WO2011135865A1 - Refrigerator - Google Patents
Refrigerator Download PDFInfo
- Publication number
- WO2011135865A1 WO2011135865A1 PCT/JP2011/002504 JP2011002504W WO2011135865A1 WO 2011135865 A1 WO2011135865 A1 WO 2011135865A1 JP 2011002504 W JP2011002504 W JP 2011002504W WO 2011135865 A1 WO2011135865 A1 WO 2011135865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage
- compartment
- refrigerator
- temperature
- thawing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/02—Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/06—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
- F25D2317/061—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
Definitions
- the present invention relates to a refrigerator, and particularly to a refrigerator including a storage room having a structure having a plurality of storage compartments.
- Refrigeration or freezing processes are indispensable for safe and long-term preservation of food. Therefore, food is mainly stored in the refrigerator at home. On the other hand, since reheating and thawing are performed by a cooking device such as a microwave oven or a stove, stored foods must be taken out from the refrigerator, transferred, reheated or thawed, and arranged on the table. Therefore, cooking refrigerated or frozen foods has been a tedious task. In addition, it is necessary for the user to perform the take-out work, and reservation cooking or the like was impossible.
- FIG. 15 is a schematic cross-sectional view showing the configuration of a refrigerator provided with a conventional independent switching chamber disclosed in Patent Document 1. As shown in FIG.
- a temperature switching chamber 902 is provided on the left side of the middle stage of the refrigerator 901.
- the cool air passage 904 is introduced from the cooler 903 to become a low temperature chamber.
- a store thing can be stored refrigerated or frozen.
- the temperature switching chamber 2 is switched to the operation mode on the high temperature side, the heating means 905 is driven, and air is circulated in the temperature switching chamber 902 by the temperature switching chamber blower 906 to become a high temperature chamber.
- save of the heat-cooked food can be performed temporarily, or the warm cooking of the wintertime etc. can be performed.
- the temperature switching chamber 902 is switched to the rapid thawing mode, warm air is supplied to the stored items by driving the heating means 905 and the temperature switching chamber blower 906, and the stored items are defrosted.
- Patent Document 2 a refrigerator having a dedicated thawing chamber for thawing frozen food has been proposed (see, for example, Patent Document 2).
- FIG. 16 is a schematic cross-sectional view showing a configuration of a refrigerator including a thawing chamber disclosed in Patent Document 2
- FIG. 17 is an exploded perspective view showing a specific configuration of the thawing chamber.
- the refrigerator 911 is partitioned into a freezer compartment 913 and a refrigerator compartment 914 by a partition wall 912 in the vertical direction. Furthermore, a compressor 916 constituting a refrigeration cycle is provided in a machine room 915 provided at the lower part of the refrigerator 911, and a cooler 918 is provided in the cooling room 917. The air cooled by the cooler 918 passes through the duct 920 by the electric blower 919, is sent to the freezer compartment 913, and is sent from the cold air discharge port 921 having a damper device (not shown) to the refrigerator compartment 914 to cool the inside of the warehouse. ing.
- the thawing chamber 922 is provided in front of the cold air discharge port 921 at the top of the refrigerating chamber 914 and has a radio wave stirring chamber 923 at the bottom.
- the thawing chamber 922 includes a cavity 924 and a meat dish 925.
- the cavity 924 is made of a high-frequency radio wave reflecting material and has a front opening 924a.
- the meat dish 925 is formed of a low dielectric constant material, and is inserted into the cavity 924 through the front opening 924a.
- a cold air vent 924b is formed at a position corresponding to the cold air outlet 921 on the rear wall (not shown) of the cavity 924 and the front of the top wall, and a through hole 925a is also formed on the rear wall of the meat dish 925. It has been drilled. Thereby, the cold air discharged into the refrigerator compartment 914 can circulate in the thawing chamber 922 as shown by the arrow in FIG.
- the machine room 915 is provided with a high frequency generator 928 including a magnetron oscillating unit 926 and a magnetron power supply device 927, and is coupled by a radio wave stirring chamber 923 and a waveguide circuit 929.
- a stirrer fan (not shown) is provided in the radio wave stirring chamber 923 to reflect the radio wave to the upper cavity 924.
- the frozen food placed on the meat dish 925 can be thawed quickly by high frequency while circulating the cold air in the thawing chamber.
- JP 2007-57160 A (corresponding patent publication: Japanese Patent No. 3885158) Japanese Patent Publication No.3-33192
- the present invention has been made to solve such a problem, and does not require troublesome time or troublesome time for the user, reduces power consumption, and does not impair user convenience. Or it aims at providing the refrigerator which can implement
- a refrigerator according to the present invention includes a refrigerator body including a plurality of storage compartments that are thermally insulated, and a door that closes a front opening of the storage compartment, and includes at least the storage compartment.
- a compartment storage having a first storage compartment maintained in a preset temperature range preset in the storage room and a second storage compartment having a temperature region different from the preset temperature zone in the storage chamber. It is the structure which is a chamber.
- the compartment storage chamber is a freezer compartment that can be set at least in a freezing temperature zone
- the first storage compartment is a storage compartment that is maintained in the freezing temperature zone
- the second storage compartment may be a storage compartment having a temperature region different from the refrigeration temperature zone.
- the refrigerator having the above-described configuration further includes an electromagnetic wave generator
- the compartment storage chamber is a refrigerator compartment that can be set to at least a refrigeration temperature zone
- the first storage compartment is maintained in a refrigeration temperature zone
- the second storage section is a storage section having a temperature range equal to or lower than the refrigeration temperature zone, and electromagnetic waves oscillated from the electromagnetic wave generator are introduced into the second storage section. It may be a configuration. As a result, it is possible to realize high-quality refrigeration and high-quality thawing that cools while minimizing the deterioration of the refrigerator storage capacity and suppressing the temperature difference between the inside and outside of the object to be cooled without providing a dedicated storage room. .
- FIG. 2 is a side sectional view of the refrigerator shown in FIG. It is a graph which shows the characteristic of the relationship between the time and temperature of the to-be-frozen thing in the refrigerator shown in FIG.
- FIG. 12 is a side cross-sectional view of the refrigerator shown in FIG. 11 taken along the line II-II.
- FIG. 16 It is a front view which shows an example of a structure of the refrigerator which concerns on Embodiment 6 of this invention. It is side surface sectional drawing of the III-III arrow direction of the refrigerator shown in FIG. It is front sectional drawing which shows the structure of the middle step part of the conventional refrigerator. It is side surface sectional drawing which shows the internal structure of the other conventional refrigerator. It is a disassembled perspective view which shows the structure of the thawing room with which the conventional refrigerator shown in FIG. 16 is provided.
- the present invention includes a refrigerator body having a heat-insulated compartment storage room and a door that closes the front opening of the storage room, and the storage room is a freezer room that can be set at least in a freezer temperature zone.
- the freezer compartment has a first storage compartment maintained in a freezing temperature zone and a second storage compartment having a temperature region different from the freezer temperature zone.
- the temperature is higher than 40 ° C, it can be cooked and kept warm. At that time, even when frozen foods other than the target foods are stored in the freezer compartment, there is a first storage compartment maintained in the freezing temperature zone in the same storage room, so without taking it out of the storage room, Since it is possible to prevent heating, usability is significantly improved.
- the second storage compartment is a part of the freezer compartment, it is not necessary to keep the temperature of the entire storage compartment at a high temperature when cooking at high temperature or during heat insulation. Therefore, the time and energy required for temperature rise and heat retention are reduced, and energy saving is improved. If the second storage compartment is, for example, 0 ° C to 5 ° C, it can be thawed and stored frozen.
- the second storage section may be a storage section that exhibits a function different from the function of freezing and holding food in the first storage section.
- the second storage section may be a storage section having a function of cooking food.
- the second storage section may be a storage section having a function of thawing food.
- the frozen food stored in the freezer can be thawed without being transferred to another storage room, which improves usability.
- you want to use a part of food for cooking and freeze the rest again you can refreeze the unused portion without transferring it to another storage room. Can do.
- the second storage section may be a storage section having a function of heating food.
- the frozen food can be cooked without being transferred to another storage room, and can be taken out of the freezer room and arranged on the table as it is, so that the cooking time can be shortened.
- meals for the number of people who eat late can be heated and stored in the second storage compartment of the freezer, and reheating is required when eating meals. If it is not eaten or should not be eaten that day, it can be stored frozen without changing to another storage room, so cooked foods can be stored safely and for long periods of time .
- the refrigerator main body may be provided with an electromagnetic wave generator, and the electromagnetic wave may be introduced into the second storage compartment.
- the electromagnetic wave may be introduced into the second storage compartment.
- the food can be kept in a freezing state even below the freezing temperature, it can be left as it is for a long time even after thawing of the food. This can be prevented and the user can use it with peace of mind.
- the second storage compartment temperature to ⁇ 10 ° C. or lower and irradiating the food with electromagnetic waves, the formation of ice crystals in the food can be appropriately controlled, and high-quality freezing can be performed.
- the food after freezing in the second storage compartment, the food can be quickly frozen by transferring it to the first storage compartment at about ⁇ 20 ° C., and a higher quality frozen state can be obtained.
- a metal box may be provided in the storage chamber, and a space in the metal box may be partitioned electromagnetically.
- region which does not irradiate can be divided in the same space without a partition.
- decompression can be performed simultaneously in the same room, without impairing usability.
- a radio wave transmission suppressing unit may be provided as means for electromagnetically partitioning the space inside the metal box.
- region in a metal box can be limited.
- the radio wave transmission suppressing portion may be provided in the front-rear direction of the metal box body and in the substantially central portion.
- the food can be transferred from the second storage compartment to the first storage compartment without being transferred to another storage room, so that high-quality freezing is performed without taking time and effort. be able to.
- this invention is equipped with the refrigerator main body provided with the storage room divided by heat insulation, the door which obstruct
- the said storage room is set to a refrigeration temperature range at least.
- a refrigerating room wherein the refrigerating room has a first storage compartment maintained in a refrigeration temperature zone and a second storage compartment having a temperature region equal to or lower than the refrigeration temperature zone, and the electromagnetic wave
- the electromagnetic wave oscillated from the generator may be introduced into the second storage compartment.
- the electromagnetic wave generator is composed of an electromagnetic wave oscillator using a semiconductor element and an electromagnetic wave amplifier, and the installation space of the electromagnetic wave generator can be reduced as compared with a magnetron or the like. Storability can be improved.
- the electromagnetic wave oscillator using a semiconductor element can change the frequency of the generated electromagnetic wave, the electromagnetic wave is more evenly applied to food by changing the reflection characteristics of the electromagnetic wave introduced into the second storage compartment. Can be irradiated. Therefore, since it is not necessary to attach an electromagnetic stirrer such as a stirrer fan, the installation space of the second storage section is reduced, and the storage capacity of the refrigerator can be improved.
- the second storage section may include a vent communicating with the first storage section, and the vent may have an opening / closing mechanism.
- the refrigerator includes a plurality of storage chambers, the refrigerator compartment is disposed at the top of the refrigerator among the plurality of storage chambers, and the second storage compartment is provided at the bottom of the refrigerator compartment. It may be.
- the second storage compartment is located in the central part of the refrigerator, so that the storage container of the second storage compartment is easy to operate, the stored food is easily taken in and out, and the visibility is improved. Can be improved.
- the refrigerator includes a plurality of storage chambers, the refrigerator compartment is disposed at the top of the refrigerator among the plurality of storage chambers, and the second storage section is provided at the top of the refrigerator compartment. It may be.
- the second storage compartment that cannot store a large amount of stored food is installed in the upper part, which is usually difficult to reach, so that the effect of deterioration of the storage capacity of the refrigerator compartment due to the installation of the second storage compartment is minimized to practical use. be able to.
- the refrigerator having the above configuration includes a cooling means for cooling the storage chamber, the cooling means is a refrigeration cycle having at least a compressor, and the compressor may be provided at the upper part on the back side of the refrigerator body. Good. Thereby, since a refrigerator lower machine room space becomes small, a refrigerator lower storage room can be taken large in the depth direction. Therefore, compared with a refrigerator having an equivalent storage room, the uppermost refrigerating room entrance can be enlarged downward, and the storage capacity of the refrigerating room can be further improved.
- FIG. 1 is a front view of a refrigerator 100A according to Embodiment 1 of the present invention
- FIG. 2 is a side sectional view showing a section of the refrigerator 100A shown in FIG.
- FIG. 3 is a graph showing the relationship between the thawing time and the temperature change of the object to be frozen.
- a heat insulating box 101 that is a main body of the refrigerator 100 ⁇ / b> A includes an outer box 102 mainly using a steel plate, an inner box 103 molded of a resin such as ABS, and an outer box 102. It is composed of a foam heat insulating material such as hard foamed urethane that is foam-filled in a space between the inner box 103, is insulated from the surroundings, and is partitioned into a plurality of storage chambers by partition walls.
- a refrigeration room 104 as a first storage room is provided at the top, and a second freezing room 105 as a fourth storage room and an ice making room 106 as a fifth storage room are provided side by side under the refrigeration room 104.
- the first freezing chamber 107 as the second storage chamber is disposed below the second freezing chamber 105 and the ice making chamber 106, and the vegetable chamber 108 as the third storage chamber is disposed at the bottom. ing.
- the refrigerated room 104 is set in a refrigerated temperature zone, which is a temperature that does not freeze for refrigerated storage. Usually, the temperature is set to 1 ° C. to 5 ° C.
- the vegetable temperature range is 2 ° C to 7 ° C.
- the first freezer compartment 107 is set in a freezing temperature zone and is usually set at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage, but for improving the frozen storage state, for example, ⁇ 30 ° C. or It may be set at a low temperature of -25 ° C.
- the second freezer compartment 105 has a freezing temperature zone equivalent to that of the first freezer compartment 107 or a slightly higher temperature setting of ⁇ 20 ° C. to ⁇ 12 ° C. as a first storage compartment, and a freezing compartment 105a of 0 ° C. or higher. And a thawing section 105b which is a second storage section capable of maintaining the temperature.
- the second freezing room 105 is a storage room provided with an independent door arranged in parallel with the ice making room 106, and is often provided with a drawer type door. Since the second freezer compartment 105 is divided into a freezer compartment 105a and a thawing compartment 105b, it corresponds to a compartment storage room among a plurality of storage rooms.
- the ice making chamber 106 creates ice with an automatic ice maker (not shown) provided in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerated room 104, and an ice storage container ( (Not shown).
- the top surface portion of the heat insulating box 101 has a stepped recess shape toward the back side of the refrigerator 100A.
- a machine chamber 101a is formed in the stepped recess, and the compressor 109,
- the high-pressure side components of the refrigeration cycle such as a dryer (not shown) for removing moisture are accommodated. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.
- the compressor 109 is disposed in the conventional refrigerator.
- the space of the machine room 101a located at the lowermost part of the heat-insulating box 101 that is easy to use can be effectively converted as the storage room capacity, and the storage property or usability can be greatly improved.
- the refrigeration cycle is formed of a series of refrigerant flow paths sequentially including a compressor 109, a condenser, a capillary as a decompressor, and a cooler 112 as an evaporator, and is a hydrocarbon-based refrigerant such as isobutane. Is enclosed.
- Compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder.
- these functional parts may be disposed in the machine room 101a.
- the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.
- the matters relating to the main part of the invention described below are a general conventional refrigerator, specifically, a compressor provided by providing a machine room in the rear region of the lowermost storage room of the heat insulation box.
- the present invention can be applied to a type in which the above is disposed.
- a cooling chamber 110 for generating cold air is provided on the back surface of the first freezing chamber 107, and a rear partition configured to be insulated from the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107.
- a wall 111 is formed.
- a cooler 112 is disposed, and in the upper space of the cooler 112, the cold air cooled by the cooler 112 by a forced convection method is stored in the refrigerating chamber 104, the second freezing chamber 105, and the ice making chamber.
- 106, the vegetable compartment 108, and the cooling fan 113 which ventilates to the 1st freezer compartment 107 are arrange
- a radiant heating means 114 made of glass tube for defrosting the cooler 112 and the frost or ice adhering to the periphery of the cooler 112 during cooling.
- a drain pan 115 for receiving the generated defrost water, a drain tube 116 penetrating from the deepest part to the outside of the cabinet are configured, and an evaporating dish 117 is configured outside of the downstream side.
- a back side storage container 120 and a front side storage container 121 are placed on a frame 119 attached to the drawer door 118 of the second freezer compartment 105, and the freezing compartment 105a and the thawing respectively.
- a partition 105b is formed.
- the front storage container 121 is mechanically fixed to the drawer door 118 and the frame 119 with screws or the like.
- the front storage container lid 122 for substantially sealing the front storage container 121 with the drawer door 118 closed is held by the first partition wall 123 above the second freezing chamber 105.
- the front storage container 121 is composed of an inner storage container 121a using a non-magnetic iron plate and an outer storage container 121b using a heat insulating material, and the inner storage container 121a is just large enough to fit in the outer storage container 121b.
- the inner storage container 121a includes an upper surface flange 121c extending substantially horizontally in the outer direction of the storage container, and is configured to cover the upper surface opening of the outer storage container 121b. Note that the front surface portion of the outer storage container 121b may be integrally formed by the drawer door 118.
- the front storage container lid 122 is composed of a base 122a using a non-magnetic iron plate and a frame 122b. With the drawer door 118 closed, the left and right sides, the back side, and the front side of the upper surface of the front storage container lid 122 and the front storage container 121 are in close contact with each other.
- the frame body 122b is welded to the base 122a, and is electrically and mechanically joined to form a flange portion of the front storage container lid body 122, thereby forming a choke structure that blocks electromagnetic waves from the upper surface flange 121c.
- An antenna 124 for radiating electromagnetic waves is fixed to the center of the bottom surface of the front storage container lid 122, and an electromagnetic wave generator 125 is installed above the rear surface of the heat insulating box 101, preferably on the rear surface of the refrigerator compartment 104.
- the coaxial cable 126 is electrically connected to the electromagnetic wave generator 125, and the electromagnetic wave can be irradiated into the front storage container 121.
- a temperature detection unit 127 is disposed on the bottom surface of the front storage container lid 122 and is electrically connected to the control unit 128. Further, the control means 128 is also electrically connected to the electromagnetic wave generator 125.
- electromagnetic wave generation means there are those using a semiconductor such as Si, GaAs, SiC, and GaN, and those using a magnetron.
- a magnetron is used for the electromagnetic wave generator 125, the electromagnetic wave may be fed into the front storage container 121 using a waveguide instead of the antenna 124.
- the temperature detecting means 127 For example, an infrared sensor that can detect infrared rays, or a thermistor that utilizes a change in resistance value depending on temperature may be used.
- cooling system including the cooling fan 113 or the compressor 109 described above is electrically connected to the control means 128.
- a conveyance air passage 129 is configured to convey the cold air sent out by the cooling fan 113 to each storage chamber.
- the upper part of the rear partition wall 111 on the back surface of the second freezer compartment 105 has a second freezer compartment discharge port 111 a for introducing the cool air of the conveying air passage 129 into the second freezer compartment 105.
- the second freezer compartment discharge port 111 a is formed above the conveying air passage 129 and directly discharges the cold air sent from the cooling fan 113.
- the refrigeration cycle is operated by a signal from the control means 128 according to the set temperature in the refrigerator, and the cooling operation is performed.
- the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface or the rear surface of the heat insulating box body 101 which is the main body of the refrigerator 100A, or the heat insulating box body 101.
- the refrigerant is condensed and liquefied while preventing condensation of the heat insulating box 101 via a refrigerant pipe (not shown) disposed at the front face, and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
- the low-temperature and low-pressure liquid refrigerant passes through the conveyance air passage 129 by the operation of the cooling fan 113, and exchanges heat with the air in each storage chamber, and the refrigerant in the cooler 112 evaporates. At this time, cool air for cooling each storage chamber in the cooling chamber 110 is generated.
- the low temperature cold air is diverted from the cooling fan 113 to the refrigerator compartment 104, the second freezer compartment 105, the ice making compartment 106, the vegetable compartment 108, and the first freezer compartment 107 using an air passage or a damper. Cool to band.
- the thawing compartment 105b is separated from the outer storage container 121b by the first freezing compartment 107, the freezing compartment 105a, the ice making compartment 106, and the first partition wall 123 is separated by the refrigerating compartment 104, the drawer door 118, and the heat insulation.
- the box 101 is in contact with the outside air.
- the temperature of the thawing section 105b can be designed to be a refrigeration temperature of 0 ° C. or higher.
- the control means 128 sends a thawing start signal, and the electromagnetic wave generator 125 operates to start thawing.
- An operation button that can be operated by the user may be installed on the front surface of the refrigerator 100A, and thawing may be started manually.
- the user when using the thawing function, the user only needs to open the drawer door 118 and transfer the frozen food stored in the back storage container 120 to the front storage container 121, and open a plurality of storage rooms. Since it is not necessary to replace the food, not only the trouble of use but also the heat load on the refrigerator 100A can be minimized.
- thawing was performed with the output of the electromagnetic wave generator 125 set to 20 W and the temperature of the thawing section 105b set to 5 ° C.
- the thawing time required 50 minutes, but as a result of measuring the temperature after thawing at 23 locations, the temperature unevenness was only about 3 ° C.
- the output of electromagnetic waves was increased to about 300 W assuming a microwave oven or the like, the temperature unevenness after thawing was about 20 ° C.
- the thawing unevenness was about 3 ° C., but thawing takes about 20 hours.
- the refrigeration apparatus of the present embodiment can reduce temperature unevenness after thawing and further shorten the thawing time.
- the power of the electromagnetic wave used for thawing that is, the output of the electromagnetic wave generator 125 is performed at 20 W.
- the present invention is not limited to this, and the power used for thawing is 100 W or less, preferably 50 W or less. This is desirable because it can be reduced.
- the frozen food can be thawed to, for example, ⁇ 5 ° C. to ⁇ 10 ° C., cut with a knife or the like, and the rest can be frozen again.
- Fig. 3 shows the thawing time and the temperature change of frozen food.
- the temperature of frozen food is measured at the center, right end, and left end.
- the output of the electromagnetic wave generator 125 used for thawing was 10 W, and the internal temperature of the thawing section 105b was 5 ° C.
- the temperature difference between the central portion and the end portion is about 2 ° C., and the highest temperature is ⁇ 8 ° C. That is, since it is possible to thaw without passing through the maximum ice crystal formation zone, refreezing can be realized.
- the user can separate the necessary amount with bare hands, so just open the drawer door 118 once and take out the necessary amount of thawed food, By transferring the rest to the back storage container 120, unnecessary refreezing can be performed without trouble.
- the control means 128 can automatically transmit a thawing end signal and stop the output of the electromagnetic wave generator 125, so that the user is concerned about overheating. There is no need.
- the refrigerator 100A is provided with a buzzer (or other sound) or light notification means to notify the user of the end of thawing, thereby preventing forgetting to take out after thawing.
- the second freezer compartment 105 since the second freezer compartment 105 has a refrigeration temperature zone of 0 ° C. or more near the drawer door 118, the second freezer compartment 105 as a whole is configured in the freezer temperature zone. The amount of heat exchange with the outside air performed through the drawer door 118 or the heat insulating box 101 is reduced. Therefore, the energy saving performance of the refrigerator 100A can be improved by providing the thawing section 105b. Further, maintaining the refrigeration temperature of the thawing section 105b can be realized without using various heating means, and energy for cooling to the freezing temperature zone is not required. The required power is smaller than that of the state constituted by.
- the electromagnetic wave generator 125 generates heat when generating an electromagnetic wave
- the electromagnetic wave generator 125 is installed on the back surface of the refrigerator compartment 104 in the present embodiment, so that the temperature in the adjacent cabinet can be minimized. Because it can, energy saving will not be significantly reduced.
- the electromagnetic wave generator 125 is installed on the back surface of the heat insulation box 101, but even if installed on the outside of the heat insulation box 101, for example, in the machine room 101a or on the top surface of the heat insulation box 101, Similar effects can be obtained. In addition, when the electromagnetic wave generator 125 has a low output and the surface temperature rise is small, even if it is installed in the storage room, the energy saving performance is not significantly reduced.
- the drawer door is provided in the second freezer compartment 105 by having the freezing compartment 105a maintained in the freezing temperature zone and the thawing compartment 105b maintained in the refrigeration temperature zone. Since the frozen food can be thawed in the freezer simply by opening 118 and moving the frozen food from the frozen compartment 105a to the thaw compartment 105b, the user's effort can be minimized. Similarly, when re-frozen, it can be realized simply by moving food in the same storage room. In addition to the target food, when frozen food is stored in the second freezer compartment 105, the freezer compartment 105a exists in the same storage room, so there is no need to remove it from the storage room, and the usability is greatly improved. To do.
- various heating means are not required for maintaining the refrigeration temperature zone of the thawing section 105b, and energy for cooling to the freezing temperature zone is not required, so that energy saving is improved.
- the thawing section 105b is in a refrigerated temperature zone, heat exchange with the outside air can be suppressed by arranging it in front of the second freezer compartment 105, and energy saving is improved.
- thawing can be performed up to about ⁇ 10 ° C. where re-freezing is possible, so that the necessary amount can be re-frozen. Since the user does not need the trouble of subdividing and freezing in advance, the usability is improved.
- FIG. 4 is a side cross-sectional view of refrigerator 100B according to Embodiment 2 of the present invention.
- FIG. 5 is a drawing of door 118 and frame 119 of second freezer compartment 205 in refrigerator 100B shown in FIG. 4 is an assembled perspective view of a side storage container 220 and a front storage container 221.
- FIG. 5 is a drawing of door 118 and frame 119 of second freezer compartment 205 in refrigerator 100B shown in FIG. 4 is an assembled perspective view of a side storage container 220 and a front storage container 221.
- the second freezer compartment 205 has a freezing temperature zone equivalent to that of the first freezer compartment 107 or a slightly higher temperature setting of ⁇ 20 ° C. to ⁇ 12 ° C. as a freezing compartment 205a.
- a cooking section 205b which is a second storage section capable of maintaining a freezing temperature of ⁇ 10 ° C. to ⁇ 5 ° C.
- this 2nd freezer compartment 205 is divided into the freezing compartment 205a and the cooking compartment 205b, it is corresponded to the division storage room among several storage rooms.
- a back storage container 220 and a front storage container 221 are placed on a frame 119 attached to the drawer door 118 of the second freezer compartment 205.
- the freezing compartment 205a and the cooking compartment 205b are formed respectively.
- the front storage container 221 is mechanically fixed to the drawer door 118 and the frame 119 with screws or the like.
- the back side storage container 220 is formed of a resin such as polypropylene, and has a slit 220a on the front surface.
- the depth of the back surface is formed to be lower than the second freezer compartment discharge port 111a provided on the back surface.
- the front storage container 221 is formed of a nonmagnetic iron plate, and includes an upper surface flange 221c extending substantially horizontally in the outer direction of the storage container, and forms a choke structure that blocks electromagnetic waves from the flange portion of the front storage container lid 122.
- Cold air discharged from the second freezer compartment discharge port 111a flows into the back storage container 220, and cools the freezing compartment 205a. After that, it passes through the slit 220 a opened on the front surface of the back side storage container 220 and hits the front side storage container 221. Since the front storage container 221 is composed of iron plate parts, the entire container can be cooled and the cooking section 205b can be cooled. However, since the cold air is not directly introduced into the cooking compartment 205b and heat is exchanged with the outside air via the drawer door 118, the cooking compartment 205b has a temperature higher than that of the freezing compartment 205a, for example, ⁇ 10 ° C. A temperature of about -7 ° C can be maintained.
- the temperature of the cooking section 205b is the air volume or temperature of the cold air discharged from the second freezer compartment outlet 111a, the size or shape of the front storage container 221, the size of the slit 220a, or the second freezer compartment
- the temperature can be designed to an arbitrary value.
- cooking was performed with the output of the electromagnetic wave generator 125 set to 3 W and the temperature of the cooking section 205 b set to ⁇ 10 ° C. It is assumed that food at about 15 ° C., which is a relatively high temperature, is stored in the front storage container 221. Since the inside of the cooking section 205b is ⁇ 7 ° C., the stored food is deprived of heat from the surroundings, and the temperature gradually decreases. The temperature of the food is detected by the temperature detecting means 127, and when it is lowered to 5 ° C., a signal is sent from the control means 128 to the electromagnetic wave generator 125 to generate an electromagnetic wave. The frequency of this electromagnetic wave is 2.54 GHz.
- This electromagnetic wave is sent to the antenna 124 by the coaxial cable 126 that is electrically connected, and is irradiated to the food from the antenna 124.
- the electric power applied to the food is about 3 W
- the atmosphere is sufficiently smaller than the energy for cooling the food
- the temperature of the food does not rise by irradiating electromagnetic waves.
- the frequency of electromagnetic waves was 2.54 GHz, the effect in this Embodiment is not limited to this frequency, For example, what is necessary is just 300 MHz or more and 3 THz or less.
- the food is a food containing moisture inside the juice or yogurt.
- the electromagnetic wave When the electromagnetic wave is not heated, the food gradually freezes from the surface toward the center.
- foods irradiated with electromagnetic waves are in a supercooled state in which they are not frozen even after the freezing point of water of 0 ° C.
- the supercooled state refers to a state in which, when cooled to a temperature below the freezing point, thermodynamically stable crystals do not appear and are held in an unstable liquid state.
- the temperature detection means 127 detects that the supercooled food has reached a certain temperature, for example, ⁇ 6 ° C.
- the operation of the electromagnetic wave generator 125 is stopped by a signal from the control means 128, or , Make the output variable.
- the supercooled state is released.
- the supercooling is released at any one place in the supercooling space, the effect is almost instantaneously propagated to the entire supercooling space, so that freezing with a very fast traveling speed occurs inside the food.
- the maximum ice crystal formation zone ⁇ 1 to ⁇ 5 ° C.
- the refrigerator 100B is provided with a buzzer or light notification means to notify the user of the end of supercooling, and the user moves the food to the freezing compartment 205a so that the food after the supercooling release can be rapidly performed at a lower temperature. Freezing can be performed. As a result, it is possible to suppress the ice crystals immediately after the release of the supercooling from growing due to the water in the unfrozen portion, so that it is possible to realize high-quality freezing with smaller ice crystals.
- the cooking section 205b and the freezing section 205a are present in the same storage room, it is possible to minimize the time and effort required to move to the freezing section 205a, thereby realizing high-quality refrigeration with a small amount of work. be able to. Furthermore, storage at ⁇ 20 ° C. enables safe storage for a longer period.
- the inside of the cooking section 205b needs to be maintained in a stable state with relatively little temperature change.
- the front storage container 221 and the front storage container lid The fact that 122 is made of metal contributes to suppressing variation in temperature distribution and reducing the temperature change width during operation.
- the freezing method using the above-described supercooling process is not limited to the new menu, and even if used in place of normal freezing, it is very effective in maintaining high quality food.
- Tuna that has been supercooled to about ⁇ 6 ° C. by applying electromagnetic waves and tuna frozen at ⁇ 2.2 ° C. without applying electromagnetic waves are quickly frozen and stored frozen at ⁇ 20 ° C. for 3 days.
- Thawed in a refrigerator at about 1.5 ° C. over 1 day.
- the amount of drip was measured at that time, the electromagnetic wave was not applied and the supercooling did not appear, but the drip amount was about 1.43 g, whereas the electromagnetic wave was applied and frozen through the supercooling.
- the amount of drip was about 0.26 g, and it was confirmed that the amount of drip could be greatly suppressed.
- the internal temperature of the cooking section 205b is ⁇ 10 ° C. to ⁇ 5 ° C., re-freezing that can be re-frozen can be performed in the same manner as in the first embodiment.
- the freezing compartment 205a maintained in the freezing temperature zone in the second freezer compartment 205
- the cooking compartment 205b maintained in the temperature zone of ⁇ 10 ° C. to ⁇ 5 ° C.
- FIG. 6 is a side cross-sectional view of refrigerator 100C according to Embodiment 3 of the present invention.
- the first freezer compartment 307 in the refrigerator 100C is set in a freezing temperature zone, and is usually set at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage, but the frozen storage state is improved.
- a freezing compartment 307a which is a first storage compartment that may be set at a low temperature of, for example, ⁇ 30 ° C. or ⁇ 25 ° C., and maintained at a refrigeration temperature of 0 ° C. or higher and raised to a temperature of 40 ° C. or higher.
- a cooking section 307b which is a possible second storage section.
- this 1st freezer compartment 307 is divided into the freezing division 307a and the cooking division 307b, it is corresponded to the division storage chamber of several storage chambers.
- the cooking compartment 307 b is provided with a storage compartment 321 having a front opening provided on the back side of the second partition wall 323 that forms the top surface of the first freezer compartment 307. 307a.
- the storage box 321 includes an inner storage box 321a using a non-magnetic iron plate and an outer storage box 321b using a heat insulating material.
- the outer storage box 321b may be formed integrally with the second partition wall 323.
- the cooking section 307b includes a drawer case 322.
- the drawer case 322 includes a housing case 322a formed of a resin such as polystyrene and a case door 322b formed of a nonmagnetic iron plate.
- the case door 322b has a shape that fits in the inner storage box 321a, and the flange portion of the case door 322b and the inner storage box 321a constitute a choke structure that blocks electromagnetic waves.
- An antenna 124 for irradiating electromagnetic waves is fixed to the inner top surface of the inner storage box 321a.
- the antenna 124 is electrically connected to the electromagnetic wave generator 125 via a coaxial cable 126, and irradiates the cooking section 307b with electromagnetic waves. can do.
- a temperature detecting means 127 is disposed on the inner top surface of the inner storage box 321a and is electrically connected to the control means 128.
- the heating means 330 is fixed to the outer bottom surface of the inner storage box 321a, and the inside temperature of the cooking section 307b can be adjusted by heating the inner storage box 321a.
- the heating unit 330 is electrically connected to the control unit 128.
- the first freezer compartment 307 includes a lower storage container 331 placed on a frame (not shown) attached to the drawer door 318 of the first freezer compartment 307 and an upper stage placed on the lower storage container 331.
- a storage container 332 is disposed.
- the upper storage container 332 When the drawer door 318 is closed, the upper storage container 332 is substantially in close contact with the drawer case 322, and assists the drawer case 322 to be surely stored in the storage box 321. Further, the drawer case 322 taken out is in a shape that can be placed on the upper storage container 332 in a state where the drawer door 318 is opened.
- an operation unit 333 including a button for the user to set the internal temperature, various functions of the refrigerator 100C, and the like, and a display unit for displaying the setting contents.
- the operation unit 333 is installed on the front surface of the refrigerator 100C in the present embodiment, it can be installed on the upper front surface of the heat insulating box 101 or the inner wall of the refrigerator compartment 104.
- cooking section 307b is surrounded by outer storage box 321b using a heat insulating material, the internal temperature can be kept at 0 ° C. or higher in the same manner as thawing section 105b of the first embodiment, and heating means 330 Therefore, it is possible to raise the temperature to a temperature equal to or higher than the outside air temperature, which cannot be obtained only by heat exchange.
- the heating means 330 is energized, it is necessary to devise so as not to raise the temperature of the freezing compartment 307a by lowering the temperature of the cool air discharged to the freezing compartment 307a or increasing the air volume.
- the heating means 330 is provided and the cooking section 307b is heated, so that the thawing can be performed efficiently.
- the thawing time can be reduced to 30 minutes.
- temperature unevenness after thawing can be suppressed to 3 ° C. or less.
- the frozen food temperature tends to be uneven, but when thawed slowly with low power, concentration of electromagnetic waves, etc. is suppressed, and high-quality thawing without temperature unevenness can be realized.
- concentration of electromagnetic waves, etc. is suppressed, and high-quality thawing without temperature unevenness can be realized.
- efficient thawing can be realized and the thawing time can be reduced by operating together with the electromagnetic wave generator 125 by the heating means 330.
- the electromagnetic wave generator 125 and the heating means 330 are operated to heat the food.
- the electromagnetic wave since the electromagnetic wave has an action of heating from the inside of the food, it can be heated from the inside and outside of the food by using it together with the heating means 330, so that high-quality heating with a small temperature difference between the inside and outside can be performed at high speed.
- higher quality heating can be performed by heating after thawing.
- the electromagnetic wave generator 125 is stopped and the inside of the cabinet is kept at a constant temperature only by the heating means 330, so that the food can be kept warm.
- the operation unit 333 can notify the user with a buzzer or light.
- the cooking section 307b can be maintained at the refrigerated temperature. By stopping, it is possible to preserve the food without damaging it.
- yogurt can be made from milk and cooled as it is to the refrigerated temperature. Or you can finish it deliciously if you eat it cold.
- all the above operations can be performed in a part of the first freezer compartment 307. Therefore, when it is desired to heat and cook frozen food, it can be arranged on the table in a warm state simply by moving the food in the storage room. In addition, when only a part of the warm food is eaten and the rest is stored frozen, it is only necessary to move from the cooking section 307b to the freezing section 307a, thereby minimizing the user's effort.
- the freezing section 307a can maintain the freezing temperature regardless of the temperature in the cooking section 307b, the rough heat of the hot food can be removed in the cooking section 307b.
- the cooking section 307b can maintain the refrigeration temperature, the required time can be made shorter than leaving it at room temperature.
- the cooking section 307b is a part of the first freezer compartment 307, and it requires less energy to raise the temperature than when the entire storage compartment is used as the cooking compartment.
- the freezing compartment 307a maintained in the freezing temperature zone in the first freezer compartment 307 and the refrigeration temperature zone of 0 ° C or higher are increased to a temperature of 40 ° C or higher.
- the cooking section 307b capable of heating the user can thaw and heat the food with high quality without troublesome operations, and use it for keeping it warm, refrigerated or frozen. Can be minimized.
- FIG. 7 is a side cross-sectional view of a refrigerator 100D according to Embodiment 4 of the present invention
- FIG. 8 is a main-part cross-sectional view illustrating a configuration example of a metal box 334 included in the refrigerator 100D illustrated in FIG. 9 is a side view showing an example of the assembled state of the metal box 334
- FIG. 10 is a side view showing another example of the assembled state of the metal box 334.
- a metal box 334 is provided inside the second freezer compartment 105.
- the opening on the near side of the metal box 334 is closed by a metal box lid 335 provided on the drawer door 118 to keep the space inside the metal box 334 substantially sealed.
- at least the inside of the metal box cover 335 is made of metal, and as a result, the space in the metal box 334 is formed as an electromagnetically sealed space.
- a thawing case 336 is disposed, and an object to be thawed 337 is placed.
- an antenna 124 and a temperature detection unit 127 are provided on the front side of the metal box 334.
- the radio wave transmission suppressing unit 338 is provided over the entire circumference of the metal box 334, and the distance L from the inner wall surface of the metal box 334 is 1 ⁇ 4 of the wavelength of the electromagnetic wave emitted from the antenna 124.
- the radio wave transmission suppressing unit 338 is located behind the antenna 124, and the to-be-thawed object 337 is placed near the antenna 124, that is, in front of the radio wave transmission suppressing unit 338.
- the front side and the rear side of the radio wave transmission suppressing unit 338 are referred to as a region a and b, respectively.
- the temperature of the inside of the second freezer compartment 105 is adjusted to, for example, ⁇ 18 ° C. in a frozen atmosphere by the operation of the refrigerator 100D.
- the electromagnetic waves radiated from the antenna 124 pass through the region a (hatched hatched region in FIG. 8), a part thereof enters the radio wave transmission suppressing unit 338, and a part thereof is the region b (dotted hatching in FIG. Reach area).
- the electromagnetic wave that has entered the radio wave transmission suppressing unit 338 is reflected at the end, and a part of the reflected electromagnetic wave further enters the region b.
- the height of the radio wave transmission suppressing unit 338 is set to 1 ⁇ 4 of the wavelength of the electromagnetic wave radiated from the antenna 124, the phase is shifted by 180 ° C.
- the electromagnetic wave directly radiated from the antenna 124 into the region b and the electromagnetic wave reflected from the radio wave transmission suppressing unit 338 and entering the region b are in opposite phases and cancel each other. Therefore, the electromagnetic wave is not substantially irradiated in the region b.
- the temperature detecting means 127 detects that the material to be thawed 337 has reached the temperature determined as the thawing end temperature, the thawing is automatically terminated and notified to the user by means such as a buzzer or light. .
- the object to be thawed 337 placed in the region a during thawing is heated and thawed, but other frozen preserved foods placed in the region b are not heated.
- each of the region a and the region b is ensured in an appropriate size, for example, a commercially available packed meat or the like is a problem. It can be thawed without any problems.
- the metal box 334 includes a metal box front part 334 a and a metal box rear part 334 b that are divided into two parts at the front and rear at the radio wave transmission suppressing part 338.
- the metal box front part 334a and the metal box rear part 334b are integrally assembled by means such as spot welding or caulking.
- the metal box 334 is comprised by the metal box upper part 334c and the metal box lower part 334d which were divided
- the metal box upper part 334c and the metal box lower part 334d are integrally assembled by means such as spot welding or caulking.
- the configuration of the metal box 334 is not limited to the configuration shown in FIG. 9 or 10 and may be other configurations.
- FIG. 11 is a front view of a refrigerator 100E according to Embodiment 7 of the present invention
- FIG. 12 is a side cross-sectional view showing a BB cross section in FIG.
- the basic configuration of the refrigerator 100E is the same as that of the refrigerator 100A of the first embodiment, the description thereof will be omitted.
- the refrigerator door 104a is provided, and the second freezing room 105, the ice making room 106, the first freezing room 107, and the vegetable room 108 are respectively provided with drawer doors 105c, 106a, which are configured by rails (not shown), etc. 107a and 108a are provided.
- Each storage room provided with a drawer door is provided with a case for each storage room placed on a rail (not shown) or the like.
- the second freezer compartment 105 has a freezer compartment case 105d
- the ice making chamber 106 has an ice storage case 106b
- the first freezer compartment 107 has a freezer compartment upper case 107b and a freezer compartment lower case 107c
- a vegetable compartment upper case 108b and a vegetable compartment lower case 108c are arranged.
- the refrigerator compartment 104 is a refrigerated temperature zone that is a temperature that does not freeze for refrigerated storage, usually a first storage compartment 104b that is set to 1 ° C. to 5 ° C. And a second storage section 104c that can be set to a freezing temperature of ⁇ 10 ° C.
- this refrigerator compartment 104 is divided into the 1st storage compartment 104b and the 2nd storage compartment 104c, it is corresponded to the division storage chamber of several storage chambers.
- the second storage section 104c is composed of an insulative heat insulating box 131 provided at the lowest level in the refrigerator compartment 104, and is provided as a space for freezing, thawing and storing the object to be cooled 133.
- the inside heat insulating box 131 is provided with a front opening and a heat insulating door 134 that closes the front opening, and the packing 135 air-blocks the space between the heat insulating door 134 and the inside heat insulating box 131, and the second storage.
- the compartment 104c is kept sealed.
- the bottom face of the internal heat insulation box 131 is the first partition wall 123 that insulates the refrigerator compartment 104 from the first freezer compartment 107 and the ice making chamber 106, and the rear face of the internal heat insulation box 131 is the refrigerator compartment.
- the left surface of the back member 136 and the inside heat insulating box 131 may be configured integrally with the left surface of the heat insulating box 101.
- the configurations of the vegetable compartment 108, the first freezing compartment 107, the second freezing compartment 105, and the ice making compartment 106 are as described in the first embodiment.
- a conveyance air passage 137 for conveying the cold air sent out by the cooling fan 113 to the refrigerator compartment 104 is formed.
- a discharge port 131a for the second storage compartment 104c for introducing the cool air of the conveyance air passage 137 into the second storage compartment 104c is provided at the upper rear surface of the internal heat insulation box 131, and the internal heat insulation box body is provided.
- a vent 131b for introducing cool air from the first storage section 104b is provided in the top surface of 131.
- the discharge port 131a and the vent port 131b are configured to be freely opened and closed by a damper 132.
- a suction port 131c through which cool air that has cooled the second storage section 104c is sucked is provided at the lower back of the interior heat insulation box 131.
- the sucked cold air is heat-exchanged again by the cooler 112 to become cold cold air and repeat circulation. As a result, the second storage section 104c is cooled.
- the damper 132 is a single damper that can select an opening, but the damper 132 is a twin damper so that the opening and closing of the discharge port 131a and the vent port 131b can be controlled separately.
- the temperature of the second storage section 104c can be controlled more delicately.
- a vapor compression refrigeration system using a compressor an absorption refrigeration system, a Peltier refrigeration system, or a combination thereof can be used.
- An internal box 138 is further arranged inside the second storage section 104c configured by the internal heat insulating box 131.
- the inner box 138 has an open portion 138a that is open (is an open portion) on the wall facing the heat insulating door 134, and the other surface is formed to be substantially closed.
- an inner box lid 139 is attached to the heat insulating door 134. When the heat insulating door 134 is closed, a part of the inner box lid 139 enters the open portion 138a of the inner box 138 to substantially seal the inner box 138, thereby forming the independent storage section 140. Yes.
- inner box 138 and inner box lid 139 are made of a metal material such as stainless steel, aluminum, an alloy thereof, or a steel plate. Therefore, the inner wall surface of the independent storage section 140 is covered with metal.
- the inner box 138 and the inner box lid 139 are not necessarily all made of metal, and may be only the inner wall surface of the independent storage section 140, for example.
- a metal plate may be attached to the inner wall, or a metal film may be formed by a vapor deposition method or the like.
- a drawer case 141 for placing and storing the object to be cooled 133 is provided in the inner box 138 in the second storage section 104c.
- the drawer case 141 By opening the heat insulating door 134, the drawer case 141 is moved forward. The drawer and the object to be cooled 133 can be taken in and out.
- Various opening operations of the heat insulating door 134 are conceivable, and the heat insulating door 134 may be rotated about either the upper or lower side of the heat insulating door 134, or may be rotated about the left or right side of the heat insulating door 134. May be. Further, the heat insulating door 134 may be horizontally moved in the forward direction using a slide rail or the like. Further, the drawer case 141 may or may not be interlocked with the operation of the heat insulating door 134, and the effect in the present embodiment is not changed.
- the antenna 124 is disposed on the top surface of the inner box 138 and is electrically connected by an electromagnetic wave generator 125 and a coaxial cable.
- a temperature detection unit 127 is disposed on the top surface of the inner box 138 and is electrically connected to the control unit 128.
- the control means 128 is also electrically connected to the electromagnetic wave generator 125.
- the electromagnetic wave generator 125 includes an electromagnetic wave oscillator (not shown) configured using a semiconductor element, and an electromagnetic wave amplifier (not shown) configured using a semiconductor element that amplifies an output signal of the electromagnetic wave oscillator. Composed.
- a field effect transistor using a GaN material is used for a semiconductor element of an electromagnetic wave amplifier.
- the electromagnetic wave amplifier may use other semiconductor elements such as Si, GaAs and SiC in addition to the GaN material.
- the antenna 124 and the temperature detecting means 127 are not necessarily provided on the top surface of the inner box 138, and may be provided on the back surface, the side surface, or the bottom surface.
- Various methods can be considered for the temperature detection means 127. For example, an infrared sensor that can detect infrared rays, or a thermistor that utilizes a change in resistance value due to temperature may be used.
- the compressor 109, the cooling fan 113, the radiant heating means 114, and the damper 132 described above are electrically connected to the control means 128.
- the refrigeration cycle is operated by a signal from the control means 128 according to the set temperature in the refrigerator, and the cooling operation is performed.
- the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface or the rear surface of the heat insulation box 101 which is the main body of the refrigerator 100E, or the heat insulation box body 101.
- the refrigerant is condensed and liquefied while preventing condensation of the heat insulating box 101 via a refrigerant pipe (not shown) disposed at the front face, and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
- the low-temperature and low-pressure liquid refrigerant exchanges heat with the air in each storage chamber by the operation of the cooling fan 113, and the refrigerant in the cooler 112 evaporates. At this time, cool air for cooling each storage chamber in the cooling chamber 110 is generated.
- the low temperature cold air is diverted from the cooling fan 113 to the refrigerator compartment 104, the second freezer compartment 105, the ice making compartment 106, the first freezer compartment 107, and the vegetable compartment 108 using an air passage or a damper 132, and the respective purposes. Cool to temperature range.
- the cooler 112 disposed in the cooling chamber 110 is cooled to about ⁇ 40 ° C. to ⁇ 20 ° C. by the refrigeration cycle.
- the air in the cooling chamber 110 is cooled and sent out by the cooling fan 113 through the discharge port 131a into the second storage section 104c.
- the damper 132 opens and closes the discharge port 131a so as to keep the inside of the second storage section 104c at a set temperature, and adjusts the amount of cool air sent to the second storage section 104c.
- An internal box 138 is disposed on the downstream side of the discharge port 131a, and the cool air sent from the discharge port 131a into the second storage section 104c abuts on the internal box 138, and the internal box 138 itself is Cooling.
- the inner box 138 is made of metal, or at least part of the inner box 138 is made of metal. Therefore, due to its good thermal conductivity, the entire inner box 138 is quickly and uniformly made. It is possible to cool.
- the inner box cover 139 attached to the heat insulating door 134 is also made of the same metal as the inner box 138, it has good thermal conductivity and is quickly and uniformly cooled.
- the inside of the independent storage section 140 surrounded by the inner box 138 and the inner box lid 139 is uniformly cooled while minimizing variations in temperature distribution. Further, by actively bringing cold air into contact with the metal inner box body 138, the inner box body 138 is rapidly cooled, whereby the object to be cooled 133 stored in the independent storage section 140 is rapidly cooled. It becomes possible to freeze it.
- the cold air that circulates in the second storage section 104c and cools the internal box 138 returns to the cooling chamber 110 from the suction port 131c and is cooled again by the cooler 112.
- the temperature detection means 127 attached to the top surface of the inner box 138 can detect the temperature of the air inside the independent storage section 140, the temperature of the drawer case 141, or the object 133 to be cooled. This temperature information is sent as an electrical signal to the electrically connected control means 128, and the control means 128 appropriately controls the cooling fan 113 or the refrigeration cycle so as to reach a preset temperature. Specifically, the operation interval of the cooling fan 113 or the refrigeration cycle can be varied.
- the temperature of the cooler 112 can be varied by controlling the number of revolutions of the compressor 109.
- the set temperature of the second storage section 104c is set to about ⁇ 10 ° C., and it is possible to achieve both reduction in the time and labor for thawing and long-term storage. It should be noted that the convenience of use differs depending on the temperature range, such as that the normal freezing temperature is set to about ⁇ 20 ° C., so that long-term storage can be performed with peace of mind.
- the temperature in the independent storage section 140 is adjusted to about ⁇ 10 ° C. by the temperature detection means 127, the control means 128, the refrigeration cycle, and other cooling means.
- the temperature detection means 127 the control means 128, the refrigeration cycle, and other cooling means.
- an object to be cooled 133 having a relatively high temperature of about 15 ° C. is stored in the drawer case 141 in the independent storage section 140. Since the temperature in the independent storage section 140 is adjusted to about ⁇ 10 ° C., the stored object 133 to be cooled is deprived of heat from the surroundings, and the temperature gradually decreases.
- the temperature of the object 133 to be cooled is detected by the temperature detection means 127 provided on the top surface of the inner box 138.
- a signal is sent from the control means 128 to the electromagnetic wave generator 125 to The generator 125 generates electromagnetic waves.
- the frequency of this electromagnetic wave is 2.54 GHz.
- This electromagnetic wave is sent to the antenna 124 through an electrically connected coaxial cable or the like, and is irradiated from the antenna 124 to the object 133 to be cooled.
- the electric power applied to the object to be cooled 133 is about 2 to 3 W, which is sufficiently smaller than the energy for cooling the object to be cooled 133, and the temperature of the object to be cooled 133 is increased by irradiating electromagnetic waves. Absent.
- the frequency of electromagnetic waves was 2.54 GHz, the effect in this Embodiment is not limited to this frequency, For example, what is necessary is just 300 MHz or more and 3 THz or less.
- the object to be cooled 133 is a food containing moisture in the inside of meat or the like.
- the object 133 to be cooled is gradually frozen from the surface toward the center.
- the object 133 to be cooled that has been irradiated with electromagnetic waves can suppress a decrease in surface temperature, it can be prevented from freezing first from the surface. Since the internal temperature of the cooled object 133 also gradually decreases, it is possible to cool the object 133 while suppressing the temperature difference between the inside and outside of the object to be cooled 133, and freezing with a very fast traveling speed occurs inside the object to be cooled 133.
- the body 138 and the inner box lid 139 are made of metal contributes to suppressing variation in temperature distribution and reducing the temperature change width during operation.
- the internal box 138 and the internal box lid 139 are made of metal for this purpose. It is consistent with. Note that the fitting portion between the inner box 138 and the inner box lid 139 is configured to prevent leakage of electromagnetic waves. Also, from the viewpoint of preventing electromagnetic wave leakage, the inner box 138 and the inner box lid 139 need not all be made of metal, and may be only a portion serving as the inner wall surface of the independent storage section 140.
- the discharge port 131a is closed by the damper 132.
- the cooler 112 disposed in the cooling chamber 110 is cooled to about ⁇ 40 ° C. to ⁇ 20 ° C. by the refrigeration cycle.
- the air in the cooling chamber 110 is cooled, and the cold air forced out by the cooling fan 113 is sent to the first storage section 104b through the conveyance air passage 137.
- the first storage compartment 104b is cooled, and the cool air whose temperature has risen passes through the vent 131b and is sent into the second storage compartment 104c.
- the second storage section 104c can be set to the refrigeration temperature.
- An internal box 138 is disposed on the downstream side of the vent 131b, and the cold air sent from the vent 131b into the second storage section 104c contacts the internal box 138.
- the inner box 138 is made of metal, or at least a part of the inner box 138 is made of metal. Therefore, the entire inner box 138 is quickly and uniformly formed by its good thermal conductivity. It can be temperature. Therefore, it is possible to shorten the time for raising the temperature of the second storage section 104c from about ⁇ 10 ° C., which is a temperature setting for freezing and storage, to a refrigeration temperature suitable for thawing. Since shortening the temperature raising time leads to shortening of the thawing time, it is possible to improve the user-friendliness and to improve the energy consumption.
- the cold air that circulates in the second storage section 104c and cools the internal box 138 returns to the cooling chamber 110 from the suction port 131c and is cooled again by the cooler 112.
- thawing was performed with the output of the electromagnetic wave generator 125 set to 20 W and the temperature of the second storage section 104c set to 5 ° C.
- the thawing time required 50 minutes, but as a result of measuring the temperature after thawing at 23 locations, the temperature unevenness was only about 3 ° C.
- the output of electromagnetic waves was increased to about 300 W assuming a microwave oven or the like, the temperature unevenness after thawing was about 20 ° C.
- the thawing unevenness was about 3 ° C., but thawing takes about 20 hours.
- the refrigeration apparatus of the present embodiment can reduce temperature unevenness after thawing and further shorten the thawing time.
- the power of the electromagnetic wave used for thawing that is, the output of the electromagnetic wave generator 125 is 20 W.
- the present invention is not limited to this, and the power used for thawing is 100 W or less, preferably 50 W or less. Can be reduced.
- frozen food in order to reduce temperature unevenness, frozen food can be thawed to, for example, ⁇ 5 ° C. to ⁇ 10 ° C., cut as necessary with a knife, etc., and the rest can be re-frozen. .
- the control means 128 can automatically transmit a thawing end signal and stop the output of the electromagnetic wave generator 125, so that the user is concerned about overheating. There is no need.
- the drawer case 141 is arranged in the independent storage section 140, the user can open the heat insulating door 134 and pull the drawer case 141 to the near side. In this state, after the object to be cooled 133 such as food is placed in the drawer case 141, the drawer case 141 is returned to its original position and the heat insulating door 134 is closed. Considering the case where there is no drawer case 141, it may be difficult to reach the back side of the independent storage section 140, and when a large number of objects to be cooled 133 are stored on the front side, the space on the back side is accessed. It becomes difficult and storage property falls. Therefore, by using the drawer case 141 so that the drawer case 141 can be pulled out toward the front, the storage property of the cooled object 133 in the space on the back side of the drawer case 141 can be improved, and the convenience can be improved.
- the temperature distribution variation can be quickly minimized within the drawer case 141, so that more uniform cooling can be achieved. It is possible to realize. Therefore, by arranging the drawer case 141 in the independent storage compartment 140 surrounded by metal, it is possible to improve the convenience of the user when storing the object to be cooled 133 and to achieve a uniform temperature with reduced variation in temperature distribution. It is possible to achieve both environmental maintenance.
- the drawer case 141 is pulled out and the cooled object 133 is put in and out. Can be made natural and the visibility in the drawer case 141 is also good. Since the second storage section 104c is also used as a thawing chamber, cooking is performed instead of storage, which is a function of a general refrigerator. Therefore, the time during which the object to be cooled 133 is placed in the refrigerator 100E is short. Become. Therefore, since the frequency of opening and closing may increase, it can be said that the fact that it can be used in an easy posture and has good visibility is very effective in improving usability.
- the heat insulating door 134 when the heat insulating door 134 is opened, the warm air outside the refrigerator 100E flows into the independent storage compartment 140, but the inner wall of the independent storage compartment 140 is made of metal. It can quickly return to the set temperature.
- an electromagnetic wave oscillator and an electromagnetic wave amplifier using a semiconductor element are used for the electromagnetic wave generator 125.
- an electromagnetic wave generator that is often used for heating foods is generally a magnetron, but in this embodiment, the installation space of the electromagnetic wave generator 125 can be made smaller than that of the magnetron.
- the magnetron can generate only a single frequency, it is known that resonance occurs in the cooking section. In this case, there is a possibility that only the resonance point portion is heated, which causes the occurrence of temperature unevenness. Therefore, the necessity of providing an electromagnetic wave stirrer such as a stirrer fan in the cooking section is known. .
- an electromagnetic wave oscillator using a semiconductor element since an electromagnetic wave oscillator using a semiconductor element is used, the frequency can be varied during operation. Therefore, by changing the frequency, the resonance point can be changed, and an electromagnetic wave stirrer is not required. Therefore, since the internal volume of the independent storage section 140 can be reduced, the installation space for the internal box 138 can also be reduced.
- the electromagnetic wave generator 125 generates heat when generating an electromagnetic wave
- the electromagnetic wave generator 125 is installed on the back surface of the refrigerator compartment 104 in the present embodiment, so that the temperature in the adjacent cabinet can be minimized. It does not significantly reduce energy savings.
- the electromagnetic wave generator 125 is installed on the back surface of the heat insulation box body 101.
- An effect is obtained.
- the electromagnetic wave generator 125 has a low output and the surface temperature rise is small, even if it is installed in the storage room, the energy saving performance is not significantly reduced.
- the first storage section 104b maintained in the refrigeration temperature zone in the refrigeration chamber 104, and a temperature zone lower than the refrigeration temperature zone, for example, about ⁇ 10 ° C. lower than the freezing temperature.
- the second storage section 104c is maintained at the same position, and electromagnetic waves oscillated from the electromagnetic wave generator 125 are introduced into the second storage section 104c.
- the maximum ice crystal formation zone generally, the temperature zone where ice crystals of 0 ° C to -5 ° C grow most.
- ice crystals can be made smaller, so that destruction of cells can be prevented and concentration can be suppressed.
- quick freezing is generally known. Examples of the quick freezing method include a method using a large refrigerator, a method using a cryogenic liquid such as liquid nitrogen or liquid carbon dioxide, and the like.
- cryogenic cold air it is necessary to install a huge compressor with high performance.
- the latter method using a cryogenic liquid has a problem that although the freezing time can be shortened, it is necessary to supply raw materials and the cost is increased.
- the temperature difference between the object to be frozen and the cryogenic liquid is large, the object to be frozen expands and contracts rapidly, and the object to be frozen itself is cracked or ruptured. There was also a problem.
- the conventional rapid freezing technique cannot completely prevent the difference in freezing speed between the surface and the inside of the object to be frozen, and it cannot be denied that some acicular crystals are generated and increased. Met.
- the refrigerating chamber 104 is provided with a second storage section 104c into which the electromagnetic wave oscillated from the electromagnetic wave generator 125 can be introduced. Therefore, as described in the first embodiment, the food irradiated with the electromagnetic wave in the second storage section 104c is in a supercooled state.
- the temperature detecting means 127 detects that the supercooled food has reached a certain temperature
- the operation of the electromagnetic wave generator 125 is stopped or the output is varied by a signal from the control means 128.
- freezing at a very high speed occurs inside the food.
- the maximum ice crystal formation zone ⁇ 1 to ⁇ 5 ° C.
- the electromagnetic wave generator 125 is composed of an electromagnetic wave oscillator using a semiconductor element and an electromagnetic wave amplifier, the installation space of the electromagnetic wave generator 125 can be reduced as compared with a magnetron or the like. The storage property of the refrigerator 100E can be improved.
- an electromagnetic wave oscillator using a semiconductor element can vary the frequency of the generated electromagnetic wave. Therefore, it is not necessary to attach an electromagnetic stirrer such as a stirrer fan by changing the reflection characteristics of the electromagnetic wave introduced into the second storage section 104c, so the installation space of the second storage section 104c is also reduced. can do. Thereby, while further improving the storage capacity of the refrigerator 100E, it is possible to realize an improvement in energy saving performance by reducing the size of the second storage section 104c maintained at a low temperature.
- the interior heat insulating box 131 with the vent 131b that allows the first storage section 104b and the second storage section 104c to communicate with each other, the temperature of the second storage section 104c can be quickly raised during thawing. Therefore, the thawing time can be shortened, and the usability for the user can be further improved. In addition, shortening the thawing time contributes to improving energy saving.
- the refrigerator compartment 104 is arranged at the top of the refrigerator 100E, and the second storage compartment 104c is provided at the bottom of the refrigerator compartment 104, so that the second storage compartment can be kept at the height of a general adult's waist. Since 104c is located, the posture of the drawer operation of the drawer case 141 and the insertion / extraction of the object to be cooled 133 can be made natural. Moreover, the visibility in the drawer case 141 is also favorable, and usability can be improved.
- FIG. 13 is a front view of a refrigerator 100F according to Embodiment 6 of the present invention
- FIG. 14 is a side sectional view showing a III-III section in FIG.
- the refrigerator 100F includes a refrigerator compartment 204 provided with a rotary refrigerator compartment door 204a, similar to the refrigerator 100E of the fifth embodiment.
- a first storage compartment 204b that is set to a refrigeration temperature zone, which is a temperature that does not freeze for refrigerated storage, usually 1 ° C. to 5 ° C., and a temperature zone lower than the refrigeration temperature zone, for example, freeze
- a second storage compartment 204c is provided which can be set to a freezing temperature of about ⁇ 10 ° C. below the temperature.
- this refrigerator compartment 204 is divided into the 1st storage compartment 204b and the 2nd storage compartment 204c, it is corresponded to the division storage chamber of several storage chambers.
- the second storage section 204c is composed of an insulative heat insulating box 231 provided at the uppermost stage in the refrigerator compartment 204, and is provided as a space for freezing, thawing and storing the object to be cooled 133.
- the interior heat insulation box 231 is provided with a front opening and is provided with a heat insulating door 234 that closes the front opening.
- the space between the heat insulating door 234 and the internal heat insulating box 231 is air-blocked by the packing 135, whereby the inside of the second storage section 204c is kept sealed.
- the top surface of the heat insulation box body 231 is the top surface of the heat insulation box body 101
- the back surface of the heat insulation box body 231 is the refrigerator compartment back member 136
- the left surface of the heat insulation box body 231 is the heat insulation box body 101. You may comprise integrally with a left surface, respectively.
- a conveyance air passage 137 for conveying the cold air sent out by the cooling fan 113 to the refrigerator compartment 104 is formed.
- a discharge port 231a for the second storage compartment 204c for introducing the cool air of the conveying air passage 137 into the second storage compartment 204c is provided at the upper rear surface of the internal heat insulation box 231 to provide an internal heat insulation box.
- a vent hole 231b for introducing cool air from the first storage section 204b is provided in the right rear portion of 231.
- the discharge port 231a and the vent 231b are configured to be opened and closed by a damper 132.
- a suction port 231c through which the cold air that has cooled the second storage section 204c is sucked is provided at the lower back of the internal heat insulating box 231.
- the sucked cold air is heat-exchanged again by the cooler 112 to become cold cold air and repeat circulation. Thereby, the second storage section 204c is cooled.
- the damper 132 is a single damper that can select an opening, but the damper 132 is a twin damper so that the opening and closing of the discharge port 231a and the vent 231b can be controlled separately. By doing so, the temperature of the second storage section 204c can be controlled more delicately.
- a vapor compression refrigeration system using a compressor an absorption refrigeration system, a Peltier refrigeration system, or a combination thereof can be used.
- an internal box 138 is disposed inside the second storage section 204c, and the internal box 138 has an open portion 138a.
- the opening part 138a can be opened and closed by a heat insulating door 234, and an inner box cover 139 is attached to the heat insulating door 234 in order to substantially close the opening part 138a.
- a mounting tray 241 on which the object to be cooled 133 is mounted is stored in the inner box 138 in the second storage section 204c.
- the loading tray 241 is pulled forward by opening the heat insulating door 234, and allows the article 133 to be cooled or taken out.
- the mounting tray 241 may or may not be interlocked with the operation of the heat insulating door 234, and the effect in the present embodiment is not changed.
- high-quality freezing and thawing can be realized in the second storage section 204c provided in the refrigerator compartment 204.
- the second storage section 204c cannot store much food on a daily basis in order to perform high-quality freezing and / or thawing.
- the second storage section 204 c is provided on the uppermost stage of the refrigerator compartment 204.
- the uppermost stage of the refrigerator compartment 204 is an area that is not easy to use because it is hard for the user to visually recognize and difficult to reach. Therefore, providing the second storage section 204c in the uppermost stage of the refrigerator compartment 204 can be said to be a structure that minimizes the deterioration of the storage capacity of the first storage section 204b in actual use.
- a machine room 101a having a compressor 109 or the like is provided at the back of the top surface of the heat insulation box 101, and the machine room 101a is formed by biting into the uppermost rear region in the refrigerator compartment 104. Has been. Therefore, the depth of the uppermost stage of the refrigerator compartment 204 is smaller than that of other areas. Therefore, by providing the second storage section 204c at the uppermost stage, it becomes easy to overlook the back of the second storage section 204c.
- the uppermost stage of the refrigerator compartment 204 is a place where it is difficult to reach as described above.
- the loading tray 241 in the second storage section 204c it is easy to clean, and the convenience of the user can be raised. it can.
- the heat insulation door 234 is a rotary door or a detachable door, it is easy to use.
- the refrigerator compartment 204 is arranged at the top of the refrigerator 100F, and the second storage compartment 204c is provided at the top of the refrigerator compartment 204 that is usually difficult to reach. Thereby, the influence of the storage property fall of the refrigerator compartment 204 by installing the 2nd storage division 204c which cannot store many preservation
- the uppermost stage of the refrigerator compartment 204 can be made smaller in depth than other areas. Therefore, in the second storage section 204c provided in the uppermost stage, it is easy to look around the inside.
- the refrigerator according to the present invention can perform operations of freezing and refrigeration, thawing, heating, and heat insulation with high quality without taking time and effort by the user while minimizing power consumption.
- high-quality freezing and thawing can be realized in the refrigerator compartment without impairing the user-friendliness. Therefore, the present invention can be widely applied not only to household or commercial refrigerators but also to various uses such as a thawing machine, a cooker, and a warmer.
- Refrigerator 101 Heat insulation box 104,204 Refrigerated room (first storage room, compartment storage room) 104a, 204a refrigerator compartment doors 104b, 204b first storage compartment 104c, 204c second storage compartment 105, 205 second freezer compartment (fourth storage compartment, compartment storage compartment) 105a, 205a, 307a Refrigeration compartment (first storage compartment) 105b Defrosting compartment (second storage compartment) 105c, 106a, 107a, 108a Drawer door 106 Ice making room (fifth storage room) 107 First freezer room (second storage room) 108 Vegetable room (third storage room) 109 Compressors 118, 318, Drawer door 124 Antenna 125 Electromagnetic wave generator 126 Coaxial cable 131b, 231b Vent 205b, 307b Cooking compartment (second storage compartment) 307 First freezer room (second storage room, compartment storage room) 330 Heating means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Freezing, Cooling And Drying Of Foods (AREA)
Abstract
Disclosed is a refrigerator (100A) provided with storage chambers including a refrigeration chamber (104), a first freezing chamber (107), a second freezing chamber (105), etc. At least one of the storage chambers is a compartmental storage chamber having, on the inside thereof, a first storage compartment in which a predetermined temperature range that has been determined for the storage chamber is maintained, and a second storage compartment (105b) having a temperature range different from the predetermined temperature range.
Description
本発明は、冷蔵庫に関するものであり、特に、複数の収納区画を有する構造の貯蔵室を備える冷蔵庫に関するものである。
The present invention relates to a refrigerator, and particularly to a refrigerator including a storage room having a structure having a plurality of storage compartments.
生活環境の変化が著しい昨今においては、家族それぞれが食事を摂る時間が異なる家庭が増えている。それに伴い、調理した食品(料理)を冷蔵保存し食事の前に再加熱を行う、冷凍した食品を解凍して調理するという作業が増加している。
In today's remarkable changes in the living environment, an increasing number of families have different times for their families to eat. Along with this, the work of refrigerated storage of cooked food (dish) and reheating before meals, and thawing and cooking of frozen food is increasing.
食品を長期間安全においしく保存するには、冷蔵または冷凍工程は欠かせない。したがって、家庭において食品は主に冷蔵庫に保存される。一方、再加熱および解凍は電子レンジまたはコンロ等の調理機器で行うため、保存された食材を冷蔵庫より取出し、移し変えて再加熱または解凍を行い、食卓に並べる必要がある。それゆえ、冷蔵または冷凍された食品を調理するには、面倒な作業が伴った。また、取出し作業は必ず使用者が行う必要があり、予約調理等は不可能であった。
Refrigeration or freezing processes are indispensable for safe and long-term preservation of food. Therefore, food is mainly stored in the refrigerator at home. On the other hand, since reheating and thawing are performed by a cooking device such as a microwave oven or a stove, stored foods must be taken out from the refrigerator, transferred, reheated or thawed, and arranged on the table. Therefore, cooking refrigerated or frozen foods has been a tedious task. In addition, it is necessary for the user to perform the take-out work, and reservation cooking or the like was impossible.
この問題を解決するために、冷凍温度から加熱温度までを自由に設定できる切替室を有する冷蔵庫が提案されている(例えば、特許文献1参照)。
In order to solve this problem, a refrigerator having a switching chamber that can freely set the temperature from the freezing temperature to the heating temperature has been proposed (see, for example, Patent Document 1).
図15は特許文献1に開示されている、従来の独立切替室を設けた冷蔵庫の構成を示す概略断面図である。
FIG. 15 is a schematic cross-sectional view showing the configuration of a refrigerator provided with a conventional independent switching chamber disclosed in Patent Document 1. As shown in FIG.
図15に示すように、冷蔵庫901の中段左側には温度切替室902が設けられている。温度切替室902は冷凍、パーシャル、チルド、冷蔵等の各動作モードから成る低温側に切り替えられると、冷却器903から冷気通路904冷気が導入され、低温室となる。これにより、貯蔵物を冷蔵保存または冷凍保存できる。温度切替室2は高温側の動作モードに切り替えられると加熱手段905が駆動され、温度切替室送風機906により温度切替室902内で空気を循環して高温室となる。これにより、加熱調理済み食品の一時的な保温または冬場の温調理等ができる。また、温度切替室902は急速解凍モードに切り替えられると加熱手段905および温度切替室送風機906の駆動により貯蔵物に温風が供給され、貯蔵物の解凍を行う。
As shown in FIG. 15, a temperature switching chamber 902 is provided on the left side of the middle stage of the refrigerator 901. When the temperature switching chamber 902 is switched to a low temperature side composed of operation modes such as freezing, partial, chilled, and refrigerated, the cool air passage 904 is introduced from the cooler 903 to become a low temperature chamber. Thereby, a store thing can be stored refrigerated or frozen. When the temperature switching chamber 2 is switched to the operation mode on the high temperature side, the heating means 905 is driven, and air is circulated in the temperature switching chamber 902 by the temperature switching chamber blower 906 to become a high temperature chamber. Thereby, the heat preservation | save of the heat-cooked food can be performed temporarily, or the warm cooking of the wintertime etc. can be performed. Further, when the temperature switching chamber 902 is switched to the rapid thawing mode, warm air is supplied to the stored items by driving the heating means 905 and the temperature switching chamber blower 906, and the stored items are defrosted.
また、冷凍された食品を解凍するために専用の解凍室を備える冷蔵庫も従来から提案されている(例えば、特許文献2参照)。
Also, a refrigerator having a dedicated thawing chamber for thawing frozen food has been proposed (see, for example, Patent Document 2).
図16は、特許文献2に開示されている、解凍室を備える冷蔵庫の構成を示す概略断面図であり、図17は、解凍室の具体的構成を示す分解斜視図である。
FIG. 16 is a schematic cross-sectional view showing a configuration of a refrigerator including a thawing chamber disclosed in Patent Document 2, and FIG. 17 is an exploded perspective view showing a specific configuration of the thawing chamber.
図16に示すように、冷蔵庫911は仕切壁912によって上下に冷凍室913と冷蔵室914とに区画されている。さらに、冷蔵庫911下部に設けられた機械室915に、冷凍サイクルを構成する圧縮機916が設けられ、冷却室917内に冷却器918が設けられている。冷却器918により冷却された空気が電動送風機919によってダクト920を通り、冷凍室913へ送られ、ダンパ装置(図示せず)を有する冷気吐出口921から冷蔵室914へ送られ庫内を冷却している。解凍室922は冷蔵室914上部の冷気吐出口921の前に設けられ、下部に電波攪拌室923を有する。
As shown in FIG. 16, the refrigerator 911 is partitioned into a freezer compartment 913 and a refrigerator compartment 914 by a partition wall 912 in the vertical direction. Furthermore, a compressor 916 constituting a refrigeration cycle is provided in a machine room 915 provided at the lower part of the refrigerator 911, and a cooler 918 is provided in the cooling room 917. The air cooled by the cooler 918 passes through the duct 920 by the electric blower 919, is sent to the freezer compartment 913, and is sent from the cold air discharge port 921 having a damper device (not shown) to the refrigerator compartment 914 to cool the inside of the warehouse. ing. The thawing chamber 922 is provided in front of the cold air discharge port 921 at the top of the refrigerating chamber 914 and has a radio wave stirring chamber 923 at the bottom.
図17に示すように、解凍室922はキャビティ924および肉皿925から構成されている。キャビティ924は、高周波電波反射材により形成されており、前面開口部924aを有している。肉皿925は、低比誘電率材により形成されており、前面開口部924aからキャビティ924内に挿入される。キャビティ924の後壁(図示せず)の冷気吐出口921に対応する位置と天壁前部とには冷気通気口924bが穿設され、また、肉皿925の後壁にも透孔925aが穿設されている。これにより、冷蔵室914に吐出された冷気は、図17の矢印のように解凍室922内を循環することができる。
As shown in FIG. 17, the thawing chamber 922 includes a cavity 924 and a meat dish 925. The cavity 924 is made of a high-frequency radio wave reflecting material and has a front opening 924a. The meat dish 925 is formed of a low dielectric constant material, and is inserted into the cavity 924 through the front opening 924a. A cold air vent 924b is formed at a position corresponding to the cold air outlet 921 on the rear wall (not shown) of the cavity 924 and the front of the top wall, and a through hole 925a is also formed on the rear wall of the meat dish 925. It has been drilled. Thereby, the cold air discharged into the refrigerator compartment 914 can circulate in the thawing chamber 922 as shown by the arrow in FIG.
機械室915には、マグネトロン発振部926およびマグネトロン電源装置927とからなる高周波発生装置928が設けられ、電波攪拌室923と導波回路929により結合されている。電波攪拌室923には、スタラーファン(図示せず)が設けられ電波を上方のキャビティ924へ反射する。
The machine room 915 is provided with a high frequency generator 928 including a magnetron oscillating unit 926 and a magnetron power supply device 927, and is coupled by a radio wave stirring chamber 923 and a waveguide circuit 929. A stirrer fan (not shown) is provided in the radio wave stirring chamber 923 to reflect the radio wave to the upper cavity 924.
以上の構成により、肉皿925上に載置された冷凍食品は、解凍室の冷気を循環しながら高周波により素早く解凍することができる、とされている。
According to the above configuration, the frozen food placed on the meat dish 925 can be thawed quickly by high frequency while circulating the cold air in the thawing chamber.
前述した特許文献1に開示の構成では、切替室を冷凍温度に設定し、購入した冷凍食品を保存しておいた際は、切替室の設定を解凍モードに変えることで、その冷凍食品をそのまま解凍できる。しかしながら、切替室全体を昇温して解凍するため、解凍しない食品は冷凍室へ移す等の手間が必要である。また、庫内温度は冷凍温度帯から解凍温度(少なくとも0℃以上)まで昇温するため、解凍には大きなエネルギーと時間が掛かり、消費電力量が増加するという課題を有していた。
In the configuration disclosed in Patent Document 1 described above, when the switching room is set to the freezing temperature and the frozen food purchased is stored, the setting of the switching room is changed to the thawing mode, and the frozen food is left as it is. Can be thawed. However, since the entire switching chamber is heated and thawed, food that is not thawed needs to be transferred to the freezer compartment. Further, since the internal temperature rises from the freezing temperature zone to the thawing temperature (at least 0 ° C. or higher), thawing takes a large amount of energy and time, and there is a problem that power consumption increases.
また、調理済みの食品を保温する際は、計画的に調理終了時刻に合わせて庫内を昇温し、高温室となったところに食品を投入しなければならず、保温の必要性が発生したときにすぐ使用できないという課題も有していた。
In addition, when keeping cooked food warm, it is necessary to heat up the inside of the cabinet in a planned manner according to the cooking end time, and to put the food in a hot room, which necessitates heat insulation. When it was done, there was also a problem that it could not be used immediately.
また、前述した特許文献2に開示の構成では、解凍室は冷蔵庫内に設けられているため、解凍室に冷蔵食品を保存している場合も、食品を別の貯蔵室に移し変えることなく、冷蔵室内で整理するだけで解凍室を空けることができるが、冷蔵室にあるために、解凍しかできず、冷凍または冷却をおこなった収納区画して利用することができないという課題を有していた。
Further, in the configuration disclosed in Patent Document 2 described above, since the thawing chamber is provided in the refrigerator, even when refrigerated food is stored in the thawing chamber, the food is not transferred to another storage chamber, The thawing room can be emptied simply by organizing in the refrigerated room, but because it is in the refrigerated room, it can only be thawed and cannot be used as a storage compartment that has been frozen or cooled. .
本発明はこのような課題を解決するためになされたものであって、使用者にとって面倒な手間または煩わしい時間を必要とせず、消費電力を抑えながら、使用者の使い勝手を損なうことなしに、冷蔵または冷凍による保存以外の機能を実現することができる、冷蔵庫を提供することを目的とする。
The present invention has been made to solve such a problem, and does not require troublesome time or troublesome time for the user, reduces power consumption, and does not impair user convenience. Or it aims at providing the refrigerator which can implement | achieve functions other than the preservation | save by freezing.
本発明に係る冷蔵庫は、前記課題を解決するために、断熱区画された複数の貯蔵室を備えた冷蔵庫本体と、前記貯蔵室の前面開口部を閉塞する扉とを備え、前記貯蔵室の少なくとも一つが、その内部に、当該貯蔵室に予め設定される設定温度帯で維持される第一の収納区画と、前記設定温度帯とは異なる温度領域を有する第二の収納区画とを有する区画貯蔵室である構成である。
In order to solve the above-described problem, a refrigerator according to the present invention includes a refrigerator body including a plurality of storage compartments that are thermally insulated, and a door that closes a front opening of the storage compartment, and includes at least the storage compartment. One is a compartment storage having a first storage compartment maintained in a preset temperature range preset in the storage room and a second storage compartment having a temperature region different from the preset temperature zone in the storage chamber. It is the structure which is a chamber.
前記構成の冷蔵庫においては、前記区画貯蔵室は少なくとも冷凍温度帯に設定することのできる冷凍室であり、前記第一の収納区画は、前記冷凍温度帯で維持される収納区画であるとともに、前記第二の収納区画は、前記冷蔵温度帯とは異なる温度領域を有する収納区画である構成であってよい。これによって、冷凍室内に保存中の冷凍食品を、別の貯蔵室に移し変えることなく、同一貯蔵室内での整理を行うだけで冷凍保存以外の処理を行うことができる。
In the refrigerator configured as described above, the compartment storage chamber is a freezer compartment that can be set at least in a freezing temperature zone, and the first storage compartment is a storage compartment that is maintained in the freezing temperature zone, and The second storage compartment may be a storage compartment having a temperature region different from the refrigeration temperature zone. As a result, it is possible to perform processes other than frozen storage by simply organizing the frozen food being stored in the freezer compartment into another storage room without changing it.
また、前記構成の冷蔵庫においては、さらに電磁波発生装置を備え、前記区画貯蔵室は少なくとも冷蔵温度帯に設定することのできる冷蔵室であり、前記第一の収納区画は、冷蔵温度帯で維持される収納区画であるとともに、前記第二の収納区画は、前記冷蔵温度帯以下の温度領域を有する収納区画であり、前記電磁波発生装置より発振された電磁波が前記第二の収納区画に導入される構成であってもよい。これによって、専用の貯蔵室を設けること無く、冷蔵庫の収納性の低下を最小限に止めて、被冷却物の内外温度差を抑えながら冷却する高品位冷凍と高品位解凍を実現することができる。
The refrigerator having the above-described configuration further includes an electromagnetic wave generator, the compartment storage chamber is a refrigerator compartment that can be set to at least a refrigeration temperature zone, and the first storage compartment is maintained in a refrigeration temperature zone. And the second storage section is a storage section having a temperature range equal to or lower than the refrigeration temperature zone, and electromagnetic waves oscillated from the electromagnetic wave generator are introduced into the second storage section. It may be a configuration. As a result, it is possible to realize high-quality refrigeration and high-quality thawing that cools while minimizing the deterioration of the refrigerator storage capacity and suppressing the temperature difference between the inside and outside of the object to be cooled without providing a dedicated storage room. .
本発明の上記目的、他の目的、特徴、および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
以上のように、本発明では、使用者にとって面倒な手間または煩わしい時間を必要とせず、消費電力を抑えながら、使用者の使い勝手を損なうことなしに、冷蔵または冷凍による保存以外の機能を実現することができる、という効果を奏する。
As described above, according to the present invention, functions other than storage by refrigeration or freezing are realized without requiring troublesome time or troublesome time for the user and suppressing power consumption without impairing the user's convenience. There is an effect that it is possible.
本発明は、断熱区画された貯蔵室を備えた冷蔵庫本体と、前記貯蔵室の前面開口部を閉塞する扉とを備え、前記貯蔵室は少なくとも冷凍室温度帯に設定することできる冷凍室であって、前記冷凍室内には冷凍温度帯で維持される第一の収納区画と、冷凍室温度帯とは異なる温度領域を有する第二の収納区画とを有する構成である。これにより、冷凍室内に保存中の冷凍食品を、別の貯蔵室に移し変えることなく、同一貯蔵室内での整頓を行うだけで冷凍保存以外の処理を行うことができる。調理区画が、例えば0℃から5℃であれば、解凍を行い、そのまま冷蔵保存を行うことができる。
The present invention includes a refrigerator body having a heat-insulated compartment storage room and a door that closes the front opening of the storage room, and the storage room is a freezer room that can be set at least in a freezer temperature zone. The freezer compartment has a first storage compartment maintained in a freezing temperature zone and a second storage compartment having a temperature region different from the freezer temperature zone. Thereby, processes other than frozen preservation can be performed only by arranging in the same storage room, without transferring frozen food currently preserve | saved in a freezing room to another storage room. If the cooking compartment is, for example, 0 ° C. to 5 ° C., it can be thawed and stored as it is in the refrigerator.
また、40℃以上の高温であれば加熱調理を行い、保温することが可能である。その際に、目的食品以外にも冷凍食品が冷凍室内に保存されていた場合も、同一貯蔵室内に冷凍温度帯に維持される第一の収納区画が存在するため、貯蔵室から取り出すことなく、加熱を防ぐことが可能であるため、使い勝手が格段に向上する。
Also, if the temperature is higher than 40 ° C, it can be cooked and kept warm. At that time, even when frozen foods other than the target foods are stored in the freezer compartment, there is a first storage compartment maintained in the freezing temperature zone in the same storage room, so without taking it out of the storage room, Since it is possible to prevent heating, usability is significantly improved.
また、第二の収納区画は冷凍室内の一部であるために、高温加熱調理時や保温の際に、貯蔵室全体の温度を高温に保つ必要がない。それゆえ、昇温や保温に掛ける時間やエネルギーが小さくなり、省エネ性が向上する。第二の収納区画が、例えば0℃~5℃であれば、解凍を行い、そのまま冷凍保存を行うことができる。
Also, since the second storage compartment is a part of the freezer compartment, it is not necessary to keep the temperature of the entire storage compartment at a high temperature when cooking at high temperature or during heat insulation. Therefore, the time and energy required for temperature rise and heat retention are reduced, and energy saving is improved. If the second storage compartment is, for example, 0 ° C to 5 ° C, it can be thawed and stored frozen.
前記構成の冷蔵庫においては、第二の収納区画を、第一の収納区画の食品を冷凍保持する機能とは異なる機能を発現する収納区画としてもよい。これにより、冷凍室に保存中の食品を、別の貯蔵室に移し変えることなく、冷凍保存以外の処理をすることができるため、使用者の使い勝手が向上する。
In the refrigerator having the above-described configuration, the second storage section may be a storage section that exhibits a function different from the function of freezing and holding food in the first storage section. Thereby, since the foodstuff currently preserve | saved in a freezer compartment can be processed other than frozen preservation | save, without moving to another storage room, a user's convenience improves.
前記構成の冷蔵庫においては、第二の収納区画を、食品を調理する機能を備えた収納区画としてもよい。これにより、冷凍室に保存中の食品を、別の貯蔵室に移し変えることなく調理を行うことができるため、使用者の使い勝手が向上する。また、調理後の食品を別の貯蔵室に移し変えることなく冷凍保存することができるため、手間なく長期保存を実現することができる。
In the refrigerator configured as described above, the second storage section may be a storage section having a function of cooking food. Thereby, since the foodstuff preserve | saved in the freezer compartment can be cooked, without moving to another storage room, a user's convenience improves. Moreover, since the food after cooking can be stored frozen without changing to another storage room, long-term storage can be realized without trouble.
前記構成の冷蔵庫においては、第二の収納区画を、食品を解凍する機能を備えた収納区画としてもよい。これにより、冷凍室に保存している冷凍食品を、別の貯蔵室に移し変えることなく、解凍することができるため、使い勝手が向上する。また、食品の一部を調理等に供し、残りを再度冷凍したい場合も、使用しない分は別の貯蔵室に移し変えることなく再冷凍を行うことができるため、再冷凍の手間も低減することができる。
In the refrigerator configured as described above, the second storage section may be a storage section having a function of thawing food. As a result, the frozen food stored in the freezer can be thawed without being transferred to another storage room, which improves usability. In addition, if you want to use a part of food for cooking and freeze the rest again, you can refreeze the unused portion without transferring it to another storage room. Can do.
前記構成の冷蔵庫においては、第二の収納区画を、食品を加熱する機能を備えた収納区画としてもよい。これにより、冷凍食品を、別の貯蔵室に移し変えることなく加熱調理を行い、冷凍室から出してそのまま食卓に並べることができるため、調理時間を短縮することができる。また、家族の食事時間がずれた場合は、遅く食事をとる人数分の食事を冷凍室の第二の収納区画に加熱保存しておくことができ、食事を摂る際に再加熱の手間を必要とせず、もし、その日のうちに食べないもしくは食べきれない場合は、別の貯蔵室に移し変えることなく冷凍保存することができるため、調理済みの食品を手間なく安全に長期保存することができる。
In the refrigerator configured as described above, the second storage section may be a storage section having a function of heating food. Thus, the frozen food can be cooked without being transferred to another storage room, and can be taken out of the freezer room and arranged on the table as it is, so that the cooking time can be shortened. In addition, when the meal time of the family is shifted, meals for the number of people who eat late can be heated and stored in the second storage compartment of the freezer, and reheating is required when eating meals. If it is not eaten or should not be eaten that day, it can be stored frozen without changing to another storage room, so cooked foods can be stored safely and for long periods of time .
前記構成の冷蔵庫においては、冷蔵庫本体を、電磁波発生装置を備え、第二の収納区画に電磁波を導入する構成であってもよい。これにより、雰囲気温度に依らず食品にエネルギーを与えることができるため、食品の凍結温度を任意に操作し凍結状態を制御することができる。そのため、冷凍食品を、別の貯蔵室に移し変えることなく高速解凍を実現することができ、さらに使い勝手を向上させることができる。また、そのとき、低温雰囲気状態で解凍を行うことができるため、過度な温度上昇を防ぎ、高い解凍品質を得ることができる。
In the refrigerator having the above-described configuration, the refrigerator main body may be provided with an electromagnetic wave generator, and the electromagnetic wave may be introduced into the second storage compartment. Thereby, energy can be given to the food regardless of the ambient temperature, so that the freezing temperature of the food can be arbitrarily operated to control the frozen state. Therefore, high-speed thawing can be realized without transferring the frozen food to another storage room, and usability can be further improved. At that time, since thawing can be performed in a low temperature atmosphere, an excessive temperature rise can be prevented and high thawing quality can be obtained.
さらに、氷結温度以下でも食品が凍結しない状態を保つことができるため、食品の解凍後もそのまま長期間放置することが可能であり、解凍後の食品取り出し忘れによる再冷凍に起因する食品の劣化を防ぐことができ、使用者が安心して使用することができる。また、第二の収納区画温度を-10℃以下に設定し食品に電磁波を照射することで、食品内の氷結晶の生成を適切に制御でき、高品位冷凍を行うことができる。さらに、第二の収納区画で冷凍後、食品を-20℃程度の第一の収納区画に移すことにより急速な冷凍が行え、さらに高品位な冷凍状態を得ることができる。
Furthermore, since the food can be kept in a freezing state even below the freezing temperature, it can be left as it is for a long time even after thawing of the food. This can be prevented and the user can use it with peace of mind. In addition, by setting the second storage compartment temperature to −10 ° C. or lower and irradiating the food with electromagnetic waves, the formation of ice crystals in the food can be appropriately controlled, and high-quality freezing can be performed. Furthermore, after freezing in the second storage compartment, the food can be quickly frozen by transferring it to the first storage compartment at about −20 ° C., and a higher quality frozen state can be obtained.
前記構成の冷蔵庫においては、貯蔵室内に金属箱体を設け、この金属箱体内の空間を電磁的に区画したものであってもよい。これにより、仕切りのない同一の空間内において、電磁波を照射する領域と照射しない領域を分けることができる。これにより、使い勝手を損なうことなく、同一室で冷凍保存と解凍を同時に行うことができる。
In the refrigerator having the above-described configuration, a metal box may be provided in the storage chamber, and a space in the metal box may be partitioned electromagnetically. Thereby, the area | region which irradiates electromagnetic waves, and the area | region which does not irradiate can be divided in the same space without a partition. Thereby, freezing preservation | save and thawing | decompression can be performed simultaneously in the same room, without impairing usability.
前記構成の冷蔵庫においては、金属箱体内の空間を電磁的に区画する手段として、電波伝送抑制部を設けたものであってもよい。これにより、金属箱体内の電磁波照射領域を限定することができる。
In the refrigerator having the above-described configuration, a radio wave transmission suppressing unit may be provided as means for electromagnetically partitioning the space inside the metal box. Thereby, the electromagnetic wave irradiation area | region in a metal box can be limited.
前記構成の冷蔵庫においては、電波伝送抑制部を金属箱体の前後方向、略中央部に設けたものであってもよい。これにより、解凍対象食品と冷凍保存食品の両方の収納領域を適度に確保することができる。
In the refrigerator having the above-described configuration, the radio wave transmission suppressing portion may be provided in the front-rear direction of the metal box body and in the substantially central portion. Thereby, the storage area | region of both thawing | decompressing target food and frozen preservation | save food can be ensured moderately.
このように、本発明の構成では、食品を、別の貯蔵室に移し変えることなく第二の収納区画から第一の収納区画に移すことができるため、手間を掛けずに高品位冷凍を行うことができる。
As described above, in the configuration of the present invention, the food can be transferred from the second storage compartment to the first storage compartment without being transferred to another storage room, so that high-quality freezing is performed without taking time and effort. be able to.
あるいは、本発明は、断熱区画された貯蔵室を備えた冷蔵庫本体と、前記貯蔵室の前面開口部を閉塞する扉と、電磁波発生装置とを備え、前記貯蔵室は少なくとも冷蔵温度帯に設定することのできる冷蔵室であって、前記冷蔵室内には冷蔵温度帯で維持される第一の収納区画と、前記冷蔵温度帯以下の温度領域を有する第二の収納区画とを有し、前記電磁波発生装置より発振された電磁波を第二の収納区画に導入する構成であってもよい。これにより、第二の収納区画において被冷却物の内外温度差を抑えながら冷却する高品位冷凍と解凍を実現することができるため、専用の貯蔵室を設ける必要が無く、収納性の低下を最小限に止めて、高品位の冷凍と解凍を実現することができる。
Or this invention is equipped with the refrigerator main body provided with the storage room divided by heat insulation, the door which obstruct | occludes the front opening part of the said storage room, and an electromagnetic wave generator, The said storage room is set to a refrigeration temperature range at least. A refrigerating room, wherein the refrigerating room has a first storage compartment maintained in a refrigeration temperature zone and a second storage compartment having a temperature region equal to or lower than the refrigeration temperature zone, and the electromagnetic wave The electromagnetic wave oscillated from the generator may be introduced into the second storage compartment. As a result, high-quality refrigeration and thawing can be realized in the second storage section while cooling while suppressing the temperature difference between the inside and outside of the object to be cooled. High-quality freezing and thawing can be realized with the limit.
前記構成の冷蔵庫においては、電磁波発生装置を、半導体素子を用いた電磁波発振器と電磁波増幅器からなるとしたものであり、マグネトロンなどに比べて電磁波発生装置の設置スペースを小さくすることができるため、さらに冷蔵庫の収納性を向上させることができる。
In the refrigerator having the above-described configuration, the electromagnetic wave generator is composed of an electromagnetic wave oscillator using a semiconductor element and an electromagnetic wave amplifier, and the installation space of the electromagnetic wave generator can be reduced as compared with a magnetron or the like. Storability can be improved.
また、半導体素子を用いた電磁波発振器は発生する電磁波の周波数を変動させることができるため、第二の収納区画内に導入された電磁波の反射特性を変動させることで、より均一に食品に電磁波を照射することができる。したがって、スタラーファンなどの電磁波攪拌器を取り付ける必要がないため、第二の収納区画の設置スペースが小さくなり、さらに冷蔵庫の収納性を向上させることができる。
In addition, since the electromagnetic wave oscillator using a semiconductor element can change the frequency of the generated electromagnetic wave, the electromagnetic wave is more evenly applied to food by changing the reflection characteristics of the electromagnetic wave introduced into the second storage compartment. Can be irradiated. Therefore, since it is not necessary to attach an electromagnetic stirrer such as a stirrer fan, the installation space of the second storage section is reduced, and the storage capacity of the refrigerator can be improved.
さらに、スタラーファンのスペースを削減することは、第二の収納区画の区画内容積の削減に繋がるため、冷却および電磁波の効率が良くなり、省エネ性を向上させることができる。また、周波数を変動させることができるため、食品に最適の周波数が選択可能となり、より効率良く照射でき、さらに省エネ性を向上させることができる。
Furthermore, reducing the space for the stirrer fan leads to a reduction in the internal volume of the second storage compartment, so that the efficiency of cooling and electromagnetic waves is improved and the energy saving performance can be improved. In addition, since the frequency can be varied, it is possible to select an optimum frequency for the food, so that the irradiation can be performed more efficiently, and the energy saving can be further improved.
前記構成の冷蔵庫においては、前記第二の収納区画に前記第一の収納区画と連通する通気口を備え、前記通気口は開閉機構を有するものであってよい。これにより、解凍時に第一の収納区画と開放することで素早く第二の収納区画内の温度が上昇するため、解凍時間が短縮でき、使用者の使い勝手を向上することができる。また、解凍時間の短縮は、省エネ性の向上にも寄与する。
In the refrigerator having the above-described configuration, the second storage section may include a vent communicating with the first storage section, and the vent may have an opening / closing mechanism. As a result, the temperature in the second storage compartment rises quickly by opening with the first storage compartment at the time of thawing, so that the thawing time can be shortened and user convenience can be improved. In addition, shortening the thawing time contributes to improving energy saving.
前記構成の冷蔵庫においては、前記冷蔵庫に複数の貯蔵室を備え、前記冷蔵室を前記複数の貯蔵室のうち冷蔵庫最上部に配置し、前記第二の収納区画を冷蔵室最下部に設けたものであってもよい。これにより、冷蔵庫中央部に第二の収納区画が位置することで、第二の収納区画の収納容器が操作し易くなり、収納食品が出し入れし易く、視認性が高くなるため、使用者の使い勝手を向上することができる。
In the refrigerator having the above-described configuration, the refrigerator includes a plurality of storage chambers, the refrigerator compartment is disposed at the top of the refrigerator among the plurality of storage chambers, and the second storage compartment is provided at the bottom of the refrigerator compartment. It may be. As a result, the second storage compartment is located in the central part of the refrigerator, so that the storage container of the second storage compartment is easy to operate, the stored food is easily taken in and out, and the visibility is improved. Can be improved.
前記構成の冷蔵庫においては、前記冷蔵庫に複数の貯蔵室を備え、前記冷蔵室を前記複数の貯蔵室のうち冷蔵庫最上部に配置し、前記第二の収納区画を冷蔵室最上部に設けたものであってもよい。これにより、通常手が届きにくい上部に保存食品を多く貯蔵できない第二の収納区画を設置することで、第二の収納区画の設置による冷蔵室の収納性低下の影響を実用上最小限に抑えることができる。
In the refrigerator having the above-described configuration, the refrigerator includes a plurality of storage chambers, the refrigerator compartment is disposed at the top of the refrigerator among the plurality of storage chambers, and the second storage section is provided at the top of the refrigerator compartment. It may be. As a result, the second storage compartment that cannot store a large amount of stored food is installed in the upper part, which is usually difficult to reach, so that the effect of deterioration of the storage capacity of the refrigerator compartment due to the installation of the second storage compartment is minimized to practical use. be able to.
前記構成の冷蔵庫においては、前記貯蔵室を冷却する冷却手段を備え、前記冷却手段は少なくとも圧縮機を有する冷凍サイクルであり、前記圧縮機を冷蔵庫本体の奥側上部に備えたものであってもよい。これにより、冷蔵庫下部機械室スペースが小さくなるので、冷蔵庫下部貯蔵室を奥行き方向に大きく取ることができる。それゆえ、同等の貯蔵室を有する冷蔵庫と比較して、最上部の冷蔵室間口を下に大きくすることができるため、さらに冷蔵室の収納性を向上することができる。
The refrigerator having the above configuration includes a cooling means for cooling the storage chamber, the cooling means is a refrigeration cycle having at least a compressor, and the compressor may be provided at the upper part on the back side of the refrigerator body. Good. Thereby, since a refrigerator lower machine room space becomes small, a refrigerator lower storage room can be taken large in the depth direction. Therefore, compared with a refrigerator having an equivalent storage room, the uppermost refrigerating room entrance can be enlarged downward, and the storage capacity of the refrigerating room can be further improved.
以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一または相当する要素には同一の参照符号を付して、その重複する説明を省略する。なお、以下の各実施の形態によって本発明は限定されるものではない。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description thereof is omitted. In addition, this invention is not limited by each following embodiment.
(実施の形態1)
図1は、本発明の実施の形態1に係る冷蔵庫100Aの正面図であり、図2は、図1に示す冷蔵庫100AのI-I線矢視方向の断面を示す側面断面図である。図3は、解凍時間と被冷凍物の温度変化との関係を示すグラフである。 (Embodiment 1)
FIG. 1 is a front view of arefrigerator 100A according to Embodiment 1 of the present invention, and FIG. 2 is a side sectional view showing a section of the refrigerator 100A shown in FIG. FIG. 3 is a graph showing the relationship between the thawing time and the temperature change of the object to be frozen.
図1は、本発明の実施の形態1に係る冷蔵庫100Aの正面図であり、図2は、図1に示す冷蔵庫100AのI-I線矢視方向の断面を示す側面断面図である。図3は、解凍時間と被冷凍物の温度変化との関係を示すグラフである。 (Embodiment 1)
FIG. 1 is a front view of a
図1および図2に示すように、冷蔵庫100Aの本体である断熱箱体101は、主に鋼板を用いた外箱102と、ABS等の樹脂で成型された内箱103と、外箱102と内箱103との間の空間に発泡充填される硬質発泡ウレタン等の発泡断熱材とで構成され、周囲と断熱され、仕切壁によって複数の貯蔵室に断熱区画されている。最上部に第一の貯蔵室としての冷蔵室104、その冷蔵室104の下部に第四の貯蔵室としての第二の冷凍室105と第五の貯蔵室としての製氷室106が横並びに設けられ、その第二の冷凍室105と製氷室106の下部に第二の貯蔵室としての第一の冷凍室107、そして最下部に第三の貯蔵室としての野菜室108が配置される構成となっている。
As shown in FIGS. 1 and 2, a heat insulating box 101 that is a main body of the refrigerator 100 </ b> A includes an outer box 102 mainly using a steel plate, an inner box 103 molded of a resin such as ABS, and an outer box 102. It is composed of a foam heat insulating material such as hard foamed urethane that is foam-filled in a space between the inner box 103, is insulated from the surroundings, and is partitioned into a plurality of storage chambers by partition walls. A refrigeration room 104 as a first storage room is provided at the top, and a second freezing room 105 as a fourth storage room and an ice making room 106 as a fifth storage room are provided side by side under the refrigeration room 104. The first freezing chamber 107 as the second storage chamber is disposed below the second freezing chamber 105 and the ice making chamber 106, and the vegetable chamber 108 as the third storage chamber is disposed at the bottom. ing.
冷蔵室104は冷蔵保存のために凍らない温度である冷蔵温度帯に設定されており、通常1℃~5℃とし、野菜室108は冷蔵室104と同等の冷蔵温度帯もしくは若干高い温度設定の野菜温度帯2℃~7℃としている。第一の冷凍室107は冷凍温度帯に設定されており、冷凍保存のために通常-22℃~-15℃で設定されているが、冷凍保存状態の向上のために、例えば-30℃または-25℃の低温で設定されることもある。
The refrigerated room 104 is set in a refrigerated temperature zone, which is a temperature that does not freeze for refrigerated storage. Usually, the temperature is set to 1 ° C. to 5 ° C. The vegetable temperature range is 2 ° C to 7 ° C. The first freezer compartment 107 is set in a freezing temperature zone and is usually set at −22 ° C. to −15 ° C. for frozen storage, but for improving the frozen storage state, for example, −30 ° C. or It may be set at a low temperature of -25 ° C.
第二の冷凍室105は、第一の冷凍室107と同等の冷凍温度帯または若干高い温度設定-20℃~-12℃の第一の収納区画である冷凍区画105aと、0℃以上の冷蔵温度を保つことができる第二の収納区画である解凍区画105bとを備える。第二の冷凍室105は製氷室106に並設された独立扉を備えた貯蔵室であり、引き出し式の扉を備えることが多い。なお、この第二の冷凍室105は冷凍区画105aおよび解凍区画105bに区画されているので、複数の貯蔵室のうちの区画貯蔵室に相当する。
The second freezer compartment 105 has a freezing temperature zone equivalent to that of the first freezer compartment 107 or a slightly higher temperature setting of −20 ° C. to −12 ° C. as a first storage compartment, and a freezing compartment 105a of 0 ° C. or higher. And a thawing section 105b which is a second storage section capable of maintaining the temperature. The second freezing room 105 is a storage room provided with an independent door arranged in parallel with the ice making room 106, and is often provided with a drawer type door. Since the second freezer compartment 105 is divided into a freezer compartment 105a and a thawing compartment 105b, it corresponds to a compartment storage room among a plurality of storage rooms.
製氷室106は、冷蔵室104内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、室内下部に配置した貯氷容器(図示せず)に貯蔵する。
The ice making chamber 106 creates ice with an automatic ice maker (not shown) provided in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerated room 104, and an ice storage container ( (Not shown).
断熱箱体101の天面部は冷蔵庫100Aの背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室101aを形成して、機械室101aに、圧縮機109、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機109を配設する機械室101aは、冷蔵室104内の最上部の後方領域に食い込んで形成されることになる。
The top surface portion of the heat insulating box 101 has a stepped recess shape toward the back side of the refrigerator 100A. A machine chamber 101a is formed in the stepped recess, and the compressor 109, The high-pressure side components of the refrigeration cycle such as a dryer (not shown) for removing moisture are accommodated. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.
このように、手が届きにくくデッドスペースとなっていた断熱箱体101の最上部の貯蔵室後方領域に機械室101aを設けて圧縮機109を配置することにより、従来の冷蔵庫で、使用者が使いやすい断熱箱体101の最下部にあった機械室101aのスペースを貯蔵室容量として有効に転化することができ、収納性または使い勝手を大きく改善することができる。
Thus, by providing the machine room 101a in the rear region of the uppermost storage room of the heat insulation box 101 that has become a dead space that is difficult to reach, the compressor 109 is disposed in the conventional refrigerator. The space of the machine room 101a located at the lowermost part of the heat-insulating box 101 that is easy to use can be effectively converted as the storage room capacity, and the storage property or usability can be greatly improved.
冷凍サイクルは、圧縮機109と凝縮器と減圧器であるキャピラリーと蒸発器である冷却器112とを順に備えた一連の冷媒流路から形成されており、冷媒として炭化水素系冷媒である例えばイソブタンが封入されている。
The refrigeration cycle is formed of a series of refrigerant flow paths sequentially including a compressor 109, a condenser, a capillary as a decompressor, and a cooler 112 as an evaporator, and is a hydrocarbon-based refrigerant such as isobutane. Is enclosed.
圧縮機109はピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機である。断熱箱体101に、三方弁または切替弁を用いる冷凍サイクルの場合は、それらの機能部品が機械室101a内に配設されている場合もある。
Compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder. In the case of a refrigeration cycle using a three-way valve or a switching valve for the heat insulation box 101, these functional parts may be disposed in the machine room 101a.
また、本実施の形態では冷凍サイクルを構成する減圧器をキャピラリーとしたが、パルスモーターで駆動する冷媒の流量を自由に制御できる電子膨張弁を用いてもよい。
In the present embodiment, the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.
なお、本実施の形態における、以下に述べる発明の要部に関する事項は、一般的な従来の冷蔵庫、具体的には、断熱箱体の最下部の貯蔵室後方領域に機械室を設けて圧縮機を配置するタイプのものに適用できることはいうまでもない。
In the present embodiment, the matters relating to the main part of the invention described below are a general conventional refrigerator, specifically, a compressor provided by providing a machine room in the rear region of the lowermost storage room of the heat insulation box. Needless to say, the present invention can be applied to a type in which the above is disposed.
第一の冷凍室107の背面には冷気を生成する冷却室110が設けられ、第二の冷凍室105および製氷室106、第一の冷凍室107と断熱区画するために構成された奥面仕切壁111が構成されている。冷却室110内には、冷却器112が配設されており、冷却器112の上部空間には強制対流方式により冷却器112で冷却した冷気を冷蔵室104、第二の冷凍室105、製氷室106、野菜室108、第一の冷凍室107に送風する冷却ファン113が配置される。
A cooling chamber 110 for generating cold air is provided on the back surface of the first freezing chamber 107, and a rear partition configured to be insulated from the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107. A wall 111 is formed. In the cooling chamber 110, a cooler 112 is disposed, and in the upper space of the cooler 112, the cold air cooled by the cooler 112 by a forced convection method is stored in the refrigerating chamber 104, the second freezing chamber 105, and the ice making chamber. 106, the vegetable compartment 108, and the cooling fan 113 which ventilates to the 1st freezer compartment 107 are arrange | positioned.
また、冷却器112の下部空間には冷却時に冷却器112およびその周辺に付着する霜または氷を除霜するためのガラス管製のラジアント加熱手段114が設けられ、さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン115、その最深部から庫外に貫通したドレンチューブ116が構成され、その下流側の庫外に蒸発皿117が構成されている。
Further, in the lower space of the cooler 112, there is provided a radiant heating means 114 made of glass tube for defrosting the cooler 112 and the frost or ice adhering to the periphery of the cooler 112 during cooling. A drain pan 115 for receiving the generated defrost water, a drain tube 116 penetrating from the deepest part to the outside of the cabinet are configured, and an evaporating dish 117 is configured outside of the downstream side.
第二の冷凍室105には、第二の冷凍室105の引き出し扉118に取り付けられたフレーム119に奥側収納容器120と、前側収納容器121が載置されており、それぞれ冷凍区画105aと解凍区画105bを形成する。前側収納容器121は引き出し扉118とフレーム119にネジ等により機械的に固定されている。
In the second freezer compartment 105, a back side storage container 120 and a front side storage container 121 are placed on a frame 119 attached to the drawer door 118 of the second freezer compartment 105, and the freezing compartment 105a and the thawing respectively. A partition 105b is formed. The front storage container 121 is mechanically fixed to the drawer door 118 and the frame 119 with screws or the like.
引き出し扉118が閉ざされた状態で前側収納容器121を略密閉するための前側収納容器用蓋体122が第二の冷凍室105上部の第一の仕切壁123保持されている。
The front storage container lid 122 for substantially sealing the front storage container 121 with the drawer door 118 closed is held by the first partition wall 123 above the second freezing chamber 105.
前側収納容器121は非磁性の鉄板を用いた内側収納容器121aと、断熱材を用いた外側収納容器121bとから構成され、内側収納容器121aは外側収納容器121bにちょうど収まる大きさである。内側収納容器121aは収納容器外側方向に略水平に伸びた上面フランジ121cを備え、外側収納容器121bの上面開口部に被さるように構成される。なお、外側収納容器121b前面部は、引き出し扉118により一体に形成しても良い。
The front storage container 121 is composed of an inner storage container 121a using a non-magnetic iron plate and an outer storage container 121b using a heat insulating material, and the inner storage container 121a is just large enough to fit in the outer storage container 121b. The inner storage container 121a includes an upper surface flange 121c extending substantially horizontally in the outer direction of the storage container, and is configured to cover the upper surface opening of the outer storage container 121b. Note that the front surface portion of the outer storage container 121b may be integrally formed by the drawer door 118.
前側収納容器用蓋体122は非磁の鉄板を用いたベース122aと枠体122bとから構成される。引き出し扉118が閉ざされた状態で前側収納容器用蓋体122と前側収納容器121の上面の左右辺、奥辺および前辺が略密接している。枠体122bはベース122aに溶着され、電気的かつ機械的に接合して前側収納容器用蓋体122のフランジ部を形成し、上面フランジ121cと電磁波を遮断するチョーク構造を形成する。
The front storage container lid 122 is composed of a base 122a using a non-magnetic iron plate and a frame 122b. With the drawer door 118 closed, the left and right sides, the back side, and the front side of the upper surface of the front storage container lid 122 and the front storage container 121 are in close contact with each other. The frame body 122b is welded to the base 122a, and is electrically and mechanically joined to form a flange portion of the front storage container lid body 122, thereby forming a choke structure that blocks electromagnetic waves from the upper surface flange 121c.
前側収納容器用蓋体122の底面中央部に電磁波を照射するアンテナ124が固着され、断熱箱体101の背面上方、望ましくは冷蔵室104の背面に、電磁波発生装置125が設置され、アンテナ124と電磁波発生装置125とを同軸ケーブル126が電気的に接続し、前側収納容器121内に電磁波を照射することができる。また、同じく前側収納容器用蓋体122の底面には温度検知手段127が配置され、制御手段128と電気的に接続されている。さらにこの制御手段128は、電磁波発生装置125とも電気的に接続されている。
An antenna 124 for radiating electromagnetic waves is fixed to the center of the bottom surface of the front storage container lid 122, and an electromagnetic wave generator 125 is installed above the rear surface of the heat insulating box 101, preferably on the rear surface of the refrigerator compartment 104. The coaxial cable 126 is electrically connected to the electromagnetic wave generator 125, and the electromagnetic wave can be irradiated into the front storage container 121. Similarly, a temperature detection unit 127 is disposed on the bottom surface of the front storage container lid 122 and is electrically connected to the control unit 128. Further, the control means 128 is also electrically connected to the electromagnetic wave generator 125.
なお、電磁波発生手段は様々な方式が考えられる。例えば、Si、GaAs、SiC、GaN等の半導体を用いたもの、あるいはマグネトロンを用いたものもある。また、電磁波発生装置125にマグネトロンを用いる場合は、アンテナ124ではなく、導波管を用いて前側収納容器121内に電磁波を給電しても良い。また、温度検知手段127には様々な方式が考えられるが、例えば、赤外線を検知できる赤外線センサ、または、温度による抵抗値の変化を利用したサーミスタ等を用いると良い。
In addition, various methods can be considered for electromagnetic wave generation means. For example, there are those using a semiconductor such as Si, GaAs, SiC, and GaN, and those using a magnetron. When a magnetron is used for the electromagnetic wave generator 125, the electromagnetic wave may be fed into the front storage container 121 using a waveguide instead of the antenna 124. Various methods are conceivable for the temperature detecting means 127. For example, an infrared sensor that can detect infrared rays, or a thermistor that utilizes a change in resistance value depending on temperature may be used.
また、前述した冷却ファン113または圧縮機109より構成される冷却システムは、制御手段128と電気的に接続されている。
In addition, the cooling system including the cooling fan 113 or the compressor 109 described above is electrically connected to the control means 128.
奥面仕切壁111と冷却室110との間に冷却ファン113により送出された冷気を各貯蔵室へ搬送する搬送風路129が構成されている。第二の冷凍室105背面の奥面仕切壁111上部は、搬送風路129の冷気を第二の冷凍室105に導入するための第二の冷凍室用吐出口111aを有する。第二の冷凍室用吐出口111aは搬送風路129の上方に形成され、冷却ファン113から送出された冷気を直接吐出する。
Between the rear partition wall 111 and the cooling chamber 110, a conveyance air passage 129 is configured to convey the cold air sent out by the cooling fan 113 to each storage chamber. The upper part of the rear partition wall 111 on the back surface of the second freezer compartment 105 has a second freezer compartment discharge port 111 a for introducing the cool air of the conveying air passage 129 into the second freezer compartment 105. The second freezer compartment discharge port 111 a is formed above the conveying air passage 129 and directly discharges the cold air sent from the cooling fan 113.
なお、本実施の形態において、以下に説明する発明の要部に関する事項は、一般的な従来の冷蔵庫、具体的には、扉に取り付けられたフレームと内箱に設けられたレールとにより開閉するタイプのものにも適用できることはいうまでもない。
In the present embodiment, matters relating to the main part of the invention described below are opened and closed by a general conventional refrigerator, specifically, a frame attached to a door and a rail provided in an inner box. Needless to say, it can be applied to types.
以上のように構成された本実施の形態の冷蔵庫100Aについて、以下その動作、作用を説明する。
The operation and action of the refrigerator 100A of the present embodiment configured as described above will be described below.
まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御手段128からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化し、さらに冷蔵庫100Aの本体である断熱箱体101の側面または背面、また断熱箱体101の前面間口に配設された冷媒配管(図示せず)等を経由し断熱箱体101の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。
First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by a signal from the control means 128 according to the set temperature in the refrigerator, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface or the rear surface of the heat insulating box body 101 which is the main body of the refrigerator 100A, or the heat insulating box body 101. The refrigerant is condensed and liquefied while preventing condensation of the heat insulating box 101 via a refrigerant pipe (not shown) disposed at the front face, and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
ここで、低温低圧の液冷媒は、冷却ファン113の動作により搬送風路129を通り各貯蔵室内の空気と熱交換され、冷却器112内の冷媒は蒸発気化する。このとき、冷却室110内で各貯蔵室を冷却するための冷気を生成する。低温の冷気は冷却ファン113から冷蔵室104、第二の冷凍室105、製氷室106、野菜室108、第一の冷凍室107に冷気を風路またはダンパを用いて分流させ、それぞれの目的温度帯に冷却する。
Here, the low-temperature and low-pressure liquid refrigerant passes through the conveyance air passage 129 by the operation of the cooling fan 113, and exchanges heat with the air in each storage chamber, and the refrigerant in the cooler 112 evaporates. At this time, cool air for cooling each storage chamber in the cooling chamber 110 is generated. The low temperature cold air is diverted from the cooling fan 113 to the refrigerator compartment 104, the second freezer compartment 105, the ice making compartment 106, the vegetable compartment 108, and the first freezer compartment 107 using an air passage or a damper. Cool to band.
このとき、解凍区画105bは、外側収納容器121bを隔てて第一の冷凍室107と冷凍区画105aと製氷室106と、第一の仕切壁123を隔てて冷蔵室104と、引き出し扉118および断熱箱体101を隔てて外気と接している。解凍区画105bの大きさおよび形状に合わせて外側収納容器121bの厚みを決定することで、解凍区画105bの温度を0℃以上の冷蔵温度となるように設計することができる。
At this time, the thawing compartment 105b is separated from the outer storage container 121b by the first freezing compartment 107, the freezing compartment 105a, the ice making compartment 106, and the first partition wall 123 is separated by the refrigerating compartment 104, the drawer door 118, and the heat insulation. The box 101 is in contact with the outside air. By determining the thickness of the outer storage container 121b according to the size and shape of the thawing section 105b, the temperature of the thawing section 105b can be designed to be a refrigeration temperature of 0 ° C. or higher.
温度検知手段127が解凍区画105bに冷凍食品が投入されたことを検知すると制御手段128により、解凍開始の信号が発信され、電磁波発生装置125が動作し解凍を開始する。なお、冷蔵庫100A前面に使用者が操作できる操作ボタンを設置し、手動により解凍を開始しても良い。
When the temperature detection means 127 detects that frozen food has been put into the thawing section 105b, the control means 128 sends a thawing start signal, and the electromagnetic wave generator 125 operates to start thawing. An operation button that can be operated by the user may be installed on the front surface of the refrigerator 100A, and thawing may be started manually.
何れの場合も、解凍機能を使用する場合、使用者は引き出し扉118を開け、奥側収納容器120に収容している冷凍食品を前側収納容器121へ移すだけでよく、複数の貯蔵室を開け食品を入れ替える必要がないため、使用の手間だけでなく、冷蔵庫100Aへの熱負荷も最小限に抑えることができる。
In any case, when using the thawing function, the user only needs to open the drawer door 118 and transfer the frozen food stored in the back storage container 120 to the front storage container 121, and open a plurality of storage rooms. Since it is not necessary to replace the food, not only the trouble of use but also the heat load on the refrigerator 100A can be minimized.
本実施の形態において、電磁波発生装置125の出力を20Wとし、解凍区画105bの温度を5℃として解凍を行った。その結果、解凍時間は50分要したが、解凍後の温度を23箇所測定した結果、温度ムラは約3℃しかなかった。一方、電子レンジ等を想定して電磁波の出力を300W程度に上げた場合では、解凍後の温度ムラは約20℃程度あった。一方、一般的な解凍方法として、冷蔵庫内で解凍する場合では解凍ムラは約3℃であったが、解凍に約20時間も要してしまう。
In this embodiment, thawing was performed with the output of the electromagnetic wave generator 125 set to 20 W and the temperature of the thawing section 105b set to 5 ° C. As a result, the thawing time required 50 minutes, but as a result of measuring the temperature after thawing at 23 locations, the temperature unevenness was only about 3 ° C. On the other hand, when the output of electromagnetic waves was increased to about 300 W assuming a microwave oven or the like, the temperature unevenness after thawing was about 20 ° C. On the other hand, as a general thawing method, when thawing in a refrigerator, the thawing unevenness was about 3 ° C., but thawing takes about 20 hours.
この結果、本実施の形態の冷凍装置は、解凍後の温度ムラを低減し、さらに解凍の時間を短縮することが可能となる。
As a result, the refrigeration apparatus of the present embodiment can reduce temperature unevenness after thawing and further shorten the thawing time.
本実施の形態では解凍に使用する電磁波の電力、つまり電磁波発生装置125の出力を20Wで行ったがこれに限るものではなく、解凍に使用する電力は100W以下、望ましくは50W以下が温度ムラを低減できるため、望ましい。
In this embodiment, the power of the electromagnetic wave used for thawing, that is, the output of the electromagnetic wave generator 125 is performed at 20 W. However, the present invention is not limited to this, and the power used for thawing is 100 W or less, preferably 50 W or less. This is desirable because it can be reduced.
さらに本実施の形態では温度ムラを低減できるので、冷凍食品を例えば-5℃~-10℃まで解凍して包丁等で必要な分だけカットし、残りを再凍結することが可能となる。
Furthermore, since the temperature unevenness can be reduced in this embodiment, the frozen food can be thawed to, for example, −5 ° C. to −10 ° C., cut with a knife or the like, and the rest can be frozen again.
一般的に一度冷凍した食品を解凍し、さらに冷凍すると細胞が壊れ品質が劣化すると言われている。これは、解凍時に最大氷結晶生成帯(-1℃~-5℃)を通過する際も氷結晶が成長し、細胞破壊を引き起こすからである。このため、解凍させてから凍結させる再凍結を行うにはこの最大氷結晶生成帯を通過する時間を短くする必要がある。
Generally, once frozen food is thawed and further frozen, cells are broken and quality is said to deteriorate. This is because ice crystals grow even when passing through the maximum ice crystal formation zone (-1 ° C to -5 ° C) during thawing, causing cell destruction. For this reason, it is necessary to shorten the time for passing through the maximum ice crystal formation zone in order to perform refreezing after thawing and freezing.
図3に、解凍時間と冷凍食品の温度変化を示す。冷凍食品の温度としては、中央部と右端、左端の三箇所を測定している。また、解凍に用いた電磁波発生装置125の出力は10Wとし、解凍区画105bの庫内温度を5℃とした。図3に示すように、包丁で小分けが可能な-10℃付近においても中央部と端部との温度差は2℃程度であり、最も高い温度でも-8℃であった。つまり、最大氷結晶生成帯を通過することなく解凍することが可能となるため、再凍結を実現することができる。解凍した冷凍食品が魚の切り身またはスライス肉である場合は、使用者は素手で必要な分量を分け取ることができるので、引き出し扉118を一度開けるだけで、解凍した食材を必要な分量だけ取り出し、残りを奥側収納容器120へ移すことで、手間なく不要分の再冷凍を行うことができる。
Fig. 3 shows the thawing time and the temperature change of frozen food. The temperature of frozen food is measured at the center, right end, and left end. The output of the electromagnetic wave generator 125 used for thawing was 10 W, and the internal temperature of the thawing section 105b was 5 ° C. As shown in FIG. 3, even in the vicinity of −10 ° C., which can be subdivided with a knife, the temperature difference between the central portion and the end portion is about 2 ° C., and the highest temperature is −8 ° C. That is, since it is possible to thaw without passing through the maximum ice crystal formation zone, refreezing can be realized. If the thawed frozen food is a fish fillet or sliced meat, the user can separate the necessary amount with bare hands, so just open the drawer door 118 once and take out the necessary amount of thawed food, By transferring the rest to the back storage container 120, unnecessary refreezing can be performed without trouble.
また、温度検知手段127が解凍終了を検知すると、自動的に制御手段128より解凍終了の信号を発信し、電磁波発生装置125の出力を停止することができるため、使用者は過熱の心配をする必要がない。なお、冷蔵庫100Aにブザー(または他の音声)あるいは光等による報知手段を設け、使用者に解凍終了を知らせることで、解凍後の取り出し忘れを防止することができる。
In addition, when the temperature detecting means 127 detects the end of thawing, the control means 128 can automatically transmit a thawing end signal and stop the output of the electromagnetic wave generator 125, so that the user is concerned about overheating. There is no need. Note that the refrigerator 100A is provided with a buzzer (or other sound) or light notification means to notify the user of the end of thawing, thereby preventing forgetting to take out after thawing.
万が一、解凍後の食品の取り出しを忘れた場合も、本実施の形態では、解凍区画105bは冷蔵温度帯であるため、解凍後の冷凍食品を放置しても食品が傷むのを抑制することができる。
Even if you forget to take out the food after thawing, in this embodiment, since the thawing section 105b is in the refrigerated temperature zone, it is possible to prevent the food from being damaged even if the frozen food after thawing is left unattended. it can.
また、本実施の形態において、第二の冷凍室105は引き出し扉118付近に0℃以上の冷蔵温度帯が存在するため、第二の冷凍室105全体が冷凍温度帯で構成された状態に比べ、引き出し扉118または断熱箱体101を介して行われる外気との熱交換量が小さくなる。したがって、解凍区画105bを設けることで冷蔵庫100Aの省エネ性を向上させることができる。また、解凍区画105bの冷蔵温度の維持は各種の加熱手段を利用せず実現することが可能であり、冷凍温度帯まで冷やすエネルギーも必要としないため、第二の冷凍室105全体が冷凍温度帯で構成された状態に比べて必要電力が小さくて済む。
In the present embodiment, since the second freezer compartment 105 has a refrigeration temperature zone of 0 ° C. or more near the drawer door 118, the second freezer compartment 105 as a whole is configured in the freezer temperature zone. The amount of heat exchange with the outside air performed through the drawer door 118 or the heat insulating box 101 is reduced. Therefore, the energy saving performance of the refrigerator 100A can be improved by providing the thawing section 105b. Further, maintaining the refrigeration temperature of the thawing section 105b can be realized without using various heating means, and energy for cooling to the freezing temperature zone is not required. The required power is smaller than that of the state constituted by.
電磁波発生装置125は電磁波を発生する際に発熱を伴うが、本実施の形態において、電磁波発生装置125は冷蔵室104の背面に設置されているため、隣接する庫内温度を最小に抑えることができるため、省エネ性を著しく低下させることはない。
Although the electromagnetic wave generator 125 generates heat when generating an electromagnetic wave, the electromagnetic wave generator 125 is installed on the back surface of the refrigerator compartment 104 in the present embodiment, so that the temperature in the adjacent cabinet can be minimized. Because it can, energy saving will not be significantly reduced.
なお、本実施の形態では電磁波発生装置125を断熱箱体101の背面に設置したが、断熱箱体101の外側、例えば、機械室101a内または断熱箱体101の天面に設置しても、同様の効果が得られる。また、電磁波発生装置125が低出力であり、表面温度上昇幅が小さい場合は、貯蔵室内に設置しても、省エネ性を著しく低下させることはない。
In the present embodiment, the electromagnetic wave generator 125 is installed on the back surface of the heat insulation box 101, but even if installed on the outside of the heat insulation box 101, for example, in the machine room 101a or on the top surface of the heat insulation box 101, Similar effects can be obtained. In addition, when the electromagnetic wave generator 125 has a low output and the surface temperature rise is small, even if it is installed in the storage room, the energy saving performance is not significantly reduced.
以上のように、本実施の形態においては、第二の冷凍室105内に冷凍温度帯で維持される冷凍区画105aと、冷蔵温度帯に維持される解凍区画105bとを有することにより、引き出し扉118を一度開け、冷凍区画105aから解凍区画105bへ冷凍食品を移動させるだけで、冷凍庫内において解凍を行うことができるため、使用者の手間を最小限に抑えることができる。再冷凍を行う際も、同様にして同一貯蔵室内で食品を移動させるだけで実現することができる。また、目的食品以外にも冷凍食品が第二の冷凍室105内に保存されていた場合も、同一貯蔵室内に冷凍区画105aが存在するため、貯蔵室から取り出す必要がなく、使い勝手が格段に向上する。
As described above, in the present embodiment, the drawer door is provided in the second freezer compartment 105 by having the freezing compartment 105a maintained in the freezing temperature zone and the thawing compartment 105b maintained in the refrigeration temperature zone. Since the frozen food can be thawed in the freezer simply by opening 118 and moving the frozen food from the frozen compartment 105a to the thaw compartment 105b, the user's effort can be minimized. Similarly, when re-frozen, it can be realized simply by moving food in the same storage room. In addition to the target food, when frozen food is stored in the second freezer compartment 105, the freezer compartment 105a exists in the same storage room, so there is no need to remove it from the storage room, and the usability is greatly improved. To do.
また、解凍区画105bの冷蔵温度帯の維持には各種の加熱手段を必要とせず、冷凍温度帯まで冷やすエネルギーも必要としないため、省エネ性が向上する。さらに、解凍区画105bは冷蔵温度帯であるため、第二の冷凍室105の手前に配置することで、外気との熱交換を抑制することができ、省エネ性が向上する。
In addition, various heating means are not required for maintaining the refrigeration temperature zone of the thawing section 105b, and energy for cooling to the freezing temperature zone is not required, so that energy saving is improved. Furthermore, since the thawing section 105b is in a refrigerated temperature zone, heat exchange with the outside air can be suppressed by arranging it in front of the second freezer compartment 105, and energy saving is improved.
また、電磁波発生装置125を備え解凍区画105b内の食品に電磁波を照射することにより、解凍後の温度ムラを低減し、さらに解凍の時間を短縮することが可能となるため、さらに使用者の使い勝手を向上することができる。
Further, by irradiating the food in the thawing section 105b with the electromagnetic wave generator 125, it becomes possible to reduce temperature unevenness after thawing and further shorten the thawing time. Can be improved.
また、温度ムラを小さくすることができることにより、再冷凍が可能な-10℃付近までの解凍を行うことができるため、必要な分量だけ取り分け残りを再冷凍できる。使用者は予め小分けして冷凍する等の手間を必要としないので、使い勝手が向上する。
In addition, since the temperature unevenness can be reduced, thawing can be performed up to about −10 ° C. where re-freezing is possible, so that the necessary amount can be re-frozen. Since the user does not need the trouble of subdividing and freezing in advance, the usability is improved.
(実施の形態2)
図4は、本発明の実施の形態2に係る冷蔵庫100Bの側面断面図であり、図5は、図4に示す冷蔵庫100Bにおける第二の冷凍室205の引き出し扉118およびフレーム119、並びに、奥側収納容器220および前側収納容器221の組立斜視図である。 (Embodiment 2)
FIG. 4 is a side cross-sectional view ofrefrigerator 100B according to Embodiment 2 of the present invention. FIG. 5 is a drawing of door 118 and frame 119 of second freezer compartment 205 in refrigerator 100B shown in FIG. 4 is an assembled perspective view of a side storage container 220 and a front storage container 221. FIG.
図4は、本発明の実施の形態2に係る冷蔵庫100Bの側面断面図であり、図5は、図4に示す冷蔵庫100Bにおける第二の冷凍室205の引き出し扉118およびフレーム119、並びに、奥側収納容器220および前側収納容器221の組立斜視図である。 (Embodiment 2)
FIG. 4 is a side cross-sectional view of
なお、実施の形態1と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、実施の形態1の構成に本実施の形態を組み合わせて実施することで不具合がない限り組み合わせて適用することが可能である。
In addition, although description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 1, and the same technical idea, unless there is a malfunction by combining this Embodiment with the structure of Embodiment 1, and implementing it. It is possible to apply in combination.
本実施の形態において、第二の冷凍室205は、第一の冷凍室107と同等の冷凍温度帯または若干高い温度設定-20℃~-12℃の第一の収納区画である冷凍区画205aと、-10℃~-5℃の冷凍温度を保つことができる第二の収納区画である調理区画205bとを備える。なお、この第二の冷凍室205は冷凍区画205aおよび調理区画205bに区画されているので、複数の貯蔵室のうちの区画貯蔵室に相当する。
In the present embodiment, the second freezer compartment 205 has a freezing temperature zone equivalent to that of the first freezer compartment 107 or a slightly higher temperature setting of −20 ° C. to −12 ° C. as a freezing compartment 205a. And a cooking section 205b which is a second storage section capable of maintaining a freezing temperature of −10 ° C. to −5 ° C. In addition, since this 2nd freezer compartment 205 is divided into the freezing compartment 205a and the cooking compartment 205b, it is corresponded to the division storage room among several storage rooms.
図4および図5に示すように、第二の冷凍室205には、第二の冷凍室205の引き出し扉118に取り付けられたフレーム119に奥側収納容器220と、前側収納容器221が載置されており、それぞれ冷凍区画205aと調理区画205bを形成する。前側収納容器221は引き出し扉118とフレーム119にネジ等により機械的に固定されている。
As shown in FIGS. 4 and 5, in the second freezer compartment 205, a back storage container 220 and a front storage container 221 are placed on a frame 119 attached to the drawer door 118 of the second freezer compartment 205. The freezing compartment 205a and the cooking compartment 205b are formed respectively. The front storage container 221 is mechanically fixed to the drawer door 118 and the frame 119 with screws or the like.
奥側収納容器220はポリプロピレン等の樹脂により形成され、手前側の面にスリット220aを有する。奥面の高さは背面に備えられた第二の冷凍室用吐出口111aよりも低くなるよう形成されている。
The back side storage container 220 is formed of a resin such as polypropylene, and has a slit 220a on the front surface. The depth of the back surface is formed to be lower than the second freezer compartment discharge port 111a provided on the back surface.
前側収納容器221は非磁性の鉄板により形成され、収納容器外側方向に略水平に伸びた上面フランジ221cを備え、前側収納容器用蓋体122のフランジ部と電磁波を遮断するチョーク構造を形成する。
The front storage container 221 is formed of a nonmagnetic iron plate, and includes an upper surface flange 221c extending substantially horizontally in the outer direction of the storage container, and forms a choke structure that blocks electromagnetic waves from the flange portion of the front storage container lid 122.
以上のように構成された本実施の形態の冷蔵庫100Bについて、以下その動作、作用を説明する。
About the refrigerator 100B of this Embodiment comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
第二の冷凍室用吐出口111aより吐出された冷気は奥側収納容器220内に流れ、冷凍区画205aを冷却する。その後、奥側収納容器220前面に開けられたスリット220aを通り、前側収納容器221にぶつかる。前側収納容器221は鉄板部品で構成されているため、容器全体が冷却され、調理区画205bを冷却することができる。しかし、冷気は直接、調理区画205bには導入されず、引き出し扉118を介して外気と熱交換が行われることから、調理区画205b内は、冷凍区画205aよりも高い温度、例えば、-10℃~-7℃程度の温度を維持することができる。調理区画205bの温度は、第二の冷凍室用吐出口111aから吐出される冷気の風量または温度、前側収納容器221の大きさまたは形、スリット220aの大きさ、あるいは、第二の冷凍室用吐出口111aと前側収納容器221との距離等を調整することにより、任意の温度に設計することができる。
Cold air discharged from the second freezer compartment discharge port 111a flows into the back storage container 220, and cools the freezing compartment 205a. After that, it passes through the slit 220 a opened on the front surface of the back side storage container 220 and hits the front side storage container 221. Since the front storage container 221 is composed of iron plate parts, the entire container can be cooled and the cooking section 205b can be cooled. However, since the cold air is not directly introduced into the cooking compartment 205b and heat is exchanged with the outside air via the drawer door 118, the cooking compartment 205b has a temperature higher than that of the freezing compartment 205a, for example, −10 ° C. A temperature of about -7 ° C can be maintained. The temperature of the cooking section 205b is the air volume or temperature of the cold air discharged from the second freezer compartment outlet 111a, the size or shape of the front storage container 221, the size of the slit 220a, or the second freezer compartment By adjusting the distance between the discharge port 111a and the front storage container 221, the temperature can be designed to an arbitrary value.
本実施の形態において、電磁波発生装置125の出力を3Wとし、調理区画205bの温度を-10℃として調理を行った。前側収納容器221に、比較的高温である約15℃程度の食品を収納するとする。調理区画205b内は-7℃であるため、収納された食品は周囲から熱を奪われ、徐々に温度が低下していく。この食品の温度は、温度検知手段127によって検知され、5℃まで低下したところで、制御手段128から電磁波発生装置125に信号が送られ、電磁波を発生させる。この電磁波の周波数は2.54GHzである。この電磁波は、電気的に接続された同軸ケーブル126によりアンテナ124に送られ、アンテナ124から食品に対して照射される。このとき、食品に印加される電力は約3Wであり、雰囲気が食品を冷却するエネルギーよりも十分に小さく、電磁波を照射することで食品が温度上昇することはない。なお、電磁波の周波数を2.54GHzであるとしたが、本実施の形態での効果はこの周波数に限定されるものではなく、例えば、300MHz以上3THz以下であれば良い。
In this embodiment, cooking was performed with the output of the electromagnetic wave generator 125 set to 3 W and the temperature of the cooking section 205 b set to −10 ° C. It is assumed that food at about 15 ° C., which is a relatively high temperature, is stored in the front storage container 221. Since the inside of the cooking section 205b is −7 ° C., the stored food is deprived of heat from the surroundings, and the temperature gradually decreases. The temperature of the food is detected by the temperature detecting means 127, and when it is lowered to 5 ° C., a signal is sent from the control means 128 to the electromagnetic wave generator 125 to generate an electromagnetic wave. The frequency of this electromagnetic wave is 2.54 GHz. This electromagnetic wave is sent to the antenna 124 by the coaxial cable 126 that is electrically connected, and is irradiated to the food from the antenna 124. At this time, the electric power applied to the food is about 3 W, the atmosphere is sufficiently smaller than the energy for cooling the food, and the temperature of the food does not rise by irradiating electromagnetic waves. In addition, although the frequency of electromagnetic waves was 2.54 GHz, the effect in this Embodiment is not limited to this frequency, For example, what is necessary is just 300 MHz or more and 3 THz or less.
ここで、食品は、ジュースまたはヨーグルト等の内部に水分を含んだ食品であるとする。電磁波を加熱しない場合は、食品は、その表面から中心部に向かって徐々に凍結していくことになる。一方、電磁波を照射した食品は、水の凍結点である0℃を過ぎても凍結しない過冷却状態となる。ここで、過冷却状態とは、凍結点以下の温度に冷却された時に、熱力学的に安定な結晶が現れずに、不安定な液体状態で保持されている状態を言う。
Here, it is assumed that the food is a food containing moisture inside the juice or yogurt. When the electromagnetic wave is not heated, the food gradually freezes from the surface toward the center. On the other hand, foods irradiated with electromagnetic waves are in a supercooled state in which they are not frozen even after the freezing point of water of 0 ° C. Here, the supercooled state refers to a state in which, when cooled to a temperature below the freezing point, thermodynamically stable crystals do not appear and are held in an unstable liquid state.
過冷却状態になった食品が、ある一定の温度、例えば-6℃になったことを温度検知手段127が検知すると、制御手段128からの信号により、電磁波発生装置125の運転を止めたり、あるいは、出力を可変させたりする。このようにして、食品に対して、外部からある種の外乱を加えると過冷却状態が解除される。過冷却空間のどこか1箇所で過冷却が解除された場合には、その影響はほとんど瞬間的に過冷却空間全体に伝播するため、進行速度の極めて速い凍結が食品内部で生じる。その結果、最大氷結晶生成帯(-1~-5℃)を急速に通過することができ、高品位な冷凍を実現することができる。この作用は、通常の急速凍結手法(極低温冷気利用等)で得られる冷凍品質と同様の結果を得るものであり、急速凍結を実質的に実現したものであると言える。その結果、食品全体が小さい氷結晶のまま凍結するため、ジュースまたはヨーグルトを滑らかな口当たりのシャーベットに加工する等、微細な氷結晶ならではの調理を行うことができる。
When the temperature detection means 127 detects that the supercooled food has reached a certain temperature, for example, −6 ° C., the operation of the electromagnetic wave generator 125 is stopped by a signal from the control means 128, or , Make the output variable. In this way, when a certain kind of external disturbance is applied to the food, the supercooled state is released. When the supercooling is released at any one place in the supercooling space, the effect is almost instantaneously propagated to the entire supercooling space, so that freezing with a very fast traveling speed occurs inside the food. As a result, the maximum ice crystal formation zone (−1 to −5 ° C.) can be rapidly passed, and high-quality refrigeration can be realized. This action obtains the same result as the refrigeration quality obtained by a normal quick freezing method (utilization of cryogenic cold air etc.), and it can be said that the quick freezing is substantially realized. As a result, since the whole food is frozen with small ice crystals, it is possible to perform cooking unique to fine ice crystals, such as processing juice or yogurt into a smooth mouth sherbet.
なお、冷蔵庫100Bにブザーまたは光等による報知手段を設け、使用者に過冷却終了を知らせ、使用者が食品を冷凍区画205aへ移すことで、過冷却解除後の食品をより低い温度にて急速に冷凍を行うことができる。その結果、過冷却解除直後の氷結晶が未凍結部分の水によって成長するのを抑制することができるため、さらに氷結晶の小さい高品位な凍結を実現することができる。本実施の形態では、調理区画205bと冷凍区画205aが同一貯蔵室内に存在するため、冷凍区画205aへの移動の手間も最小限で抑えることができるので、少ない手間で高品位の冷凍を実現することができる。さらに、-20℃で保存することで、より長期間安全に保存することが可能となる。
Note that the refrigerator 100B is provided with a buzzer or light notification means to notify the user of the end of supercooling, and the user moves the food to the freezing compartment 205a so that the food after the supercooling release can be rapidly performed at a lower temperature. Freezing can be performed. As a result, it is possible to suppress the ice crystals immediately after the release of the supercooling from growing due to the water in the unfrozen portion, so that it is possible to realize high-quality freezing with smaller ice crystals. In the present embodiment, since the cooking section 205b and the freezing section 205a are present in the same storage room, it is possible to minimize the time and effort required to move to the freezing section 205a, thereby realizing high-quality refrigeration with a small amount of work. be able to. Furthermore, storage at −20 ° C. enables safe storage for a longer period.
また、過冷却状態を維持するためには、電磁波の照射に加えて、調理区画205b内部を比較的温度変化の少ない安定状態に維持する必要があり、前側収納容器221と前側収納容器用蓋体122が金属で構成されていることは、温度分布のばらつきを抑制し、運転中の温度変化幅を少なくすることに寄与している。
In order to maintain the supercooled state, in addition to the electromagnetic wave irradiation, the inside of the cooking section 205b needs to be maintained in a stable state with relatively little temperature change. The front storage container 221 and the front storage container lid The fact that 122 is made of metal contributes to suppressing variation in temperature distribution and reducing the temperature change width during operation.
上記過冷却工程を用いた凍結方法は、新メニューに限るものではなく、通常の冷凍の代わりに用いても、食品を高品質に保持する上で大変有効である。電磁波を印加し約-6℃まで過冷却状態を保持したマグロと、電磁波印加せず-2.2℃で凍結したマグロを急速冷凍させた後、-20℃雰囲気下で3日間凍結保存し、約1.5℃の冷蔵庫で1日かけて解凍した。そのときのドリップ量を測定したところ、電磁波を印加せず過冷却が発現しなかったものは、約1.43gのドリップ量であったのに対し、電磁波を印加し、過冷却を経て凍結させたものは、約0.26gのドリップ量であり、大幅にドリップ量を抑えることが可能になったことが確かめられた。
The freezing method using the above-described supercooling process is not limited to the new menu, and even if used in place of normal freezing, it is very effective in maintaining high quality food. Tuna that has been supercooled to about −6 ° C. by applying electromagnetic waves and tuna frozen at −2.2 ° C. without applying electromagnetic waves are quickly frozen and stored frozen at −20 ° C. for 3 days. Thawed in a refrigerator at about 1.5 ° C. over 1 day. When the amount of drip was measured at that time, the electromagnetic wave was not applied and the supercooling did not appear, but the drip amount was about 1.43 g, whereas the electromagnetic wave was applied and frozen through the supercooling. The amount of drip was about 0.26 g, and it was confirmed that the amount of drip could be greatly suppressed.
また、調理区画205bの庫内温度は-10℃~-5℃であることから、実施の形態1と同様にして再冷凍可能な解凍を行うことができる。
Further, since the internal temperature of the cooking section 205b is −10 ° C. to −5 ° C., re-freezing that can be re-frozen can be performed in the same manner as in the first embodiment.
以上のように、本実施の形態においては、第二の冷凍室205内に冷凍温度帯で維持される冷凍区画205aと、-10℃~-5度の温度帯に維持される調理区画205bとを有することにより、従来の冷凍室にはできない高品位な冷凍を可能にすることで、新メニューまたは品質劣化の少ない冷凍食品を提供することができる。また、冷凍区画205aと調理区画205bとは同一貯蔵室内にあるため、同一貯蔵室内で食品を移動させるという最小限の手間で、さらに冷凍品質を向上させることができると同時に、長期間安全に保存することが可能となるため、使用者の使い勝手を格段に向上させることができる。
As described above, in the present embodiment, the freezing compartment 205a maintained in the freezing temperature zone in the second freezer compartment 205, and the cooking compartment 205b maintained in the temperature zone of −10 ° C. to −5 ° C. By having a high-quality freezing that cannot be achieved by a conventional freezer, it is possible to provide a new menu or a frozen food with little quality deterioration. In addition, since the freezing compartment 205a and the cooking compartment 205b are in the same storage room, the frozen quality can be further improved with the minimum effort of moving food in the same storage room, and at the same time stored safely for a long time. This makes it possible to significantly improve the user-friendliness.
(実施の形態3)
図6は、本発明の実施の形態3に係る冷蔵庫100Cの側面断面図である。 (Embodiment 3)
FIG. 6 is a side cross-sectional view ofrefrigerator 100C according to Embodiment 3 of the present invention.
図6は、本発明の実施の形態3に係る冷蔵庫100Cの側面断面図である。 (Embodiment 3)
FIG. 6 is a side cross-sectional view of
なお、実施の形態1と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、実施の形態1の構成に本実施の形態を組み合わせて実施することで不具合がない限り組み合わせて適用することが可能である。
In addition, although description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 1, and the same technical idea, unless there is a malfunction by combining this Embodiment with the structure of Embodiment 1, and implementing it. It is possible to apply in combination.
本実施の形態において、冷蔵庫100Cにおける第一の冷凍室307は冷凍温度帯に設定されており、冷凍保存のために通常-22℃~-15℃で設定されているが、冷凍保存状態の向上のために、例えば-30℃または-25℃の低温で設定されることもある第一の収納区画である冷凍区画307aと、0℃以上の冷蔵温度に維持され40℃以上の温度に昇温可能な第二の収納区画である調理区画307bとを備える。なお、この第一の冷凍室307は冷凍区画307aおよび調理区画307bに区画されているので、複数の貯蔵室のうちの区画貯蔵室に相当する。
In the present embodiment, the first freezer compartment 307 in the refrigerator 100C is set in a freezing temperature zone, and is usually set at −22 ° C. to −15 ° C. for frozen storage, but the frozen storage state is improved. For example, a freezing compartment 307a, which is a first storage compartment that may be set at a low temperature of, for example, −30 ° C. or −25 ° C., and maintained at a refrigeration temperature of 0 ° C. or higher and raised to a temperature of 40 ° C. or higher. And a cooking section 307b which is a possible second storage section. In addition, since this 1st freezer compartment 307 is divided into the freezing division 307a and the cooking division 307b, it is corresponded to the division storage chamber of several storage chambers.
調理区画307bは、図6に示すように、第一の冷凍室307の天面を形成する第二の仕切り壁323の奥側に備えられた、前面開口部を有する収納箱321により、冷凍区画307aと区画されている。収納箱321は、非磁性の鉄板を用いた内側収納箱321aと、断熱材を用いた外側収納箱321bとから構成されている。なお、外側収納箱321bは第二の仕切壁323と一体により形成しても良い。
As shown in FIG. 6, the cooking compartment 307 b is provided with a storage compartment 321 having a front opening provided on the back side of the second partition wall 323 that forms the top surface of the first freezer compartment 307. 307a. The storage box 321 includes an inner storage box 321a using a non-magnetic iron plate and an outer storage box 321b using a heat insulating material. The outer storage box 321b may be formed integrally with the second partition wall 323.
調理区画307bは、引き出しケース322を備える。引き出しケース322はポリスチレン等の樹脂により形成された収容ケース322aと、非磁性の鉄板により形成されたケース扉322bにより構成される。ケース扉322bは、ちょうど内側収納箱321a内に収まる形状をしており、ケース扉322bのフランジ部と内側収納箱321aとにより電磁波を遮断するチョーク構造を構成する。
The cooking section 307b includes a drawer case 322. The drawer case 322 includes a housing case 322a formed of a resin such as polystyrene and a case door 322b formed of a nonmagnetic iron plate. The case door 322b has a shape that fits in the inner storage box 321a, and the flange portion of the case door 322b and the inner storage box 321a constitute a choke structure that blocks electromagnetic waves.
内側収納箱321aの内側天面には、電磁波を照射するアンテナ124が固着され、アンテナ124は同軸ケーブル126を介して電磁波発生装置125と電気的に接続しており、調理区画307bに電磁波を照射することができる。また、内側収納箱321aの内側天面には温度検知手段127が配置され、制御手段128と電気的に接続されている。
An antenna 124 for irradiating electromagnetic waves is fixed to the inner top surface of the inner storage box 321a. The antenna 124 is electrically connected to the electromagnetic wave generator 125 via a coaxial cable 126, and irradiates the cooking section 307b with electromagnetic waves. can do. Further, a temperature detecting means 127 is disposed on the inner top surface of the inner storage box 321a and is electrically connected to the control means 128.
内側収納箱321aの外側底面には、加熱手段330が固着され、内側収納箱321aを加熱することで、調理区画307bの庫内温度を調節することができる。加熱手段330は、制御手段128と電気的に接続している。
The heating means 330 is fixed to the outer bottom surface of the inner storage box 321a, and the inside temperature of the cooking section 307b can be adjusted by heating the inner storage box 321a. The heating unit 330 is electrically connected to the control unit 128.
第一の冷凍室307には、第一の冷凍室307の引き出し扉318に取り付けられたフレーム(図示せず)に載置された下段収納容器331と、下段収納容器331に載置された上段収納容器332が配置されている。
The first freezer compartment 307 includes a lower storage container 331 placed on a frame (not shown) attached to the drawer door 318 of the first freezer compartment 307 and an upper stage placed on the lower storage container 331. A storage container 332 is disposed.
引き出し扉318が閉ざされた状態で上段収納容器332は引き出しケース322と略密接しており、引き出しケース322が確実に収納箱321に収まるようにアシストする。また、引き出し扉318が開かれた状態で、取り出された引き出しケース322は上段収納容器332に載置することが可能な形状である。
When the drawer door 318 is closed, the upper storage container 332 is substantially in close contact with the drawer case 322, and assists the drawer case 322 to be surely stored in the storage box 321. Further, the drawer case 322 taken out is in a shape that can be placed on the upper storage container 332 in a state where the drawer door 318 is opened.
冷蔵庫100Cの前面には、使用者が内部の温度、冷蔵庫100Cの各種機能等を設定するボタンと、その設定内容を表示する表示部からなる操作部333を有する。なお、本実施の形態では、操作部333は冷蔵庫100C前面に設置したが、断熱箱体101の上部前面または冷蔵室104の内壁に設置することも可能である。
On the front surface of the refrigerator 100C, there is an operation unit 333 including a button for the user to set the internal temperature, various functions of the refrigerator 100C, and the like, and a display unit for displaying the setting contents. Although the operation unit 333 is installed on the front surface of the refrigerator 100C in the present embodiment, it can be installed on the upper front surface of the heat insulating box 101 or the inner wall of the refrigerator compartment 104.
以上のように構成された本実施の形態の冷蔵庫100Cについて、以下その動作、作用を説明する。
The operation and action of the refrigerator 100C of the present embodiment configured as described above will be described below.
調理区画307bは断熱材を用いた外側収納箱321bにより囲まれているため、実施の形態1の解凍区画105bと同様にして庫内温度を0℃以上に保つことが可能であり、加熱手段330を備えるため、熱交換だけでは得られない外気温以上の温度に昇温することも可能である。加熱手段330を通電する際は冷凍区画307aへ吐出する冷気の温度を下げるか風量を上げるなどして、冷凍区画307aの温度が上昇しないように工夫する必要がある。
Since cooking section 307b is surrounded by outer storage box 321b using a heat insulating material, the internal temperature can be kept at 0 ° C. or higher in the same manner as thawing section 105b of the first embodiment, and heating means 330 Therefore, it is possible to raise the temperature to a temperature equal to or higher than the outside air temperature, which cannot be obtained only by heat exchange. When the heating means 330 is energized, it is necessary to devise so as not to raise the temperature of the freezing compartment 307a by lowering the temperature of the cool air discharged to the freezing compartment 307a or increasing the air volume.
使用者が冷凍食品を引き出しケース322に載置し、操作部333を操作し解凍を開始した場合、電磁波発生装置125のみが作動し解凍を行う。このとき、実施の形態1と同様にして、高品質の解凍を行うことができる。
When the user places the frozen food on the drawer case 322 and operates the operation unit 333 to start thawing, only the electromagnetic wave generator 125 operates to perform thawing. At this time, high-quality thawing can be performed as in the first embodiment.
さらに本実施の形態では、加熱手段330を設けて、調理区画307bを加熱することで、効率よく解凍を行うことができる。加熱手段330によって第一の冷凍室307内の温度を10℃に上げることで、解凍時間を30分に低減することが可能となった。また、解凍後の温度ムラも3℃以下に抑えることが可能となった。
Furthermore, in the present embodiment, the heating means 330 is provided and the cooking section 307b is heated, so that the thawing can be performed efficiently. By raising the temperature in the first freezer compartment 307 to 10 ° C. by the heating means 330, the thawing time can be reduced to 30 minutes. In addition, temperature unevenness after thawing can be suppressed to 3 ° C. or less.
高い電力で解凍すると、冷凍食品温度はムラになりやすいが低い電力でゆっくり解凍すると、電磁波の集中等が抑制され、温度ムラのない高品位な解凍を実現することが可能となる。また、低い電力では解凍に時間を要する恐れがあるが、加熱手段330によって電磁波発生装置125と一緒に動作させることによって、効率よい解凍を実現でき、解凍時間を低減することが可能となる。
When thawed with high power, the frozen food temperature tends to be uneven, but when thawed slowly with low power, concentration of electromagnetic waves, etc. is suppressed, and high-quality thawing without temperature unevenness can be realized. Moreover, although it may take time for thawing at low power, efficient thawing can be realized and the thawing time can be reduced by operating together with the electromagnetic wave generator 125 by the heating means 330.
使用者が食品を引き出しケース322に載置し、操作部333により加熱調理を開始した場合、電磁波発生装置125および加熱手段330を作動し、食品の加熱を行う。このとき、電磁波は食品の内部から加熱する作用があるため、加熱手段330と併用することで、食品の内外から加熱できるため、高速に内外温度差の小さな高品質加熱を行うことができる。また、食品が冷凍温度の場合は、解凍を行った後に加熱を行うことで、より高品質の加熱を行うことができる。
When the user places the food on the drawer case 322 and starts cooking by the operation unit 333, the electromagnetic wave generator 125 and the heating means 330 are operated to heat the food. At this time, since the electromagnetic wave has an action of heating from the inside of the food, it can be heated from the inside and outside of the food by using it together with the heating means 330, so that high-quality heating with a small temperature difference between the inside and outside can be performed at high speed. In addition, when the food is at a freezing temperature, higher quality heating can be performed by heating after thawing.
加熱調理終了後は、電磁波発生装置125を停止し、加熱手段330のみにより庫内を一定温度に保つことで、食品の保温が可能である。なお、温度検知手段127が加熱終了を検知すると、操作部333よりブザーまたは光により使用者への報知を行うことも可能である。
After the cooking is finished, the electromagnetic wave generator 125 is stopped and the inside of the cabinet is kept at a constant temperature only by the heating means 330, so that the food can be kept warm. When the temperature detection unit 127 detects the end of heating, the operation unit 333 can notify the user with a buzzer or light.
万が一、解凍または加熱調理終了後、食品の取出しが行われなかった場合も、本実施の形態において、調理区画307bは冷蔵温度に維持することが可能であるため、一定時間経過後に加熱手段330を停止することで、食品を傷めることなく保存することが可能である。
Even if the food is not taken out after thawing or cooking, in the present embodiment, the cooking section 307b can be maintained at the refrigerated temperature. By stopping, it is possible to preserve the food without damaging it.
また、冷蔵温度帯から40℃以上の加熱温度帯まで変化させることが可能であるため、例えば、牛乳からヨーグルトを作り、そのまま冷蔵温度まで冷やすことが可能となるため、加熱調理後に冷蔵保存したいもの、あるいは、冷やして食べると美味しいものを手間なく仕上げることができる。
In addition, since it is possible to change from a refrigerated temperature zone to a heating temperature zone of 40 ° C or higher, for example, yogurt can be made from milk and cooled as it is to the refrigerated temperature. Or you can finish it deliciously if you eat it cold.
本実施の形態では、上記の操作がすべて第一の冷凍室307の一部でできる。そのため、冷凍食品を加熱調理したい場合、貯蔵室内で食品を移動させるだけで、温かい状態で食卓に並べることができる。また、温かいものの一部だけを食べ、残りを冷凍保存したい場合も、調理区画307bから冷凍区画307aに移すだけでよく、使用者の手間を最小限に抑えることができる。
In this embodiment, all the above operations can be performed in a part of the first freezer compartment 307. Therefore, when it is desired to heat and cook frozen food, it can be arranged on the table in a warm state simply by moving the food in the storage room. In addition, when only a part of the warm food is eaten and the rest is stored frozen, it is only necessary to move from the cooking section 307b to the freezing section 307a, thereby minimizing the user's effort.
また、冷凍区画307aは調理区画307b内の温度に関係なく冷凍温度を保つことができるため、調理区画307b内で熱い食品の粗熱を取り除くことができる。このとき、調理区画307bは冷蔵温度を維持することができるため、室温に放置するよりも所要時間を小さくすることができる。また、冷蔵庫100Cに投入し忘れることもなく、食品が傷むのを防止することができる。さらに粗熱をとった後に冷凍保存したい場合も、冷凍区画307aに移すだけなので、特別な手間を必要としない。必要ならば、温度検知手段127により粗熱取り完了を検知し、操作部333によって報知することも可能である。
Also, since the freezing section 307a can maintain the freezing temperature regardless of the temperature in the cooking section 307b, the rough heat of the hot food can be removed in the cooking section 307b. At this time, since the cooking section 307b can maintain the refrigeration temperature, the required time can be made shorter than leaving it at room temperature. Moreover, it is possible to prevent the food from being damaged without forgetting to put it into the refrigerator 100C. Furthermore, when it is desired to store frozen after taking rough heat, it is only transferred to the freezing compartment 307a, so that no special labor is required. If necessary, it is possible to detect the completion of rough heat removal by the temperature detection means 127 and notify the operation unit 333 of the completion.
また、調理区画307bは第一の冷凍室307の一部であり、貯蔵室全体を調理室とするときに比べて昇温に必要とするエネルギーが小さくて済む。
Moreover, the cooking section 307b is a part of the first freezer compartment 307, and it requires less energy to raise the temperature than when the entire storage compartment is used as the cooking compartment.
以上のように、本実施の形態においては、第一の冷凍室307内に冷凍温度帯で維持される冷凍区画307aと、0℃以上の冷蔵温度帯に維持され、40℃以上の温度に昇温可能な調理区画307bとを有することにより、使用者が面倒な操作をせず、食品を高品質で解凍および加熱することができ、またそれを保温、冷蔵保存、または冷凍保存する際の使用者の手間も最小限に抑えることができる。
As described above, in the present embodiment, the freezing compartment 307a maintained in the freezing temperature zone in the first freezer compartment 307 and the refrigeration temperature zone of 0 ° C or higher are increased to a temperature of 40 ° C or higher. By having the cooking section 307b capable of heating, the user can thaw and heat the food with high quality without troublesome operations, and use it for keeping it warm, refrigerated or frozen. Can be minimized.
また、貯蔵室の一部のみを昇温することが可能であるため、昇温に必要なエネルギーも小さく抑えることができる。
Also, since it is possible to raise the temperature of only a part of the storage room, the energy required for raising the temperature can be kept small.
(実施の形態4)
図7は、本発明の実施の形態4に係る冷蔵庫100Dの側面断面図であり、図8は、図7に示す冷蔵庫100Dが備える金属箱体334の構成例を示す要部断面図である。また、図9は、金属箱体334の組立状態の一例を示す側面図であり、図10は、金属箱体334の組立状態の他の例を示す側面図である。 (Embodiment 4)
FIG. 7 is a side cross-sectional view of arefrigerator 100D according to Embodiment 4 of the present invention, and FIG. 8 is a main-part cross-sectional view illustrating a configuration example of a metal box 334 included in the refrigerator 100D illustrated in FIG. 9 is a side view showing an example of the assembled state of the metal box 334, and FIG. 10 is a side view showing another example of the assembled state of the metal box 334.
図7は、本発明の実施の形態4に係る冷蔵庫100Dの側面断面図であり、図8は、図7に示す冷蔵庫100Dが備える金属箱体334の構成例を示す要部断面図である。また、図9は、金属箱体334の組立状態の一例を示す側面図であり、図10は、金属箱体334の組立状態の他の例を示す側面図である。 (Embodiment 4)
FIG. 7 is a side cross-sectional view of a
図7および図8に示すように、第二の冷凍室105内部には、金属箱体334が設けられている。この金属箱体334の手前側開口部には、引き出し扉118に設けられた金属箱体用蓋体335により閉塞され、金属箱体334内の空間を略密閉に保っている。このとき、金属箱体用蓋体335は少なくともその内側が金属で構成され、その結果、金属箱体334内の空間は、電磁的にも密閉の空間として成立している。
7 and 8, a metal box 334 is provided inside the second freezer compartment 105. The opening on the near side of the metal box 334 is closed by a metal box lid 335 provided on the drawer door 118 to keep the space inside the metal box 334 substantially sealed. At this time, at least the inside of the metal box cover 335 is made of metal, and as a result, the space in the metal box 334 is formed as an electromagnetically sealed space.
金属箱体334内には、解凍用ケース336が配置され、被解凍物337が載置される。また、金属箱体334の天面手前側にはアンテナ124と、温度検知手段127が設けられている。このアンテナ124よりも後方で、金属箱体334の前後方向略中央部には、電波伝送抑制部338がある。この電波伝送抑制部338は、概ね金属箱体334の全周に亘って設けられており、金属箱体334の内壁面からの距離Lは、アンテナ124から照射される電磁波の波長の1/4に設定されている。また、電波伝送抑制部338はアンテナ124よりも後方に位置し、被解凍物337は、アンテナ124の直下近傍、つまり、電波伝送抑制部338よりも前方に載置されることになる。以降、説明の簡略化のため、電波伝送抑制部338よりも前方を領域a、後方を領域bと呼ぶこととする。
In the metal box 334, a thawing case 336 is disposed, and an object to be thawed 337 is placed. In addition, an antenna 124 and a temperature detection unit 127 are provided on the front side of the metal box 334. There is a radio wave transmission suppressing unit 338 at the rear and center of the metal box 334 and at a substantially central portion in the front-rear direction. The radio wave transmission suppressing unit 338 is provided over the entire circumference of the metal box 334, and the distance L from the inner wall surface of the metal box 334 is ¼ of the wavelength of the electromagnetic wave emitted from the antenna 124. Is set to In addition, the radio wave transmission suppressing unit 338 is located behind the antenna 124, and the to-be-thawed object 337 is placed near the antenna 124, that is, in front of the radio wave transmission suppressing unit 338. Hereinafter, for simplification of description, the front side and the rear side of the radio wave transmission suppressing unit 338 are referred to as a region a and b, respectively.
以上のように構成された冷蔵庫100Dについて、以下その動作、作用を説明する。
About the refrigerator 100D comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
まず、冷蔵庫100Dの運転により、第二の冷凍室105内部は冷凍雰囲気下、例えば-18℃に温度調整されているとする。
First, it is assumed that the temperature of the inside of the second freezer compartment 105 is adjusted to, for example, −18 ° C. in a frozen atmosphere by the operation of the refrigerator 100D.
使用者が被解凍物337を解凍用ケース336内に入れ、引き出し扉118を閉め、何らかの操作、例えば冷蔵庫100Dの前面に設けられた解凍ボタンの押下等を行うと、アンテナ124から電磁波が照射され、被解凍物337の解凍が開始される。
When the user puts the object to be thawed 337 into the thawing case 336, closes the drawer door 118, and performs some operation such as pressing the thawing button provided on the front surface of the refrigerator 100D, electromagnetic waves are emitted from the antenna 124. The thawing of the material 337 to be thawed is started.
このとき、アンテナ124から放射される電磁は領域a(図8の斜線のハッチング領域)を通過し、一部は電波伝送抑制部338内に入り、一部は領域b(図8の点線のハッチング領域)に到達する。電波伝送抑制部338内に入った電磁波は、終端で反射し、反射した電磁波の一部がさらに領域bに入る。このとき、電波伝送抑制部338の高さは、アンテナ124から放射される電磁波波長の1/4に設定されているため、位相が180℃ずれる。したがって、アンテナ124から領域b内に直接放射される電磁波と、電波伝送抑制部338から反射して領域bに入る電磁波は逆相となり、打ち消しあう。よって、実質的に領域b内には電磁波が照射されないことになる。
At this time, the electromagnetic waves radiated from the antenna 124 pass through the region a (hatched hatched region in FIG. 8), a part thereof enters the radio wave transmission suppressing unit 338, and a part thereof is the region b (dotted hatching in FIG. Reach area). The electromagnetic wave that has entered the radio wave transmission suppressing unit 338 is reflected at the end, and a part of the reflected electromagnetic wave further enters the region b. At this time, since the height of the radio wave transmission suppressing unit 338 is set to ¼ of the wavelength of the electromagnetic wave radiated from the antenna 124, the phase is shifted by 180 ° C. Therefore, the electromagnetic wave directly radiated from the antenna 124 into the region b and the electromagnetic wave reflected from the radio wave transmission suppressing unit 338 and entering the region b are in opposite phases and cancel each other. Therefore, the electromagnetic wave is not substantially irradiated in the region b.
その後、温度検知手段127が、解凍終了温度として決められている温度に被解凍物337が到達したことを検知すると、解凍を自動的に終了させ、ブザーまたは光等の手段で使用者に報知する。
After that, when the temperature detecting means 127 detects that the material to be thawed 337 has reached the temperature determined as the thawing end temperature, the thawing is automatically terminated and notified to the user by means such as a buzzer or light. .
以上のような作用により、解凍中に領域aに置かれた被解凍物337は昇温、解凍されるが、領域bに置かれた他の冷凍保存食品は昇温することがない。これにより、解凍時にすでに保存されている冷凍保存食品を取り出したりする手間を省き、解凍用ケース336内の後方に少し寄せるだけで解凍領域を確保することができ、使い勝手の良い解凍機能を実現させることができる。
Due to the above-described action, the object to be thawed 337 placed in the region a during thawing is heated and thawed, but other frozen preserved foods placed in the region b are not heated. As a result, it is possible to save the trouble of taking out the frozen preserved food already stored at the time of thawing, and to secure a thawing area by simply moving it to the back in the thawing case 336, thereby realizing an easy-to-use thawing function. be able to.
また、電波伝送抑制部338を金属箱体334の略中央部に設けたことにより、領域aと領域bのそれぞれを適度な大きさで確保し、例えば市販されているパック入りの肉等を問題なく解凍することができるものである。
Further, by providing the radio wave transmission suppressing portion 338 at the substantially central portion of the metal box 334, each of the region a and the region b is ensured in an appropriate size, for example, a commercially available packed meat or the like is a problem. It can be thawed without any problems.
金属箱体334の具体的な構成は特に限定されない。例えば、図9に示すように、金属箱体334は、電波伝送抑制部338の部分で前後に2分割された、金属箱体前方部334aと、金属箱体後方部334bにて構成される。この金属箱体前方部334aと金属箱体後方部334bは、スポット溶接またはカシメ等の手段で一体に組み立てられる。あるいは、図10に示すように、金属箱体334は、上下に2分割された金属箱体上方部334cと、金属箱体下方部334dにて構成される。この金属箱体上方部334cと金属箱体下方部334dは、スポット溶接またはカシメ等の手段で一体に組み立てられる。もちろん金属箱体334の構成は、図9または図10に示す構成に限定されず、他の構成であってもよい。
The specific configuration of the metal box 334 is not particularly limited. For example, as shown in FIG. 9, the metal box 334 includes a metal box front part 334 a and a metal box rear part 334 b that are divided into two parts at the front and rear at the radio wave transmission suppressing part 338. The metal box front part 334a and the metal box rear part 334b are integrally assembled by means such as spot welding or caulking. Or as shown in FIG. 10, the metal box 334 is comprised by the metal box upper part 334c and the metal box lower part 334d which were divided | segmented into the upper and lower sides. The metal box upper part 334c and the metal box lower part 334d are integrally assembled by means such as spot welding or caulking. Of course, the configuration of the metal box 334 is not limited to the configuration shown in FIG. 9 or 10 and may be other configurations.
(実施の形態5)
図11は、本発明の実施の形態7に係る冷蔵庫100Eの正面図であり、図12は、図11中のB-B断面を示す側面断面図である。 (Embodiment 5)
FIG. 11 is a front view of arefrigerator 100E according to Embodiment 7 of the present invention, and FIG. 12 is a side cross-sectional view showing a BB cross section in FIG.
図11は、本発明の実施の形態7に係る冷蔵庫100Eの正面図であり、図12は、図11中のB-B断面を示す側面断面図である。 (Embodiment 5)
FIG. 11 is a front view of a
冷蔵庫100Eの基本的な構成は、前記実施の形態1の冷蔵庫100Aと同様であるので、その説明は省略するが、図11に示す冷蔵庫100Eでは、各貯蔵室のうち冷蔵室104に回転式の冷蔵室扉104aが設けられ、第二の冷凍室105、製氷室106、第一の冷凍室107、野菜室108には、それぞれレール(図示せず)等で構成された引き出し扉105c、106a、107a、および108aが設けられている。
Since the basic configuration of the refrigerator 100E is the same as that of the refrigerator 100A of the first embodiment, the description thereof will be omitted. In the refrigerator 100E shown in FIG. The refrigerator door 104a is provided, and the second freezing room 105, the ice making room 106, the first freezing room 107, and the vegetable room 108 are respectively provided with drawer doors 105c, 106a, which are configured by rails (not shown), etc. 107a and 108a are provided.
また、引出し扉が設けられたそれぞれの貯蔵室には、レール(図示せず)等に載置された各貯蔵室用ケースが設けられている。具体的には、第二の冷凍室105には冷凍室ケース105dが、製氷室106には貯氷ケース106bが、第一の冷凍室107には冷凍室上段ケース107bおよび冷凍室下段ケース107cが、野菜室108には野菜室上段ケース108bおよび野菜室下段ケース108cが配置されている。
Each storage room provided with a drawer door is provided with a case for each storage room placed on a rail (not shown) or the like. Specifically, the second freezer compartment 105 has a freezer compartment case 105d, the ice making chamber 106 has an ice storage case 106b, the first freezer compartment 107 has a freezer compartment upper case 107b and a freezer compartment lower case 107c, In the vegetable compartment 108, a vegetable compartment upper case 108b and a vegetable compartment lower case 108c are arranged.
冷蔵室104は冷蔵保存のために凍らない温度である冷蔵温度帯、通常1℃~5℃に設定される第一の収納区画104bと、冷蔵温度帯より低い温度帯として例えば凍結温度より低い約-10℃の凍結温度に設定することのできる第二の収納区画104cとを備える。なお、この冷蔵室104は第一の収納区画104bおよび第二の収納区画104cに区画されているので、複数の貯蔵室のうちの区画貯蔵室に相当する。
The refrigerator compartment 104 is a refrigerated temperature zone that is a temperature that does not freeze for refrigerated storage, usually a first storage compartment 104b that is set to 1 ° C. to 5 ° C. And a second storage section 104c that can be set to a freezing temperature of −10 ° C. In addition, since this refrigerator compartment 104 is divided into the 1st storage compartment 104b and the 2nd storage compartment 104c, it is corresponded to the division storage chamber of several storage chambers.
第二の収納区画104cは、冷蔵室104内の最下段に設けられた庫内断熱箱体131にて構成され、被冷却物133を冷凍、解凍、保存する空間として設けられている。庫内断熱箱体131は前面開口部とそれを閉塞する断熱扉134が設けられており、パッキン135によって断熱扉134と庫内断熱箱体131の間を空気的に遮断し、第二の収納区画104cを密閉状態に保っている。
The second storage section 104c is composed of an insulative heat insulating box 131 provided at the lowest level in the refrigerator compartment 104, and is provided as a space for freezing, thawing and storing the object to be cooled 133. The inside heat insulating box 131 is provided with a front opening and a heat insulating door 134 that closes the front opening, and the packing 135 air-blocks the space between the heat insulating door 134 and the inside heat insulating box 131, and the second storage. The compartment 104c is kept sealed.
なお、庫内断熱箱体131の底面は、冷蔵室104と第一の冷凍室107および製氷室106とを断熱する第一の仕切壁123と、庫内断熱箱体131の背面は、冷蔵室背面部材136と、庫内断熱箱体131の左面は断熱箱体101左面と一体に構成してもよい。なお、野菜室108、第一の冷凍室107、第二の冷凍室105、製氷室106の構成は前記実施の形態1で説明した通りである。
In addition, the bottom face of the internal heat insulation box 131 is the first partition wall 123 that insulates the refrigerator compartment 104 from the first freezer compartment 107 and the ice making chamber 106, and the rear face of the internal heat insulation box 131 is the refrigerator compartment. The left surface of the back member 136 and the inside heat insulating box 131 may be configured integrally with the left surface of the heat insulating box 101. The configurations of the vegetable compartment 108, the first freezing compartment 107, the second freezing compartment 105, and the ice making compartment 106 are as described in the first embodiment.
冷蔵室背面部材136と断熱箱体101との間には、冷却ファン113により送出された冷気を冷蔵室104へ搬送する搬送風路137が構成されている。庫内断熱箱体131の背面上部には、搬送風路137の冷気を第二の収納区画104cに導入するための第二の収納区画104c用の吐出口131aが設けられ、庫内断熱箱体131の天面奥部には、第一の収納区画104bより冷気を導入する通気口131bが設けられている。吐出口131aおよび通気口131bはダンパ132によって開閉自在に構成されている。庫内断熱箱体131の背面下部には、第二の収納区画104cを冷却した冷気が吸い込まれる吸込口131cが設けられている。吸い込まれた冷気は、再び冷却器112で熱交換され、冷たい冷気となって循環を繰り返す。これによって第二の収納区画104cの冷却が行われる。
Between the refrigerator compartment back member 136 and the heat insulation box 101, a conveyance air passage 137 for conveying the cold air sent out by the cooling fan 113 to the refrigerator compartment 104 is formed. A discharge port 131a for the second storage compartment 104c for introducing the cool air of the conveyance air passage 137 into the second storage compartment 104c is provided at the upper rear surface of the internal heat insulation box 131, and the internal heat insulation box body is provided. A vent 131b for introducing cool air from the first storage section 104b is provided in the top surface of 131. The discharge port 131a and the vent port 131b are configured to be freely opened and closed by a damper 132. A suction port 131c through which cool air that has cooled the second storage section 104c is sucked is provided at the lower back of the interior heat insulation box 131. The sucked cold air is heat-exchanged again by the cooler 112 to become cold cold air and repeat circulation. As a result, the second storage section 104c is cooled.
なお、本実施の形態において、ダンパ132は開口部を選択することができるシングルダンパとしたがダンパ132をツインダンパとし、吐出口131aと通気口131bとの開閉を別々に制御できるようにすることで、第二の収納区画104cの温度をより繊細に制御することができる。
In this embodiment, the damper 132 is a single damper that can select an opening, but the damper 132 is a twin damper so that the opening and closing of the discharge port 131a and the vent port 131b can be controlled separately. Thus, the temperature of the second storage section 104c can be controlled more delicately.
また、冷凍サイクルには様々な方式が考えられる。例えば、圧縮機を用いる蒸気圧縮式冷凍システム、吸収式冷凍システム、ペルチェ式冷凍システム、あるいはそれらの組み合わせ等を用いることができる。
Also, various methods can be considered for the refrigeration cycle. For example, a vapor compression refrigeration system using a compressor, an absorption refrigeration system, a Peltier refrigeration system, or a combination thereof can be used.
庫内断熱箱体131で構成される第二の収納区画104cの内部には、さらに内部箱体138が配置されている。この内部箱体138は、断熱扉134に面する壁に開放状態である(開口部である)開放部138aを有しており、かつ、他面は略閉塞されるよう形成されている。一方、断熱扉134には内部箱体用蓋体139が取り付けられている。この内部箱体用蓋体139は、断熱扉134が閉状態では、内部箱体138の開放部138aにその一部が入り込み、内部箱体138を略密閉し、独立収納区画140を形成している。本実施の形態では、内部箱体138と内部箱体用蓋体139とは、ステンレス、アルミニウムまたはその合金、鋼板等の金属材で構成されている。したがって、独立収納区画140の内壁面は金属で覆われていることになる。なお、内部箱体138と内部箱体用蓋体139とは必ずしもその全てを金属で構成する必要はなく、例えば独立収納区画140の内壁面だけでも良い。具体的な方法としては、内壁に金属板を貼り付けたり、蒸着工法等で金属皮膜を形成したりしても良い。
An internal box 138 is further arranged inside the second storage section 104c configured by the internal heat insulating box 131. The inner box 138 has an open portion 138a that is open (is an open portion) on the wall facing the heat insulating door 134, and the other surface is formed to be substantially closed. On the other hand, an inner box lid 139 is attached to the heat insulating door 134. When the heat insulating door 134 is closed, a part of the inner box lid 139 enters the open portion 138a of the inner box 138 to substantially seal the inner box 138, thereby forming the independent storage section 140. Yes. In the present embodiment, inner box 138 and inner box lid 139 are made of a metal material such as stainless steel, aluminum, an alloy thereof, or a steel plate. Therefore, the inner wall surface of the independent storage section 140 is covered with metal. The inner box 138 and the inner box lid 139 are not necessarily all made of metal, and may be only the inner wall surface of the independent storage section 140, for example. As a specific method, a metal plate may be attached to the inner wall, or a metal film may be formed by a vapor deposition method or the like.
第二の収納区画104c内の内部箱体138内には、被冷却物133を載置して収納する引き出しケース141が設けられており、断熱扉134を開くことにより引き出しケース141を手前方向に引き出し、被冷却物133の出し入れを可能にしている。なお、断熱扉134の開放動作としては様々なものが考えられ、断熱扉134の上下辺のいずれかを軸にして回転させても良く、また、断熱扉134の左右辺を軸にして回転させても良い。さらには、スライドレール等を用いて断熱扉134を手前方向に水平移動させても良い。また、引き出しケース141は、断熱扉134の動作に連動してもしなくてもどちらでも良く、本実施の形態における効果に変わりはない。
In the inner box 138 in the second storage section 104c, a drawer case 141 for placing and storing the object to be cooled 133 is provided. By opening the heat insulating door 134, the drawer case 141 is moved forward. The drawer and the object to be cooled 133 can be taken in and out. Various opening operations of the heat insulating door 134 are conceivable, and the heat insulating door 134 may be rotated about either the upper or lower side of the heat insulating door 134, or may be rotated about the left or right side of the heat insulating door 134. May be. Further, the heat insulating door 134 may be horizontally moved in the forward direction using a slide rail or the like. Further, the drawer case 141 may or may not be interlocked with the operation of the heat insulating door 134, and the effect in the present embodiment is not changed.
内部箱体138の天面にはアンテナ124が配置され、電磁波発生装置125および同軸ケーブル等により電気的に接続されている。また、同じく内部箱体138の天面には温度検知手段127が配置され、制御手段128と電気的に接続されている。さらにこの制御手段128は、電磁波発生装置125とも電気的に接続されている。電磁波発生装置125は、半導体素子を用いて構成された電磁波波発振器(図示せず)と、電磁波発振器の出力信号を増幅する、半導体素子を用いて構成された電磁波増幅器(図示せず)とで構成される。電磁波増幅器の半導体素子には、GaN材料を利用した電界効果トランジスタが用いられる。
The antenna 124 is disposed on the top surface of the inner box 138 and is electrically connected by an electromagnetic wave generator 125 and a coaxial cable. Similarly, a temperature detection unit 127 is disposed on the top surface of the inner box 138 and is electrically connected to the control unit 128. Further, the control means 128 is also electrically connected to the electromagnetic wave generator 125. The electromagnetic wave generator 125 includes an electromagnetic wave oscillator (not shown) configured using a semiconductor element, and an electromagnetic wave amplifier (not shown) configured using a semiconductor element that amplifies an output signal of the electromagnetic wave oscillator. Composed. A field effect transistor using a GaN material is used for a semiconductor element of an electromagnetic wave amplifier.
なお、電磁波増幅器はGaN材料の他に、Si、GaAs、SiC等その他の半導体素子を用いてもよい。また、アンテナ124、温度検知手段127は、必ずしも内部箱体138の天面にある必要はなく、背面、側面、または底面にあっても良い。また、温度検知手段127には様々な方式が考えられるが、例えば、赤外線を検知できる赤外線センサ、あるいは、温度による抵抗値の変化を利用したサーミスタ等を用いると良い。
The electromagnetic wave amplifier may use other semiconductor elements such as Si, GaAs and SiC in addition to the GaN material. Further, the antenna 124 and the temperature detecting means 127 are not necessarily provided on the top surface of the inner box 138, and may be provided on the back surface, the side surface, or the bottom surface. Various methods can be considered for the temperature detection means 127. For example, an infrared sensor that can detect infrared rays, or a thermistor that utilizes a change in resistance value due to temperature may be used.
また、前述した圧縮機109、冷却ファン113、ラジアント加熱手段114、ダンパ132は、制御手段128と電気的に接続されている。
Further, the compressor 109, the cooling fan 113, the radiant heating means 114, and the damper 132 described above are electrically connected to the control means 128.
以上のように構成された本実施の形態の冷蔵庫100Eについて、以下その動作、作用を説明する。
About the refrigerator 100E of this Embodiment comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御手段128からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化し、さらに冷蔵庫100Eの本体である断熱箱体101の側面または背面、あるいは断熱箱体101の前面間口に配設された冷媒配管(図示せず)等を経由し断熱箱体101の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。
First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by a signal from the control means 128 according to the set temperature in the refrigerator, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface or the rear surface of the heat insulation box 101 which is the main body of the refrigerator 100E, or the heat insulation box body 101. The refrigerant is condensed and liquefied while preventing condensation of the heat insulating box 101 via a refrigerant pipe (not shown) disposed at the front face, and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
ここで、低温低圧の液冷媒は、冷却ファン113の動作により各貯蔵室内の空気と熱交換され、冷却器112内の冷媒は蒸発気化する。このとき、冷却室110内で各貯蔵室を冷却するための冷気を生成する。低温の冷気は冷却ファン113から冷蔵室104、第二の冷凍室105、製氷室106、第一の冷凍室107、野菜室108に冷気を風路またはダンパ132を用いて分流させ、それぞれの目的温度帯に冷却する。
Here, the low-temperature and low-pressure liquid refrigerant exchanges heat with the air in each storage chamber by the operation of the cooling fan 113, and the refrigerant in the cooler 112 evaporates. At this time, cool air for cooling each storage chamber in the cooling chamber 110 is generated. The low temperature cold air is diverted from the cooling fan 113 to the refrigerator compartment 104, the second freezer compartment 105, the ice making compartment 106, the first freezer compartment 107, and the vegetable compartment 108 using an air passage or a damper 132, and the respective purposes. Cool to temperature range.
次に、第二の収納区画104cにおいて、冷凍および保存を行う際の冷却について説明する。冷却室110内に配置された冷却器112は、冷凍サイクルによって、-40℃~-20℃程度に冷却される。これによって冷却室110内の空気が冷却され、冷却ファン113によって吐出口131aを通り第二の収納区画104c内に送出される。このとき、ダンパ132は第二の収納区画104c内を設定温度に保つように吐出口131aを開閉し、第二の収納区画104cに送出される冷気の量を調節する。
Next, cooling when performing freezing and storage in the second storage section 104c will be described. The cooler 112 disposed in the cooling chamber 110 is cooled to about −40 ° C. to −20 ° C. by the refrigeration cycle. As a result, the air in the cooling chamber 110 is cooled and sent out by the cooling fan 113 through the discharge port 131a into the second storage section 104c. At this time, the damper 132 opens and closes the discharge port 131a so as to keep the inside of the second storage section 104c at a set temperature, and adjusts the amount of cool air sent to the second storage section 104c.
吐出口131aの下流側には内部箱体138が配置されており、吐出口131aから第二の収納区画104c内に送出された冷気は、内部箱体138に当接し、内部箱体138自体を冷却する。前述したように、内部箱体138は金属で構成されたり、少なくともその一部に金属が用いられたりしているため、その良好な熱伝導性により内部箱体138全体をすばやく、かつ、均一に冷却することが可能である。このとき、断熱扉134に取り付けられた内部箱体用蓋体139も内部箱体138と同一の金属で構成されているため、熱伝導性が良く、すばやく均一に冷却されることになる。したがって、内部箱体138と内部箱体用蓋体139に囲まれた独立収納区画140内は、温度分布のばらつきを最小限に抑えて均一に冷却されることとなる。また、金属製の内部箱体138に積極的に冷気を当接させることにより、当該内部箱体138を急速に冷却し、それによって、独立収納区画140内に収納された被冷却物133を急速に冷凍することが可能となる。
An internal box 138 is disposed on the downstream side of the discharge port 131a, and the cool air sent from the discharge port 131a into the second storage section 104c abuts on the internal box 138, and the internal box 138 itself is Cooling. As described above, the inner box 138 is made of metal, or at least part of the inner box 138 is made of metal. Therefore, due to its good thermal conductivity, the entire inner box 138 is quickly and uniformly made. It is possible to cool. At this time, since the inner box cover 139 attached to the heat insulating door 134 is also made of the same metal as the inner box 138, it has good thermal conductivity and is quickly and uniformly cooled. Therefore, the inside of the independent storage section 140 surrounded by the inner box 138 and the inner box lid 139 is uniformly cooled while minimizing variations in temperature distribution. Further, by actively bringing cold air into contact with the metal inner box body 138, the inner box body 138 is rapidly cooled, whereby the object to be cooled 133 stored in the independent storage section 140 is rapidly cooled. It becomes possible to freeze it.
第二の収納区画104c内を循環し、内部箱体138を冷却した冷気は、吸込口131cから冷却室110に帰還し、冷却器112によって再び冷却される。
The cold air that circulates in the second storage section 104c and cools the internal box 138 returns to the cooling chamber 110 from the suction port 131c and is cooled again by the cooler 112.
内部箱体138の天面に取り付けられた温度検知手段127は、独立収納区画140内部の空気温度、引き出しケース141、または、被冷却物133の温度を検知することができる。この温度情報は、電気的に接続された制御手段128に電気信号として送られ、制御手段128は、事前に設定された温度になるよう、冷却ファン113または冷凍サイクルを適切に制御する。具体的には、冷却ファン113または冷凍サイクルの運転間隔を可変させたりできる。
The temperature detection means 127 attached to the top surface of the inner box 138 can detect the temperature of the air inside the independent storage section 140, the temperature of the drawer case 141, or the object 133 to be cooled. This temperature information is sent as an electrical signal to the electrically connected control means 128, and the control means 128 appropriately controls the cooling fan 113 or the refrigeration cycle so as to reach a preset temperature. Specifically, the operation interval of the cooling fan 113 or the refrigeration cycle can be varied.
なお、冷凍サイクルに蒸気圧縮式冷凍システムを用いる場合には、圧縮機109の回転数を制御して、冷却器112の温度自体を可変させることも可能である。
In the case where a vapor compression refrigeration system is used in the refrigeration cycle, the temperature of the cooler 112 can be varied by controlling the number of revolutions of the compressor 109.
また、本実施の形態では、第二の収納区画104cの設定温度を、約-10℃とし、解凍の手間削減と長期保存を両立させることができる。なお、通常の冷凍温度である-20℃程度にすることで、より長期の保存を安心して行うことができる等、温度帯により使い勝手が異なるため、この温度帯に限るものではない。
Further, in the present embodiment, the set temperature of the second storage section 104c is set to about −10 ° C., and it is possible to achieve both reduction in the time and labor for thawing and long-term storage. It should be noted that the convenience of use differs depending on the temperature range, such as that the normal freezing temperature is set to about −20 ° C., so that long-term storage can be performed with peace of mind.
本実施の形態の場合、独立収納区画140内は、温度検知手段127、制御手段128、冷凍サイクル、およびその他の冷却手段によって約-10℃に温度調整されている。具体的には、例えば、この独立収納区画140内の引き出しケース141に、比較的高温である約15℃程度の被冷却物133を収納するとする。独立収納区画140内は約-10℃に温度調節されているため、収納された被冷却物133は周囲から熱を奪われ、徐々に温度が低下していく。この被冷却物133の温度は、内部箱体138の天面に設けられた温度検知手段127によって検知され、5℃まで低下したところで、制御手段128から電磁波発生装置125に信号が送られ、電磁波発生装置125で電磁波を発生させる。この電磁波の周波数は2.54GHzである。この電磁波は、電気的に接続された同軸ケーブル等でアンテナ124に送られ、アンテナ124から被冷却物133に対して照射される。このとき、被冷却物133に印加される電力は約2~3Wであり、被冷却物133を冷却するエネルギーよりも十分に小さく、電磁波を照射することで被冷却物133が温度上昇することはない。なお、電磁波の周波数を2.54GHzであるとしたが、本実施の形態での効果はこの周波数に限定されるものではなく、例えば、300MHz以上3THz以下であれば良い。
In the case of the present embodiment, the temperature in the independent storage section 140 is adjusted to about −10 ° C. by the temperature detection means 127, the control means 128, the refrigeration cycle, and other cooling means. Specifically, for example, it is assumed that an object to be cooled 133 having a relatively high temperature of about 15 ° C. is stored in the drawer case 141 in the independent storage section 140. Since the temperature in the independent storage section 140 is adjusted to about −10 ° C., the stored object 133 to be cooled is deprived of heat from the surroundings, and the temperature gradually decreases. The temperature of the object 133 to be cooled is detected by the temperature detection means 127 provided on the top surface of the inner box 138. When the temperature is lowered to 5 ° C., a signal is sent from the control means 128 to the electromagnetic wave generator 125 to The generator 125 generates electromagnetic waves. The frequency of this electromagnetic wave is 2.54 GHz. This electromagnetic wave is sent to the antenna 124 through an electrically connected coaxial cable or the like, and is irradiated from the antenna 124 to the object 133 to be cooled. At this time, the electric power applied to the object to be cooled 133 is about 2 to 3 W, which is sufficiently smaller than the energy for cooling the object to be cooled 133, and the temperature of the object to be cooled 133 is increased by irradiating electromagnetic waves. Absent. In addition, although the frequency of electromagnetic waves was 2.54 GHz, the effect in this Embodiment is not limited to this frequency, For example, what is necessary is just 300 MHz or more and 3 THz or less.
ここで、被冷却物133は、肉等の内部に水分を含んだ食品であるとする。電磁波を照射しない場合は、被冷却物133は、その表面から中心部に向かって徐々に凍結していくことになる。一方、電磁波を照射した被冷却物133は、表面温度の低下を抑制することができるので、表面から先に凍結していくことを抑制することができ、表面温度の低下を抑制した上で被冷却物133の内部温度も序々に低下していくので、被冷却物133の内外温度差を抑えながら冷却することが可能となり、進行速度の極めて速い凍結が被冷却物133の内部で生じる。
Here, it is assumed that the object to be cooled 133 is a food containing moisture in the inside of meat or the like. When the electromagnetic wave is not irradiated, the object 133 to be cooled is gradually frozen from the surface toward the center. On the other hand, since the object 133 to be cooled that has been irradiated with electromagnetic waves can suppress a decrease in surface temperature, it can be prevented from freezing first from the surface. Since the internal temperature of the cooled object 133 also gradually decreases, it is possible to cool the object 133 while suppressing the temperature difference between the inside and outside of the object to be cooled 133, and freezing with a very fast traveling speed occurs inside the object to be cooled 133.
また、被冷却物133の内外温度差を抑えながら冷却するためには、電磁波の照射に加えて、独立収納区画140の内部を比較的温度変化の少ない安定状態に維持する必要があり、内部箱体138と内部箱体用蓋体139が金属で構成されていることは、温度分布のばらつきを抑制し、運転中の温度変化幅を少なくすることに寄与している。
In addition, in order to cool the object to be cooled 133 while suppressing the temperature difference between the inside and outside, it is necessary to maintain the interior of the independent storage section 140 in a stable state with relatively little temperature change in addition to the irradiation of electromagnetic waves. The fact that the body 138 and the inner box lid 139 are made of metal contributes to suppressing variation in temperature distribution and reducing the temperature change width during operation.
またさらに、使用者の安全上、電磁波が独立収納区画140外に漏洩することを防止する必要があり、内部箱体138と内部箱体用蓋体139とが金属製であることは、この目的に合致しているものである。なお、内部箱体138と内部箱体用蓋体139との嵌合部は電磁波が漏れないような構成になっている。また、電磁波漏洩防止という観点においても、内部箱体138および内部箱体用蓋体139はその全てを金属で構成する必要はなく、独立収納区画140の内壁面となる部位のみで良い。
Furthermore, for the safety of the user, it is necessary to prevent electromagnetic waves from leaking outside the independent storage compartment 140, and the internal box 138 and the internal box lid 139 are made of metal for this purpose. It is consistent with. Note that the fitting portion between the inner box 138 and the inner box lid 139 is configured to prevent leakage of electromagnetic waves. Also, from the viewpoint of preventing electromagnetic wave leakage, the inner box 138 and the inner box lid 139 need not all be made of metal, and may be only a portion serving as the inner wall surface of the independent storage section 140.
次に、第二の収納区画104cにおいて、解凍を行う際の冷却について説明する。解凍時、吐出口131aはダンパ132により閉塞される。冷却室110内に配置された冷却器112は、冷凍サイクルによって、-40℃~-20℃程度に冷却される。これによって冷却室110内の空気が冷却され、冷却ファン113によって強制的に送り出された冷気は搬送風路137を通り第一の収納区画104bへ送出される。第一の収納区画104bを冷却し、温度の上がった冷気は通気口131bを通り第二の収納区画104c内に送出される。
Next, cooling when performing thawing in the second storage section 104c will be described. At the time of thawing, the discharge port 131a is closed by the damper 132. The cooler 112 disposed in the cooling chamber 110 is cooled to about −40 ° C. to −20 ° C. by the refrigeration cycle. As a result, the air in the cooling chamber 110 is cooled, and the cold air forced out by the cooling fan 113 is sent to the first storage section 104b through the conveyance air passage 137. The first storage compartment 104b is cooled, and the cool air whose temperature has risen passes through the vent 131b and is sent into the second storage compartment 104c.
前述の通り、第一の収納区画104bは1℃~5℃に設定されているため、第二の収納区画104cには、1℃~5℃程度の冷気が送出されることになる。したがって、第二の収納区画104cを冷蔵温度に設定することができる。
As described above, since the first storage section 104b is set to 1 ° C. to 5 ° C., cold air of about 1 ° C. to 5 ° C. is sent to the second storage section 104c. Therefore, the second storage section 104c can be set to the refrigeration temperature.
通気口131bの下流側には内部箱体138が配置されており、通気口131bから第二の収納区画104c内に送出された冷気は、内部箱体138に当接する。前述したように、内部箱体138は金属で構成されたり、少なくともその一部に金属が用いられたりしているため、その良好な熱伝導性により内部箱体138全体をすばやく、かつ、均一な温度にすることが可能である。したがって、第二の収納区画104cを、冷凍および保存のための温度設定である約-10℃から解凍に適した冷蔵温度に昇温する時間を短縮することができる。昇温時間の短縮は、解凍時間の短縮に繋がるため、使用者の使い勝手を向上させ、消エネ性を向上させることができる。
An internal box 138 is disposed on the downstream side of the vent 131b, and the cold air sent from the vent 131b into the second storage section 104c contacts the internal box 138. As described above, the inner box 138 is made of metal, or at least a part of the inner box 138 is made of metal. Therefore, the entire inner box 138 is quickly and uniformly formed by its good thermal conductivity. It can be temperature. Therefore, it is possible to shorten the time for raising the temperature of the second storage section 104c from about −10 ° C., which is a temperature setting for freezing and storage, to a refrigeration temperature suitable for thawing. Since shortening the temperature raising time leads to shortening of the thawing time, it is possible to improve the user-friendliness and to improve the energy consumption.
第二の収納区画104c内を循環し、内部箱体138を冷却した冷気は、吸込口131cから冷却室110に帰還し、冷却器112によって再び冷却される。
The cold air that circulates in the second storage section 104c and cools the internal box 138 returns to the cooling chamber 110 from the suction port 131c and is cooled again by the cooler 112.
本実施の形態において、電磁波発生装置125の出力を20Wとし、第二の収納区画104cの温度を5℃として解凍を行った。その結果、解凍時間は50分要したが、解凍後の温度を23箇所測定した結果、温度ムラは約3℃しかなかった。一方、電子レンジ等を想定して電磁波の出力を300W程度に上げた場合では、解凍後の温度ムラは約20℃程度あった。一方、一般的な解凍方法として、冷蔵庫内で解凍する場合では解凍ムラは約3℃であったが、解凍に約20時間も要してしまう。
In the present embodiment, thawing was performed with the output of the electromagnetic wave generator 125 set to 20 W and the temperature of the second storage section 104c set to 5 ° C. As a result, the thawing time required 50 minutes, but as a result of measuring the temperature after thawing at 23 locations, the temperature unevenness was only about 3 ° C. On the other hand, when the output of electromagnetic waves was increased to about 300 W assuming a microwave oven or the like, the temperature unevenness after thawing was about 20 ° C. On the other hand, as a general thawing method, when thawing in a refrigerator, the thawing unevenness was about 3 ° C., but thawing takes about 20 hours.
この結果、本実施の形態の冷凍装置は、解凍後の温度ムラを低減し、さらに解凍の時間を短縮することが可能となる。
As a result, the refrigeration apparatus of the present embodiment can reduce temperature unevenness after thawing and further shorten the thawing time.
本実施の形態では、解凍に使用する電磁波の電力、つまり電磁波発生装置125の出力を20Wで行ったがこれに限るものではなく、解凍に使用する電力は100W以下、望ましくは50W以下が温度ムラを低減できるため、望ましい。
In this embodiment, the power of the electromagnetic wave used for thawing, that is, the output of the electromagnetic wave generator 125 is 20 W. However, the present invention is not limited to this, and the power used for thawing is 100 W or less, preferably 50 W or less. Can be reduced.
さらに本実施の形態では、温度ムラを低減するために、冷凍食品を例えば-5℃~-10℃まで解凍して包丁等で必要な分だけカットし、残りを再凍結することが可能となる。
Furthermore, in this embodiment, in order to reduce temperature unevenness, frozen food can be thawed to, for example, −5 ° C. to −10 ° C., cut as necessary with a knife, etc., and the rest can be re-frozen. .
また、温度検知手段127が解凍終了を検知すると、自動的に制御手段128より解凍終了の信号を発信し、電磁波発生装置125の出力を停止することができるため、使用者は過熱の心配をする必要がない。なお、冷蔵庫100Eにブザーまたは光等による報知手段を設け、使用者に解凍終了を知らせることで、解凍後の取り出し忘れを防止することができる。万が一、解凍後の食品の取り出しを忘れた場合も、第二の収納区画104cは約-10℃に設定することができるため、食品等の傷みを抑制し安心して保存することができる。
In addition, when the temperature detecting means 127 detects the end of thawing, the control means 128 can automatically transmit a thawing end signal and stop the output of the electromagnetic wave generator 125, so that the user is concerned about overheating. There is no need. In addition, it is possible to prevent forgetting to take out after thawing by providing notification means by a buzzer or light in the refrigerator 100E and notifying the user of the end of thawing. Even if you forget to take out the food after thawing, the second storage compartment 104c can be set to about −10 ° C., so that it can be stored safely with reduced damage to the food.
独立収納区画140内には引き出しケース141が配置されているが、使用者は断熱扉134を開放し、引き出しケース141を手前側に引き出すことができる。この状態で、食品等の被冷却物133を引き出しケース141内に載置した後、再び引き出しケース141を元の位置に戻し、断熱扉134を閉めることになる。引き出しケース141が無い場合を考えると、独立収納区画140の奥側へは手が届きにくい場合があり、また、手前側に被冷却物133を多数収納した場合には、奥側のスペースにアクセスしづらくなり、収納性が落ちることになる。それゆえ、引き出しケース141を用い、手前に引き出せるように構成することにより、引き出しケース141の奥側のスペースへの被冷却物133の収納性を向上させ、利便性を向上させることができる。
Although the drawer case 141 is arranged in the independent storage section 140, the user can open the heat insulating door 134 and pull the drawer case 141 to the near side. In this state, after the object to be cooled 133 such as food is placed in the drawer case 141, the drawer case 141 is returned to its original position and the heat insulating door 134 is closed. Considering the case where there is no drawer case 141, it may be difficult to reach the back side of the independent storage section 140, and when a large number of objects to be cooled 133 are stored on the front side, the space on the back side is accessed. It becomes difficult and storage property falls. Therefore, by using the drawer case 141 so that the drawer case 141 can be pulled out toward the front, the storage property of the cooled object 133 in the space on the back side of the drawer case 141 can be improved, and the convenience can be improved.
また、前述したように、独立収納区画140の少なくとも内壁は金属で構成されていれば、引き出しケース141の内部において、すばやく温度分布のばらつきを最小限に抑えることができるので、より均一な冷却を実現することが可能である。したがって、金属で囲まれた独立収納区画140内に引き出しケース141を配置することで、被冷却物133の収納に際する使用者の利便性の向上と、温度分布のばらつきを抑えた均一な温度環境の維持とを両立させることができる。
Further, as described above, if at least the inner wall of the independent storage section 140 is made of metal, the temperature distribution variation can be quickly minimized within the drawer case 141, so that more uniform cooling can be achieved. It is possible to realize. Therefore, by arranging the drawer case 141 in the independent storage compartment 140 surrounded by metal, it is possible to improve the convenience of the user when storing the object to be cooled 133 and to achieve a uniform temperature with reduced variation in temperature distribution. It is possible to achieve both environmental maintenance.
また、本実施の形態では、一般的な成人の使用者を想定した場合、第二の収納区画104cは腰程の高さに位置するため、引き出しケース141の引出し操作および被冷却物133の出し入れの姿勢を自然にすることができ、引き出しケース141内の視認性も良好である。第二の収納区画104cは解凍室としても使用されるため、一般的な冷蔵庫の機能である保存ではなく調理を行うことになるため、冷蔵庫100E内に被冷却物133を入れている時間が短くなる。したがって、その開閉頻度は増加する可能性があるため、楽な姿勢で使え、視認性がよいことは、使い勝手の向上に非常に有効であるといえる。
In this embodiment, when a general adult user is assumed, since the second storage section 104c is located at the waist level, the drawer case 141 is pulled out and the cooled object 133 is put in and out. Can be made natural and the visibility in the drawer case 141 is also good. Since the second storage section 104c is also used as a thawing chamber, cooking is performed instead of storage, which is a function of a general refrigerator. Therefore, the time during which the object to be cooled 133 is placed in the refrigerator 100E is short. Become. Therefore, since the frequency of opening and closing may increase, it can be said that the fact that it can be used in an easy posture and has good visibility is very effective in improving usability.
また、断熱扉134を開放すると、冷蔵庫100E外の暖気が、独立収納区画140内部に流入することになるが、独立収納区画140の内壁は金属で構成されているため、一旦温度上昇したとしてもすばやく設定温度まで復帰することができる。
Further, when the heat insulating door 134 is opened, the warm air outside the refrigerator 100E flows into the independent storage compartment 140, but the inner wall of the independent storage compartment 140 is made of metal. It can quickly return to the set temperature.
本実施の形態では、電磁波発生装置125に、半導体素子を用いた電磁波発振器と電磁波増幅器を用いている。従来、食品の加熱に多く使われている電磁波発生装置は、一般的にはマグネトロンであるが、本実施の形態では、このマグネトロンに比べて電磁波発生装置125の設置スペースを小さくすることができる。
In this embodiment, an electromagnetic wave oscillator and an electromagnetic wave amplifier using a semiconductor element are used for the electromagnetic wave generator 125. Conventionally, an electromagnetic wave generator that is often used for heating foods is generally a magnetron, but in this embodiment, the installation space of the electromagnetic wave generator 125 can be made smaller than that of the magnetron.
また、マグネトロンは単一周波数しか発生することができないため、調理区画内で共振を起こすことが知られている。この場合、共振点の部分のみが加熱される等のおそれがあり、温度ムラの発生の原因となることから、調理区画内にスタラーファン等の電磁波攪拌器を設ける必要性が知られている。しかしながら、本実施の形態では、半導体素子を用いた電磁波発振器を用いているため、動作中に周波数を変動させることができる。それゆえ、周波数を変動させることで、共振点を遷移させることができ、電磁波攪拌器を必要としなくなる。したがって、独立収納区画140の庫内容積を小さくすることができるため、内部箱体138の設置スペースも削減することができる。これは、第一の収納区画104bの収納性の向上と、第二の収納区画104cを低温に維持するのに必要なエネルギーの削減による省エネ性の向上を実現することができる。さらに、被冷却物133の電磁波吸収特性に合わせた周波数を照射することも可能となるため、照射効率を高めることができ、さらに省エネ性を向上させることができる。
Also, since the magnetron can generate only a single frequency, it is known that resonance occurs in the cooking section. In this case, there is a possibility that only the resonance point portion is heated, which causes the occurrence of temperature unevenness. Therefore, the necessity of providing an electromagnetic wave stirrer such as a stirrer fan in the cooking section is known. . However, in this embodiment, since an electromagnetic wave oscillator using a semiconductor element is used, the frequency can be varied during operation. Therefore, by changing the frequency, the resonance point can be changed, and an electromagnetic wave stirrer is not required. Therefore, since the internal volume of the independent storage section 140 can be reduced, the installation space for the internal box 138 can also be reduced. This can improve the storage performance of the first storage section 104b and improve the energy saving performance by reducing the energy required to maintain the second storage section 104c at a low temperature. Furthermore, since it becomes possible to irradiate the frequency according to the electromagnetic wave absorption characteristic of the to-be-cooled object 133, the irradiation efficiency can be increased, and further the energy saving can be improved.
電磁波発生装置125は電磁波を発生する際に発熱を伴うが、本実施の形態において、電磁波発生装置125は冷蔵室104の背面に設置されているため、隣接する庫内温度を最小に抑えることができ、省エネ性を著しく低下させることはない。
Although the electromagnetic wave generator 125 generates heat when generating an electromagnetic wave, the electromagnetic wave generator 125 is installed on the back surface of the refrigerator compartment 104 in the present embodiment, so that the temperature in the adjacent cabinet can be minimized. It does not significantly reduce energy savings.
なお、本実施の形態では電磁波発生装置125を断熱箱体101背面に設置したが、断熱箱体101の外側、例えば、機械室101a内または断熱箱体101天面に設置しても、同様の効果が得られる。また、電磁波発生装置125が低出力であり、表面温度上昇幅が小さい場合は、貯蔵室内に設置しても、省エネ性を著しく低下させることはない。
In the present embodiment, the electromagnetic wave generator 125 is installed on the back surface of the heat insulation box body 101. However, the same applies to the outside of the heat insulation box body 101, for example, in the machine room 101a or on the top surface of the heat insulation box body 101. An effect is obtained. In addition, when the electromagnetic wave generator 125 has a low output and the surface temperature rise is small, even if it is installed in the storage room, the energy saving performance is not significantly reduced.
以上のように、本実施の形態においては、冷蔵室104内には冷蔵温度帯で維持される第一の収納区画104bと、冷蔵温度帯より低い温度帯として例えば凍結温度より低い約-10℃に維持される第二の収納区画104cとを有し、電磁波発生装置125より発振された電磁波を第二の収納区画104cに導入するものである。これにより、第二の収納区画104cにおいて被冷却物133の内外温度差を抑えながら冷却する高品位冷凍と解凍を実現することができる。それゆえ、専用の貯蔵室を設ける必要が無く、冷蔵庫100Eの収納性の低下を最小限に止めて、高品位冷凍と高品位解凍を実現することができる。
As described above, in the present embodiment, the first storage section 104b maintained in the refrigeration temperature zone in the refrigeration chamber 104, and a temperature zone lower than the refrigeration temperature zone, for example, about −10 ° C. lower than the freezing temperature. The second storage section 104c is maintained at the same position, and electromagnetic waves oscillated from the electromagnetic wave generator 125 are introduced into the second storage section 104c. Thereby, it is possible to realize high-quality refrigeration and thawing in which cooling is performed while suppressing the temperature difference between the inside and outside of the object 133 to be cooled in the second storage section 104c. Therefore, it is not necessary to provide a dedicated storage room, and it is possible to realize high-quality refrigeration and high-quality thawing by minimizing the deterioration of the storage capacity of the refrigerator 100E.
特に、本実施の形態に係る冷蔵庫100Eであれば、用者の使い勝手を損なうことなく、冷蔵室104内で高品位の冷凍と解凍を実現することができる。
Particularly, with the refrigerator 100E according to the present embodiment, high-quality freezing and thawing can be realized in the refrigerator compartment 104 without impairing user convenience.
以下、この点について具体的に説明する。生鮮食品等を冷凍して、その解凍時に鮮度または味を維持するためには、組織体の細胞を破壊しないこと、濃縮(細胞外に溶質が流出する)を抑制することが重要である。通常、低温環境に該食品を置くと、表面から徐々に冷却され中心部分は最後に凍るという現象が起こる。このような場合、食品表面にできた氷結晶が食品内部の未凍結状態の水分を引き出しながら拡大するため、中心部分に向かって大きな針状結晶が生成される。この大きな針状結晶は食品の細胞を破壊するため、解凍時に液汁の流出(ドリップ)が発生して品質低下を招いてしまう。一方、氷結晶が小さいと細胞の形状が維持され、解凍時のドリップ流出量は少なくなり、食品のうまみが保持されることになる。
Hereinafter, this point will be described in detail. In order to freeze fresh food and the like and maintain the freshness or taste when the food is thawed, it is important not to destroy the cells of the tissue and to suppress concentration (the solute flows out of the cells). Usually, when the food is placed in a low temperature environment, a phenomenon occurs in which the center portion is gradually cooled and the central portion is finally frozen. In such a case, ice crystals formed on the surface of the food expand while drawing unfrozen moisture inside the food, so that a large needle crystal is generated toward the central portion. Since these large needle crystals destroy the cells of the food, a spill (drip) of the juice occurs during thawing, leading to a decrease in quality. On the other hand, if the ice crystals are small, the shape of the cells is maintained, the amount of drip outflow during thawing is reduced, and the flavor of the food is retained.
氷結晶の大きさを小さいまま保つためには、最大氷結晶生成帯(一般的には0℃~-5℃の氷結晶が最も成長する温度帯)を通過する時間を短くすることが有効である。このことにより氷の結晶を小さくできるので、細胞の破壊を防止できるとともに、濃縮を抑制することができる。最大氷結晶生成帯を通過する時間を短くするための技術としては、急速冷凍が一般的に知られている。この急速冷凍の方法として、大型冷凍機を用いたもの、液体窒素または液体二酸化炭素等の極低温液体を用いたもの等が挙げられる。
In order to keep the size of ice crystals small, it is effective to shorten the time required to pass through the maximum ice crystal formation zone (generally, the temperature zone where ice crystals of 0 ° C to -5 ° C grow most). is there. As a result, ice crystals can be made smaller, so that destruction of cells can be prevented and concentration can be suppressed. As a technique for shortening the time for passing through the maximum ice crystal formation zone, quick freezing is generally known. Examples of the quick freezing method include a method using a large refrigerator, a method using a cryogenic liquid such as liquid nitrogen or liquid carbon dioxide, and the like.
しかしながら、前者の大型冷凍機で急速冷凍したとしても、原理的に被冷凍物表面からの熱伝導により内部を冷却する方式には変わりがなく、大きな食品になると冷凍が完結するまでに数分~数時間要してしまうこともある。そのため、被冷凍物の表面と内部との凍結時間の差が大きくなり、特に被冷凍物表面の氷の結晶が大きくなって細胞が破壊されたり、濃縮が起こったりする場合があった。
However, even if the former large-scale freezer is used for quick freezing, there is no change in the method of cooling the inside by heat conduction from the surface of the object to be frozen. It may take several hours. For this reason, the difference in freezing time between the surface of the object to be frozen and the inside becomes large, and in particular, ice crystals on the surface of the object to be frozen become large, and the cells may be destroyed or concentrated.
また、極低温冷気を作り出すためには、高性能で、巨大な圧縮機を搭載する必要がある等、コスト的なデメリットも考えられる。一方、後者の極低温液体を用いる方法では、凍結時間は短くできるが原料の供給が必要で、コスト高になるという問題があった。また、被冷凍物と極低温液体との温度差が大きいので、被冷凍物の膨張収縮が急速になってしまい、被冷凍物自身に亀裂または破裂等が生じてしまい、外観を損ねてしまうという問題もあった。
Also, in order to create cryogenic cold air, it is necessary to install a huge compressor with high performance. On the other hand, the latter method using a cryogenic liquid has a problem that although the freezing time can be shortened, it is necessary to supply raw materials and the cost is increased. In addition, since the temperature difference between the object to be frozen and the cryogenic liquid is large, the object to be frozen expands and contracts rapidly, and the object to be frozen itself is cracked or ruptured. There was also a problem.
以上のように、従来の急速凍結技術では、被冷凍物の表面と内部に凍結速度の差が生じることを完全には防ぐことができず、ある程度の針状結晶の生成と増大は否めないものであった。
As described above, the conventional rapid freezing technique cannot completely prevent the difference in freezing speed between the surface and the inside of the object to be frozen, and it cannot be denied that some acicular crystals are generated and increased. Met.
これに対して、本実施の形態に係る冷蔵庫100Eであれば、冷蔵室104内には、電磁波発生装置125より発振された電磁波が導入可能な第二の収納区画104cが設けられている。それゆえ、前記実施の形態1でも説明したように、第二の収納区画104c内で電磁波が照射された食品は過冷却状態となる。過冷却状態になった食品が、ある一定の温度になったことを温度検知手段127が検知すると、制御手段128からの信号により、電磁波発生装置125の運転を止めたり、あるいは、出力を可変させたりする。その後、外乱により過冷却状態が解除されると、進行速度の極めて速い凍結が食品内部で生じる。その結果、最大氷結晶生成帯(-1~-5℃)を急速に通過することができ、高品位な冷凍を実現することができる。
On the other hand, in the refrigerator 100E according to the present embodiment, the refrigerating chamber 104 is provided with a second storage section 104c into which the electromagnetic wave oscillated from the electromagnetic wave generator 125 can be introduced. Therefore, as described in the first embodiment, the food irradiated with the electromagnetic wave in the second storage section 104c is in a supercooled state. When the temperature detecting means 127 detects that the supercooled food has reached a certain temperature, the operation of the electromagnetic wave generator 125 is stopped or the output is varied by a signal from the control means 128. Or After that, when the supercooled state is released due to disturbance, freezing at a very high speed occurs inside the food. As a result, the maximum ice crystal formation zone (−1 to −5 ° C.) can be rapidly passed, and high-quality refrigeration can be realized.
また、電磁波発生装置125を、半導体素子を用いた電磁波発振器と電磁波増幅器とから構成されるものとしたことで、マグネトロン等に比べて電磁波発生装置125の設置スペースを小さくすることができるため、さらに冷蔵庫100Eの収納性を向上させることができる。
Moreover, since the electromagnetic wave generator 125 is composed of an electromagnetic wave oscillator using a semiconductor element and an electromagnetic wave amplifier, the installation space of the electromagnetic wave generator 125 can be reduced as compared with a magnetron or the like. The storage property of the refrigerator 100E can be improved.
また、半導体素子を用いた電磁波発振器は発生する電磁波の周波数を変動させることができる。それゆえ、第二の収納区画104c内に導入された電磁波の反射特性を変動させることで、スタラーファン等の電磁波攪拌器を取り付ける必要がないため、第二の収納区画104cの設置スペースも削減することができる。これにより、さらに冷蔵庫100Eの収納性を向上させると共に、低温に維持される第二の収納区画104cを小さくすることによる省エネ性の向上を実現することができる。
Also, an electromagnetic wave oscillator using a semiconductor element can vary the frequency of the generated electromagnetic wave. Therefore, it is not necessary to attach an electromagnetic stirrer such as a stirrer fan by changing the reflection characteristics of the electromagnetic wave introduced into the second storage section 104c, so the installation space of the second storage section 104c is also reduced. can do. Thereby, while further improving the storage capacity of the refrigerator 100E, it is possible to realize an improvement in energy saving performance by reducing the size of the second storage section 104c maintained at a low temperature.
また、庫内断熱箱体131に第一の収納区画104bと第二の収納区画104cを連通する通気口131bを備えたことにより、解凍時に素早く第二の収納区画104cの温度を上昇させることができるため、解凍時間が短縮でき、より使用者の使い勝手を向上することができる。また、解凍時間の短縮は、省エネ性の向上にも寄与する。
Further, by providing the interior heat insulating box 131 with the vent 131b that allows the first storage section 104b and the second storage section 104c to communicate with each other, the temperature of the second storage section 104c can be quickly raised during thawing. Therefore, the thawing time can be shortened, and the usability for the user can be further improved. In addition, shortening the thawing time contributes to improving energy saving.
また、冷蔵室104を冷蔵庫100Eの最上部に配置し、第二の収納区画104cを冷蔵室104の最下部に設けたことにより、一般的な成人の腰程の高さに第二の収納区画104cが位置するため、引き出しケース141の引出し操作および被冷却物133の出し入れの姿勢を自然にすることができる。また、引き出しケース141内の視認性も良好であり、使い勝手を向上させることができる。
Further, the refrigerator compartment 104 is arranged at the top of the refrigerator 100E, and the second storage compartment 104c is provided at the bottom of the refrigerator compartment 104, so that the second storage compartment can be kept at the height of a general adult's waist. Since 104c is located, the posture of the drawer operation of the drawer case 141 and the insertion / extraction of the object to be cooled 133 can be made natural. Moreover, the visibility in the drawer case 141 is also favorable, and usability can be improved.
(実施の形態6)
図13は本発明の実施の形態6に係る冷蔵庫100Fの正面図であり、図14は図13中のIII-III断面を示す側面断面図である。 (Embodiment 6)
FIG. 13 is a front view of arefrigerator 100F according to Embodiment 6 of the present invention, and FIG. 14 is a side sectional view showing a III-III section in FIG.
図13は本発明の実施の形態6に係る冷蔵庫100Fの正面図であり、図14は図13中のIII-III断面を示す側面断面図である。 (Embodiment 6)
FIG. 13 is a front view of a
なお、実施の形態1または5と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、実施の形態1の構成に本実施の形態を組み合わせて実施することで不具合がない限り組み合わせて適用することが可能である。
In addition, although description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 1 or 5 and the same technical idea, there is a malfunction by implementing this Embodiment in combination with the structure of Embodiment 1. It is possible to apply in combination as long as there is no.
図13に示すように、本実施の形態に係る冷蔵庫100Fにおいては、前記実施の形態5の冷蔵庫100Eと同様に、回転式の冷蔵室扉204aが設けられている冷蔵室204を備えており、この冷蔵室204内には、冷蔵保存のために凍らない温度である冷蔵温度帯、通常1℃~5℃に設定される第一の収納区画204bと、冷蔵温度帯より低い温度帯として例えば凍結温度より低い約-10℃の凍結温度に設定することのできる第二の収納区画204cとが設けられている。なお、この冷蔵室204は第一の収納区画204bおよび第二の収納区画204cに区画されているので、複数の貯蔵室のうちの区画貯蔵室に相当する。
As shown in FIG. 13, the refrigerator 100F according to the present embodiment includes a refrigerator compartment 204 provided with a rotary refrigerator compartment door 204a, similar to the refrigerator 100E of the fifth embodiment. In the refrigerator compartment 204, a first storage compartment 204b that is set to a refrigeration temperature zone, which is a temperature that does not freeze for refrigerated storage, usually 1 ° C. to 5 ° C., and a temperature zone lower than the refrigeration temperature zone, for example, freeze A second storage compartment 204c is provided which can be set to a freezing temperature of about −10 ° C. below the temperature. In addition, since this refrigerator compartment 204 is divided into the 1st storage compartment 204b and the 2nd storage compartment 204c, it is corresponded to the division storage chamber of several storage chambers.
第二の収納区画204cは、冷蔵室204内の最上段に設けられた庫内断熱箱体231にて構成され、被冷却物133を冷凍、解凍、保存する空間として設けられている。庫内断熱箱体231には前面開口部が設けられ、この前面開口部を閉塞する断熱扉234を備えている。断熱扉234と庫内断熱箱体231との間は、パッキン135によって空気的に遮断され、これにより第二の収納区画204cの内部が密閉状態で保たれている。
The second storage section 204c is composed of an insulative heat insulating box 231 provided at the uppermost stage in the refrigerator compartment 204, and is provided as a space for freezing, thawing and storing the object to be cooled 133. The interior heat insulation box 231 is provided with a front opening and is provided with a heat insulating door 234 that closes the front opening. The space between the heat insulating door 234 and the internal heat insulating box 231 is air-blocked by the packing 135, whereby the inside of the second storage section 204c is kept sealed.
なお、庫内断熱箱体231の天面を断熱箱体101の天面と、庫内断熱箱体231の背面を冷蔵室背面部材136と、庫内断熱箱体231の左面を断熱箱体101左面と、それぞれ一体的に構成してもよい。
In addition, the top surface of the heat insulation box body 231 is the top surface of the heat insulation box body 101, the back surface of the heat insulation box body 231 is the refrigerator compartment back member 136, and the left surface of the heat insulation box body 231 is the heat insulation box body 101. You may comprise integrally with a left surface, respectively.
冷蔵室背面部材136と断熱箱体101との間には、冷却ファン113により送出された冷気を冷蔵室104へ搬送する搬送風路137が構成されている。庫内断熱箱体231の背面上部には、搬送風路137の冷気を第二の収納区画204cに導入するための第二の収納区画204c用の吐出口231aが設けられ、庫内断熱箱体231の右面奥部には、第一の収納区画204bより冷気を導入する通気口231bが設けられている。吐出口231aおよび通気口231bはダンパ132によって開閉自在に構成されている。庫内断熱箱体231の背面下部には、第二の収納区画204cを冷却した冷気が吸い込まれる吸込口231cが設けられている。吸い込まれた冷気は、再び冷却器112で熱交換され、冷たい冷気となって循環を繰り返す。これにより第二の収納区画204cの冷却が行われる。
Between the refrigerator compartment back member 136 and the heat insulation box 101, a conveyance air passage 137 for conveying the cold air sent out by the cooling fan 113 to the refrigerator compartment 104 is formed. A discharge port 231a for the second storage compartment 204c for introducing the cool air of the conveying air passage 137 into the second storage compartment 204c is provided at the upper rear surface of the internal heat insulation box 231 to provide an internal heat insulation box. A vent hole 231b for introducing cool air from the first storage section 204b is provided in the right rear portion of 231. The discharge port 231a and the vent 231b are configured to be opened and closed by a damper 132. A suction port 231c through which the cold air that has cooled the second storage section 204c is sucked is provided at the lower back of the internal heat insulating box 231. The sucked cold air is heat-exchanged again by the cooler 112 to become cold cold air and repeat circulation. Thereby, the second storage section 204c is cooled.
なお、本実施の形態においても、ダンパ132は開口部を選択することができるシングルダンパとしたが、ダンパ132をツインダンパとし、吐出口231aと通気口231bとの開閉を別々に制御できるようにすることで、第二の収納区画204cの温度をより繊細に制御することができる。
Also in this embodiment, the damper 132 is a single damper that can select an opening, but the damper 132 is a twin damper so that the opening and closing of the discharge port 231a and the vent 231b can be controlled separately. By doing so, the temperature of the second storage section 204c can be controlled more delicately.
また、冷凍サイクルには様々な方式が考えられる。例えば、圧縮機を用いる蒸気圧縮式冷凍システム、吸収式冷凍システム、ペルチェ式冷凍システム、あるいはそれらの組み合わせ等を用いることができる。
Also, various methods can be considered for the refrigeration cycle. For example, a vapor compression refrigeration system using a compressor, an absorption refrigeration system, a Peltier refrigeration system, or a combination thereof can be used.
前記実施の形態5と同様に、第二の収納区画204c内部には内部箱体138が配置され、当該内部箱体138は開放部138aを有している。開放部138aは断熱扉234により開閉可能となっており、断熱扉234には、開放部138aを略閉塞するために内部箱体用蓋体139が取り付けられている。
As in the fifth embodiment, an internal box 138 is disposed inside the second storage section 204c, and the internal box 138 has an open portion 138a. The opening part 138a can be opened and closed by a heat insulating door 234, and an inner box cover 139 is attached to the heat insulating door 234 in order to substantially close the opening part 138a.
第二の収納区画204c内の内部箱体138内には、被冷却物133を載置する載置盆241が収納されている。この載置盆241は、断熱扉234を開くことにより手前方向に引き出され、被冷却物133の出し入れを可能にしている。なお、載置盆241は、断熱扉234の動作に連動してもしなくてもどちらでも良く、本実施の形態における効果に変わりはない。
In the inner box 138 in the second storage section 204c, a mounting tray 241 on which the object to be cooled 133 is mounted is stored. The loading tray 241 is pulled forward by opening the heat insulating door 234, and allows the article 133 to be cooled or taken out. The mounting tray 241 may or may not be interlocked with the operation of the heat insulating door 234, and the effect in the present embodiment is not changed.
以上のように構成された本実施の形態の冷蔵庫100Fについて、以下その動作、作用を説明する。
About the refrigerator 100F of this Embodiment comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
前記実施の形態5と同様にして、本実施の形態においても、冷蔵室204内に設けられた第二の収納区画204cにおいて、高品位の冷凍と解凍を実現することができる。このとき、被冷却物133には、電磁波が照射されるため、他の冷却物を一切入れることができない。したがって、第二の収納区画204cは高品位冷凍または解凍、あるいはその両方を行うために、日頃からあまり多くの食品を入れておくことができない。本実施の形態では、第二の収納区画204cは冷蔵室204の最上段に設けられている。冷蔵室204の最上段は、使用者が最も視認し辛く、手が届き難いため、使い勝手が悪い領域である。したがって、冷蔵室204最上段に第二の収納区画204cを設けることは、実使用上、第一の収納区画204bの収納性の低下を最低限に抑える構造といえる。
Similarly to the fifth embodiment, also in the present embodiment, high-quality freezing and thawing can be realized in the second storage section 204c provided in the refrigerator compartment 204. At this time, since the object 133 to be cooled is irradiated with electromagnetic waves, no other cooling object can be put therein. Therefore, the second storage compartment 204c cannot store much food on a daily basis in order to perform high-quality freezing and / or thawing. In the present embodiment, the second storage section 204 c is provided on the uppermost stage of the refrigerator compartment 204. The uppermost stage of the refrigerator compartment 204 is an area that is not easy to use because it is hard for the user to visually recognize and difficult to reach. Therefore, providing the second storage section 204c in the uppermost stage of the refrigerator compartment 204 can be said to be a structure that minimizes the deterioration of the storage capacity of the first storage section 204b in actual use.
さらに、本実施の形態では、断熱箱体101の天面奥部に圧縮機109等を有する機械室101aが設けられ、機械室101aは、冷蔵室104内の最上部の後方領域に食い込んで形成されている。そのため、冷蔵室204の最上段は、他の領域に比べて奥行きが小さくなっている。したがって、最上段に第二の収納区画204cを設けることで、第二の収納区画204cの奥まで見渡すことが容易になる。
Further, in the present embodiment, a machine room 101a having a compressor 109 or the like is provided at the back of the top surface of the heat insulation box 101, and the machine room 101a is formed by biting into the uppermost rear region in the refrigerator compartment 104. Has been. Therefore, the depth of the uppermost stage of the refrigerator compartment 204 is smaller than that of other areas. Therefore, by providing the second storage section 204c at the uppermost stage, it becomes easy to overlook the back of the second storage section 204c.
冷蔵室204の最上段は、前述の通り手が届き難い場所であるが、第二の収納区画204cに載置盆241を設けることで、清掃を行い易く、使用者の使い勝手を上昇させることができる。なお、載置盆241を設置しなくてもよく、その場合は、断熱扉234は回転式扉または着脱式扉とすると使い勝手が良い。
The uppermost stage of the refrigerator compartment 204 is a place where it is difficult to reach as described above. However, by providing the loading tray 241 in the second storage section 204c, it is easy to clean, and the convenience of the user can be raised. it can. In addition, it is not necessary to install the mounting tray 241. In that case, if the heat insulation door 234 is a rotary door or a detachable door, it is easy to use.
なお、断熱扉234の上辺を軸として回転させる回転式扉にすると、使用者が閉め忘れる心配が無いため、安心して使用することができる。
In addition, if it is a rotary door that rotates around the upper side of the heat insulating door 234, there is no worry that the user forgets to close it, so that it can be used with confidence.
以上のように、本実施の形態においては、冷蔵室204を冷蔵庫100Fの最上部に配置し、通常手が届きにくい冷蔵室204の最上段に第二の収納区画204cを設けている。これにより、保存食品を多く貯蔵できない第二の収納区画204cを設置することによる、冷蔵室204の収納性低下の影響を実使用上最小限に抑えることができる。
As described above, in the present embodiment, the refrigerator compartment 204 is arranged at the top of the refrigerator 100F, and the second storage compartment 204c is provided at the top of the refrigerator compartment 204 that is usually difficult to reach. Thereby, the influence of the storage property fall of the refrigerator compartment 204 by installing the 2nd storage division 204c which cannot store many preservation | save foods can be suppressed to the minimum in practical use.
また、断熱箱体101の天面奥部に圧縮機109等を有する機械室101a設けることにより、冷蔵室204の最上段は、他の領域に比べて奥行きを小さくすることができる。そのため、最上段に設けられた第二の収納区画204cにおいては、その内部を奥まで見渡すことが容易となる。
Also, by providing the machine room 101a having the compressor 109 and the like in the back of the top surface of the heat insulating box 101, the uppermost stage of the refrigerator compartment 204 can be made smaller in depth than other areas. Therefore, in the second storage section 204c provided in the uppermost stage, it is easy to look around the inside.
上記説明から、当業者にとっては、本発明の多くの改良または他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
From the above description, many modifications or other embodiments of the present invention are obvious to one skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
以上のように、本発明にかかる冷蔵庫は、消費電力を最小限に抑えながら、冷凍および冷蔵、解凍、加熱、保温の操作を、使用者が手間を掛けることなく高品質で行うことができ、また、使用者の使い勝手を損なうことなく、冷蔵室内で高品位の冷凍と解凍を実現することができる。それゆえ、本発明は、家庭用または業務用冷蔵庫だけでなく、解凍機、調理器、保温器などの各種用途にも広く適用することができる。
As described above, the refrigerator according to the present invention can perform operations of freezing and refrigeration, thawing, heating, and heat insulation with high quality without taking time and effort by the user while minimizing power consumption. In addition, high-quality freezing and thawing can be realized in the refrigerator compartment without impairing the user-friendliness. Therefore, the present invention can be widely applied not only to household or commercial refrigerators but also to various uses such as a thawing machine, a cooker, and a warmer.
100A~100F 冷蔵庫
101 断熱箱体
104,204 冷蔵室(第一の貯蔵室、区画貯蔵室)
104a,204a 冷蔵室扉
104b,204b 第一の収納区画
104c,204c 第二の収納区画
105,205 第二の冷凍室(第四の貯蔵室、区画貯蔵室)
105a,205a,307a 冷凍区画(第一の収納区画)
105b 解凍区画(第二の収納区画)
105c,106a,107a,108a 引き出し扉
106 製氷室(第五の貯蔵室)
107 第一の冷凍室(第二の貯蔵室)
108 野菜室(第三の貯蔵室)
109 圧縮機
118,318, 引き出し扉
124 アンテナ
125 電磁波発生装置
126 同軸ケーブル
131b、231b 通気口
205b,307b 調理区画(第二の収納区画)
307 第一の冷凍室(第二の貯蔵室、区画貯蔵室)
330 加熱手段 100A to100F Refrigerator 101 Heat insulation box 104,204 Refrigerated room (first storage room, compartment storage room)
104a, 204a refrigerator compartment doors 104b, 204b first storage compartment 104c, 204c second storage compartment 105, 205 second freezer compartment (fourth storage compartment, compartment storage compartment)
105a, 205a, 307a Refrigeration compartment (first storage compartment)
105b Defrosting compartment (second storage compartment)
105c, 106a, 107a, 108aDrawer door 106 Ice making room (fifth storage room)
107 First freezer room (second storage room)
108 Vegetable room (third storage room)
109 Compressors 118, 318, Drawer door 124 Antenna 125 Electromagnetic wave generator 126 Coaxial cable 131b, 231b Vent 205b, 307b Cooking compartment (second storage compartment)
307 First freezer room (second storage room, compartment storage room)
330 Heating means
101 断熱箱体
104,204 冷蔵室(第一の貯蔵室、区画貯蔵室)
104a,204a 冷蔵室扉
104b,204b 第一の収納区画
104c,204c 第二の収納区画
105,205 第二の冷凍室(第四の貯蔵室、区画貯蔵室)
105a,205a,307a 冷凍区画(第一の収納区画)
105b 解凍区画(第二の収納区画)
105c,106a,107a,108a 引き出し扉
106 製氷室(第五の貯蔵室)
107 第一の冷凍室(第二の貯蔵室)
108 野菜室(第三の貯蔵室)
109 圧縮機
118,318, 引き出し扉
124 アンテナ
125 電磁波発生装置
126 同軸ケーブル
131b、231b 通気口
205b,307b 調理区画(第二の収納区画)
307 第一の冷凍室(第二の貯蔵室、区画貯蔵室)
330 加熱手段 100A to
104a, 204a
105a, 205a, 307a Refrigeration compartment (first storage compartment)
105b Defrosting compartment (second storage compartment)
105c, 106a, 107a, 108a
107 First freezer room (second storage room)
108 Vegetable room (third storage room)
109
307 First freezer room (second storage room, compartment storage room)
330 Heating means
Claims (16)
- 断熱区画された複数の貯蔵室を備えた冷蔵庫本体と、前記貯蔵室の前面開口部を閉塞する扉とを備え、
前記貯蔵室の少なくとも一つが、その内部に、当該貯蔵室に予め設定される設定温度帯で維持される第一の収納区画と、前記設定温度帯とは異なる温度領域を有する第二の収納区画とを有する区画貯蔵室であることを特徴とする、冷蔵庫。 A refrigerator body including a plurality of storage compartments that are thermally insulated, and a door that closes a front opening of the storage compartment,
At least one of the storage chambers has a first storage compartment maintained in a preset temperature zone preset in the storage chamber, and a second storage compartment having a temperature region different from the preset temperature zone. A refrigerator having a compartment storage room. - 前記区画貯蔵室は少なくとも冷凍温度帯に設定することのできる冷凍室であり、
前記第一の収納区画は、前記冷凍温度帯で維持される収納区画であるとともに、前記第二の収納区画は、前記冷蔵温度帯とは異なる温度領域を有する収納区画であることを特徴とする、請求項1に記載の冷蔵庫。 The compartment storage room is a freezing room that can be set to at least a freezing temperature zone,
The first storage compartment is a storage compartment maintained in the refrigeration temperature zone, and the second storage compartment is a storage compartment having a temperature region different from the refrigeration temperature zone. The refrigerator according to claim 1. - 第二の収納区画は、冷凍区画の食品を冷凍保持する機能とは異なる機能を発現する収納区画であることを特徴とする、請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, wherein the second storage section is a storage section that exhibits a function different from the function of freezing and holding food in the frozen section.
- 第二の収納区画は、食品を調理する機能を備えた収納区画であることを特徴とする、請求項3に記載の冷蔵庫。 The refrigerator according to claim 3, wherein the second storage section is a storage section having a function of cooking food.
- 第二の収納区画は、食品を解凍する機能を備えた収納区画であることを特徴とする、請求項3または4に記載の冷蔵庫。 The refrigerator according to claim 3 or 4, wherein the second storage compartment is a storage compartment having a function of thawing food.
- 第二の収納区画は、食品を加熱する機能を備えた収納区画であることを特徴とする、請求項3から5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 3 to 5, wherein the second storage section is a storage section having a function of heating food.
- 冷蔵庫本体は電磁波発生装置を備え、
第二の収納区画に電磁波を導入することを特徴とする、請求項1から6のいずれか1項に記載の冷蔵庫。 The refrigerator body is equipped with an electromagnetic wave generator,
The refrigerator according to any one of claims 1 to 6, wherein electromagnetic waves are introduced into the second storage compartment. - 前記貯蔵室内には金属箱体が設けられ、
前記金属箱体内の空間は電磁的に区画されていることを特徴とする、請求項1から7のいずれか1項に記載の冷蔵庫。 A metal box is provided in the storage chamber,
The refrigerator according to any one of claims 1 to 7, wherein the space in the metal box is electromagnetically partitioned. - 前記金属箱体には、電波伝送抑制部が設けられていることを特徴とする、請求項8に記載の冷蔵庫。 The refrigerator according to claim 8, wherein the metal box is provided with a radio wave transmission suppressing unit.
- 前記電波伝送抑制部は、前記金属箱体の前後方向、略中央部に設けられていることを特徴とする、請求項9に記載の冷蔵庫。 The refrigerator according to claim 9, wherein the radio wave transmission suppressing unit is provided in a substantially central portion in the front-rear direction of the metal box.
- さらに電磁波発生装置を備え、
前記区画貯蔵室は少なくとも冷蔵温度帯に設定することのできる冷蔵室であり、
前記第一の収納区画は、冷蔵温度帯で維持される収納区画であるとともに、前記第二の収納区画は、前記冷蔵温度帯以下の温度領域を有する収納区画であり、
前記電磁波発生装置より発振された電磁波が前記第二の収納区画に導入されることを特徴とする、請求項1に記載の冷蔵庫。 Furthermore, an electromagnetic wave generator is provided,
The compartment storage room is a refrigeration room that can be set to at least a refrigeration temperature zone,
The first storage compartment is a storage compartment maintained in a refrigeration temperature zone, and the second storage compartment is a storage compartment having a temperature region below the refrigeration temperature zone,
The refrigerator according to claim 1, wherein an electromagnetic wave oscillated from the electromagnetic wave generator is introduced into the second storage compartment. - 前記電磁波発生装置は、半導体素子を用いた電磁波発振器と電磁波増幅器からなることを特徴とする、請求項11に記載の冷蔵庫。 The refrigerator according to claim 11, wherein the electromagnetic wave generation device includes an electromagnetic wave oscillator using a semiconductor element and an electromagnetic wave amplifier.
- 前記第二の収納区画は前記第一の収納区画と連通する通気口を備え、
前記通気口は開閉機構を有することを特徴とする、請求項11または12に記載の冷蔵庫。 The second storage compartment has a vent in communication with the first storage compartment;
The refrigerator according to claim 11 or 12, wherein the vent has an opening / closing mechanism. - 前記冷蔵庫は複数の貯蔵室を有し、
前記冷蔵室は前記複数の貯蔵室のうち冷蔵庫の最上部に位置し、前記第二の収納区画は冷蔵室最下部に設けられていることを特徴とする、請求項11から13のいずれか1項に記載の冷蔵庫。 The refrigerator has a plurality of storage rooms,
The said refrigerator compartment is located in the uppermost part of a refrigerator among these storage rooms, and said 2nd storage compartment is provided in the refrigerator compartment lowest part, The any one of Claim 11-13 characterized by the above-mentioned. The refrigerator according to item. - 前記冷蔵庫は複数の貯蔵室を有し、
前記冷蔵室は前記複数の貯蔵室のうち冷蔵庫の最上部に位置し、前記第二の収納区画は冷蔵室最上部に設けられていることを特徴とする、請求項11から13のいずれか1項に記載の冷蔵庫。 The refrigerator has a plurality of storage rooms,
The said refrigerator compartment is located in the uppermost part of a refrigerator among these storage rooms, and said 2nd storage compartment is provided in the uppermost part of the refrigerator compartment, The one of Claims 11-13 characterized by the above-mentioned. The refrigerator according to item. - 前記貯蔵室を冷却する冷却手段を備え、
前記冷却手段は少なくとも圧縮機を有する冷凍サイクルであり、前記圧縮機を冷蔵庫本体の奥側上部に備えていることを特徴とする、請求項11から15のいずれか1項に記載の冷蔵庫。
A cooling means for cooling the storage chamber;
The refrigerator according to any one of claims 11 to 15, wherein the cooling means is a refrigeration cycle having at least a compressor, and the compressor is provided in an upper part on the back side of the refrigerator main body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012512677A JPWO2011135865A1 (en) | 2010-04-28 | 2011-04-28 | refrigerator |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010103312 | 2010-04-28 | ||
JP2010-103312 | 2010-04-28 | ||
JP2010-125578 | 2010-06-01 | ||
JP2010125578 | 2010-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011135865A1 true WO2011135865A1 (en) | 2011-11-03 |
Family
ID=44861186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/002504 WO2011135865A1 (en) | 2010-04-28 | 2011-04-28 | Refrigerator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2011135865A1 (en) |
WO (1) | WO2011135865A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014008254A1 (en) * | 2012-07-03 | 2014-01-09 | Electrolux Home Products, Inc. | Soft freeze zone |
JP2017194259A (en) * | 2016-09-26 | 2017-10-26 | 日立アプライアンス株式会社 | refrigerator |
CN110553461A (en) * | 2018-06-01 | 2019-12-10 | 博西华电器(江苏)有限公司 | Unfreezing control method and device and refrigerator |
JP2020067215A (en) * | 2018-10-23 | 2020-04-30 | パナソニックIpマネジメント株式会社 | refrigerator |
EP3614079A4 (en) * | 2017-04-21 | 2021-01-06 | Daikin Industries, Ltd. | Cooling device |
JP2021508364A (en) * | 2017-11-16 | 2021-03-04 | アールエルエムビー グループ リミテッド ライアビリティ カンパニー | Systems and methods for supercooling products |
CN112648774A (en) * | 2019-10-09 | 2021-04-13 | 松下知识产权经营株式会社 | Refrigerator with a door |
JP2022137163A (en) * | 2018-04-18 | 2022-09-21 | パナソニックIpマネジメント株式会社 | refrigerator |
WO2022243032A1 (en) * | 2021-05-20 | 2022-11-24 | BSH Hausgeräte GmbH | Refrigeration appliance and method for defrosting an evaporator in a refrigeration appliance |
JP7530266B2 (en) | 2020-10-15 | 2024-08-07 | 東芝ライフスタイル株式会社 | refrigerator |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6199088A (en) * | 1984-10-22 | 1986-05-17 | 松下冷機株式会社 | Refrigerator with high-frequency thawing device |
JPS62108985A (en) * | 1985-11-07 | 1987-05-20 | 松下冷機株式会社 | Refrigerator with thawing chamber |
JPS63118584A (en) * | 1986-11-07 | 1988-05-23 | 三洋電機株式会社 | Refrigerator |
JPH10141830A (en) * | 1996-10-30 | 1998-05-29 | Daewoo Electron Co Ltd | Method and apparatus for controlling cooking/chilling system of refrigerator |
JP2003282233A (en) * | 2002-03-22 | 2003-10-03 | Matsushita Refrig Co Ltd | Cooker |
JP2007006702A (en) * | 2001-07-03 | 2007-01-18 | Matsushita Electric Ind Co Ltd | Method and device for cooking food |
JP2009300069A (en) * | 2008-10-10 | 2009-12-24 | Panasonic Corp | Refrigerator |
-
2011
- 2011-04-28 WO PCT/JP2011/002504 patent/WO2011135865A1/en active Application Filing
- 2011-04-28 JP JP2012512677A patent/JPWO2011135865A1/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6199088A (en) * | 1984-10-22 | 1986-05-17 | 松下冷機株式会社 | Refrigerator with high-frequency thawing device |
JPS62108985A (en) * | 1985-11-07 | 1987-05-20 | 松下冷機株式会社 | Refrigerator with thawing chamber |
JPS63118584A (en) * | 1986-11-07 | 1988-05-23 | 三洋電機株式会社 | Refrigerator |
JPH10141830A (en) * | 1996-10-30 | 1998-05-29 | Daewoo Electron Co Ltd | Method and apparatus for controlling cooking/chilling system of refrigerator |
JP2007006702A (en) * | 2001-07-03 | 2007-01-18 | Matsushita Electric Ind Co Ltd | Method and device for cooking food |
JP2003282233A (en) * | 2002-03-22 | 2003-10-03 | Matsushita Refrig Co Ltd | Cooker |
JP2009300069A (en) * | 2008-10-10 | 2009-12-24 | Panasonic Corp | Refrigerator |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8919146B2 (en) | 2012-07-03 | 2014-12-30 | Electrolux Home Proucts, Inc. | Soft freeze zone |
CN104541116A (en) * | 2012-07-03 | 2015-04-22 | 伊莱克斯家用产品公司 | Soft freeze zone |
CN104541116B (en) * | 2012-07-03 | 2017-12-22 | 伊莱克斯家用产品公司 | Soft freezing region |
WO2014008254A1 (en) * | 2012-07-03 | 2014-01-09 | Electrolux Home Products, Inc. | Soft freeze zone |
JP2017194259A (en) * | 2016-09-26 | 2017-10-26 | 日立アプライアンス株式会社 | refrigerator |
EP3614079A4 (en) * | 2017-04-21 | 2021-01-06 | Daikin Industries, Ltd. | Cooling device |
JP2021508364A (en) * | 2017-11-16 | 2021-03-04 | アールエルエムビー グループ リミテッド ライアビリティ カンパニー | Systems and methods for supercooling products |
JP2022137163A (en) * | 2018-04-18 | 2022-09-21 | パナソニックIpマネジメント株式会社 | refrigerator |
JP7426565B2 (en) | 2018-04-18 | 2024-02-02 | パナソニックIpマネジメント株式会社 | refrigerator |
CN110553461A (en) * | 2018-06-01 | 2019-12-10 | 博西华电器(江苏)有限公司 | Unfreezing control method and device and refrigerator |
JP7217414B2 (en) | 2018-10-23 | 2023-02-03 | パナソニックIpマネジメント株式会社 | refrigerator |
CN112955704A (en) * | 2018-10-23 | 2021-06-11 | 松下知识产权经营株式会社 | Refrigerator with a door |
US20210389049A1 (en) * | 2018-10-23 | 2021-12-16 | Panasonic Intellectual Property Management Co., Ltd. | Refrigerator |
WO2020084864A1 (en) * | 2018-10-23 | 2020-04-30 | パナソニックIpマネジメント株式会社 | Refrigerator |
CN112955704B (en) * | 2018-10-23 | 2023-06-09 | 松下知识产权经营株式会社 | Refrigerator with a door |
JP2020067215A (en) * | 2018-10-23 | 2020-04-30 | パナソニックIpマネジメント株式会社 | refrigerator |
US11933537B2 (en) | 2018-10-23 | 2024-03-19 | Panasonic Intellectual Property Management Co., Ltd. | Refrigerator |
CN112648774A (en) * | 2019-10-09 | 2021-04-13 | 松下知识产权经营株式会社 | Refrigerator with a door |
CN112648774B (en) * | 2019-10-09 | 2024-05-03 | 松下知识产权经营株式会社 | Refrigerator with a door |
JP7530266B2 (en) | 2020-10-15 | 2024-08-07 | 東芝ライフスタイル株式会社 | refrigerator |
WO2022243032A1 (en) * | 2021-05-20 | 2022-11-24 | BSH Hausgeräte GmbH | Refrigeration appliance and method for defrosting an evaporator in a refrigeration appliance |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011135865A1 (en) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011135865A1 (en) | Refrigerator | |
WO2011152047A1 (en) | Refrigerator | |
KR100889821B1 (en) | Refrigerator Having Temperature- Controlled Chamber | |
JP5281691B2 (en) | Storage device and storage method | |
US20100083687A1 (en) | Refrigerator and frozen food preservation method | |
EP2746701A1 (en) | Refrigerator with no-frost freezer | |
CN100348122C (en) | Temperature fluctuation cooking method, and refrigerator | |
WO2011135863A1 (en) | Refrigeration device, refrigerator provided with refrigeration device, and refrigeration device operating method | |
US4385075A (en) | Method for thawing frozen food | |
JP6995511B2 (en) | Refrigerator and refrigerator temperature control method | |
US4326390A (en) | Apparatus and method for thawing frozen food | |
JP2007057160A (en) | Refrigerator | |
CN1318814C (en) | Refrigerator | |
JP2013029220A (en) | Refrigerator | |
JP2022174142A (en) | Refrigerator and system | |
KR100483919B1 (en) | Refrigerator Having Temperature-Controlled Chamber Utlizing Thermoelectric Module | |
US5403609A (en) | Method and equipment for storing foodstuffs, plants, vegetables, meats and other organic substances | |
JP2002372358A (en) | Refrigerator | |
JP2631259B2 (en) | Thawing and refrigeration continuous processing equipment | |
JP2004286346A (en) | Cooking device | |
JP7471362B2 (en) | Refrigerator and refrigerator temperature control method | |
JPS63259373A (en) | Thawing preservation device | |
JP2002364981A (en) | Refrigerator | |
KR20090124496A (en) | Refrigerator and controlling method of the same | |
JPS60111873A (en) | Refrigerator with rapid cooling thawing chamber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11774650 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012512677 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11774650 Country of ref document: EP Kind code of ref document: A1 |