, the low temperature side set temperature θL, and the low temperature set time T1 are controlled so as to satisfy the above relational expression. Quality preservation is possible.

実施の形態2.
図5は、本発明の実施の形態2に係る、より簡易的な温度上下シーケンスの設定方法を示している。この方法では、冷却運転時間(低温設定時間TL)が加熱運転時間(高温設定時間TH)よりも長くなるように制御する。すなわち、食品が凍結点以下となる積算時間が凍結点以上となる積算時間よりも長くなるように制御すればよい。低温時間が長いということは、Δ(θL−θf)<Δ(θH−θf)という関係式を満たすことを意味する。このように設定することによって、過冷却解除が起こりにくくなる。また食品の平均温度を下げることができ、食品の高品質保存が可能となる。
Embodiment 2. FIG.
FIG. 5 shows a simpler temperature up / down sequence setting method according to the second embodiment of the present invention. In this method, the cooling operation time (low temperature setting time TL) is controlled to be longer than the heating operation time (high temperature setting time TH). In other words, it is only necessary to control so that the integrated time when the food is below the freezing point is longer than the integrated time when the food is above the freezing point. That the low temperature time is long means that the relational expression Δ (θL−θf) <Δ (θH−θf) is satisfied. By setting in this way, it becomes difficult for supercooling cancellation to occur. Further, the average temperature of the food can be lowered, and the food can be stored at high quality.

実施の形態3.
食品のなかでも、凍結させずに保存することが求められる生鮮食品に関する試験から、保冷室の平均温度を1℃以下とすることによって、食品を高品質に保存できることが分かった。また保冷室の平均温度を、冷却対象食品の凍結点以上とすることによって、食品の過冷却解除の発生確率を抑制できることがわかった。食品の凍結温度は様々であるが、刺身類においては約−2℃、生肉類については約−5℃と設定することができる。平均温度を1℃以下かつ凍結点以上とすることによって、過冷却解除する確率を低く抑制することができる。過冷却解除しにくい状態を実現することで、品質低下を引き起こすような凍結進行状態に陥る可能性を低減できる。
Embodiment 3 FIG.
Among the foods, tests on fresh foods that are required to be stored without freezing revealed that foods can be stored in high quality by setting the average temperature in the cold storage chamber to 1 ° C. or lower. Moreover, it turned out that the occurrence probability of the supercooling cancellation | release of a foodstuff can be suppressed by making the average temperature of a cold storage room more than the freezing point of the foodstuff to be cooled. Although the freezing temperature of food varies, it can be set to about −2 ° C. for sashimi and about −5 ° C. for raw meat. By setting the average temperature to 1 ° C. or lower and the freezing point or higher, the probability of canceling the supercooling can be suppressed low. By realizing a state in which it is difficult to release the supercooling, it is possible to reduce the possibility of falling into a frozen state that causes a deterioration in quality.

低温温度帯として設定する温度(低温側設定温度)は、低温であるほどよいが、冷却に必要なエネルギー消費などの観点から、水の凍結点である0℃から−20℃の間が望ましい。また、−2℃から−7℃とすれば、過冷却解除が起こりにくいことがわかった。また、冷却速度は300℃/時間から0.35℃/時間とすることによって、過冷却解除が起こりにくいことがわかった。すなわち、上記のように温度設定することで、食品の高品質保存が可能となる。   The temperature set as the low temperature zone (low temperature side set temperature) is preferably as low as possible, but is preferably between 0 ° C. and −20 ° C. which is the freezing point of water from the viewpoint of energy consumption necessary for cooling. Further, it was found that when the temperature was changed from −2 ° C. to −7 ° C., the supercooling release hardly occurred. Further, it was found that the supercooling release hardly occurs when the cooling rate is changed from 300 ° C./hour to 0.35 ° C./hour. That is, by setting the temperature as described above, it is possible to preserve food with high quality.

高温温度帯として設定する温度(高温側設定温度)は、温度が低いほど食品の品質劣化が少ないが、解凍時間が長くなる。このような観点から、高温温度帯は水の融点である0℃から20℃の間が望ましく、さらには3℃から7℃の範囲であることが特に望ましい。なお、高温温度帯を実現するために、熱交換器、ヒーター、ペルチェ素子、マイクロ波などの電磁場の印加などを行えばよいが、これらには、冷却のため以外のエネルギーが必要となる。なお、上述の数値は家庭用冷蔵庫の性能限界に基づくものである。   As the temperature set as the high temperature zone (high temperature side set temperature), the lower the temperature, the lower the quality of the food, but the longer the thawing time. From such a viewpoint, the high temperature zone is preferably between 0 ° C. and 20 ° C., which is the melting point of water, and more preferably in the range of 3 ° C. to 7 ° C. Note that in order to realize a high temperature zone, an electromagnetic field such as a heat exchanger, a heater, a Peltier element, or a microwave may be applied, but these require energy other than cooling. In addition, the above-mentioned numerical value is based on the performance limit of a household refrigerator.

図6は、複数の温度に設定された複数の部屋をもつ一般的な家庭用冷蔵庫の例を示している。冷蔵庫本体101は、冷蔵室102、保冷室103、卵室104、製氷室105、切替室106、冷凍室107及び野菜室108を備えている。冷蔵室102と保冷室103の間には、送風路1が設けられている。
一般的な家庭用冷蔵庫の場合、冷蔵室102は3℃から5℃に設定されることが多い。図6に示すように、本発明の保冷室103を冷蔵庫本体101内の一部に設けておき、冷却時には、図示していない冷却用熱交換器を通過して生成された冷気を保冷室103に導入又は間接冷却し、加熱時には、保冷室103よりも高温な冷蔵室102の空気を保冷室103に導入すればよい。上記のような構造とすることによって、冷蔵庫本体101本来の冷却用熱交換器以外の加熱装置を必要とせず、またヒーターなどの熱源へのエネルギーロスがない。すなわち、高温空気を生成する熱源が不要で、さらに余分な部品及びエネルギーも不要となる。
FIG. 6 shows an example of a general household refrigerator having a plurality of rooms set at a plurality of temperatures. The refrigerator main body 101 includes a refrigerator compartment 102, a cold storage compartment 103, an egg compartment 104, an ice making compartment 105, a switching room 106, a freezing compartment 107, and a vegetable compartment 108. A ventilation path 1 is provided between the refrigerator compartment 102 and the cold insulation chamber 103.
In the case of a general household refrigerator, the refrigerator compartment 102 is often set to 3 ° C to 5 ° C. As shown in FIG. 6, the cold insulation chamber 103 of the present invention is provided in a part of the refrigerator main body 101, and at the time of cooling, cold air generated by passing through a cooling heat exchanger (not shown) is kept in the cold insulation chamber 103. The air in the refrigerator compartment 102 having a temperature higher than that of the cold insulation chamber 103 may be introduced into the cold insulation chamber 103 during heating or indirect cooling. By adopting the above-described structure, a heating device other than the original cooling heat exchanger of the refrigerator main body 101 is not required, and there is no energy loss to a heat source such as a heater. That is, a heat source for generating high-temperature air is unnecessary, and extra parts and energy are also unnecessary.

なお、図6では冷蔵室102の空気を導入しているが、保冷室103よりも高温に設定されている野菜室108の空気又は冷蔵庫本体101外の空気を導入してもよい。保冷室103の温度上昇の際に、ヒーターなどを用いずに冷蔵庫本体101内の他の室の空気を導入することによって、電力ロスを減らすことができる。また、冷却用熱交換器を加熱動作させて、温風を保冷室103に導入してもよい。   In FIG. 6, the air in the refrigerator compartment 102 is introduced, but the air in the vegetable compartment 108 set to a temperature higher than that of the cold storage compartment 103 or the air outside the refrigerator main body 101 may be introduced. When the temperature of the cold insulation chamber 103 rises, the power loss can be reduced by introducing air from other chambers in the refrigerator main body 101 without using a heater or the like. In addition, the cooling heat exchanger may be heated to introduce the warm air into the cold insulation chamber 103.

実施の形態4.
保冷室の温度上下の制御についてさらに詳しく検討した結果、低温設定時間を120分から240分、高温設定時間を140分から230分とすることによって、食品の品質を高く維持した状態での保存が可能となることが分かった。したがって、制御の冗長性を考慮して、高温側設定温度の開始から低温設定温度の終了までの1周期を4時間から9時間の範囲内とすることで、食品の高品質状態での保存が可能となる。
Embodiment 4 FIG.
As a result of examining the control of the temperature of the cold room in more detail, the low temperature setting time is set to 120 to 240 minutes, and the high temperature setting time is set to 140 to 230 minutes, so that the food can be stored with high quality maintained. I found out that Therefore, in consideration of control redundancy, by setting one cycle from the start of the high temperature side set temperature to the end of the low temperature set temperature within the range of 4 hours to 9 hours, food can be stored in a high quality state. It becomes possible.

実施の形態5.
図7は、本発明の実施の形態5に係る、過冷却を繰り返した場合の過冷却解除の起こりやすさ(確率)を検証した実験結果を示している。
温度上下制御を繰り返して、過冷却解除する確率を検証したところ、図7に示すように温度上下制御の回数が増加すると、過冷却解除する確率も徐々に上昇し、また過冷却解除の開始時間が徐々に短くなる傾向があることが分かった。
Embodiment 5 FIG.
FIG. 7 shows the experimental results of verifying the likelihood (probability) of canceling the supercooling when the supercooling is repeated according to the fifth embodiment of the present invention.
When the temperature up / down control is repeated and the probability of canceling the supercooling is verified, as shown in FIG. 7, when the number of the temperature up / down control increases, the probability of releasing the supercooling gradually increases, and the start time of the supercooling release It turns out that there is a tendency to become short gradually.

このことから図8に示すように、過冷却が数回繰り返された後に、次の温度上下制御を行う際は、低温設定時間(TL)/高温設定時間(TH)の比率を小さくすることが望ましい。すなわち(TLa/THa)>(TLb/THb)とすればよい。ここで、添字aは初期、添字bは数周期経過後を意味する。また、温度上下制御を数周期行った後は、低温側設定温度及び高温側設定温度の少なくとも1つをより高い温度に設定することが望ましい。これらを適宜組み合わせることによって、過冷却解除の発生確率の増加を抑制することができ、食品の高品質状態での保存が可能になる。   Therefore, as shown in FIG. 8, when the next temperature up / down control is performed after the supercooling is repeated several times, the ratio of the low temperature set time (TL) / high temperature set time (TH) can be reduced. desirable. That is, (TLa / THa)> (TLb / THb) may be satisfied. Here, the subscript a means initial, and the subscript b means after several cycles. In addition, after several cycles of temperature up / down control, it is desirable to set at least one of the low temperature side set temperature and the high temperature side set temperature to a higher temperature. By appropriately combining these, it is possible to suppress an increase in the occurrence probability of cancellation of supercooling, and food can be stored in a high quality state.

また、温度上下制御を食品の保管期間とともに変化させることによって、より安定的に過冷却保存ができる。そのためには、食品保管期間が長くなるにつれて、低温設定温度及び高温設定温度の少なくとも1つを高くしていく制御を設けるとよい。   In addition, by changing the temperature up / down control with the storage period of the food, it is possible to more stably store under cooling. For this purpose, it is preferable to provide a control for increasing at least one of the low temperature set temperature and the high temperature set temperature as the food storage period becomes longer.

実施の形態6.
上述では、過冷却解除する確率を低減しつつ、できるだけ低温に保持するために、温度上下のタイミングを予め設定した時間で決定していたが、より精細に制御するには、食品の温度又は凍結状態を検知し、これに応じて温度制御を行なうことが望ましい。このために、食品の温度を検知するセンサを該保冷室に設けて、食品温度が予め設定した温度になるように温度調整機構を動作させればよい。
食品温度を検知するセンサとしては、食品表面から放射される赤外線を検知する方法がある。また、食品中の水分が温度によって電波吸収率が異なることを利用して、電波放射アンテナと検波器とを組み合わせた方法がある。
Embodiment 6 FIG.
In the above, in order to keep the temperature as low as possible while reducing the probability of canceling the supercooling, the timing of the temperature up and down is determined by a preset time. It is desirable to detect the state and control the temperature accordingly. For this purpose, a sensor for detecting the temperature of the food may be provided in the cold insulation chamber, and the temperature adjustment mechanism may be operated so that the food temperature becomes a preset temperature.
As a sensor for detecting the food temperature, there is a method for detecting infrared rays emitted from the food surface. In addition, there is a method in which a radio wave radiation antenna and a detector are combined by utilizing the fact that the moisture content of food varies depending on temperature.

あるいは、食品中の水分が液体であるか、又は氷であるかを検出するセンサを設けてもよい。凍結検知センサとしては、前述の電波放射アンテナと検波器によって、水と氷の誘電率の違いを検知する方法がある。またこのとき、放射する電波の周波数を変化させ、いくつかの周波数における検出強度をもとに水と氷との判定をしてもよい。温度上下制御を、食品のセンシング情報をもとに変化させることによって、さらに安定的に過冷却保存ができる。   Or you may provide the sensor which detects whether the water | moisture content in a foodstuff is a liquid or ice. As a freezing detection sensor, there is a method of detecting a difference in dielectric constant between water and ice using the above-described radio wave radiation antenna and detector. At this time, the frequency of the radiated radio wave may be changed, and the determination of water and ice may be made based on the detected intensity at several frequencies. By changing the temperature up / down control based on food sensing information, it is possible to more stably store under cooling.

さらに、食品に対して赤外線を放射して、反射あるいは透過する赤外線を検知する方法がある。また、食品自体に音波をあてるか、あるいは食品中に音波を伝播させ、反射あるいは透過する音を検知する方法がある。なお、凍結を検知するセンサを用いる場合には、前述の定期的な温度上下制御を停止し、低温設定のまま長期に保存してもよい。すなわち、凍結を検知した時点において所定の温度上昇を行い、凍結した氷を溶解させて再び低温設定を行えばよい。   Furthermore, there is a method of detecting infrared rays that are reflected or transmitted by emitting infrared rays to food. There is also a method of detecting sound reflected or transmitted by applying sound waves to the food itself or propagating sound waves through the food. In addition, when using the sensor which detects freezing, the above-mentioned periodic temperature up-and-down control may be stopped and it may preserve | save for a long term with a low-temperature setting. That is, a predetermined temperature rise may be performed at the time when freezing is detected, the frozen ice is melted, and the low temperature setting is performed again.

本発明によって、食品の温度を上下させる機構を設けた冷蔵庫において、凍結点以下と凍結点以上の温度帯を、所定のタイミングで繰り返すことによって、凍結が進行するのを回避しつつ、より低温な過冷却状態をより安定的に維持することができ、食品の高品質状態での保存が可能となる。この結果、食品を美味しく、商品性を維持した状態で長期にわたり保存することができるため、食品の無駄の削減や省エネに貢献できる。   According to the present invention, in a refrigerator provided with a mechanism for raising and lowering the temperature of food, by repeating the temperature range below the freezing point and above the freezing point at a predetermined timing, it is possible to avoid the progress of freezing and to lower the temperature. The supercooled state can be maintained more stably, and the food can be stored in a high quality state. As a result, the food can be stored for a long time in a state where the food is delicious and the merchantability is maintained, which can contribute to reduction of waste of food and energy saving.

1 送風路、101 冷蔵庫本体、102 冷蔵室、103 本発明を適用する保冷室、104 卵室、105 製氷室、106 切替室、107 冷凍室、108 野菜室、Q1 過冷却が解除された際の潜熱、Q2 過冷却解除後、低温温度帯にある間の凍結進行中に蓄積される潜熱、Q3 高温温度帯にある間の解凍中に食品に与えられる熱、θT 過冷却解除する温度、θL 低温設定時の空気温度、W 食品の含水量、Cp 水の熱容量、θf 食品の凍結点、T1 低温設定時間、T 低温設定され冷却開始してから過冷却解除するまでの時間、kf 冷却中の熱伝達係数、θH 高温設定時の空気温度、Ttw 解凍完了時間、Tf 高温設定時に空気温度が上昇中に食品の凍結点に達する時間、ktw 昇温中の熱伝達係数、THa 初期の高温側設定温度の維持時間、TLa 初期の低温側設定温度の維持時間、THb 数周期経過後の高温側設定温度の維持時間、TLb 数周期経過後の低温側設定温度の維持時間。   DESCRIPTION OF SYMBOLS 1 Air supply path, 101 Refrigerator main body, 102 Cold storage room, 103 Cold storage room which applies this invention, 104 Egg room, 105 Ice making room, 106 Switching room, 107 Freezing room, 108 Vegetable room, Q1 When supercooling is cancelled | released Latent heat, Q2 Latent heat accumulated during freezing while in the low temperature zone after cancellation of supercooling, Q3 Heat given to food during thawing while in the high temperature zone, θT Temperature to cancel supercooling, θL Low temperature Air temperature at the time of setting, W Water content of food, Heat capacity of Cp water, θf Freezing point of food, T1 Low temperature setting time, T Time from the start of cooling after low temperature setting to release of supercooling, heat during kf cooling Transfer coefficient, θH Air temperature at high temperature setting, Ttw thawing completion time, Tf Time to reach food freezing point while air temperature is rising at high temperature setting, ktw Heat transfer coefficient during temperature increase, THA initial high temperature side Constant temperature time maintaining time maintaining TLa initial low temperature side set temperature, time maintaining the high temperature side set temperature after THb periodic number elapses, the low temperature-side set temperature maintenance time after TLb of period elapses.

Claims (15)

冷室、冷蔵室及び野菜室と、
前記保冷室を冷却又は加熱する温度調整機構と、
前記温度調整機構を制御する制御手段と
を有し、
前記保冷室内に置かれた被収容物を過冷却状態にすることが可能な冷蔵庫であって、
前記制御手段は、
1工程及び第2工程を有し、
前記第1工程の終了とともに前記第2工程を開始するよう前記温度調整機構を制御し、
前記第1工程は、
第1所定時間T1の間、前記保冷室の設定温度を前記被収容物の凍結点よりも低い低温側設定温度θLに設定し
記第1所定時間T経過後に前記凍結点よりも高い高温側設定温度θHに切替え、第2所定時間の間、前記高温側設定温度θHに設定し、
前記高温側設定温度θHに切替え後、前記保冷室内の空気よりも高温な空気を、前記冷蔵室又は前記野菜室から前記保冷室に導入することにより前記被収容物を解凍するという一連の制御から構成され、
前記第2工程は、
前記第2所定時間経過後に再び前記設定温度を前記θLに切替え、前記保冷室内を前記θLに維持するという一連の制御から構成されること
を特徴とする冷蔵庫。
Holding a cold room, and a refrigerator compartment and a vegetable compartment,
A temperature adjustment mechanism for cooling or heating the cold insulation chamber;
Control means for controlling the temperature adjustment mechanism,
A refrigerator capable of supercooling an object to be placed in the cold storage chamber,
The control means includes
It has first and second steps,
It controls the temperature adjustment mechanism to start the second step at the end of the first step,
The first step includes
During the first predetermined time T1, the set temperature of the cold storage chamber is set to a low temperature side set temperature θL lower than the freezing point of the object to be stored ,
Switching example high temperature side set temperature .theta.H than before Symbol the freezing point after the first predetermined time T 1 elapses during a second predetermined time, and set to the high temperature side set temperature .theta.H,
After switching to the high temperature side set temperature θH, from a series of controls to defrost the contents by introducing air that is hotter than the air in the cold storage chamber from the cold storage room or the vegetable room to the cold storage room. Configured,
The second step includes
The refrigerator is configured by a series of controls of switching the set temperature to the θL again after the second predetermined time elapses and maintaining the cold storage chamber at the θL.
記被収容物の冷却開始から過冷却解除までの時間を第3所定時間Tとし、
記θL、前記θH及び前記T1は、
前記被収容物が過冷却解除する温度θT、前記被収容物の含水量W、水の熱容量Cp、前記被収容物の凍結点θf、前記T、冷却中の前記被収容物の熱伝達係数kf、前記被収容物の解凍完了時刻Ttw、昇温中に前記被収容物が前記凍結点に達する時刻Tf及び昇温中の前記被収容物の熱伝達係数ktwから算出される熱量がQ3≧Q1+Q2を満たすように決定されること
を特徴とする請求項1に記載の冷蔵庫。
Q1=Δ(θT−θL)(K)×W(g)×Cp(J/g・K)
Q2=Δ(θf−θL)(K)×(T1−T)(sec)
×kf(J/sec・K)
Q3=Δ(θf−θH)(K)×(Ttw−Tf)(sec)
×ktw(J/sec・K)
The time until the supercooling release a third predetermined time T from the start of cooling before Symbol contained object,
Before SL .theta.L, the θH and the T1 is
Temperature θT at which the object to be supercooled is released, water content W of the object to be stored, heat capacity Cp of water, freezing point θf of the object to be stored, T, heat transfer coefficient kf of the object to be cooled The amount of heat calculated from the thawing completion time Ttw of the object to be stored, the time Tf at which the object reaches the freezing point during the temperature increase, and the heat transfer coefficient ktw of the object to be increased is Q3 ≧ Q1 + Q2. The refrigerator according to claim 1, wherein the refrigerator is determined so as to satisfy.
Q1 = Δ (θT−θL) (K) × W (g) × Cp (J / g · K)
Q2 = Δ (θf−θL) (K) × (T1-T) (sec)
× kf (J / sec · K)
Q3 = Δ (θf−θH) (K) × (Ttw−Tf) (sec)
× ktw (J / sec · K)
前記制御手段が、前記第1所定時間Tを前記第2所定時間よりも長く設定すること
を特徴とする請求項1又は2に記載の冷蔵庫。
The refrigerator according to claim 1 or 2, wherein the control means sets the first predetermined time T longer than the second predetermined time.
前記制御手段が、前記被収容物の温度が前記凍結点よりも低い状態の積算時間ΣTLと前記被収容物の温度が前記凍結点よりも高い状態の積算時間ΣTHとが、ΣTL>ΣTHとなるように前記温度調整機構を制御すること
を特徴とする請求項1乃至3の何れかに記載の冷蔵庫。
The control means has an integrated time ΣTL in which the temperature of the object to be stored is lower than the freezing point and an integrated time ΣTH in which the temperature of the object to be stored is higher than the freezing point, so that ΣTL> ΣTH. The refrigerator according to any one of claims 1 to 3, wherein the temperature adjustment mechanism is controlled as follows.
前記制御手段が、前記保冷室内の空気又は前記被収容物の平均温度を1℃以下にするように前記温度調整機構を制御すること
を特徴とする請求項1乃至4の何れかに記載の冷蔵庫。
The refrigerator according to any one of claims 1 to 4, wherein the control means controls the temperature adjusting mechanism so that an average temperature of the air in the cold insulation chamber or the objects to be contained is 1 ° C or less. .
前記制御手段が、前記保冷室内の空気又は前記被収容物の平均温度を前記凍結点以上にするように前記温度調整機構を制御すること
を特徴とする請求項1乃至5の何れかに記載の冷蔵庫。
The said control means controls the said temperature adjustment mechanism so that the average temperature of the air in the said cold storage room or the said to-be-contained object may be more than the said freezing point. refrigerator.
前記θLが−2℃から−℃の範囲内であること
を特徴とする請求項1乃至6の何れかに記載の冷蔵庫。
The refrigerator according to any one of claims 1 to 6, characterized in that in the range of 7 ° C. - said θL from -2 ° C..
前記制御手段が、前記θHから前記θLへの切替え時の冷却速度vを0.35℃/時間≦v≦300℃/時間となるように前記温度調整機構を制御すること
を特徴とする請求項1乃至7の何れかに記載の冷蔵庫。
The said control means controls the said temperature adjustment mechanism so that it may become 0.35 degree-C / hour <= v <= 300 degree-C / hour at the cooling rate v at the time of the switching from the said θH to the said θL. The refrigerator in any one of 1 thru | or 7.
前記θHが℃から℃の範囲内であること
を特徴とする請求項1乃至8の何れかに記載の冷蔵庫。
The refrigerator according to any one of claims 1 to 8, wherein the θH is in a range of 3 ° C to 7 ° C.
前記制御手段が、前記保冷室とは別個に設けられた前記冷蔵庫内のコンパートメントの空気を前記保冷室へと導入することで、前記保冷室の温度を調整すること
を特徴とする請求項1乃至9の何れかに記載の冷蔵庫。
The control means adjusts the temperature of the cold insulation chamber by introducing the air in a compartment in the refrigerator provided separately from the cold insulation chamber into the cold insulation chamber. The refrigerator according to any one of 9.
前記第1工程が、4時間から9時間のあいだに少なくとも1回以上行われること
を特徴とする請求項1乃至10の何れかに記載の冷蔵庫。
The refrigerator according to any one of claims 1 to 10, wherein the first step is performed at least once in a period of 4 hours to 9 hours.
前記被収容物の保管時間が長くなるにつれて、(低温温度帯設定時間)/(高温温度帯設定時間)比を徐々に小さくする制御が行われること
を特徴とする請求項1乃至11の何れかに記載の冷蔵庫。
The control for gradually decreasing the ratio of (low temperature temperature zone setting time) / (high temperature temperature zone setting time) as the storage time of the objects to be contained is performed. Refrigerator.
前記被収容物の保管時間が長くなるにつれて、前記θL及び前記θHの少なくとも1つを徐々に高くする制御が行われること
を特徴とする請求項1乃至12の何れかに記載の冷蔵庫。
The refrigerator according to any one of claims 1 to 12, wherein control for gradually increasing at least one of the θL and the θH is performed as the storage time of the contents to be stored becomes longer.
前記被収容物の温度を検知する温度検知センサを備え、
前記温度検知センサから得られるデータに基づいて、前記制御手段が前記保冷室内の温度を調整すること
を特徴とする請求項1乃至13の何れかに記載の冷蔵庫。
A temperature detection sensor for detecting the temperature of the object to be contained;
The refrigerator according to any one of claims 1 to 13, wherein the control means adjusts the temperature in the cold storage room based on data obtained from the temperature detection sensor.
前記被収容物の凍結状態を検知する凍結検知センサを備え、
前記凍結検知センサから得られるデータに基づいて、前記制御手段が前記保冷室内の温度を調整すること
を特徴とする請求項1乃至14の何れかに記載の冷蔵庫。
Comprising a freezing detection sensor for detecting a frozen state of the object to be contained;
The refrigerator according to any one of claims 1 to 14, wherein the control means adjusts the temperature in the cold storage room based on data obtained from the freezing detection sensor.
JP2009114233A 2009-05-11 2009-05-11 refrigerator Active JP4948562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114233A JP4948562B2 (en) 2009-05-11 2009-05-11 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114233A JP4948562B2 (en) 2009-05-11 2009-05-11 refrigerator

Publications (2)

Publication Number Publication Date
JP2010261677A JP2010261677A (en) 2010-11-18
JP4948562B2 true JP4948562B2 (en) 2012-06-06

Family

ID=43359905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114233A Active JP4948562B2 (en) 2009-05-11 2009-05-11 refrigerator

Country Status (1)

Country Link
JP (1) JP4948562B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870856A (en) * 2017-05-09 2018-11-23 合肥华凌股份有限公司 Meat does not freeze fresh-keeping control method, controller and refrigerator
CN108870857A (en) * 2017-05-09 2018-11-23 合肥华凌股份有限公司 Fresh-keeping control method, controller and refrigerator is subcooled in meat
CN108870855A (en) * 2017-05-09 2018-11-23 合肥华凌股份有限公司 Meat preservation by partial control method, controller and refrigerator
WO2019085726A1 (en) * 2017-10-31 2019-05-09 合肥华凌股份有限公司 Freeze determining method for food in refrigerator, preservation method for food in refrigerator, and preservation refrigerator
CN111288712A (en) * 2018-12-10 2020-06-16 东芝生活电器株式会社 Refrigerator with a door
CN111288713A (en) * 2018-12-10 2020-06-16 东芝生活电器株式会社 Refrigerator with a door

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104689A (en) * 1981-12-16 1983-06-22 Nippon Kokan Kk <Nkk> Disposition of mercury-contg. aqueous solution
JP2015183863A (en) * 2014-03-20 2015-10-22 三菱電機株式会社 refrigerator
JP5847235B2 (en) * 2014-05-20 2016-01-20 三菱電機株式会社 refrigerator
JP6305305B2 (en) * 2014-10-14 2018-04-04 三菱電機株式会社 refrigerator
WO2016159274A1 (en) * 2015-03-31 2016-10-06 クアン テイン グエン Preservation method for fresh foods, and fresh food storage system
JP6292174B2 (en) * 2015-06-02 2018-03-14 三菱電機株式会社 refrigerator
JP5959703B2 (en) * 2015-08-27 2016-08-02 三菱電機株式会社 refrigerator
CN107744010A (en) * 2017-10-20 2018-03-02 合肥华凌股份有限公司 Food does not freeze fresh-keeping control method, control system and refrigeration plant
CN107843063A (en) * 2017-10-31 2018-03-27 合肥华凌股份有限公司 Food freezing determination methods, refrigerator food preservation method and fresh-keeping refrigerator in refrigerator
JP6998339B2 (en) * 2019-04-24 2022-01-18 東芝ライフスタイル株式会社 refrigerator
CN110671878B (en) * 2019-09-10 2023-11-21 珠海格力电器股份有限公司 Supercooling freezing method, refrigerator and refrigerator control method
CN110906649A (en) * 2019-10-10 2020-03-24 合肥晶弘电器有限公司 Control method for supercooling non-freezing storage and refrigerator
JP7349327B2 (en) * 2019-11-11 2023-09-22 東芝ライフスタイル株式会社 refrigerator
JP7349330B2 (en) * 2019-11-22 2023-09-22 東芝ライフスタイル株式会社 refrigerator
AU2020421719B2 (en) * 2020-01-16 2023-09-14 Mitsubishi Electric Corporation Refrigerator
KR20220022678A (en) * 2020-08-19 2022-02-28 엘지전자 주식회사 Refrigerator
KR20220022680A (en) * 2020-08-19 2022-02-28 엘지전자 주식회사 Refrigerator
KR20220022679A (en) * 2020-08-19 2022-02-28 엘지전자 주식회사 Refrigerator
KR20220022681A (en) * 2020-08-19 2022-02-28 엘지전자 주식회사 Refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647047B2 (en) * 1999-06-25 2011-03-09 パナソニック株式会社 Supercooling control refrigerator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304223B1 (en) * 2017-05-09 2021-09-23 허페이 후아링 코., 엘티디. Non-frozen freshness maintenance control method of meat, controller and refrigerator
KR20200002945A (en) * 2017-05-09 2020-01-08 허페이 후아링 코., 엘티디. Unfrozen freshness control method of meat, controller and refrigerator
KR102304221B1 (en) * 2017-05-09 2021-09-23 허페이 후아링 코., 엘티디. Semi-frozen freshness maintenance control method of meat, controller and refrigerator
KR102304222B1 (en) * 2017-05-09 2021-09-23 허페이 후아링 코., 엘티디. Supercooling freshness maintenance control method of meat, controller and refrigerator
CN108870855B (en) * 2017-05-09 2020-07-03 合肥华凌股份有限公司 Meat micro-freezing fresh-keeping control method, controller and refrigerator
KR20200002995A (en) * 2017-05-09 2020-01-08 허페이 후아링 코., 엘티디. How to maintain supercooled freshness of meat, controller and refrigerator
KR20200002944A (en) * 2017-05-09 2020-01-08 허페이 후아링 코., 엘티디. Method of controlling semi-frozen freshness of meat, controller and refrigerator
CN108870856B (en) * 2017-05-09 2020-07-03 合肥华凌股份有限公司 Meat unfreezing preservation control method, controller and refrigerator
CN108870855A (en) * 2017-05-09 2018-11-23 合肥华凌股份有限公司 Meat preservation by partial control method, controller and refrigerator
CN108870857A (en) * 2017-05-09 2018-11-23 合肥华凌股份有限公司 Fresh-keeping control method, controller and refrigerator is subcooled in meat
CN108870856A (en) * 2017-05-09 2018-11-23 合肥华凌股份有限公司 Meat does not freeze fresh-keeping control method, controller and refrigerator
CN108870857B (en) * 2017-05-09 2020-07-03 合肥华凌股份有限公司 Meat supercooling preservation control method, controller and refrigerator
WO2019085726A1 (en) * 2017-10-31 2019-05-09 合肥华凌股份有限公司 Freeze determining method for food in refrigerator, preservation method for food in refrigerator, and preservation refrigerator
CN111288712A (en) * 2018-12-10 2020-06-16 东芝生活电器株式会社 Refrigerator with a door
CN111288713A (en) * 2018-12-10 2020-06-16 东芝生活电器株式会社 Refrigerator with a door
CN111288713B (en) * 2018-12-10 2022-03-15 东芝生活电器株式会社 Refrigerator with a door
CN111288712B (en) * 2018-12-10 2022-06-14 东芝生活电器株式会社 Refrigerator with a door

Also Published As

Publication number Publication date
JP2010261677A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP4948562B2 (en) refrigerator
JP4595972B2 (en) refrigerator
JP5571044B2 (en) refrigerator
KR101100465B1 (en) Refrigerator
JP4781378B2 (en) Food storage device, refrigerator, ice making device and high-frequency cooking device
JP2008267646A (en) Refrigerator
JPWO2011152047A1 (en) refrigerator
JP6899736B2 (en) Cold storage
WO2011135865A1 (en) Refrigerator
JP2011038715A (en) Refrigerator
WO2011135863A1 (en) Refrigeration device, refrigerator provided with refrigeration device, and refrigeration device operating method
JP2008267789A (en) Refrigerator
TW201812233A (en) Refrigerator
JP2012007760A (en) Refrigerator
JP2019011932A (en) Refrigerator and refrigerator temperature control method
JP2013029220A (en) Refrigerator
JP4767072B2 (en) Cooling storage
JP2009222245A (en) Refrigerator
JP2009144999A (en) Rapid refrigeration method and secondary storage used in it
KR101443638B1 (en) Refrigerator
JP2011052935A (en) Refrigerator
TWI747106B (en) refrigerator
JP2002372358A (en) Refrigerator
JP6837423B2 (en) refrigerator
KR20090124496A (en) Refrigerator and controlling method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4948562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250