WO2011152047A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2011152047A1
WO2011152047A1 PCT/JP2011/003076 JP2011003076W WO2011152047A1 WO 2011152047 A1 WO2011152047 A1 WO 2011152047A1 JP 2011003076 W JP2011003076 W JP 2011003076W WO 2011152047 A1 WO2011152047 A1 WO 2011152047A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerator
storage
food
cooled
Prior art date
Application number
PCT/JP2011/003076
Other languages
French (fr)
Japanese (ja)
Inventor
知子 谷
優子 藤井
亜有子 中村
正 足立
等隆 信江
泰樹 浜野
智尚 天良
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012518253A priority Critical patent/JPWO2011152047A1/en
Publication of WO2011152047A1 publication Critical patent/WO2011152047A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices

Definitions

  • the present invention relates to a refrigerator, and more particularly to the structure of a refrigerator.
  • An object of the present invention is to provide a refrigerator capable of performing high-quality freezing while suppressing destruction of food cell tissues and a method for operating the refrigerator.
  • a refrigerator includes a cooling device that cools an object, a storage chamber that stores the object, a microwave generator that applies microwaves, and the storage chamber.
  • a cooling device that cools an object
  • a storage chamber that stores the object
  • a microwave generator that applies microwaves
  • the storage chamber Provides a food plate that transmits microwaves and has an opening hole through which cold air can flow, and the object to be frozen is placed on a plate having an opening hole through which cold air can flow, so that cold air hits the entire surface of the object, The surface portion can be cooled without temperature unevenness.
  • the refrigerator of the present invention achieves both miniaturization and homogenization of ice crystals generated during freezing by suppressing temperature unevenness on the surface of the object to be frozen and temperature unevenness on the surface and inside, and soaking it. It is possible to realize high-quality freezing with less cell destruction and deformation of the object to be frozen.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view schematically showing the configuration of the storage chamber according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram showing a schematic configuration of the refrigerator in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating a schematic configuration of the microwave generator provided in the storage chamber illustrated in FIG. 1.
  • FIG. 5 is a schematic diagram showing the operation (control) of the refrigerator according to the first embodiment and the temperature course of the object to be cooled and the storage chamber.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 2 of the present invention.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view schematically showing the configuration of the storage chamber according to Embod
  • FIG. 7 is a schematic diagram showing a schematic configuration of a storage chamber according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 3 of the present invention.
  • FIG. 9 is a perspective view showing a schematic configuration of the storage chamber according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 4 of the present invention.
  • FIG. 11 is a front view of the refrigerator in the fifth embodiment of the present invention.
  • FIG. 12 is a side cross-sectional view showing the AA cross section in FIG.
  • FIG. 13 is a front view of the refrigerator in the sixth embodiment of the present invention.
  • FIG. 14 is a side sectional view showing a BB section in FIG.
  • FIG. 15 is a schematic diagram illustrating a schematic configuration of the refrigerator according to the seventh embodiment.
  • FIG. 16 is a schematic diagram showing the operation (control) of the refrigerator according to the seventh embodiment and the temperature course of the object to be cooled and the storage chamber.
  • FIG. 17 is a schematic diagram illustrating the operation (control) of the cooling device of the first modification and the temperature course of the object to be cooled and the storage chamber.
  • FIG. 18 is a flowchart schematically showing a cooling operation of the refrigerator according to the eighth embodiment.
  • FIG. 19 is a flowchart schematically showing a cooling operation of the refrigerator according to the first modification in the eighth embodiment.
  • a first refrigerator includes a cooling device that cools an object, a storage chamber that houses the object, a microwave generator that applies a microwave, the microwave generator, and the cooling device.
  • a control device for controlling, and the storage chamber is provided with a food plate having an opening through which microwaves can pass and into which cold air can flow, and by placing a frozen object on the food plate, The surface can also contact cold air, and the surface can be temperature-uniform. Furthermore, by applying microwaves, it is possible to freeze the surface of the object to be frozen while suppressing temperature unevenness inside.
  • freezing is likely to occur from the protrusions, corners, and ends of the frozen object, but due to the property that microwaves tend to concentrate on those parts, it is possible to prevent a situation where a part of the object freezes. Fine ice crystals are produced and high-quality freezing can be realized.
  • the food plate includes a plurality of openings, so that the cold air circulating in the storage chamber can be brought into contact with the entire surface of the frozen object, and the surface temperature of the object is equalized. Is possible. Further, the absorption of microwaves into the food plate can be reduced and the absorption into the object can be promoted.
  • the third refrigerator according to the present invention forms a cold air flow path through which cold air flows on the lower side of the food plate, thereby preventing the cold air from being transferred to the entire surface of the object to be frozen without disturbing the cold air circulation in the storage room. Can be accelerated.
  • the fourth refrigerator according to the present invention can form a cold air passage by providing a support on the food plate, and can irradiate microwaves from the entire food surface.
  • microwaves from the contact surface are not easily incident, but the entire surface of the object is lifted by floating the object to be frozen from the housing surface. Therefore, it is possible to suppress the irradiation unevenness of the radio wave. Therefore, it is possible to achieve further temperature equalization when the object is frozen.
  • the food plate is detachable from the storage room space, and moves vertically in the storage room space.
  • the radio wave distribution suitable for the type can be selected, and the radio wave irradiation distribution on the food surface can be made uniform.
  • the object to be frozen also rotates as the food plate rotates, so that the portion irradiated with the microwave also changes, and the radio wave unevenness on the food surface can be eliminated.
  • the seventh refrigerator by providing a saucer at the bottom of the food plate, even if moisture or excess drip generated when thawing the object to be frozen falls from the opening of the food plate, the inside of the storage chamber becomes dirty. It is possible to maintain a clean space by washing the dirty tray.
  • the eighth refrigerator according to the present invention further includes a door that closes the opening of the storage room, the storage room has a refrigeration room that can be set to at least a refrigeration temperature zone, and the refrigeration room has a refrigeration temperature zone. And a second storage section having a temperature range equal to or lower than the refrigeration temperature zone, and the refrigerating chamber is configured to store electromagnetic waves oscillated from the microwave generator in the second storage section.
  • the microwave generator is composed of an electromagnetic wave oscillator using a semiconductor element and an electromagnetic wave amplifier, and the installation space of the microwave generator can be reduced compared to a magnetron or the like. Therefore, the storage property of the refrigerator can be further improved.
  • the electromagnetic wave oscillator using the semiconductor element can change the frequency of the generated electromagnetic wave (microwave), it is more uniform by changing the reflection characteristics of the electromagnetic wave introduced into the second storage compartment. Food can be irradiated with electromagnetic waves. Therefore, since it is not necessary to attach an electromagnetic stirrer such as a stirrer fan, the installation space of the second storage section is reduced, and the storage capacity of the refrigerator can be further improved.
  • the second storage section includes a vent hole communicating with the first storage section, and the vent hole is provided with an opening / closing mechanism. Opening the compartment quickly raises the temperature in the second storage compartment, so that the thawing time can be shortened and user convenience can be improved. In addition, shortening the thawing time contributes to improving energy saving.
  • the refrigerator has a plurality of storage rooms
  • the refrigeration room is constituted by a storage room located at the top of the plurality of storage rooms
  • the second storage compartment is the uppermost part of the refrigeration room. Since the second storage compartment is located at the center of the refrigerator, the storage container of the second storage compartment is easy to operate, the stored food is easy to put in and out, and the visibility is high. Therefore, user convenience can be improved.
  • the refrigerator has a plurality of storage rooms
  • the refrigeration room is configured by a storage room located at the top of the plurality of storage rooms
  • the second storage compartment is the uppermost part of the refrigeration room.
  • the thirteenth refrigerator according to the present invention is a refrigeration cycle in which the cooling device has at least a compressor, and the compressor is provided in the upper part on the back side of the refrigerator, so that the lower machine room space of the refrigerator is reduced. Since the refrigerator lower storage room can be made larger in the depth direction, the uppermost refrigerator compartment entrance can be made larger than the refrigerator having an equivalent storage room, so that the storage capacity of the refrigerator compartment can be further increased. Can be improved.
  • the second storage section is provided with a lid made of a metal having a plurality of holes, and electromagnetic waves leak from the second storage section.
  • the user-friendliness can be improved by improving the visibility in the second storage section.
  • the second storage compartment is provided with a lid provided with a conductive film that is transparent at least in the visible light region. As well as preventing leakage, it is possible to improve the usability of the user by further improving the visibility in the second storage compartment.
  • a sixteenth refrigerator according to the present invention is configured such that at least one LED is provided in the second storage section, and the LED emits light during at least one operation during freezing or thawing. As a result, the user can recognize the operation status of the second storage compartment at a glance, so that the usability can be improved.
  • the control device controls the temperature of the object to be cooled so as to rapidly decrease the temperature in the cold room in a state where the temperature of the object to be cooled is held for a certain period of time in a temperature zone below the freezing point. It is a feature, and it is possible to minimize the growth of ice crystal nuclei after the release of supercooling.
  • the eighteenth refrigerator according to the present invention applies a microwave having an energy amount so as to be held for a certain period of time in a temperature zone where the temperature of the object to be cooled has fallen below the freezing point or a temperature zone where the maximum ice crystal formation zone has passed.
  • the supercooled state can be maintained for a long time below the freezing temperature.
  • a nineteenth refrigerator In a nineteenth refrigerator according to the present invention, after holding for a certain period of time at a temperature zone where the temperature of the object to be cooled has fallen below the freezing point or passed through the maximum ice crystal formation zone, the microwave application is stopped and stored. Control is performed so as to lower the temperature of the chamber, and it is possible to promote a decrease in temperature of supercooling.
  • the object to be cooled when an object to be cooled is in a supercooled state, the object to be cooled is rapidly frozen before the supercooling is released, that is, from undercooling while maintaining the supercooled state in the deep state.
  • freezing is performed while suppressing aggregation of water molecules, so that high-quality freezing can be realized in which freezing is performed while suppressing generation and growth of ice crystal nuclei that are the basis of ice crystal formation.
  • a first refrigerator operation method is a refrigerator operation method including a cooling device that cools an object to be cooled and a storage chamber that houses the object to be cooled.
  • a microwave generator configured to irradiate an object; and a food plate provided in the storage chamber and having an opening through which microwaves can flow and into which cool air can flow.
  • the refrigerator further includes a temperature detector that detects the temperature of the object to be cooled, and in step (A), the temperature detector detects the temperature of the object to be cooled. Step (A1) and a step (A2) of stopping the cooling device when the temperature of the object to be cooled reaches a first temperature at which water molecules in the object to be cooled aggregate.
  • the refrigerator further includes a temperature detector that detects the temperature of the object to be cooled, and in step (C), the temperature detector detects the temperature of the object to be cooled. It has a step (C1) and a step (C2) of stopping the microwave generator when the temperature of the object to be cooled reaches a second temperature that is lower than the first temperature.
  • the refrigerator further includes a temperature detector that detects the temperature of the object to be cooled, and step (C) is a step in which the temperature detector detects the temperature of the object to be cooled. (C1) and after the set time which is the time until the temperature of the object to be cooled becomes the second temperature which is lower than the first temperature and then the temperature of the object to be cooled rises, the microwave generator And (C3) for stopping the operation.
  • the operation method of the fifth refrigerator of the present invention is characterized in that the second temperature is lower than the maximum ice crystal formation zone.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view schematically showing the configuration of the storage chamber according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram showing a schematic configuration of the refrigerator in the first embodiment of the present invention.
  • the storage chamber 11 includes a storage case 13 for storing food (an object to be cooled) 12 in an open state and an outer frame case 14 for storing the storage case 13.
  • a door portion 15 is installed on the front surface of the storage case 13 accommodated in the outer frame case 14, and the door portion 15 is integrated with the storage case 13.
  • the storage case 13 can be pulled out from the outer case 14 through the door 15.
  • the door portion 15 is provided with a packing at a contact portion with the outer frame case 14. Thereby, when the door part 15 is closed, the outer frame case 14 and the door part 15 are brought into close contact with each other, and the storage case 13 becomes a sealed space.
  • the outer frame case 14 is provided with a hole-like or slit-like vent 16 having a diameter of less than 6 mm, and the cool air sent from the vent 16 to the entire storage compartment partitioned in the refrigerator flows into the storage case 13. .
  • FIG. 3 shows a view of the refrigerator in which the storage case 13 is stored.
  • the refrigerator includes a cooler 17 including a cooler and a compressor, a blower path 18 connected to each room, and a fan 19 that blows cool air.
  • the cool air sent into each compartment is generated in the refrigeration cycle of the cooling device 17 including a cooler and a compressor, and is blown into the respective rooms by the fan 19.
  • the food plate 20 is installed in the storage case 13, and the food plate 20 is used for placing the food 12.
  • the food plate 20 is configured to be detachable in the storage case 13, and a plurality of openings 21 are provided on the contact surface with the food 12.
  • the shape of the opening 21 may be a shape that minimizes the contact area with the food 12 such as a net shape, a slit shape, a round hole, or a fence shape, and it is sufficient that the cool air in the storage chamber 11 can flow in.
  • the material of the food plate 20 is preferably plastics having high microwave (electromagnetic wave) permeability, such as polyethylene, polypropylene, polycarbonate, and the like.
  • a support portion 22 is provided at the lower portion of the food plate 20 so as to float from the bottom surface of the storage case 13, and the support portion 22 forms a cold air ventilation path 23 through which cool air flows to the lower side of the food plate 20.
  • the antenna case 24 for applying microwaves is provided on the wall surface (here, the ceiling surface) of the storage case 13, and the food plate installation position is marked on the bottom surface of the storage case 13.
  • the food plate 20 is disposed at the installation position, the food plate is positioned directly below the antenna 24.
  • the microwave applied from the antenna 24 is transmitted from a microwave generator (electromagnetic wave generator) 25.
  • An example of the microwave generator 25 is schematically shown in FIG.
  • FIG. 4 is a schematic diagram showing a schematic configuration of the microwave generator provided in the storage chamber 11 shown in FIG.
  • the microwave generation device 25 includes a transmission device 26, an amplifier 27, a distributor 28, and a transmission control unit 29.
  • the transmitting device 26 is a device capable of transmitting a microwave, and in this embodiment, the microwave is transmitted using a semiconductor element.
  • the semiconductor element is made of Si, GaAs, SiC, GaN, or the like.
  • the low-power microwave of 100 W or less transmitted from the transmitter 26 using these semiconductor elements is amplified by the amplifier 27 and applied to the food 12 from the antenna 24 provided in the storage chamber 11 via the distributor 28. .
  • the energy of the microwave applied to the food 12 may be smaller than the energy for cooling the food, and is an output that does not hinder the temperature drop of the food 12 in a frozen or refrigerated atmosphere (for example, 100 W or less). Moreover, both cooling and thawing
  • the storage case 13 and the outer frame case 14 are preferably made of metal. Thereby, the incident loss to the foodstuff of an electromagnetic wave can be reduced.
  • a temperature detector 30 is provided in the storage chamber 11 and directly detects the temperature of the stored food 12.
  • the temperature detector 30 is a device (for example, an infrared sensor) that can detect the temperature of the food 12 in a non-contact manner.
  • the temperature detector 30 is configured to output the detected temperature of the food 12 to the control device 31.
  • the control device 31 operates the microwave generator 25 when the temperature of the food 12 reaches a threshold value selected within the range of the freezing point and 10 ° C. or less based on the signal information of the temperature detector 30.
  • a wave is configured to be applied to the food item 12.
  • FIG. 5 is a schematic diagram showing the operation (control) of the refrigerator according to the first embodiment and the temperature course of the object to be cooled and the storage chamber.
  • the food plate 20 is installed at a predetermined position in the storage case 13.
  • the food 12 to be frozen is placed on the food plate 20 and the door portion 15 is closed.
  • the food 12 placed on the food plate 20 is disposed directly below the antenna 24.
  • the heat transfer is different between the surface of the food 12 in contact with the cold and the surface in contact with the storage case 13 when placed directly in the storage case 13. Only the surface with much contact with cold air is cooled down to a low temperature, and temperature unevenness starts to occur. Because the heat transfer is stagnant between the storage case 13 and the contact surface, the temperature unevenness occurring on the food surface further affects the heat conduction to the inside, and also causes unevenness in the formation of ice crystals during freezing. Become.
  • the microwave generator 25 is activated to apply the microwave into the storage chamber 11 (see FIG. 5).
  • the timing of application of the microwave is preferably from 10 ° C. at which water molecules of an object such as food start to gather to around 5 ° C. at which aggregation between water molecules becomes strong.
  • microwaves in these temperature ranges effectively suppresses the aggregation of water molecules on the surface of food and other objects, and also suppresses the formation of ice crystal nuclei, allowing internal cooling to proceed without freezing. Go. As a result, the temperature inside the food can be equalized without freezing the food surface.
  • the food plate 20 includes the support portion 22, a cold air passage 23 through which cold air flows is formed on the lower side, and heat transfer of the cold air to the entire surface of the food 12 is prevented without disturbing the cold air circulation in the storage chamber 11. Can be accelerated. Further, when the food 12 is placed in contact with the housing surface of the storage chamber 11, microwaves are difficult to enter from the contact surface between the food 12 and the housing, but the food plate 20 floats the food from the housing surface. In addition, it is possible to suppress the irradiation unevenness of the radio wave by the microwave incident from the entire food surface, and to prevent the food surface from freezing.
  • the amount of microwave power applied to the food 12 is set smaller than the energy for cooling the food 12.
  • the temperature decreases without freezing.
  • the storage chamber is maintained at a constant temperature between -10 ° C. and the temperature range from the freezing point of the object.
  • the temperature is maintained at ⁇ 10 ° C.
  • the temperature decreases without freezing even when the freezing point of the food has passed.
  • the temperature of the food 12 passes through the freezing point and the temperature difference from the storage chamber 11 becomes small, the cooling energy of the storage chamber 11 becomes difficult to be transmitted to the food 12, and the temperature drop is moderated and held at a constant temperature. Is done.
  • the temperature change is reduced from ⁇ 4 ° C. to ⁇ 5 ° C. and the temperature is kept constant. Thereafter, when the temperature detector 30 detects that the food surface temperature has rapidly increased to the freezing point, for example, 0 to ⁇ 2 ° C., the temperature in the storage chamber 11 is rapidly decreased to ⁇ 20 ° C.
  • the temperature of the food surface can be equalized.
  • the microwaves are incident from the entire surface of the food and the electromagnetic wave unevenness of the microwave is suppressed, so that the food surface can be prevented from freezing.
  • the food surface and the interior can be soaked and cooled, so it does not freeze even below the freezing point, and when it begins to freeze, small ice crystals are uniformly generated within a few seconds, enabling high-quality freezing. It becomes.
  • microwaves are irradiated during freezing.
  • the microwave can be applied to a storage room having a thawing function in the storage room 11 that realizes simultaneous cooling and heating. Even in that case, similarly, since the food is in a state of floating in the storage chamber 11, microwaves are incident from the entire surface of the food, and the electromagnetic wave unevenness of the microwave is suppressed. It is possible to defrost without.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 2 of the present invention
  • FIG. 7 is a schematic diagram showing a schematic configuration of the storage room according to Embodiment 2 of the present invention.
  • the refrigerator according to the second embodiment of the present invention is different from the refrigerator according to the first embodiment in that the food plate 20 can be installed at an arbitrary height in the vertical direction of the storage case 13, and the other configurations. Since this is the same as the refrigerator according to the first embodiment, the differences will be described.
  • two or more pairs of support bodies 32 are provided on both side walls of the storage case 13.
  • the support 32 is formed so as to protrude from the side wall surface from the front side to the back side of the side wall surface so that the food plate 20 is placed thereon.
  • a flat food plate By placing a flat food plate on the support 32, it can be installed at any height depending on the shape and type of food. Which support 32 the food plate 20 is placed on is selected in consideration of the radio wave distribution of the microwave in the storage chamber 11.
  • the distribution of the strength of radio waves is generated in the storage chamber 11. Since the radio wave unevenness exists three-dimensionally in the storage chamber 11, for example, the radio wave unevenness is different between the cross section of the bottom surface and the central portion. Note that the radio wave distribution continuously changes in the height direction.
  • a strong radio wave distribution is generated in the center near the bottom surface in the storage room 11 and a strong radio wave distribution is present in several places other than the central part at the intermediate height of the storage room 11.
  • food with a small shape is placed near the bottom.
  • radio waves since radio waves are concentrated in the center, radio waves can be efficiently irradiated.
  • food with a large surface area can be irradiated with radio waves on the entire food by installing it at an intermediate height where the distribution of strong radio wave intensity is widely distributed.
  • the microwave heating distribution suitable for the shape of the food can be selected simply by changing the height of the food plate, the radio wave irradiation distribution on the food surface can be made uniform. Furthermore, even when food is stacked and stored, if a heating plate is used, a gap is maintained between the food and the food is cooled without blocking the flow of cold air, and quality during storage can be improved.
  • FIG. 8 is a schematic diagram showing a schematic configuration of a storage chamber in the refrigerator according to Embodiment 3 of the present invention
  • FIG. 9 is a perspective view showing a schematic configuration of the storage chamber according to Embodiment 3 of the present invention.
  • Embodiment 3 is different from Embodiments 1 and 2 in that a saucer is provided at the lower part of the food plate, and the other configurations are the same as those in Embodiment 1, so the differences will be described.
  • a tray 33 is arranged in the storage room 11 of the refrigerator according to Embodiment 3 of the present invention.
  • the food plate 20 is installed above the tray 33.
  • the tray 33 is preferably made of a material that transmits microwaves or has a low dielectric constant.
  • plastic materials, glass, ceramics, etc. that do not deform even in an environment of ⁇ 20 ° C. to 100 ° C. are preferable. It is even better if the heat and cold resistance is between -30 ° C and 120 ° C.
  • the saucer 33 is installed under the food plate 20, the frozen food is placed on the food plate, the door is closed, and the microwave is applied. Frozen foods begin to melt ice crystals and are thawed. As the thawing progresses, the food covered with a thick film of ice such as shrimp becomes soaked in the melted water that it becomes watery, but only water droplets drop from the opening 21 of the food plate 20 onto the tray 33. The food does not become watery, and the inside of the storage case 13 can be kept clean.
  • the application and stop of the microwave is controlled by the detection signal of the temperature detector 30.
  • the detection information of the temperature detector 30 is, for example, -2 ° C, and the surface temperature of the food reaches the freezing temperature (melting temperature).
  • the control device 31 controls to stop the application of the microwave.
  • the microwave application After the microwave application is stopped, by keeping the temperature in the storage chamber 11 at the refrigeration temperature (1 ° C. or higher), it is possible to preserve the thawed food as it is. If the used tray 33 is taken out, the water dripped at the time of thawing is discarded and washed, and then returned to the storage case 13, the storage case 13 can be kept clean.
  • FIG. 10 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 4 of the present invention.
  • the fourth embodiment is different from the first to third embodiments in that the food plate 20 rotates in the storage case 13, and the other configuration is the same as the first or second embodiment. explain.
  • the food plate 20 is connected to the motor 35 via the support shaft 34.
  • the food plate 20 can be freely attached and detached from the support shaft 34.
  • the food plate 20 is formed in a circular shape, and a plurality of openings 21 are provided on concentric circles.
  • the food plate 20 rotates so as to be reversed when rotated by 180 ° C. by the motor 35. As the food plate 20 rotates in this way, the heating distribution of the microwave applied to the food on the food plate 20 changes periodically, and the microwave is irradiated more uniformly than in the stopped food.
  • both freezing and thawing In both freezing and thawing, the entire food surface is irradiated with microwaves, and uneven heating on the food is also improved, preventing surface freezing and thawing unevenness during freezing. Therefore, both freezing and thawing can achieve uniform temperature, and high-quality freezing and thawing can be realized.
  • FIG. 11 is a front view of a refrigerator according to Embodiment 5 of the present invention
  • FIG. 12 is a side cross-sectional view showing an AA cross section in FIG.
  • a heat insulating box body 101 which is a refrigerator main body of the refrigerator 100 according to the fifth embodiment of the present invention includes an outer box 102 mainly using a steel plate and an inner box 103 formed of a resin such as ABS. And a foamed heat insulating material such as hard foamed urethane filled in the space between the outer box 102 and the inner box 103. Moreover, the heat insulation box 101 is thermally insulated from the circumference
  • the heat insulation box 101 has a refrigerating room 104 as a first storage room at the top, a second freezing room 105 as a fourth storage room at the lower part of the refrigerating room 104, and a fifth storage room.
  • An ice making chamber 106 as a storage chamber is provided side by side, a first freezing chamber 107 as a second storage chamber is provided at the lower part of the second freezing chamber 105 and the ice making chamber 106, and a third at the bottom.
  • a vegetable room 108 is provided as a storage room.
  • the refrigerator compartment 104 has a rotary refrigerator compartment door 104a, and the second freezer compartment 105, the ice making compartment 106, the first freezer compartment 107, and the vegetable compartment 108 are each composed of a rail (not shown). It has drawer doors 105a, 106a, 107a, 108a.
  • Each storage room having a drawer door has a case placed on a rail (not shown) or the like, the second freezing room 105 has a freezing room case 105b, and the ice making room 106 has an ice storage case 106b.
  • a freezer compartment upper case 107b and a freezer compartment lower case 107c are arranged, and in the vegetable compartment 108, a vegetable compartment upper case 108b and a vegetable compartment lower case 108c are arranged.
  • the refrigerated room 104 is a refrigerated temperature zone, which is a temperature at which the object (food) to be cooled does not freeze, and a temperature lower than the refrigerated temperature zone, usually set to 1 ° C. to 5 ° C.
  • a second storage section 104c that can be set to a freezing temperature of about ⁇ 10 ° C. lower than the freezing temperature of food is provided.
  • the vegetable room 108 is set to a refrigeration temperature range equivalent to the refrigeration room 104 or a temperature range of 2 ° C. to 7 ° C., which is a slightly higher temperature setting than the refrigeration temperature range.
  • the first freezer compartment 107 is set in a freezing temperature zone, and is usually set at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage. For example, to improve the frozen storage state, It may be set at a low temperature of -25 ° C.
  • the second freezer compartment 105 is maintained at a refrigeration temperature zone equivalent to the first freezer compartment 107 or a temperature setting of ⁇ 20 ° C. to ⁇ 12 ° C. slightly higher than the freezing temperature zone.
  • the second freezing room 105 is a storage room having an independent door arranged in parallel with the ice making room 106.
  • the ice making chamber 106 makes ice with an automatic ice maker (not shown) provided in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerated room 104, and stores ice in the lower part of the room. Store in case 106b.
  • the top surface portion of the heat insulating box 101 has a stepped recess shape toward the back of the refrigerator, and a machine room 101a is formed in the stepped recess.
  • the machine room 101a accommodates high-pressure components of the refrigeration cycle such as the compressor 109 and a dryer (not shown) for removing moisture. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.
  • the compressor 109 is disposed in the conventional refrigerator.
  • the space in the machine room at the bottom of the easy-to-use heat insulation box 101 can be effectively converted as the storage room capacity, and the storage performance and usability can be greatly improved.
  • the refrigeration cycle is formed of a series of refrigerant flow paths in which a compressor 109, a condenser, a capillary as a decompressor, and a cooler 112 are provided in order, and a hydrocarbon-based refrigerant such as isobutane is enclosed as a refrigerant. ing.
  • Compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder.
  • those functional parts may be arranged in the machine room 101a.
  • the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.
  • a cooling chamber 110 for generating cold air is provided on the back surface of the first freezing chamber 107, and a rear partition configured to be insulated from the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107.
  • a wall 111 is formed.
  • a cooler 112 is disposed, and in the upper space of the cooler 112, the cold air cooled by the cooler 112 by a forced convection method is stored in the refrigerating chamber 104, the second freezing chamber 105, and the ice making chamber.
  • the cooling fan 113 which ventilates to the 1st freezer compartment 107 and the vegetable compartment 108 is arrange
  • a radiant heating means 114 made of a glass tube is provided for defrosting the frost and ice adhering to the cooler 112 and its periphery during cooling.
  • a drain pan 115 for receiving defrost water generated at the time of defrosting is provided below the radiant heating means 114, and a drain tube 116 is provided so as to extend downward from the deepest portion of the drain pan 115.
  • An evaporating dish 117 is disposed below the drain tube 116.
  • the second storage section 104c is composed of an insulative heat insulation box 118 provided at the lowest stage in the refrigerator compartment 104, and is provided as a space for freezing, thawing and storing the food 120.
  • a front opening is formed in the interior heat insulation box 118.
  • the heat insulating box body 118 is provided with a heat insulating door 121 that closes the front opening.
  • the packing 122 air-blocks the space between the heat insulating door 121 and the heat insulating box body 118, and The storage compartment 104c is kept sealed.
  • the bottom surface of the internal heat insulation box 118 may be formed integrally with the first partition wall 123 that insulates the refrigerator compartment 104 from the first freezer compartment 107 and the ice making compartment 106.
  • the back surface of 118 may be integrated with the refrigerator compartment back member 124, and the left surface of the in-compartment heat insulating box 118 may be integrated with the left surface of the heat insulating box 101.
  • a conveyance air passage 125 that conveys the cold air sent out by the cooling fan 113 to the refrigerator compartment 104 is disposed.
  • a second storage compartment discharge port 118a for introducing the cool air of the conveyance air passage 125 into the second storage compartment 104c is provided on the upper rear surface of the interior heat insulation box 118, and the top surface of the interior heat insulation box 118 is provided.
  • a vent hole 118b through which cool air is introduced from the first storage section 104b is provided in the inner part.
  • the discharge port 118a and the vent port 118b are configured to be freely opened and closed by a damper 119.
  • a suction port 118c through which cool air that has cooled the second storage section 104c is sucked is provided at the lower back of the interior heat insulation box 118.
  • the sucked cool air is heat-exchanged again by the cooler 112 to become cool cool air, and the second storage section 104c is cooled by repeating the circulation.
  • the damper 119 is a single damper capable of selecting an opening, but is not limited to this.
  • the damper 119 may be a twin damper.
  • the temperature of the second storage section 104c can be controlled more delicately by enabling the opening / closing of the discharge port 118a and the vent port 118b to be controlled separately.
  • a vapor compression refrigeration system using a compressor an absorption refrigeration system, a Peltier refrigeration system, or the like can be used.
  • a box 126 is arranged inside the second storage section 104c.
  • the box 126 is formed such that the wall facing the heat insulating door 121 is opened and the other surface is substantially closed.
  • An open part of the box 126 constitutes an open part 126a.
  • a lid 127 is attached to the heat insulating door 121.
  • the box body 126 and the lid body 127 are made of metal such as stainless steel, aluminum, or a steel plate. Therefore, the inner wall surface of the independent storage section 128 is covered with metal.
  • box body 126 and the lid body 127 are not necessarily all made of metal, and may be only the inner wall surface of the independent storage section 128, for example.
  • a metal plate may be attached to the inner wall, or a metal film may be formed by a vapor deposition method or the like.
  • the heat insulating door 121 is formed of a transparent or highly light-transmitting resin or glass
  • the lid 127 is formed of a metal provided with a plurality of holes having a diameter that does not leak electromagnetic waves. And the visibility inside the second storage section 104c can be improved.
  • the lid 127 is made of a metal plate that has been punched (diameter 6 mm).
  • the transparent and heat resistant resin include, but are not limited to, polycarbonate, polyethylene terephthalate, polyether ether ketone, polyether sulfone, polyacrylonitrile, polycycloolefin, and the like.
  • the second storage section 104c that is, the inside of the independent storage section 128 can be confirmed through a punching hole, so that the user's convenience can be improved.
  • the lid 127 is made of a metal mesh instead of punched metal. In that case as well, the mesh must be open so that electromagnetic waves do not leak.
  • the heat insulating door 121 is made of transparent resin or glass, and the lid 127 made of transparent resin or glass is provided with a conductive film that is transparent in the visible light range, so that electromagnetic waves can be generated from the second storage compartment. Can be prevented, and the visibility in the second storage compartment can be further enhanced.
  • the transparent conductive film is composed of at least one of tin oxide or indium oxide added with tin oxide, tin oxide compound added with antimony or fluorine, or zinc oxide added with aluminum. However, it is not limited to this.
  • the lid 127 By providing the lid 127 with a transparent conductive film, the inside of the second storage section 104c is not blocked by metal compared to the lid 127 made of punched metal or metal mesh. Therefore, it becomes possible to improve visibility more and to improve the usability of the user.
  • the heat insulating door 121 and the lid 127 are configured separately, but the same effect can be obtained even when the lid 127 also serves as the heat insulating door 121, and the visibility is further improved. It becomes possible.
  • a case 129 for storing food (an object to be cooled) 120 is provided and stored, and the user opens the heat insulating door 121 to open the case 129.
  • the food 120 can be put in and taken out.
  • Various opening operations of the heat insulating door 121 are conceivable, and the heat insulating door 121 may be rotated about any one of the upper and lower sides of the heat insulating door 121, and may be rotated about the left and right sides of the heat insulating door 121. May be. Furthermore, you may horizontally move the heat insulation door 121 to a near direction using a slide rail. Further, the case 129 may or may not be interlocked with the operation of the heat insulating door 121, and the effect in the present embodiment is not changed.
  • An antenna 130 is provided on the top surface of the box 126 and is electrically connected to the electromagnetic wave generator 131 by a coaxial cable or the like.
  • a temperature detector 132 is provided on the top surface of the box 126 and is electrically connected to the control device 133. Further, the control device 133 is also electrically connected to the electromagnetic wave generator 131.
  • the electromagnetic wave generator 131 includes an electromagnetic wave oscillator (not shown) configured using a semiconductor element, and an electromagnetic wave amplifier (not shown) configured using a semiconductor element that amplifies an output signal of the electromagnetic wave oscillator. Composed.
  • a field effect transistor using a GaN material is used for a semiconductor element of an electromagnetic wave amplifier.
  • the electromagnetic wave amplifier may use other semiconductor elements such as Si, GaAs and SiC in addition to the GaN material.
  • the antenna 130 and the temperature detector 132 do not necessarily need to be on the top surface of the box body 126, and may be on the back surface, the side surface, or the bottom surface.
  • Various methods are conceivable for the temperature detector 132.
  • an infrared sensor capable of detecting infrared rays, a thermistor using a change in resistance value due to temperature, or the like may be used.
  • the compressor 109, the cooling fan 113, the radiant heating means 114, and the damper 119 described above are electrically connected to the control device 133.
  • the refrigeration cycle is operated by a signal from the control device 133 according to the temperature set in the refrigerator, and the cooling operation is performed.
  • the high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface and the rear surface of the heat insulating box body 101 which is the refrigerator main body, and the front opening of the heat insulating box body 101.
  • the heat insulating box 101 is condensed and liquefied while preventing the condensation of the heat insulating box 101 via a refrigerant pipe (not shown) disposed in the tube, and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
  • the low-temperature and low-pressure liquid refrigerant exchanges heat with the air in each storage chamber by the operation of the cooling fan 113, and the refrigerant in the cooler 112 evaporates.
  • cool air for cooling each storage chamber in the cooling chamber 110 is generated.
  • the cold cold air is diverted to the refrigerator compartment 104, the second freezer compartment 105, the ice making compartment 106, the first freezer compartment 107, and the vegetable compartment 108 by an air passage or a damper.
  • chamber is cooled to each target temperature range by the divided cold air.
  • the cooler 112 disposed in the cooling chamber 110 is cooled to about ⁇ 40 ° C. to ⁇ 20 ° C. by the refrigeration cycle.
  • the air in the cooling chamber 110 is cooled, and the cooled air is sent by the cooling fan 113 through the discharge port 118a and into the second storage section 104c.
  • the damper 119 opens and closes the discharge port 118a so as to keep the inside of the second storage section 104c at the set temperature, and adjusts the amount of cool air sent to the second storage section 104c.
  • a box body 126 is disposed on the downstream side of the discharge port 118a, and the cool air sent from the discharge port 118a into the second storage section 104c contacts the box body 126 to cool the box body 126 itself.
  • the entire box 126 can be cooled quickly and uniformly due to its good thermal conductivity.
  • the lid 127 attached to the heat insulating door 121 is also made of the same metal as the box 126, it has good thermal conductivity and is quickly and uniformly cooled. Therefore, the inside of the independent storage section 128 surrounded by the box body 126 and the lid body 127 is uniformly cooled while minimizing variation in temperature distribution.
  • it is possible to rapidly cool the box body 126 by positively bringing cold air into contact with the metal box body 126, thereby rapidly freezing the food 120 stored in the independent storage section 128. It becomes.
  • the cold air that circulates in the second storage section 104c and cools the box 126 returns to the cooling chamber 110 from the suction port 118c and is cooled again by the cooler 112.
  • the temperature detector 132 attached to the top surface of the box 126 can detect the air temperature inside the independent storage section 128, the case 129, or the temperature of the food 120. This temperature information is sent as an electrical signal to the electrically connected control device 133, and the control device 133 appropriately controls the cooling fan 113 and the refrigeration cycle so that the temperature is set in advance. Specifically, the control device 133 varies the operation interval of the cooling fan 113 and the refrigeration cycle.
  • control device 133 can control the rotation speed of the compressor 109 to vary the temperature of the cooler 112 itself.
  • the set temperature of the second storage section 104c is set to about ⁇ 10 ° C., and it is possible to achieve both reduction in the time and labor for thawing and long-term storage.
  • the set temperature of the second storage section 104c is about ⁇ 20 ° C., which is a normal freezing temperature, it can be stored for a longer period of time, and the convenience varies depending on the temperature range. It is not limited to the temperature range.
  • the temperature in the independent storage section 128 is adjusted to about ⁇ 10 ° C. by the temperature detector 132, the control device 133, the refrigeration cycle, and other cooling means. Assume that the food 120 having a relatively high temperature of about 15 ° C. is stored in the case 129 in the independent storage section 128. Since the temperature in the independent storage section 128 is adjusted to about ⁇ 10 ° C., the stored food 120 is deprived of heat from the surroundings, and the temperature gradually decreases.
  • the temperature of the food 120 is detected by a temperature detector 132 provided on the top surface of the box 126, and when the temperature decreases to 5 ° C., a signal is sent from the control device 133 to the electromagnetic wave generator 131, and the electromagnetic wave generator 131.
  • the frequency of this electromagnetic wave is 2.54 GHz.
  • This electromagnetic wave is sent to the antenna 130 by an electrically connected coaxial cable or the like, and is irradiated to the food 120 from the antenna 130.
  • the electric power applied to the food 120 is about 0.1 to 3 W, which is sufficiently smaller than the energy for cooling the food 120, and the temperature of the food 120 does not rise by irradiating electromagnetic waves.
  • the frequency of electromagnetic waves was 2.54 GHz, the effect in this Embodiment is not limited to this frequency, For example, what is necessary is just 300 MHz or more and 3 THz or less.
  • the food 120 is a food containing moisture inside meat or the like.
  • the electromagnetic wave is not irradiated, the food 120 is gradually frozen from the surface toward the center.
  • the food 120 irradiated with electromagnetic waves can suppress a decrease in surface temperature, the food 120 can be prevented from freezing first from the surface, and after the decrease in the surface temperature is suppressed, Since the internal temperature gradually decreases, it is possible to cool the food 120 while suppressing the temperature difference between the inside and outside of the food 120, and freezing with an extremely fast traveling speed occurs inside the food 120.
  • the body 127 is made of metal contributes to suppressing variation in temperature distribution and reducing the temperature change width during operation.
  • the box body 126 and the lid body 127 are made of metal meets this purpose. is there.
  • the fitting portion between the box body 126 and the lid body 127 is configured such that electromagnetic waves do not leak.
  • the box body 126 and the lid body 127 need not be all made of metal, and only the inner wall surface of the independent storage section 128 may be used.
  • the discharge port 118a is closed by the damper 119.
  • the cooler 112 disposed in the cooling chamber 110 is cooled to about ⁇ 40 ° C. to ⁇ 20 ° C. by the refrigeration cycle.
  • the air in the cooling chamber 110 is cooled, and the cold air forcedly sent out by the cooling fan 113 is sent to the first storage section 104b through the conveyance air passage.
  • the first storage compartment 104b is cooled, and the cool air whose temperature has risen is sent into the second storage compartment 104c through the vent 118b.
  • the second storage section 104c can be set to the refrigeration temperature.
  • the box body 126 is disposed on the downstream side of the vent hole 118b, and the cold air sent from the vent hole 118b into the second storage section 104c contacts the box body 126.
  • the entire box 126 can be quickly and uniformly heated due to its good thermal conductivity. Therefore, it is possible to shorten the time for raising the temperature of the second storage compartment 104c from about ⁇ 10 ° C., which is a temperature setting for freezing and storage, to a refrigeration temperature suitable for thawing. Since shortening the temperature raising time leads to shortening of the thawing time, it is possible to improve the user-friendliness and to improve the energy consumption.
  • the cold air that circulates in the second storage section 104c and cools the box 126 returns to the cooling chamber 110 from the suction port 118c and is cooled again by the cooler 112.
  • the result of the thawing experiment in the refrigerator of the fifth embodiment is shown below.
  • the output of the electromagnetic wave generator 131 was 20 W
  • the temperature of the second storage section 104c was 5 ° C.
  • the thawing time required 50 minutes, but the temperature after thawing was measured at 23 locations.
  • the temperature unevenness was only about 3 ° C.
  • the temperature unevenness after thawing was about 20 ° C.
  • the thawing unevenness was about 3 ° C., but thawing took about 20 hours.
  • the refrigeration apparatus of the present embodiment can reduce temperature unevenness after thawing and further shorten the thawing time.
  • the power of the electromagnetic wave used for thawing that is, the output of the electromagnetic wave generator 131 is 20 W.
  • the present invention is not limited to this, and the power used for thawing is 100 W or less, preferably 50 W or less. This is desirable because it can be reduced.
  • the frozen food can be thawed to, for example, ⁇ 5 ° C. to ⁇ 10 ° C., cut as much as necessary with a knife, and the rest can be re-frozen.
  • a signal indicating the end of thawing can be automatically transmitted from the control device 133 and the output of the electromagnetic wave generator 131 can be stopped, so that the user is concerned about overheating. There is no need.
  • a notification device such as a buzzer or light is provided in the refrigerator 100 to notify the user of the end of thawing, thereby preventing forgetting to take out after thawing. Even if you forget to take out the food after thawing, the second storage compartment 104c can be set to about ⁇ 10 ° C., so that it can be stored safely with reduced damage to the food.
  • the case 129 is arranged in the independent storage section 128, the user can open the heat insulating door 121 and pull the case 129 to the near side. In this state, after the food 120 such as food is placed in the case 129, the case 129 is returned to its original position and the heat insulating door 121 is closed. Considering the case without the case 129, it is difficult to reach the back side of the independent storage section 128, and when many foods 120 are stored on the front side, it is difficult to access the space on the back side. Storability will fall. By using the case 129 so that it can be pulled out to the front, the storage property of the food 120 in the space on the back side of the case 129 can be improved, and convenience can be improved.
  • At least the inner wall of the independent storage section 128 is made of metal, and the inside of the case 129 can be quickly cooled while minimizing variations in temperature distribution to the minimum. Therefore, by arranging the case 129 in the independent storage compartment 128 surrounded by metal, it is possible to improve the convenience of storing the user's food 120 and to maintain a uniform temperature environment with reduced temperature distribution variation. Both.
  • the second storage section 104c when a general adult user is assumed, the second storage section 104c is positioned at a waistline height, so that the posture for pulling out the case 129 and taking in and out the food 120 is set. It can be natural and the visibility in the case 129 is also good. Since the second storage section 104c is also used as a thawing chamber, cooking is performed instead of storage, which is a function of a general refrigerator, so that the time during which the food 120 is put in the storage is shortened. Therefore, since the frequency of opening and closing may increase, it can be said that it is very effective to improve usability that it can be used in an easy posture and has good visibility.
  • the heat insulating door 121 When the heat insulating door 121 is opened, the warm air outside the refrigerator 100 flows into the independent storage compartment 128, but the inner wall of the independent storage compartment 128 is made of metal, so even if the temperature rises once It can return to the set temperature.
  • an electromagnetic wave oscillator and an electromagnetic wave amplifier using a semiconductor element are used for the electromagnetic wave generator 131. Therefore, the installation space can be reduced as compared with a magnetron, which is an electromagnetic wave generator that has been conventionally used for heating foods.
  • the magnetron can generate only a single frequency, it causes resonance in the cooking compartment, and only the portion of the resonance point is heated, resulting in temperature unevenness. It was necessary to provide an electromagnetic stirrer. However, since the frequency of an electromagnetic wave oscillator using a semiconductor element can be changed during operation, the resonance point can be changed by changing the frequency, and an electromagnetic wave stirrer is not required.
  • the installation space for the box body 126 can also be reduced.
  • the improvement of the storage property of the 1st storage division 104b and the improvement of energy saving by the reduction of the energy required in order to maintain the 2nd storage division 104c at low temperature are realizable.
  • irradiation efficiency can be improved and energy saving property can be improved further.
  • the electromagnetic wave generator 131 generates heat when generating the electromagnetic wave, in this embodiment, since the electromagnetic wave generator 131 is installed on the back surface of the refrigerator compartment 104, it is possible to minimize the adjacent interior temperature. It does not significantly reduce energy savings.
  • the electromagnetic wave generator 131 is installed on the back surface of the heat insulating box body 101. However, the same thing can be said if it is installed outside the heat insulating box body 101, for example, in the machine room 101a or on the top surface of the heat insulating box body 101. An effect is obtained. In addition, when the electromagnetic wave generator 131 has a low output and the surface temperature rise is small, even if it is installed in the storage room, the energy saving performance is not significantly reduced.
  • the first storage section 104b maintained in the refrigeration temperature zone in the refrigeration chamber 104, and a temperature zone lower than the refrigeration temperature zone, for example, about ⁇ 10 ° C. lower than the freezing temperature.
  • the second storage section 104c is maintained at the same position, and electromagnetic waves oscillated from the electromagnetic wave generator 131 are introduced into the second storage section 104c.
  • the electromagnetic wave generator 131 is composed of an electromagnetic wave oscillator and an electromagnetic wave amplifier using a semiconductor element, the installation space of the electromagnetic wave generator 131 can be reduced as compared with a magnetron or the like. Can be improved.
  • an electromagnetic wave oscillator using a semiconductor element can change the frequency of the generated electromagnetic wave
  • the electromagnetic wave of a stirrer fan or the like can be changed by changing the reflection characteristics of the electromagnetic wave introduced into the second storage section 104c. Since it is not necessary to attach a stirrer, the installation space for the second storage section 104c can also be reduced. Thereby, while improving the storage property of a refrigerator, the energy-saving improvement by making 2nd storage division 104c maintained at low temperature small can be implement
  • the interior heat insulation box 118 with the vent 118b that allows the first storage section 104b and the second storage section 104c to communicate with each other, the temperature of the second storage section 104c can be quickly raised during thawing. Therefore, the thawing time can be shortened, and the usability for the user can be further improved. In addition, shortening the thawing time contributes to improving energy saving.
  • the refrigerator compartment 104 is arranged at the top of the refrigerator 100 and the second storage compartment 104c is provided at the bottom of the refrigerator compartment 104, so that the second storage compartment can be kept at the height of a general adult's waist. Since the position 104c is positioned, it is possible to make the posture of the case 129 to be pulled out and the food 120 to be taken in and out naturally, the visibility in the case 129 is good, and the usability can be improved.
  • the operation status in the independent storage section 128 can be understood, Usability can be improved.
  • the color of the LED is changed during freezing and thawing, for example, a cold blue LED (wavelength around 450 nm) is emitted during freezing, and a warm red (wavelength 660 nm) LED is emitted during thawing.
  • a cold blue LED wavelength around 450 nm
  • a warm red wavelength 660 nm
  • FIG. 13 is a front view of a refrigerator according to Embodiment 6 of the present invention
  • FIG. 14 is a side sectional view showing a BB section in FIG.
  • the refrigeration room 204 includes a refrigeration temperature zone that is a temperature that does not freeze for refrigerated storage, a first storage compartment 204b that is normally set to 1 ° C. to 5 ° C., and a temperature zone that is lower than the refrigeration temperature zone.
  • a second storage section 204c that can be set to a freezing temperature of about ⁇ 10 ° C. lower than the freezing temperature is provided.
  • the second storage section 204c is composed of an insulative heat insulating box 218 provided at the uppermost stage in the refrigerator compartment 204, and is provided as a space for freezing, thawing and storing the food 120.
  • the inside heat insulating box 218 is provided with a front opening and a heat insulating door 221 that closes the front opening.
  • the packing 122 air-blocks between the heat insulating door 221 and the inside heat insulating box 218, The storage compartment 204c is kept sealed.
  • the top surface of the inside heat insulation box 218 may be integrated with the top surface of the heat insulation box 101, and the back surface of the inside heat insulation box 218 is formed integrally with the refrigerator compartment back member 124.
  • the left surface of the internal heat insulation box 218 may be configured integrally with the left surface of the heat insulation box 101.
  • a conveyance air passage 125 for conveying the cold air sent out by the cooling fan 113 to the refrigerator compartment 104 is provided.
  • a second storage compartment discharge port 218 for introducing the cool air of the conveyance air passage 125 into the second storage compartment 204c is provided at the upper rear surface of the interior heat insulation box 218, and the right side of the interior heat insulation box 118 is located on the right rear side.
  • the part is provided with a vent 218b for introducing cool air from the first storage section 204b.
  • the discharge port 218 a and the vent port 218 b are configured to be opened and closed by a damper 119.
  • a suction port 218c through which the cold air that has cooled the second storage section 204c is sucked is provided at the lower back of the interior heat insulation box 218.
  • the cold air sucked into the suction port 218c is again heat-exchanged by the cooler 112, becomes cold cold air, and the second storage section 204c is cooled by repeating the circulation.
  • the damper 119 is a single damper capable of selecting an opening, but is not limited to this.
  • the damper 119 may be a twin damper.
  • the temperature of the second storage section 204c can be more delicately controlled by allowing the discharge port 218a and the vent port 218b to be controlled separately.
  • a vapor compression refrigeration system using a compressor an absorption refrigeration system, a Peltier refrigeration system, a combination thereof, or the like can be used.
  • a box body 126 having an opening portion 126a and a lid body 127 that substantially closes the opening portion 126a are arranged.
  • a placing tray 229 for placing the food 120 is provided in the box 126 in the second storage section 204c.
  • the placing tray 229 is pulled out toward the front, and the food 120 It is possible to take in and out.
  • the mounting tray 229 may or may not be interlocked with the operation of the heat insulating door 221, and the effect in the present embodiment is not changed.
  • the second storage section 204c As in the fifth embodiment of the present invention, high-quality freezing and thawing can be realized in the second storage section 204c provided in the refrigerator compartment 204 also in the present embodiment.
  • the food 120 is irradiated with electromagnetic waves, no other cooling material can be put therein. Therefore, since the second storage section 204c performs high-quality freezing / thawing, it is difficult to store a large amount of food on a daily basis.
  • the second storage section 204 c is provided on the uppermost stage of the refrigerator compartment 204.
  • the uppermost stage of the refrigerator compartment 204 is an area that is not easy to use because it is hard for the user to visually recognize and difficult to reach. Therefore, it can be said that providing the second storage section 204c in the uppermost stage of the refrigerator compartment 204 is a structure that minimizes the deterioration of the storage capacity of the first storage section 204b in actual use.
  • a machine room 101a having a compressor 109 or the like is provided at the back of the top surface of the heat insulation box 101, and the machine room 101a is formed by biting into the uppermost rear region in the refrigerator compartment 104. Therefore, the depth of the uppermost stage of the refrigerator compartment 204 is smaller than that of other areas. Therefore, by providing the second storage section 204c at the uppermost stage, it becomes easy to overlook the back of the second storage section 204c.
  • the uppermost stage of the refrigerator compartment 204 is a place where it is difficult to reach as described above.
  • the loading tray 229 in the second storage section 204c it is easy to clean and the convenience of the user can be increased. it can.
  • a rotary door that rotates around the upper side of the heat insulating door 221 can be used with peace of mind because the user does not have to worry about forgetting to close it.
  • the refrigerator compartment 204 is arranged at the top of the refrigerator 100, and the second storage compartment 204c is provided at the top of the refrigerator compartment 204, which is usually difficult to reach, so that a large amount of stored food can be obtained. It is possible to minimize the effect of lowering the storage capacity of the refrigerator compartment 204 due to the installation of the second storage section 204c that cannot be stored.
  • the uppermost stage of the refrigerator compartment 204 is provided at the uppermost stage because the depth is smaller than other areas.
  • the second storage section 204c can be easily viewed from the back.
  • the control device controls the temperature of the object to be cooled to be rapidly lowered in a state where the temperature of the object to be cooled is held for a certain period of time in a temperature zone below the freezing point. It illustrates an embodiment.
  • FIG. 15 is a schematic diagram showing a schematic configuration of the refrigerator in the seventh embodiment.
  • FIG. 16 is a schematic diagram showing the operation (control) of the refrigerator according to the seventh embodiment and the temperature course of the object to be cooled and the storage chamber.
  • the refrigerator 100 according to the seventh embodiment of the present invention has the same basic configuration as the refrigerator 100 according to the first embodiment, but is provided with a reflected power detection means 37. Different.
  • the reflected power detection means 37 is a device that detects the microwave power reflected in the storage chamber 11 without being absorbed by the food 12. When the frequency of the microwave applied to the food 12 is constant, the energy of the reflected power also changes when the temperature of the food 12 changes. Therefore, the reflected power detection means 37 detects the temperature of the food 12 using this characteristic. Is also possible. Further, the reflected power detection means 37 can detect the frequency at which the microwave absorption efficiency is highest depending on the shape and amount of the object to be cooled.
  • the transmission control unit 29 is a processing unit that selects the frequency of the microwave detected by the reflected power detection unit 37 and generates the frequency from the transmission device 26. Since a microwave having an optimum frequency is applied to the food 12, it is possible to minimize the amount of microwave power.
  • the temperature detector 30 directly detects the temperature of the food 12 stored in the storage chamber 11.
  • the temperature detector 30 is a device that can detect the temperature of the food 12 in a non-contact manner.
  • the control device 31 is a device that controls the operation of the microwave generator 25.
  • the microwave generator 25 is operated, and control is performed so that the microwave is applied to the food 12.
  • the food 12 is stored in the storage chamber 11, and when the temperature of the food 12 reaches 5 ° C. as shown in FIG. 16, the microwave generator 25 is activated to apply the microwave into the storage chamber 11.
  • the timing of application of the microwave is preferably from 10 ° C. at which water molecules of the object to be cooled start to gather, and around 5 ° C. at which aggregation between the water molecules becomes strong.
  • the amount of microwave power to be applied is set smaller than the energy for cooling the food 12.
  • the inside of the cool room is maintained at a constant temperature between -10 ° C. and the freezing point of the object to be cooled.
  • the temperature is maintained at ⁇ 10 ° C.
  • the temperature decreases without being frozen even when the freezing point of the object to be cooled passes, and the internal and external temperatures of the object to be cooled become uniform.
  • the temperature of the food 12 passes through the freezing point and the temperature difference from the storage chamber 11 becomes small, the cooling energy in the cooling chamber becomes difficult to be transmitted to the food 12, and the temperature decrease is moderated and held at a constant temperature.
  • the control device 31 operates the cooling device 17 so as to quickly decrease the temperature in the cooling chamber after detecting that the time that has been counted has elapsed when the temperature decrease rate at this time becomes a certain value or less.
  • the temperature in the storage chamber 11 becomes ⁇ 20 ° C. after 5 minutes at a temperature decrease rate of 0.05 ° C./min or less, and the storage chamber 11 is brought to ⁇ 20 ° C. While reaching or after reaching ⁇ 20 ° C., the supercooling of the object to be cooled is naturally released.
  • the temperature is kept before the supercooled state of the object to be cooled is released.
  • control device stops applying the microwave after detecting that the supercooling of the object to be cooled has been canceled and the temperature has risen to the freezing point.
  • the rapid freezing after supercooling of the object to be cooled can be further accelerated by reducing the power of the microwave.
  • the object to be cooled is quickly frozen while the internal and external temperatures are almost uniform.
  • the structure destruction by freezing in order from the outside is suppressed, large ice crystals are not generated, and uniform and small ice crystals can be realized with suppressed ice crystal growth, resulting in destruction of the structure of the object to be cooled. High quality freezing can be realized.
  • the object to be cooled becomes supercooled, the temperature of the cold insulation chamber is lowered before the supercooling is released, so that the object to be cooled is quickly frozen after the supercooling is released.
  • Moisture that is insufficiently frozen after being released from supercooling is also quickly frozen, suppressing the growth of uniform and small ice crystals generated by supercooling, and realizing high-quality freezing that does not destroy the structure of the object to be cooled. it can.
  • the predetermined time is not necessarily a predetermined time, and is preferably a time after a predetermined time has elapsed since the product temperature of the object to be cooled becomes a constant temperature.
  • the product temperature can be set based on the case where the product temperature does not decrease further within a certain range such as -3 ° C to -5 ° C.
  • it may be set as a fixed time from the start of cooling.
  • the first modification in the seventh embodiment shows an example of the operation (control) of the refrigeration apparatus.
  • the structure of the freezing apparatus of this modification 1 is the same as the freezing apparatus of Embodiment 7, the detailed description is abbreviate
  • FIG. 17 is a schematic diagram illustrating the operation (control) of the cooling device of the first modification and the temperature course of the object to be cooled and the storage chamber.
  • the food 12 is stored in the storage chamber 11.
  • the microwave generator 25 is activated, and the microwave is applied to the storage chamber 11.
  • aggregation of water molecules occurs at around 5 ° C., but when microwaves are applied, aggregation of water is suppressed and generation of ice crystal nuclei is also suppressed.
  • the surface portion of the object to be cooled reaches 2 ° C. and water molecules start to aggregate, the aggregated state disappears due to the applied microwave.
  • the food 12 releases the supercooling at any time by detecting that the change ⁇ t (° C.) in the temperature drop after the microwave application is stopped is lower than the threshold and lowering the temperature of the cooling chamber. It can be an environment that can be quickly frozen before. If ⁇ t (° C.) does not change (no temperature drop) after the microwave application is stopped, it is desirable to immediately start the temperature drop of the cooling chamber.
  • the refrigerator according to the eighth embodiment of the present invention includes a cooling device that cools an object to be cooled, a storage chamber that houses the object to be cooled, and a microwave generator configured to irradiate the object to be cooled with microwaves.
  • An apparatus a food plate that is provided in the storage chamber and has an opening through which microwaves can flow and into which cold air can flow, and a control device. The cooling device is stopped, and the microwave generator irradiates the object to be cooled with microwaves, stops the microwave generator, and operates the cooling device.
  • FIG. 18 is a flowchart schematically showing the cooling operation of the refrigerator according to the eighth embodiment.
  • the temperature in the storage chamber 11 is adjusted to about ⁇ 7 ° C. by the cooling device 17.
  • the user of the refrigerator 100 according to the eighth embodiment places the food 12 having a temperature of about 15 ° C. on the food plate 20 in the storage chamber 11.
  • the control device 31 acquires the temperature T of the food 12 detected by the temperature detector 30 (step S101).
  • the food 12 stored in the case 3 has a temperature of about ⁇ 7 ° C. in the storage chamber 11, and therefore the temperature is gradually lowered due to heat being taken away from the surroundings.
  • the control apparatus 31 will progress to step S103, if the temperature T of the foodstuff 12 acquired by step S101 becomes 1st temperature (it is Yes at step S101).
  • the first temperature is a temperature at which water molecules in the food 12 aggregate. In general, water molecules in the food start to aggregate around 10 ° C., and aggregation occurs actively at 5 ° C. For this reason, 1st temperature can be arbitrarily set between 10 degreeC or less and 5 degreeC or more.
  • step S103 the control device 31 stops the cooling device 17, specifically, the fan 19 is stopped. And the control apparatus 31 operates the microwave generator 25, and irradiates the foodstuff 12 with a microwave from the antenna 24 (step S104).
  • the electric energy of the microwave irradiated to the foodstuff 12 can be calculated
  • the control device 31 acquires again the temperature T of the food 12 detected by the temperature detector 30 (step S105). Then, when the temperature T acquired in step S105 becomes the second temperature (Yes in step S106), the control device 31 proceeds to step S107.
  • the second temperature is lower than the first temperature and lower than the maximum ice crystal formation zone. Generally, since the maximum ice crystal formation zone is 0 to ⁇ 5 ° C., the second temperature can be arbitrarily set at a temperature lower than ⁇ 5 ° C. Note that the second temperature may be substantially ⁇ 5 ° C.
  • step S107 the microwave generator 25 is stopped, and the microwave irradiation to the food 12 is stopped. After the microwave irradiation is stopped, the supercooled state of the food 12 is naturally released.
  • control device 31 operates the cooling device 17 (step S108). Specifically, the fan 19 is operated to actively send out cool air into the storage chamber 11. At this time, since the food plate 20 is made of metal, the temperature lowers faster than the food 12.
  • the cold air ventilation path 23 is formed below the food plate 20, the cold air can contact the food 12 through the opening 21 provided in the food plate 20. Furthermore, the whole surface of the food 12 can be irradiated with microwaves by the cold air passage 23. For this reason, the temperature of the whole surface of the foodstuff 12 can be cooled uniformly.
  • freezing unevenness in the food 12 can be suppressed, and the quality of the food 12 can be maintained.
  • the temperature of the object to be cooled detected by the temperature detector becomes the second temperature that is lower than the first temperature by the control device.
  • the mode which stops a microwave generator after the set time which is time until temperature rises is illustrated.
  • FIG. 19 is a flowchart schematically showing the cooling operation of the refrigerator according to the first modification in the eighth embodiment.
  • the refrigerator of this modification 1 is the same structure as the refrigerator which concerns on Embodiment 1, description of the structure is abbreviate
  • the cooling operation of the refrigerator according to the first modification is the same as the cooling operation of the refrigerator according to the eighth embodiment, but between step S106 and step S107, step S106a And step S106b is different.
  • step S106 when the temperature T of the food 12 detected by the temperature detector 30 reaches the second temperature (Yes in step S106), the control device 31 causes the temperature T (not shown) of the control device 31 to change the temperature T. The time t after reaching the second temperature is measured (step S106a).
  • the control device 31 stops the microwave generator 25 when the time t counted in step S106 reaches the set time (Yes in step S106b) (step S107).
  • the set time is the time until the temperature of the food 12 rises after the food 12 reaches the second temperature, and the time can be set in advance by experiments or the like.
  • the refrigerator 100 of the first modification configured as described above, the same operational effects as those of the refrigerator 100 according to the eighth embodiment can be obtained. Moreover, in the refrigerator 100 of this modification 1, the supercooling state of the foodstuff 12 can be maintained longer by delaying the stop of the microwave generator 25, and the foodstuff 12 of the foodstuff 12 until a supercooling state is cancelled
  • the refrigerator according to the present invention is useful because it can achieve temperature uniformity in both freezing and thawing, and can realize high-quality freezing and thawing.
  • Storage room 12 Object (food) DESCRIPTION OF SYMBOLS 13 Storage case 14 Outer frame case 15 Door part 16 Ventilation hole 17 Cooling device 18 Blower path 19 Fan 20 Food plate 21 Opening part 22 Support part 23 Cold air ventilation path 24
  • Microwave generator 26 Transmitter 27
  • Amplifier 28 Distributor 29 Transmission control part 30
  • Temperature detector 31 Control apparatus 32 Support body 33
  • Sauce plate 34 Support shaft 35 Motor

Abstract

Provided are a refrigerator and a method for operating the refrigerator, wherein a high-quality freezing operation which prevents the cell tissue of a food from being destroyed, can be performed by freezing the food while suppressing the temperature variation occurring in the food using microwaves and a food plate, to form small and uniform ice crystals in the entirety of the food. The refrigerator is provided with a cooling device (17) for cooling an object (12) to be cooled, a storage chamber (11) for storing the object (12) to be cooled, a microwave generation device (25) for applying microwaves, and a control device (31) for controlling the microwave generation device (25) and the cooling device (17). A food plate (20) having openings through which microwaves pass and cold air can be introduced, is provided in the storage chamber (11).

Description

冷蔵庫refrigerator
 本発明は、冷蔵庫に関するものであり、特に、冷蔵庫の構造に関するものである。 The present invention relates to a refrigerator, and more particularly to the structure of a refrigerator.
 食品の品質を損なわず維持して冷凍保存するためには、凍結中の氷結晶の生成を抑制することが重要とされている。食品中に生成された氷結晶が大きくなると、食品組織が氷結晶によって破壊されて品質低下を招いてしまうからである。 It is important to suppress the formation of ice crystals during freezing in order to maintain the food quality without losing quality. This is because if the ice crystals generated in the food become large, the food tissue is destroyed by the ice crystals and the quality deteriorates.
 従って、食品の品質維持には凍結の際に生成される氷結晶を小さくすることが重要となる。氷結晶は最大氷結晶生成帯といわれる0~-5℃の温度帯で、その成長が促進される。よって、氷結晶を小さくするには最大氷結晶生成帯をできるだけ短時間で通過させることが有効となる。最大氷結晶生成帯の通過時間を短縮する手段として、底面に金属板を備えた急速冷凍室に直接冷気を導入して急速凍結を行う冷蔵庫が提案されている(例えば、特許文献1参照)。 Therefore, to maintain the quality of food, it is important to reduce the ice crystals produced during freezing. The growth of ice crystals is promoted in a temperature range of 0 to -5 ° C., which is called the maximum ice crystal formation zone. Therefore, in order to reduce the ice crystal, it is effective to pass through the maximum ice crystal formation zone in as short a time as possible. As a means for shortening the passage time of the maximum ice crystal generation zone, a refrigerator has been proposed in which cold air is directly introduced into a quick freezing room having a metal plate on the bottom to perform quick freezing (see, for example, Patent Document 1).
特開2005-83687号公報JP 2005-83687 A
 しかしながら、特許文献1に開示されている冷蔵庫では金属板に接触している食品表面は急速に凍結し、氷結晶の生成が抑制されるが、表面から遠くなるに従って、凍結速度は低下して食品中心部は表面部よりも最大氷結晶生成帯の通過が緩慢となり、大きな氷結晶が生成されていると考えられる。このため、食品の内部と表面で生成される氷結晶の大きさにムラが生じ、冷凍品質の悪化が懸念される。 However, in the refrigerator disclosed in Patent Document 1, the surface of the food in contact with the metal plate is rapidly frozen and the formation of ice crystals is suppressed, but as the distance from the surface increases, the freezing rate decreases and the food is reduced. It is thought that the central part is slower to pass through the maximum ice crystal formation zone than the surface part, and large ice crystals are generated. For this reason, unevenness occurs in the size of ice crystals generated inside and on the surface of the food, and there is a concern about the deterioration of frozen quality.
 本発明は上記の問題を解決するためになされたもので、マイクロ波と食品プレートを用いて被冷凍物に生じる温度ムラを抑制しながら凍結させることで食品全体の氷結晶を小さく均質にして、食品細胞組織の破壊を抑えた高品位な凍結を行うことができる冷蔵庫及び冷蔵庫の運転方法の提供を目的とする。 The present invention was made in order to solve the above problems, and by using a microwave and a food plate to freeze while suppressing temperature unevenness generated in the object to be frozen, the ice crystals of the whole food are made small and homogeneous, An object of the present invention is to provide a refrigerator capable of performing high-quality freezing while suppressing destruction of food cell tissues and a method for operating the refrigerator.
 上記従来の課題を解決するために、本発明の冷蔵庫は、対象物を冷却する冷却装置と、前記対象物を収納する貯蔵室と、マイクロ波を印加するマイクロ波発生装置と、前記貯蔵室にはマイクロ波を透過するとともに冷気の流入可能な開口孔を有する食品プレートを設け、冷凍対象物は冷気流入可能な開口孔を有するプレートに載置されることで対象物表面全体に冷気があたり、表面部が温度ムラなく冷却できる。 In order to solve the above-described conventional problems, a refrigerator according to the present invention includes a cooling device that cools an object, a storage chamber that stores the object, a microwave generator that applies microwaves, and the storage chamber. Provides a food plate that transmits microwaves and has an opening hole through which cold air can flow, and the object to be frozen is placed on a plate having an opening hole through which cold air can flow, so that cold air hits the entire surface of the object, The surface portion can be cooled without temperature unevenness.
 さらに、マイクロ波の印加によって食品表面のみが凍結することを防ぐことができる。よって、食品の表面と内部を均温化しながら凍結できるので、小さく均一な氷結晶となり高品位な凍結品が実現できる。 Furthermore, it is possible to prevent only the food surface from freezing by the application of microwaves. Therefore, since the surface and the inside of the food can be frozen while soaking, small and uniform ice crystals can be obtained, and a high-quality frozen product can be realized.
 本発明の冷蔵庫は、冷凍したい対象物表面の温度ムラと表面と内部の温度ムラを抑制して均温化しながら凍結することで、凍結時に生成する氷結晶を微小化と均質化を両立し、冷凍対象物の細胞破壊や変形の少ない高品位な冷凍を実現することができる。 The refrigerator of the present invention achieves both miniaturization and homogenization of ice crystals generated during freezing by suppressing temperature unevenness on the surface of the object to be frozen and temperature unevenness on the surface and inside, and soaking it. It is possible to realize high-quality freezing with less cell destruction and deformation of the object to be frozen.
図1は、本発明の実施の形態1における冷蔵庫内の貯蔵室の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1における貯蔵室の構成を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the configuration of the storage chamber according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1における冷蔵庫の概略構成を示す模式図である。FIG. 3 is a schematic diagram showing a schematic configuration of the refrigerator in the first embodiment of the present invention. 図4は、図1に示す貯蔵室に設けられているマイクロ波発生装置の概略構成を示す模式図である。FIG. 4 is a schematic diagram illustrating a schematic configuration of the microwave generator provided in the storage chamber illustrated in FIG. 1. 図5は、本実施の形態1に係る冷蔵庫の動作(制御)と被冷却物及び貯蔵室内の温度経過を示す模式図である。FIG. 5 is a schematic diagram showing the operation (control) of the refrigerator according to the first embodiment and the temperature course of the object to be cooled and the storage chamber. 図6は、本発明の実施の形態2における冷蔵庫内の貯蔵室の概略構成を示す模式図である。FIG. 6 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 2 of the present invention. 図7は本発明の実施の形態2における貯蔵室の概略構成を示す模式図である。FIG. 7 is a schematic diagram showing a schematic configuration of a storage chamber according to Embodiment 2 of the present invention. 図8は、本発明の実施の形態3における冷蔵庫内の貯蔵室の概略構成を示す模式図である。FIG. 8 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 3 of the present invention. 図9は本発明の実施の形態3における貯蔵室の概略構成を示す斜視図である。FIG. 9 is a perspective view showing a schematic configuration of the storage chamber according to Embodiment 3 of the present invention. 図10は、本発明の実施の形態4における冷蔵庫内の貯蔵室の概略構成を示す模式図である。FIG. 10 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 4 of the present invention. 図11は本発明の実施の形態5における冷蔵庫の正面図である。FIG. 11 is a front view of the refrigerator in the fifth embodiment of the present invention. 図12は図11中のA-A断面を示す側面断面図である。FIG. 12 is a side cross-sectional view showing the AA cross section in FIG. 図13は本発明の実施の形態6における冷蔵庫の正面図である。FIG. 13 is a front view of the refrigerator in the sixth embodiment of the present invention. 図14は図13中のB-B断面を示す側面断面図である。FIG. 14 is a side sectional view showing a BB section in FIG. 図15は、本実施の形態7における冷蔵庫の概略構成を示す模式図である。FIG. 15 is a schematic diagram illustrating a schematic configuration of the refrigerator according to the seventh embodiment. 図16は、本実施の形態7の冷蔵庫の動作(制御)と被冷却物及び貯蔵室内の温度経過を示す模式図である。FIG. 16 is a schematic diagram showing the operation (control) of the refrigerator according to the seventh embodiment and the temperature course of the object to be cooled and the storage chamber. 図17は、本変形例1の冷却装置の動作(制御)と被冷却物及び貯蔵室内の温度経過を示す模式図である。FIG. 17 is a schematic diagram illustrating the operation (control) of the cooling device of the first modification and the temperature course of the object to be cooled and the storage chamber. 図18は、本実施の形態8に係る冷蔵庫の冷却動作を模式的に示すフローチャートである。FIG. 18 is a flowchart schematically showing a cooling operation of the refrigerator according to the eighth embodiment. 図19は、本実施の形態8における変形例1の冷蔵庫の冷却動作を模式的に示すフローチャートである。FIG. 19 is a flowchart schematically showing a cooling operation of the refrigerator according to the first modification in the eighth embodiment.
 本発明に係る第1の冷蔵庫は、対象物を冷却する冷却装置と、前記対象物を収納する貯蔵室と、マイクロ波を印加するマイクロ波発生装置と、前記マイクロ波発生装置および前記冷却装置を制御する制御装置と、前記貯蔵室にはマイクロ波が透過するとともに冷気の流入可能な開口部を有する食品プレートを備えたものであり、食品プレートに冷凍対象物を載せることで食品表面のいずれの面も冷気を接することができ、表面における均温化を図ることができる。さらに、マイクロ波を印加することで、冷凍したい対象物の表面と内部の温度ムラを抑制して冷凍することができる。特に、冷凍対象物の突起部や角、端部から凍結が起こりやすいが、それらの部位にマイクロ波が集中しやすいという特性によって対象物の一部が凍結するという事態を防ぐことができ、均質に細かな氷結晶が生成されて高品位な冷凍を実現できる。 A first refrigerator according to the present invention includes a cooling device that cools an object, a storage chamber that houses the object, a microwave generator that applies a microwave, the microwave generator, and the cooling device. A control device for controlling, and the storage chamber is provided with a food plate having an opening through which microwaves can pass and into which cold air can flow, and by placing a frozen object on the food plate, The surface can also contact cold air, and the surface can be temperature-uniform. Furthermore, by applying microwaves, it is possible to freeze the surface of the object to be frozen while suppressing temperature unevenness inside. In particular, freezing is likely to occur from the protrusions, corners, and ends of the frozen object, but due to the property that microwaves tend to concentrate on those parts, it is possible to prevent a situation where a part of the object freezes. Fine ice crystals are produced and high-quality freezing can be realized.
 本発明に係る第2の冷蔵庫は、食品プレートは複数の開口部を備えることによって、冷凍対象物の表面全体に貯蔵室内を循環している冷気が接触でき、対象物の表面温度の均温化が可能となる。さらに、マイクロ波の食品プレートへの吸収を減らして対象物への吸収を促すことができる。 In the second refrigerator according to the present invention, the food plate includes a plurality of openings, so that the cold air circulating in the storage chamber can be brought into contact with the entire surface of the frozen object, and the surface temperature of the object is equalized. Is possible. Further, the absorption of microwaves into the food plate can be reduced and the absorption into the object can be promoted.
 本発明に係る第3の冷蔵庫は、食品プレートの下方側に冷気が流れる冷気通風路を形成することによって、貯蔵室の冷気循環を妨げることなく、冷凍対象物の表面全体への冷気の伝熱を加速することができる。 The third refrigerator according to the present invention forms a cold air flow path through which cold air flows on the lower side of the food plate, thereby preventing the cold air from being transferred to the entire surface of the object to be frozen without disturbing the cold air circulation in the storage room. Can be accelerated.
 本発明に係る第4の冷蔵庫は、食品プレートに支持部を備えることにより、冷気通風路を形成でき、また、食品表面全体からマイクロ波が照射することができる。特に、貯蔵室の筐体に冷凍対象物が接触して載置されていると、その接触面からのマイクロ波が入射しにくいが、筐体面から冷凍対象物を浮かすことで、対象物表面全体からマイクロ波が入射して電波の照射ムラを抑制することができる。よって、さらなる対象物の冷凍時の均温化が実現できる。 The fourth refrigerator according to the present invention can form a cold air passage by providing a support on the food plate, and can irradiate microwaves from the entire food surface. In particular, if the object to be frozen is placed in contact with the housing of the storage room, microwaves from the contact surface are not easily incident, but the entire surface of the object is lifted by floating the object to be frozen from the housing surface. Therefore, it is possible to suppress the irradiation unevenness of the radio wave. Therefore, it is possible to achieve further temperature equalization when the object is frozen.
 本発明に係る第5の冷蔵庫は、食品プレートが貯蔵室空間を着脱自在で、貯蔵室空間を垂直方向に移動することによって、貯蔵室空間の高さによって異なる電波分布のうち、食品の形状や種類に適したマイクロ波の電波分布を選択でき、食品表面部の電波照射分布の均一化を図ることができる。 In the fifth refrigerator according to the present invention, the food plate is detachable from the storage room space, and moves vertically in the storage room space. The radio wave distribution suitable for the type can be selected, and the radio wave irradiation distribution on the food surface can be made uniform.
 本発明に係る第6の冷蔵庫は、食品プレートが回転移動することによって、冷凍対象物も回転するので、マイクロ波が照射される部位も変化して食品表面部の電波ムラを解消することができる。 In the sixth refrigerator according to the present invention, the object to be frozen also rotates as the food plate rotates, so that the portion irradiated with the microwave also changes, and the radio wave unevenness on the food surface can be eliminated. .
 本発明に係る第7の冷蔵庫は、食品プレートの下部に受け皿を設けることによって、冷凍対象物を解凍する際に生じる水分や余分なドリップが食品プレートの開口部から落下しても貯蔵室内を汚さずに済み、汚れた受け皿を洗うことで清潔な空間を保持できる。 In the seventh refrigerator according to the present invention, by providing a saucer at the bottom of the food plate, even if moisture or excess drip generated when thawing the object to be frozen falls from the opening of the food plate, the inside of the storage chamber becomes dirty. It is possible to maintain a clean space by washing the dirty tray.
 本発明に係る第8の冷蔵庫は、貯蔵室の開口部を閉塞する扉をさらに備え、貯蔵室は、少なくとも冷蔵温度帯に設定することのできる冷蔵室を有し、冷蔵室内には冷蔵温度帯で維持される第一の収納区画と、冷蔵温度帯以下の温度領域を有する第二の収納区画が設けられ、記冷蔵室は、マイクロ波発生装置より発振された電磁波を第二の収納区画に導入するように構成されていることにより、第二の収納区画において被冷却物の内外温度差を抑えながら冷却する高品位冷凍と解凍を実現することができる。このため、冷解凍を行うための専用の貯蔵室を設ける必要が無く、収納性の低下を最小限に止めて、高品位の冷凍と解凍を実現することができる。 The eighth refrigerator according to the present invention further includes a door that closes the opening of the storage room, the storage room has a refrigeration room that can be set to at least a refrigeration temperature zone, and the refrigeration room has a refrigeration temperature zone. And a second storage section having a temperature range equal to or lower than the refrigeration temperature zone, and the refrigerating chamber is configured to store electromagnetic waves oscillated from the microwave generator in the second storage section. By being configured to introduce, high-quality refrigeration and thawing can be realized in which cooling is performed while suppressing the temperature difference between the inside and outside of the object to be cooled in the second storage section. For this reason, it is not necessary to provide a dedicated storage room for performing cold thawing, and it is possible to realize high-quality refrigeration and thawing while minimizing the decline in storage.
 本発明に係る第9の冷蔵庫は、マイクロ波発生装置を、半導体素子を用いた電磁波発振器と電磁波増幅器からなるとしたものであり、マグネトロンなどに比べてマイクロ波発生装置の設置スペースを小さくすることができるため、更に冷蔵庫の収納性を向上させることができる。 According to a ninth refrigerator of the present invention, the microwave generator is composed of an electromagnetic wave oscillator using a semiconductor element and an electromagnetic wave amplifier, and the installation space of the microwave generator can be reduced compared to a magnetron or the like. Therefore, the storage property of the refrigerator can be further improved.
 また、半導体素子を用いた電磁波発振器は発生する電磁波(マイクロ波)の周波数を変動させることができるため、第二の収納区画内に導入された電磁波の反射特性を変動させることで、より均一に食品に電磁波を照射することができる。従って、スタラーファンなどの電磁波攪拌器を取り付ける必要がないため、第二の収納区画の設置スペースが小さくなり、更に冷蔵庫の収納性を向上させることができる。 In addition, since the electromagnetic wave oscillator using the semiconductor element can change the frequency of the generated electromagnetic wave (microwave), it is more uniform by changing the reflection characteristics of the electromagnetic wave introduced into the second storage compartment. Food can be irradiated with electromagnetic waves. Therefore, since it is not necessary to attach an electromagnetic stirrer such as a stirrer fan, the installation space of the second storage section is reduced, and the storage capacity of the refrigerator can be further improved.
 更に、スタラーファンのスペースを削減することは、第二の収納区画の区画内容積の削減に繋がるため、冷却および電磁波の効率が良くなり、省エネ性を向上させることができる。また、周波数を変動させることができるため、食品に最適の周波数が選択可能となり、より効率良く照射でき、更に省エネ性を向上させることができる。 Furthermore, reducing the space for the stirrer fan leads to a reduction in the internal volume of the second storage compartment, so that the efficiency of cooling and electromagnetic waves is improved, and energy saving can be improved. In addition, since the frequency can be varied, it is possible to select the optimum frequency for the food, so that the irradiation can be performed more efficiently, and the energy saving can be further improved.
 本発明に係る第10の冷蔵庫は、第二の収納区画は第一の収納区画と連通する通気口を備え、通気口には開閉機構が設けられているものであり、解凍時に第一の収納区画と開放することで素早く第二の収納区画内の温度が上昇するため、解凍時間が短縮でき、使用者の使い勝手を向上することができる。また、解凍時間の短縮は、省エネ性の向上にも寄与する。 In a tenth refrigerator according to the present invention, the second storage section includes a vent hole communicating with the first storage section, and the vent hole is provided with an opening / closing mechanism. Opening the compartment quickly raises the temperature in the second storage compartment, so that the thawing time can be shortened and user convenience can be improved. In addition, shortening the thawing time contributes to improving energy saving.
 本発明に係る第11の冷蔵庫は、冷蔵庫は複数の貯蔵室を有し、冷蔵室は複数の貯蔵室のうち最上部に位置する貯蔵室で構成され、第二の収納区画は冷蔵室の最下部に設けられているものであり、冷蔵庫中央部に第二の収納区画が位置することで、第二の収納区画の収納容器が操作し易くなり、収納食品が出し入れし易く、視認性が高くなるため、使用者の使い勝手を向上することができる。 In an eleventh refrigerator according to the present invention, the refrigerator has a plurality of storage rooms, the refrigeration room is constituted by a storage room located at the top of the plurality of storage rooms, and the second storage compartment is the uppermost part of the refrigeration room. Since the second storage compartment is located at the center of the refrigerator, the storage container of the second storage compartment is easy to operate, the stored food is easy to put in and out, and the visibility is high. Therefore, user convenience can be improved.
 本発明に係る第12の冷蔵庫は、冷蔵庫は複数の貯蔵室を有し、冷蔵室は複数の貯蔵室のうち最上部に位置する貯蔵室で構成され、第二の収納区画は冷蔵室の最上部に設けられているものであり、通常手が届きにくい上部に保存食品を多く貯蔵できない第二の収納区画を設置することで、第二の収納区画の設置による冷蔵室の収納性低下の影響を実使用上最小限に抑えることができる。 In a twelfth refrigerator according to the present invention, the refrigerator has a plurality of storage rooms, the refrigeration room is configured by a storage room located at the top of the plurality of storage rooms, and the second storage compartment is the uppermost part of the refrigeration room. The installation of the second storage compartment, which is installed at the top and cannot store a large amount of preserved food, is difficult to reach due to the installation of the second storage compartment. Can be minimized in practical use.
 本発明に係る第13の冷蔵庫は、冷却装置は少なくとも圧縮機を有する冷凍サイクルであり、圧縮機は、冷蔵庫の奥側上部に設けられていることにより、冷蔵庫下部機械室スペースが小さくなることで、冷蔵庫下部貯蔵室を奥行き方向に大きく取ることができるため、同等の貯蔵室を有する冷蔵庫と比較して、最上部の冷蔵室間口を下に大きくすることができるため、更に冷蔵室の収納性を向上することができる。 The thirteenth refrigerator according to the present invention is a refrigeration cycle in which the cooling device has at least a compressor, and the compressor is provided in the upper part on the back side of the refrigerator, so that the lower machine room space of the refrigerator is reduced. Since the refrigerator lower storage room can be made larger in the depth direction, the uppermost refrigerator compartment entrance can be made larger than the refrigerator having an equivalent storage room, so that the storage capacity of the refrigerator compartment can be further increased. Can be improved.
 本発明に係る第14の冷蔵庫は、第二の収納区画には複数の孔を有する金属で構成されている蓋体が備えられているものであり、第二の収納区画から電磁波が漏洩することを防止するとともに、第二の収納区画内の視認性を高めることで、使用者の使い勝手を向上することができる。 In the fourteenth refrigerator according to the present invention, the second storage section is provided with a lid made of a metal having a plurality of holes, and electromagnetic waves leak from the second storage section. In addition, the user-friendliness can be improved by improving the visibility in the second storage section.
 本発明に係る第15の冷蔵庫は、第二の収納区画には少なくとも可視光域において透明な導電性膜が設けられている蓋体が備えられているものであり、第二の収納区画から電磁波が漏洩することを防止するとともに、第二の収納区画内の視認性を更に高めることで、使用者の使い勝手を向上することができる。 In a fifteenth refrigerator according to the present invention, the second storage compartment is provided with a lid provided with a conductive film that is transparent at least in the visible light region. As well as preventing leakage, it is possible to improve the usability of the user by further improving the visibility in the second storage compartment.
 本発明に係る第16の冷蔵庫は、第二の収納区画には少なくとも1つ以上のLEDが設けられていて、冷凍中あるいは解凍中の少なくともいずれか一方の動作時にはLEDが発光されるように構成されていることで、第二の収納区画の動作状況を一目で使用者が認識することが可能となるので、使い勝手を向上することが可能となる。 A sixteenth refrigerator according to the present invention is configured such that at least one LED is provided in the second storage section, and the LED emits light during at least one operation during freezing or thawing. As a result, the user can recognize the operation status of the second storage compartment at a glance, so that the usability can be improved.
 本発明に係る第17の冷蔵庫は、制御装置は、被冷却物の温度が凍結点以下の温度帯で一定時間保持されている状態で保冷室内の温度を急速に低下させるように制御することを特徴とするもので、過冷却解除後の氷結晶核の成長を最小限に抑えることができる。 In the seventeenth refrigerator according to the present invention, the control device controls the temperature of the object to be cooled so as to rapidly decrease the temperature in the cold room in a state where the temperature of the object to be cooled is held for a certain period of time in a temperature zone below the freezing point. It is a feature, and it is possible to minimize the growth of ice crystal nuclei after the release of supercooling.
 本発明に係る第18の冷蔵庫は、被冷却物の温度が凍結点以下より低下した温度帯あるいは最大氷結晶生成帯を通過した温度帯で一定時間保持するようなエネルギー量のマイクロ波を印加することを特徴とするもので、凍結温度以下で過冷却状態を長く維持することができる。 The eighteenth refrigerator according to the present invention applies a microwave having an energy amount so as to be held for a certain period of time in a temperature zone where the temperature of the object to be cooled has fallen below the freezing point or a temperature zone where the maximum ice crystal formation zone has passed. The supercooled state can be maintained for a long time below the freezing temperature.
 本発明に係る第19の冷蔵庫は、被冷却物の温度が凍結点以下より低下した温度帯あるいは最大氷結晶生成帯を通過した温度で一定時間保持した後、マイクロ波の印加を停止して貯蔵室の温度を低下させるように制御することを特徴とするもので、過冷却の温度低下を促すことができる。 In a nineteenth refrigerator according to the present invention, after holding for a certain period of time at a temperature zone where the temperature of the object to be cooled has fallen below the freezing point or passed through the maximum ice crystal formation zone, the microwave application is stopped and stored. Control is performed so as to lower the temperature of the chamber, and it is possible to promote a decrease in temperature of supercooling.
 本発明に係る第20の冷蔵庫は、被冷却物が過冷却状態となった場合には、被冷却物の過冷却状態を深い状態で維持しつつ過冷却解除前すなわち過冷却中から急速に冷凍できるので、水分子の凝集を抑制しつつ冷凍するので氷結晶生成のもととなる氷結晶核の生成および成長を抑制しながら凍結させる高品位冷凍が実現できる。 In the twentieth refrigerator according to the present invention, when an object to be cooled is in a supercooled state, the object to be cooled is rapidly frozen before the supercooling is released, that is, from undercooling while maintaining the supercooled state in the deep state. As a result, freezing is performed while suppressing aggregation of water molecules, so that high-quality freezing can be realized in which freezing is performed while suppressing generation and growth of ice crystal nuclei that are the basis of ice crystal formation.
 また、本発明に係る第1の冷蔵庫の運転方法は、被冷却物を冷却する冷却装置と、被冷却物を収納する貯蔵室と、を備える冷蔵庫の運転方法であって、マイクロ波を被冷却物に照射するように構成されているマイクロ波発生装置と、貯蔵室に設けられ、マイクロ波を透過するとともに冷気の流入可能な開口部を有する食品プレートと、をさらに備え、被冷却物が貯蔵室に収納されると、冷却装置を停止させるステップ(A)と、マイクロ波発生装置が、被冷却物にマイクロ波を照射するステップ(B)と、マイクロ波発生装置を停止させるステップ(C)と、冷却装置を作動させるステップ(D)と、を備えることを特徴とする。 In addition, a first refrigerator operation method according to the present invention is a refrigerator operation method including a cooling device that cools an object to be cooled and a storage chamber that houses the object to be cooled. A microwave generator configured to irradiate an object; and a food plate provided in the storage chamber and having an opening through which microwaves can flow and into which cool air can flow. When housed in the chamber, the step (A) of stopping the cooling device, the step (B) of irradiating the object to be cooled with microwaves by the microwave generator, and the step (C) of stopping the microwave generator And a step (D) of operating the cooling device.
 本発明に係る第2の冷蔵庫の運転方法は、冷蔵庫が、被冷却物の温度を検知する温度検知器をさらに備え、ステップ(A)は、温度検知器が、被冷却物の温度を検知するステップ(A1)と、被冷却物の温度が、該被冷却物内の水分子が凝集する第1温度になると、冷却装置を停止させるステップ(A2)と、を有することを特徴とする。 In the second refrigerator operating method according to the present invention, the refrigerator further includes a temperature detector that detects the temperature of the object to be cooled, and in step (A), the temperature detector detects the temperature of the object to be cooled. Step (A1) and a step (A2) of stopping the cooling device when the temperature of the object to be cooled reaches a first temperature at which water molecules in the object to be cooled aggregate.
 本発明に係る第3の冷蔵庫の運転方法は、冷蔵庫が、被冷却物の温度を検知する温度検知器をさらに備え、ステップ(C)は、温度検知器が、被冷却物の温度を検知するステップ(C1)と、被冷却物の温度が第1温度よりも低い温度である第2温度になると、マイクロ波発生装置を停止させるステップ(C2)と、を有することを特徴とする。 In the third refrigerator operating method according to the present invention, the refrigerator further includes a temperature detector that detects the temperature of the object to be cooled, and in step (C), the temperature detector detects the temperature of the object to be cooled. It has a step (C1) and a step (C2) of stopping the microwave generator when the temperature of the object to be cooled reaches a second temperature that is lower than the first temperature.
 本発明の第4の冷蔵庫の運転方法は、冷蔵庫は、被冷却物の温度を検知する温度検知器をさらに備え、ステップ(C)は、温度検知器が、被冷却物の温度を検知するステップ(C1)と、被冷却物の温度が第1温度よりも低い温度である第2温度になり、その後、被冷却物の温度が上昇するまでの時間である設定時間経過後に、マイクロ波発生装置を停止させるステップ(C3)と、を有することを特徴とする。 In the fourth refrigerator operating method of the present invention, the refrigerator further includes a temperature detector that detects the temperature of the object to be cooled, and step (C) is a step in which the temperature detector detects the temperature of the object to be cooled. (C1) and after the set time which is the time until the temperature of the object to be cooled becomes the second temperature which is lower than the first temperature and then the temperature of the object to be cooled rises, the microwave generator And (C3) for stopping the operation.
 本発明の第5の冷蔵庫の運転方法は、第2温度は、最大氷結晶生成帯より低い温度であることを特徴とする。 The operation method of the fifth refrigerator of the present invention is characterized in that the second temperature is lower than the maximum ice crystal formation zone.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the following embodiments.
 (実施の形態1)
 [貯蔵室及びそれを備える冷蔵庫の構成]
 図1は、本発明の実施の形態1における冷蔵庫内の貯蔵室の概略構成を示す模式図である。図2は、本発明の実施の形態1における貯蔵室の構成を模式的に示す斜視図である。図3は、本発明の実施の形態1における冷蔵庫の概略構成を示す模式図である。
(Embodiment 1)
[Configuration of storage room and refrigerator including the same]
FIG. 1 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a perspective view schematically showing the configuration of the storage chamber according to Embodiment 1 of the present invention. FIG. 3 is a schematic diagram showing a schematic configuration of the refrigerator in the first embodiment of the present invention.
 図1および2において貯蔵室11は、上方が開放状態で食品(被冷却物)12を収納する収納物ケース13と、収納物ケース13を収める外枠ケース14からなる。外枠ケース14に収めた収納物ケース13の前面には、ドア部15が設置されており、ドア部15は、収納物ケース13と一体化している。ドア部15を介して収納物ケース13は外枠ケース14から引き出すことができる。ドア部15には外枠ケース14との接触部分においてパッキンが設けられている。これにより、ドア部15を閉めた際、外枠ケース14とドア部15は密着して収納物ケース13内は密閉空間となる。外枠ケース14には6mm未満の孔状あるいはスリット状の通気口16が設けられ、該通気口16から冷蔵庫内の区画された収納室全体に送られている冷気が収納物ケース13内に流れ込む。 1 and 2, the storage chamber 11 includes a storage case 13 for storing food (an object to be cooled) 12 in an open state and an outer frame case 14 for storing the storage case 13. A door portion 15 is installed on the front surface of the storage case 13 accommodated in the outer frame case 14, and the door portion 15 is integrated with the storage case 13. The storage case 13 can be pulled out from the outer case 14 through the door 15. The door portion 15 is provided with a packing at a contact portion with the outer frame case 14. Thereby, when the door part 15 is closed, the outer frame case 14 and the door part 15 are brought into close contact with each other, and the storage case 13 becomes a sealed space. The outer frame case 14 is provided with a hole-like or slit-like vent 16 having a diameter of less than 6 mm, and the cool air sent from the vent 16 to the entire storage compartment partitioned in the refrigerator flows into the storage case 13. .
 図3に前記収納物ケース13が収められている冷蔵庫の図を示す。冷蔵庫は冷却器、コンプレッサーからなる冷却装置17、各室内へ繋がる送風路18、冷気を送風するファン19で構成されている。区画された各室内に送られる冷気は、冷却器、コンプレッサーからなる冷却装置17の冷凍サイクルで発生させたもので、前記ファン19によって各室内へ送風される。 FIG. 3 shows a view of the refrigerator in which the storage case 13 is stored. The refrigerator includes a cooler 17 including a cooler and a compressor, a blower path 18 connected to each room, and a fan 19 that blows cool air. The cool air sent into each compartment is generated in the refrigeration cycle of the cooling device 17 including a cooler and a compressor, and is blown into the respective rooms by the fan 19.
 収納物ケース13内には食品プレート20が設置されていて、食品プレート20は、食品12を載置するものである。食品プレート20は、収納物ケース13内に着脱自在に構成されていて、食品12との接触面には複数の開口部21が設けられている。開口部21の形状は網状、スリット状、丸穴、柵状など、食品12との接触面積を最低限にする形状であればよく、貯蔵室11内の冷気が流入できればよい。食品プレート20の材質については、マイクロ波(電磁波)透過性の高いプラスチック類、例えばポリエチレン、ポリプロピレン、ポリカーボネードなどが好ましい。さらに、食品プレート20の下部には、収納物ケース13底面から浮かせるように支持部22が設けられていて、該支持部22により、食品プレート20下方側に冷気が流れる冷気通風路23が形成される。 The food plate 20 is installed in the storage case 13, and the food plate 20 is used for placing the food 12. The food plate 20 is configured to be detachable in the storage case 13, and a plurality of openings 21 are provided on the contact surface with the food 12. The shape of the opening 21 may be a shape that minimizes the contact area with the food 12 such as a net shape, a slit shape, a round hole, or a fence shape, and it is sufficient that the cool air in the storage chamber 11 can flow in. The material of the food plate 20 is preferably plastics having high microwave (electromagnetic wave) permeability, such as polyethylene, polypropylene, polycarbonate, and the like. Further, a support portion 22 is provided at the lower portion of the food plate 20 so as to float from the bottom surface of the storage case 13, and the support portion 22 forms a cold air ventilation path 23 through which cool air flows to the lower side of the food plate 20. The
 収納物ケース13の壁面(ここでは、天井面)にはマイクロ波を印加するアンテナ24が設けられていて、収納物ケース13底面には食品プレート設置位置が記されている。食品プレート20を設置位置に配置すると、アンテナ24の直下に食品プレートが位置する。アンテナ24から印加されるマイクロ波はマイクロ波発生装置(電磁波発生装置)25から発信される。マイクロ波発生装置25の一例を図4に概略的に示す。 The antenna case 24 for applying microwaves is provided on the wall surface (here, the ceiling surface) of the storage case 13, and the food plate installation position is marked on the bottom surface of the storage case 13. When the food plate 20 is disposed at the installation position, the food plate is positioned directly below the antenna 24. The microwave applied from the antenna 24 is transmitted from a microwave generator (electromagnetic wave generator) 25. An example of the microwave generator 25 is schematically shown in FIG.
 図4は、図1に示す貯蔵室11に設けられているマイクロ波発生装置の概略構成を示す模式図である。 FIG. 4 is a schematic diagram showing a schematic configuration of the microwave generator provided in the storage chamber 11 shown in FIG.
 図4に示すように、マイクロ波発生装置25は、発信装置26と、増幅器27、分配器28と、発信制御部29を備えている。発信装置26はマイクロ波を発信させることのできる装置であり、本実施の形態では半導体素子を用いてマイクロ波を発信させている。半導体素子はSiやGaAs、SiCやGaNなどで構成されている。これらの半導体素子を用いた発信装置26で発信した100W以下の低出力のマイクロ波は増幅器27で増幅し、分配器28を介して貯蔵室11に設けられたアンテナ24から食品12に印加される。 As shown in FIG. 4, the microwave generation device 25 includes a transmission device 26, an amplifier 27, a distributor 28, and a transmission control unit 29. The transmitting device 26 is a device capable of transmitting a microwave, and in this embodiment, the microwave is transmitted using a semiconductor element. The semiconductor element is made of Si, GaAs, SiC, GaN, or the like. The low-power microwave of 100 W or less transmitted from the transmitter 26 using these semiconductor elements is amplified by the amplifier 27 and applied to the food 12 from the antenna 24 provided in the storage chamber 11 via the distributor 28. .
 食品12に印加するマイクロ波のエネルギーは、食品を冷却するエネルギーよりも小さくてよく、冷凍もしくは冷蔵雰囲気の中で食品12の温度低下を妨げない程度の出力である(例えば100W以下)。また、マイクロ波のエネルギーを30W以下とすることで、冷却および解凍の両方を一つの発信装置26で実現することもできる。なお、電波の反射特性を考慮すると、収納物ケース13および外枠ケース14は金属で構成されていることが好ましい。これにより、電波の食品への入射ロスを低減することができる。 The energy of the microwave applied to the food 12 may be smaller than the energy for cooling the food, and is an output that does not hinder the temperature drop of the food 12 in a frozen or refrigerated atmosphere (for example, 100 W or less). Moreover, both cooling and thawing | decompression can also be implement | achieved by the one transmitter 26 by making the energy of a microwave into 30 W or less. In consideration of the reflection characteristics of radio waves, the storage case 13 and the outer frame case 14 are preferably made of metal. Thereby, the incident loss to the foodstuff of an electromagnetic wave can be reduced.
 貯蔵室11内には温度検知器30が設けられており、収納された食品12の温度を直接検出する。本実施の形態の場合、温度検知器30は、非接触で食品12の温度を検出することのできる装置(例えば、赤外線センサ)である。温度検知器30は、検知した食品12の温度を制御装置31に出力するように構成されている。制御装置31は、温度検知器30の信号情報に基づいて食品12の温度が凍結点以上かつ10℃以下の範囲内で選定される閾値に到達した時点でマイクロ波発生装置25を作動させ、マイクロ波を食品12に印加するように構成されている。 A temperature detector 30 is provided in the storage chamber 11 and directly detects the temperature of the stored food 12. In the case of the present embodiment, the temperature detector 30 is a device (for example, an infrared sensor) that can detect the temperature of the food 12 in a non-contact manner. The temperature detector 30 is configured to output the detected temperature of the food 12 to the control device 31. The control device 31 operates the microwave generator 25 when the temperature of the food 12 reaches a threshold value selected within the range of the freezing point and 10 ° C. or less based on the signal information of the temperature detector 30. A wave is configured to be applied to the food item 12.
 [貯蔵室及びそれを備える冷蔵庫の動作]
 以上のような構成からなる本発明の実施の形態について具体的な動作について、図1乃至図5を参照しながら説明する。図5は、本実施の形態1に係る冷蔵庫の動作(制御)と被冷却物及び貯蔵室内の温度経過を示す模式図である。
[Operation of storage room and refrigerator equipped with the same]
A specific operation of the embodiment of the present invention having the above configuration will be described with reference to FIGS. FIG. 5 is a schematic diagram showing the operation (control) of the refrigerator according to the first embodiment and the temperature course of the object to be cooled and the storage chamber.
 まず、収納物ケース13内の所定の位置に食品プレート20を設置する。冷凍したい食品12を食品プレート20上に載せてドア部15を閉める。食品プレート20に載せた食品12はアンテナ24の真下に配置される。食品12は冷気によって表面から低温になっていくが、通常収納物ケース13に直接置いた場合、食品12の冷気と接している表面と収納物ケース13に接触している面では熱伝達が異なり、冷気との接触が多い面ばかりが冷却されて低温になり、温度ムラが生じ始める。収納物ケース13と接触面は熱伝達が滞っているために食品表面部に起こった温度ムラはさらに内部への熱伝導へも影響し、冷凍時の氷結晶の生成にもムラを生じることとなる。 First, the food plate 20 is installed at a predetermined position in the storage case 13. The food 12 to be frozen is placed on the food plate 20 and the door portion 15 is closed. The food 12 placed on the food plate 20 is disposed directly below the antenna 24. Although the food 12 is cooled from the surface by cold air, the heat transfer is different between the surface of the food 12 in contact with the cold and the surface in contact with the storage case 13 when placed directly in the storage case 13. Only the surface with much contact with cold air is cooled down to a low temperature, and temperature unevenness starts to occur. Because the heat transfer is stagnant between the storage case 13 and the contact surface, the temperature unevenness occurring on the food surface further affects the heat conduction to the inside, and also causes unevenness in the formation of ice crystals during freezing. Become.
 たとえ、食品12と収納物ケース13との接触面を金属プレートのような熱伝導率の高いものを備えても金属プレートとの接触面のみが速く冷やされて同様に温度ムラが発生する。 Even if the contact surface between the food 12 and the storage case 13 is provided with a material having a high thermal conductivity such as a metal plate, only the contact surface with the metal plate is cooled quickly, and temperature unevenness similarly occurs.
 一方、食品プレート20に載せた食品12では食品プレート20の開口部21から冷気が接することとなり、食品表面全体の温度ムラを抑えることができる。そして、温度検知器30でモニタリングしている食品12の表面温度が5℃に到達した時点でマイクロ波発生装置25が作動し、貯蔵室11内へマイクロ波を印加する(図5参照)。マイクロ波の印加のタイミングは食品などの対象物の水分子が集合し始める10℃から、水分子間の凝集が強くなる5℃付近が良い。これらの温度域でマイクロ波が印加することで食品などの対象物の表面の水分子の凝集を効率的に抑制し、氷結晶核の生成も抑制して凍結せずに内部の冷却が進んでいく。この結果、食品表面が凍結することなく、内部との均温化を図ることができる。 On the other hand, in the food 12 placed on the food plate 20, cold air comes into contact with the opening 21 of the food plate 20, and temperature unevenness on the entire food surface can be suppressed. Then, when the surface temperature of the food 12 monitored by the temperature detector 30 reaches 5 ° C., the microwave generator 25 is activated to apply the microwave into the storage chamber 11 (see FIG. 5). The timing of application of the microwave is preferably from 10 ° C. at which water molecules of an object such as food start to gather to around 5 ° C. at which aggregation between water molecules becomes strong. The application of microwaves in these temperature ranges effectively suppresses the aggregation of water molecules on the surface of food and other objects, and also suppresses the formation of ice crystal nuclei, allowing internal cooling to proceed without freezing. Go. As a result, the temperature inside the food can be equalized without freezing the food surface.
 さらに、食品プレート20に支持部22を備えているので下方側に冷気が流れる冷気通風路23が形成され、貯蔵室11の冷気循環を妨げることなく、食品12の表面全体への冷気の伝熱を加速することができる。また、貯蔵室11の筐体面に食品12が接触して載置する場合、食品12と筐体の接触面からはマイクロ波が入射しにくいが、食品プレート20で筐体面から食品を浮かすことで、食品表面全体からマイクロ波が入射して電波の照射ムラを抑制することができ、食品表面が凍結するのを防止することが可能となる。食品表面と内部が均温化しつつ凍結温度まで低下してくことで、細かな氷結晶が均質に生成されて高品位な冷凍を実現できる。特に、冷凍したい食品の突起部や角、端部から凍結が起こりやすいが、それらの部位にマイクロ波が集中しやすいという特性によって対象物の一部が凍結するという事態を防ぐことができる。 Further, since the food plate 20 includes the support portion 22, a cold air passage 23 through which cold air flows is formed on the lower side, and heat transfer of the cold air to the entire surface of the food 12 is prevented without disturbing the cold air circulation in the storage chamber 11. Can be accelerated. Further, when the food 12 is placed in contact with the housing surface of the storage chamber 11, microwaves are difficult to enter from the contact surface between the food 12 and the housing, but the food plate 20 floats the food from the housing surface. In addition, it is possible to suppress the irradiation unevenness of the radio wave by the microwave incident from the entire food surface, and to prevent the food surface from freezing. By reducing the temperature of the food and the interior to the freezing temperature while keeping the temperature constant, fine ice crystals are generated uniformly and high-quality freezing can be realized. In particular, freezing is likely to occur from protrusions, corners, and ends of foods that are desired to be frozen, but it is possible to prevent a situation in which a part of an object is frozen due to the property that microwaves tend to concentrate on those portions.
 食品12へ印加するマイクロ波の電力量としては食品12を冷却するエネルギーよりも小さく設定する。実験的には150gの豆腐の場合、1W印加すれば凍結せずに温度低下していくことが確認できている。図5に示すようにマイクロ波が印加されている間、貯蔵室内は-10℃から対象物の凍結点までの温度帯の間の一定温度で保持される。ここでは、一例として-10℃で維持する。-10℃雰囲気でマイクロ波が印加された状態では、食品の凍結点が過ぎても凍結することなく、温度低下していく。食品12の温度が凍結点を通過して貯蔵室11との温度差が小さくなってくると、貯蔵室11の冷却エネルギーが食品12へ伝達されにくくなり、温度低下も緩やかになり一定温度に保持される。 The amount of microwave power applied to the food 12 is set smaller than the energy for cooling the food 12. Experimentally, in the case of 150 g of tofu, it has been confirmed that if 1 W is applied, the temperature decreases without freezing. As shown in FIG. 5, while the microwave is applied, the storage chamber is maintained at a constant temperature between -10 ° C. and the temperature range from the freezing point of the object. Here, as an example, the temperature is maintained at −10 ° C. In a state where microwaves are applied in a −10 ° C. atmosphere, the temperature decreases without freezing even when the freezing point of the food has passed. When the temperature of the food 12 passes through the freezing point and the temperature difference from the storage chamber 11 becomes small, the cooling energy of the storage chamber 11 becomes difficult to be transmitted to the food 12, and the temperature drop is moderated and held at a constant temperature. Is done.
 例えば、貯蔵室11が-10℃で1Wのマイクロ波を印加した豆腐150gでは、豆腐の品温が-4℃から-5℃で温度変化が小さくなって一定温度に維持される。その後、食品表面温度が急激に凍結点、例えば0~-2℃に上昇したことを温度検知器30で検知した時点で貯蔵室11内を-20℃になるように急激に温度低下させる。 For example, with 150 g of tofu with a 1 W microwave applied at −10 ° C. in the storage chamber 11, the temperature change is reduced from −4 ° C. to −5 ° C. and the temperature is kept constant. Thereafter, when the temperature detector 30 detects that the food surface temperature has rapidly increased to the freezing point, for example, 0 to −2 ° C., the temperature in the storage chamber 11 is rapidly decreased to −20 ° C.
 食品12の温度が凍結点に数秒の内に上昇する際、食品中には均一で小さな氷結晶が形成される。このような現象は、食品の冷却時に温度ムラが生じると起きない。一般的には凍結点に到達した部分から氷結晶が生成し、0~-5℃の氷結晶生成帯を通過して氷結晶が成長した状態となり、冷凍品質の劣化を招く。しかし、食品の表面と内部の温度ムラとして約3℃以内に抑えれば、凍結点を過ぎても凍らずに温度低下し、凍結点を過ぎてから数秒間で細かく小さな氷結晶が生成させることが可能である。その後、氷結晶が成長しないように急速凍結することで氷結晶の成長を最低限に抑えて冷凍することができる。 When the temperature of the food 12 rises within a few seconds to the freezing point, uniform and small ice crystals are formed in the food. Such a phenomenon does not occur when temperature unevenness occurs when the food is cooled. In general, ice crystals are generated from the part that has reached the freezing point, and the ice crystals grow through the ice crystal formation zone of 0 to -5 ° C., resulting in deterioration of the frozen quality. However, if the temperature unevenness on the surface and inside of the food is kept within about 3 ° C, the temperature will drop without freezing even after the freezing point, and small ice crystals will be formed within a few seconds after the freezing point. Is possible. Then, it can be frozen with minimal growth of ice crystals by rapid freezing so that the ice crystals do not grow.
 以上のように、食品12と貯蔵室11との間に食品プレート20を備えることで冷気が通風できる空間ができ、また、食品プレート20に設けた開口部21から冷気が対象物全体に接触するので、食品表面部の均温化が図れる。また、食品が貯蔵室11に浮いた状態であることからマイクロ波が食品の全表面から入射してマイクロ波の電波ムラも抑制されて、食品表面が凍結するのをムラなく防止できる。その結果、食品表面と内部を均温化させて冷却することができるので、凍結点以下でも凍らず、凍結し始める際には数秒で小さな氷結晶が均一に生成されて高品位な冷凍が可能となる。 As described above, by providing the food plate 20 between the food 12 and the storage chamber 11, a space through which cool air can be ventilated is created, and the cold air contacts the entire object through the opening 21 provided in the food plate 20. Therefore, the temperature of the food surface can be equalized. Moreover, since the food is in a state of floating in the storage chamber 11, the microwaves are incident from the entire surface of the food and the electromagnetic wave unevenness of the microwave is suppressed, so that the food surface can be prevented from freezing. As a result, the food surface and the interior can be soaked and cooled, so it does not freeze even below the freezing point, and when it begins to freeze, small ice crystals are uniformly generated within a few seconds, enabling high-quality freezing. It becomes.
 また、本実施の形態においては、マイクロ波を冷凍の際に照射しているが、例えば、冷却と加熱の同時を実現している貯蔵室11に解凍機能を備えた貯蔵室に適用することができ、その場合であっても、同様に、食品が貯蔵室11に浮いた状態であることからマイクロ波が食品の全表面から入射してマイクロ波の電波ムラも抑制されて、食品表面がムラなく解凍することが可能となる。 In this embodiment, microwaves are irradiated during freezing. For example, the microwave can be applied to a storage room having a thawing function in the storage room 11 that realizes simultaneous cooling and heating. Even in that case, similarly, since the food is in a state of floating in the storage chamber 11, microwaves are incident from the entire surface of the food, and the electromagnetic wave unevenness of the microwave is suppressed. It is possible to defrost without.
 よって、冷凍の際の高品質なムラのない冷凍と、解凍の際のムラのない加熱とを両立することが可能となり、保鮮性を保つ高品質の解凍機能付き貯蔵室11を実現することが可能となる。 Therefore, it is possible to achieve both high-quality freezing during freezing and non-uniform heating during thawing, and to realize a storage room 11 with a high-quality thawing function that maintains freshness. It becomes possible.
 (実施の形態2)
 図6は、本発明の実施の形態2における冷蔵庫内の貯蔵室の概略構成を示す模式図であり、図7は本発明の実施の形態2における貯蔵室の概略構成を示す模式図である。
(Embodiment 2)
FIG. 6 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 2 of the present invention, and FIG. 7 is a schematic diagram showing a schematic configuration of the storage room according to Embodiment 2 of the present invention.
 本発明の実施の形態2に係る冷蔵庫は、食品プレート20を収納物ケース13の上下方向の任意の高さに設置可能な点が実施の形態1に係る冷蔵庫と異なっており、その他の構成については実施の形態1に係る冷蔵庫と同じであるので、相違点について説明する。 The refrigerator according to the second embodiment of the present invention is different from the refrigerator according to the first embodiment in that the food plate 20 can be installed at an arbitrary height in the vertical direction of the storage case 13, and the other configurations. Since this is the same as the refrigerator according to the first embodiment, the differences will be described.
 図6および図7において、収納物ケース13の両側壁面に一対の支持体32を2箇所以上備えている。支持体32は食品プレート20が載るように側壁面の前面から奥にかけて、該側壁面から突出するように形成されている。支持体32に平面状の食品プレートを載せることで食品の形状、種類に応じて任意の高さに設置させることができる。食品プレート20をいずれの支持体32に載せるかは、貯蔵室11内のマイクロ波の電波分布との兼ね合いで選択する。 6 and 7, two or more pairs of support bodies 32 are provided on both side walls of the storage case 13. The support 32 is formed so as to protrude from the side wall surface from the front side to the back side of the side wall surface so that the food plate 20 is placed thereon. By placing a flat food plate on the support 32, it can be installed at any height depending on the shape and type of food. Which support 32 the food plate 20 is placed on is selected in consideration of the radio wave distribution of the microwave in the storage chamber 11.
 貯蔵室11内にマイクロ波を印加すると、貯蔵室11内に電波の強弱の分布が生じる。その電波ムラは貯蔵室11に3次元的に存在しているので、例えば底面と中央部の断面では電波ムラが異なった状態になる。なお、電波分布は、高さ方向においては、連続的に変化している。 When microwaves are applied to the storage chamber 11, the distribution of the strength of radio waves is generated in the storage chamber 11. Since the radio wave unevenness exists three-dimensionally in the storage chamber 11, for example, the radio wave unevenness is different between the cross section of the bottom surface and the central portion. Note that the radio wave distribution continuously changes in the height direction.
 例えば、貯蔵室11内の底面付近では中央部が強い電波分布が発生し、貯蔵室11の中間高さでは中央部以外に数箇所の強い電波分布を持つ場合がある。このような電波分布に対し、形状が小さな食品は底面付近に設置させる。この場合、中央部に電波が集中しているので効率的に電波を照射させることができる。反対に表面積が大きな食品は電波強度の強い分布が広範囲に分布している中間高さに設置することで食品全体に電波を照射させることができる。 For example, there is a case where a strong radio wave distribution is generated in the center near the bottom surface in the storage room 11 and a strong radio wave distribution is present in several places other than the central part at the intermediate height of the storage room 11. For such radio wave distribution, food with a small shape is placed near the bottom. In this case, since radio waves are concentrated in the center, radio waves can be efficiently irradiated. On the other hand, food with a large surface area can be irradiated with radio waves on the entire food by installing it at an intermediate height where the distribution of strong radio wave intensity is widely distributed.
 このように、食品プレートの高さを変えるだけで食品の形状に適したマイクロ波の加熱分布を選択できるので、食品表面部の電波照射分布の均一化を図ることができる。さらに、食品を重ねて収納する場合も加熱プレートを使用すれば食品と食品の間に隙間が維持されて冷気の流れが遮断されずに食品が冷却され、保存中の品質向上もできる。 As described above, since the microwave heating distribution suitable for the shape of the food can be selected simply by changing the height of the food plate, the radio wave irradiation distribution on the food surface can be made uniform. Furthermore, even when food is stacked and stored, if a heating plate is used, a gap is maintained between the food and the food is cooled without blocking the flow of cold air, and quality during storage can be improved.
 (実施の形態3)
 図8は、本発明の実施の形態3における冷蔵庫内の貯蔵室の概略構成を示す模式図であり、図9は本発明の実施の形態3における貯蔵室の概略構成を示す斜視図である。
(Embodiment 3)
FIG. 8 is a schematic diagram showing a schematic configuration of a storage chamber in the refrigerator according to Embodiment 3 of the present invention, and FIG. 9 is a perspective view showing a schematic configuration of the storage chamber according to Embodiment 3 of the present invention.
 実施の形態3は食品プレートの下部に受け皿を有する点が、実施の形態1及び2と異なっており、その他の構成については実施の形態1と同じであるので、相違点について説明する。 Embodiment 3 is different from Embodiments 1 and 2 in that a saucer is provided at the lower part of the food plate, and the other configurations are the same as those in Embodiment 1, so the differences will be described.
 図8及び図9に示すように、本発明の実施の形態3に係る冷蔵庫の貯蔵室11には、受け皿33が配置されている。受け皿33の上方に食品プレート20が設置されている。受け皿33はマイクロ波を透過するか誘電率の小さな材質が好ましい。例えば、プラスチック材やガラス、陶器などで-20℃~100℃の環境でも変形しないものが良い。耐熱および耐冷温度が-30℃~120℃ならさらに良い。 As shown in FIGS. 8 and 9, a tray 33 is arranged in the storage room 11 of the refrigerator according to Embodiment 3 of the present invention. The food plate 20 is installed above the tray 33. The tray 33 is preferably made of a material that transmits microwaves or has a low dielectric constant. For example, plastic materials, glass, ceramics, etc. that do not deform even in an environment of −20 ° C. to 100 ° C. are preferable. It is even better if the heat and cold resistance is between -30 ° C and 120 ° C.
 食品プレート20の下方に受け皿33を設置し、冷凍済みの食品を食品プレート上に置いてドアを閉め、マイクロ波を印加する。冷凍状態の食品はマイクロ波の印加によって氷結晶が解け始め、解凍される。解凍が進むにつれてエビなど氷の厚い膜で覆われたものでは溶け出した水に食品が浸って水っぽくなってしまうが、食品プレート20の開口部21から水滴のみが受け皿33上に滴下することで食品は水っぽくならずにかつ、収納物ケース13内も汚さずに済む。 The saucer 33 is installed under the food plate 20, the frozen food is placed on the food plate, the door is closed, and the microwave is applied. Frozen foods begin to melt ice crystals and are thawed. As the thawing progresses, the food covered with a thick film of ice such as shrimp becomes soaked in the melted water that it becomes watery, but only water droplets drop from the opening 21 of the food plate 20 onto the tray 33. The food does not become watery, and the inside of the storage case 13 can be kept clean.
 また、冷凍あるいは冷蔵温度下でマイクロ波を印加するので、解凍しすぎることもない。マイクロ波の印加や停止は温度検知器30の検知信号によって制御され、マイクロ波印加後は温度検知器30の検知情報が例えば-2℃で食品の表面温度が凍結温度(融解温度)に到達したと判断してマイクロ波の印加を停止するように制御装置31で制御される。 Also, since microwaves are applied at a freezing or refrigeration temperature, thawing is not excessive. The application and stop of the microwave is controlled by the detection signal of the temperature detector 30. After the microwave application, the detection information of the temperature detector 30 is, for example, -2 ° C, and the surface temperature of the food reaches the freezing temperature (melting temperature). And the control device 31 controls to stop the application of the microwave.
 マイクロ波の印加停止後は、冷蔵温度(1℃以上)に貯蔵室11内の温度を保持することで解凍後の食品をそのまま放置しても保存が可能となる。使用後の受け皿33は取り出して、解凍時に滴下した水を捨てて洗ってから収納物ケース13に戻せば、収納物ケース13内を清潔に保持することができる。 After the microwave application is stopped, by keeping the temperature in the storage chamber 11 at the refrigeration temperature (1 ° C. or higher), it is possible to preserve the thawed food as it is. If the used tray 33 is taken out, the water dripped at the time of thawing is discarded and washed, and then returned to the storage case 13, the storage case 13 can be kept clean.
 (実施の形態4)
 図10は、本発明の実施の形態4における冷蔵庫内の貯蔵室の概略構成を示す模式図である。実施の形態4は食品プレート20が収納物ケース13内を回転する点が実施の形態1~3と異なっており、その他の構成については実施の形態1または2と同じであるので、相違点について説明する。
(Embodiment 4)
FIG. 10 is a schematic diagram showing a schematic configuration of a storage room in the refrigerator according to Embodiment 4 of the present invention. The fourth embodiment is different from the first to third embodiments in that the food plate 20 rotates in the storage case 13, and the other configuration is the same as the first or second embodiment. explain.
 図10において食品プレート20は支軸34を介してモータ35と連結している。支軸34から食品プレート20の着脱は自在に行える。食品プレート20は円形に形成されていて、複数の開口部21が同心円上に設けられている。食品プレート20はモータ35によって180℃回転すると反転するように回転運動を行う。このように食品プレート20が回転することによって、食品プレート20上の食品に印加されるマイクロ波の加熱分布が定期的に変化して、停止状態の食品よりもムラなくマイクロ波が照射される。 10, the food plate 20 is connected to the motor 35 via the support shaft 34. The food plate 20 can be freely attached and detached from the support shaft 34. The food plate 20 is formed in a circular shape, and a plurality of openings 21 are provided on concentric circles. The food plate 20 rotates so as to be reversed when rotated by 180 ° C. by the motor 35. As the food plate 20 rotates in this way, the heating distribution of the microwave applied to the food on the food plate 20 changes periodically, and the microwave is irradiated more uniformly than in the stopped food.
 冷凍していく場合も解凍する場合も食品表面全体にマイクロ波が照射されるとともに食品への加熱ムラも改善されて、冷凍時の表面凍結防止や解凍ムラが抑制される。よって、冷凍と解凍の両者とも温度均一化が図れ、高品位な冷凍と解凍が実現できる。 In both freezing and thawing, the entire food surface is irradiated with microwaves, and uneven heating on the food is also improved, preventing surface freezing and thawing unevenness during freezing. Therefore, both freezing and thawing can achieve uniform temperature, and high-quality freezing and thawing can be realized.
 (実施の形態5)
 [冷蔵庫の構成]
 図11は本発明の実施の形態5における冷蔵庫の正面図、図12は図11中のA-A断面を示す側面断面図である。
(Embodiment 5)
[Composition of refrigerator]
FIG. 11 is a front view of a refrigerator according to Embodiment 5 of the present invention, and FIG. 12 is a side cross-sectional view showing an AA cross section in FIG.
 図11、図12において、本発明の実施の形態5における冷蔵庫100の冷蔵庫本体である断熱箱体101は、主に鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103と、外箱102と内箱103との間の空間に発泡充填される硬質発泡ウレタンなどの発泡断熱材とで構成されている。また、断熱箱体101は、周囲と断熱され、仕切壁によって複数の貯蔵室に断熱区画されている。具体的には、断熱箱体101には、最上部に第一の貯蔵室としての冷蔵室104、その冷蔵室104の下部に第四の貯蔵室としての第二の冷凍室105と第五の貯蔵室としての製氷室106が横並びに設けられ、その第二の冷凍室105と製氷室106の下部に第二の貯蔵室としての第一の冷凍室107が設けられ、そして最下部に第三の貯蔵室としての野菜室108が設けられている。 11 and 12, a heat insulating box body 101 which is a refrigerator main body of the refrigerator 100 according to the fifth embodiment of the present invention includes an outer box 102 mainly using a steel plate and an inner box 103 formed of a resin such as ABS. And a foamed heat insulating material such as hard foamed urethane filled in the space between the outer box 102 and the inner box 103. Moreover, the heat insulation box 101 is thermally insulated from the circumference | surroundings, and is thermally insulated and divided by the partition wall into the some storage chamber. Specifically, the heat insulation box 101 has a refrigerating room 104 as a first storage room at the top, a second freezing room 105 as a fourth storage room at the lower part of the refrigerating room 104, and a fifth storage room. An ice making chamber 106 as a storage chamber is provided side by side, a first freezing chamber 107 as a second storage chamber is provided at the lower part of the second freezing chamber 105 and the ice making chamber 106, and a third at the bottom. A vegetable room 108 is provided as a storage room.
 一般に冷蔵室104は回転式の冷蔵室扉104aを有し、第二の冷凍室105、製氷室106、第一の冷凍室107、野菜室108は、それぞれレール(図示しない)等で構成された引出し扉105a、106a、107a、108aを有する。 In general, the refrigerator compartment 104 has a rotary refrigerator compartment door 104a, and the second freezer compartment 105, the ice making compartment 106, the first freezer compartment 107, and the vegetable compartment 108 are each composed of a rail (not shown). It has drawer doors 105a, 106a, 107a, 108a.
 また、引出し扉を有したそれぞれの貯蔵室は、レール(図示しない)等に載置されたケースを有し、第二の冷凍室105には冷凍室ケース105b、製氷室106には貯氷ケース106b(図示せず)、冷凍室には冷凍室上段ケース107b、冷凍室下段ケース107c、野菜室108には野菜室上段ケース108b、野菜室下段ケース108cが配置されている。 Each storage room having a drawer door has a case placed on a rail (not shown) or the like, the second freezing room 105 has a freezing room case 105b, and the ice making room 106 has an ice storage case 106b. (Not shown) In the freezer compartment, a freezer compartment upper case 107b and a freezer compartment lower case 107c are arranged, and in the vegetable compartment 108, a vegetable compartment upper case 108b and a vegetable compartment lower case 108c are arranged.
 冷蔵室104は冷蔵保存のために、被冷却物(食品)が凍らない温度である冷蔵温度帯、通常1℃~5℃に設定される第一の収納区画104bと、冷蔵温度帯より低い温度帯として例えば食品の凍結温度より低い約-10℃の凍結温度に設定することのできる第二の収納区画104cとを備える。 The refrigerated room 104 is a refrigerated temperature zone, which is a temperature at which the object (food) to be cooled does not freeze, and a temperature lower than the refrigerated temperature zone, usually set to 1 ° C. to 5 ° C. As the belt, for example, a second storage section 104c that can be set to a freezing temperature of about −10 ° C. lower than the freezing temperature of food is provided.
 野菜室108は冷蔵室104と同等の冷蔵温度帯もしくは冷蔵温度帯よりも若干高い温度設定である野菜温度帯2℃~7℃に設定されている。第一の冷凍室107は冷凍温度帯に設定されており、冷凍保存のために通常-22℃~-15℃で設定されているが、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温で設定されることもある。第二の冷凍室105は、第一の冷凍室107と同等の冷凍温度帯または冷凍温度帯よりも若干高い温度設定-20℃~-12℃に維持される。第二の冷凍室105は製氷室106に並設された独立扉を備える貯蔵室である。製氷室106は、冷蔵室104内の貯水タンク(図示せず)から送られた水で室内上部に設けられた自動製氷機(図示せず)で氷を作り、室内下部に配置されている貯氷ケース106bに貯蔵する。 The vegetable room 108 is set to a refrigeration temperature range equivalent to the refrigeration room 104 or a temperature range of 2 ° C. to 7 ° C., which is a slightly higher temperature setting than the refrigeration temperature range. The first freezer compartment 107 is set in a freezing temperature zone, and is usually set at −22 ° C. to −15 ° C. for frozen storage. For example, to improve the frozen storage state, It may be set at a low temperature of -25 ° C. The second freezer compartment 105 is maintained at a refrigeration temperature zone equivalent to the first freezer compartment 107 or a temperature setting of −20 ° C. to −12 ° C. slightly higher than the freezing temperature zone. The second freezing room 105 is a storage room having an independent door arranged in parallel with the ice making room 106. The ice making chamber 106 makes ice with an automatic ice maker (not shown) provided in the upper part of the room with water sent from a water storage tank (not shown) in the refrigerated room 104, and stores ice in the lower part of the room. Store in case 106b.
 断熱箱体101の天面部は冷蔵庫の背面方向に向かって階段状に凹みを設けた形状であり、この階段状の凹部に機械室101aが形成されている。機械室101aには、圧縮機109、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収容されている。すなわち、圧縮機109を配設する機械室101aは、冷蔵室104内の最上部の後方領域に食い込んで形成されることになる。 The top surface portion of the heat insulating box 101 has a stepped recess shape toward the back of the refrigerator, and a machine room 101a is formed in the stepped recess. The machine room 101a accommodates high-pressure components of the refrigeration cycle such as the compressor 109 and a dryer (not shown) for removing moisture. That is, the machine room 101 a in which the compressor 109 is disposed is formed by biting into the uppermost rear region in the refrigerator compartment 104.
 このように、手が届きにくくデッドスペースとなっていた断熱箱体101の最上部の貯蔵室後方領域に機械室101aを設けて圧縮機109を配置することにより、従来の冷蔵庫で、使用者が使いやすい断熱箱体101の最下部にあった機械室のスペースを貯蔵室容量として有効に転化することができ、収納性や使い勝手を大きく改善することができる。 Thus, by providing the machine room 101a in the rear region of the uppermost storage room of the heat insulation box 101 that has become a dead space that is difficult to reach, the compressor 109 is disposed in the conventional refrigerator. The space in the machine room at the bottom of the easy-to-use heat insulation box 101 can be effectively converted as the storage room capacity, and the storage performance and usability can be greatly improved.
 冷凍サイクルは、圧縮機109と凝縮器と減圧器であるキャピラリーと冷却器112とが順に設けられた一連の冷媒流路から形成されており、冷媒として炭化水素系冷媒である例えばイソブタンが封入されている。 The refrigeration cycle is formed of a series of refrigerant flow paths in which a compressor 109, a condenser, a capillary as a decompressor, and a cooler 112 are provided in order, and a hydrocarbon-based refrigerant such as isobutane is enclosed as a refrigerant. ing.
 圧縮機109はピストンがシリンダ内を往復動することで冷媒の圧縮を行う往復動型圧縮機である。なお、断熱箱体101に、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品が機械室101a内に配設されている場合もある。 Compressor 109 is a reciprocating compressor that compresses refrigerant by reciprocating a piston in a cylinder. In addition, in the case of the refrigerating cycle which uses a three-way valve or a switching valve for the heat insulation box 101, those functional parts may be arranged in the machine room 101a.
 また、本実施の形態では冷凍サイクルを構成する減圧器をキャピラリーとしたが、パルスモーターで駆動する冷媒の流量を自由に制御できる電子膨張弁を用いてもよい。 In the present embodiment, the decompressor constituting the refrigeration cycle is a capillary, but an electronic expansion valve that can freely control the flow rate of the refrigerant driven by the pulse motor may be used.
 第一の冷凍室107の背面には冷気を生成する冷却室110が設けられ、第二の冷凍室105および製氷室106、第一の冷凍室107と断熱区画するために構成された奥面仕切壁111が構成されている。冷却室110内には、冷却器112が配設されており、冷却器112の上部空間には強制対流方式により冷却器112で冷却した冷気を冷蔵室104、第二の冷凍室105、製氷室106、第一の冷凍室107、野菜室108に送風する冷却ファン113が配置されている。 A cooling chamber 110 for generating cold air is provided on the back surface of the first freezing chamber 107, and a rear partition configured to be insulated from the second freezing chamber 105, the ice making chamber 106, and the first freezing chamber 107. A wall 111 is formed. In the cooling chamber 110, a cooler 112 is disposed, and in the upper space of the cooler 112, the cold air cooled by the cooler 112 by a forced convection method is stored in the refrigerating chamber 104, the second freezing chamber 105, and the ice making chamber. 106, the cooling fan 113 which ventilates to the 1st freezer compartment 107 and the vegetable compartment 108 is arrange | positioned.
 また、冷却器112の下部空間には冷却時に冷却器112やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアント加熱手段114が設けられている。ラジアント加熱手段114の下部には、除霜時に生じる除霜水を受けるためのドレンパン115が設けられ、該ドレンパン115の最深部から下方に向かって延びるようにドレンチューブ116が設けられている。ドレンチューブ116の下方には、蒸発皿117が配置されている。 Further, in the lower space of the cooler 112, a radiant heating means 114 made of a glass tube is provided for defrosting the frost and ice adhering to the cooler 112 and its periphery during cooling. A drain pan 115 for receiving defrost water generated at the time of defrosting is provided below the radiant heating means 114, and a drain tube 116 is provided so as to extend downward from the deepest portion of the drain pan 115. An evaporating dish 117 is disposed below the drain tube 116.
 第二の収納区画104cは、冷蔵室104内の最下段に設けられた庫内断熱箱体118で構成され、食品120を冷凍、解凍、保存する空間として設けられている。庫内断熱箱体118には前面開口部が形成されている。また、庫内断熱箱体118には、前面開口部を閉塞する断熱扉121が設けられており、パッキン122によって断熱扉121と庫内断熱箱体118の間を空気的に遮断し、第二の収納区画104cは密閉状態に保たれている。 The second storage section 104c is composed of an insulative heat insulation box 118 provided at the lowest stage in the refrigerator compartment 104, and is provided as a space for freezing, thawing and storing the food 120. A front opening is formed in the interior heat insulation box 118. Further, the heat insulating box body 118 is provided with a heat insulating door 121 that closes the front opening. The packing 122 air-blocks the space between the heat insulating door 121 and the heat insulating box body 118, and The storage compartment 104c is kept sealed.
 なお、庫内断熱箱体118の底面は、冷蔵室104と第一の冷凍室107および製氷室106とを断熱する第一の仕切壁123と一体に構成してもよく、庫内断熱箱体118の背面は、冷蔵室背面部材124と一体に構成してもよく、庫内断熱箱体118の左面は断熱箱体101左面と一体に構成してもよい。 The bottom surface of the internal heat insulation box 118 may be formed integrally with the first partition wall 123 that insulates the refrigerator compartment 104 from the first freezer compartment 107 and the ice making compartment 106. The back surface of 118 may be integrated with the refrigerator compartment back member 124, and the left surface of the in-compartment heat insulating box 118 may be integrated with the left surface of the heat insulating box 101.
 冷蔵室背面部材124と断熱箱体101との間には、冷却ファン113により送出された冷気を冷蔵室104へ搬送する搬送風路125が配設されている。庫内断熱箱体118背面上部には、搬送風路125の冷気を第二の収納区画104cに導入するための第二の収納区画用吐出口118aが設けられ、庫内断熱箱体118天面奥部には、第一の収納区画104bより冷気を導入する通気口118bが設けられている。吐出口118aおよび通気口118bはダンパ119によって開閉自在に構成されている。庫内断熱箱体118背面下部には、第二の収納区画104cを冷却した冷気が吸い込まれる吸入口118cが設けられている。吸い込まれた冷気は、再び冷却器112で熱交換され、冷たい冷気となり、循環を繰り返すことで第二の収納区画104cの冷却が行われる。 Between the refrigerator compartment back member 124 and the heat insulation box 101, a conveyance air passage 125 that conveys the cold air sent out by the cooling fan 113 to the refrigerator compartment 104 is disposed. A second storage compartment discharge port 118a for introducing the cool air of the conveyance air passage 125 into the second storage compartment 104c is provided on the upper rear surface of the interior heat insulation box 118, and the top surface of the interior heat insulation box 118 is provided. A vent hole 118b through which cool air is introduced from the first storage section 104b is provided in the inner part. The discharge port 118a and the vent port 118b are configured to be freely opened and closed by a damper 119. A suction port 118c through which cool air that has cooled the second storage section 104c is sucked is provided at the lower back of the interior heat insulation box 118. The sucked cool air is heat-exchanged again by the cooler 112 to become cool cool air, and the second storage section 104c is cooled by repeating the circulation.
 なお、本実施の形態においてダンパ119は開口部を選択することができるシングルダンパとしたが、これに限定されない。例えば、ダンパ119をツインダンパとしてもよい。この場合、吐出口118aと通気口118bの開閉を別々に制御できるようにすることで、第二の収納区画104cの温度をより繊細に制御することができる。 In this embodiment, the damper 119 is a single damper capable of selecting an opening, but is not limited to this. For example, the damper 119 may be a twin damper. In this case, the temperature of the second storage section 104c can be controlled more delicately by enabling the opening / closing of the discharge port 118a and the vent port 118b to be controlled separately.
 なお、冷凍サイクルには様々な方式が考えられる。例えば、圧縮機を用いる蒸気圧縮式冷凍システムや、吸収式冷凍システムや、ペルチェ式冷凍システム等を用いることができる。 Various methods can be considered for the refrigeration cycle. For example, a vapor compression refrigeration system using a compressor, an absorption refrigeration system, a Peltier refrigeration system, or the like can be used.
 第二の収納区画104c内部には箱体126が配置されている。この箱体126は、断熱扉121に面する壁が開放されていて、かつ、他面は略閉塞されるよう形成されている。箱体126の開放部分が、開放部126aを構成する。一方、断熱扉121には蓋体127が取り付けられている。この蓋体127は、断熱扉121が閉状態では、箱体126の開放部126aにその一部が入り込み、箱体126を略密閉し、独立収納区画128を形成している。本実施の形態では、箱体126と蓋体127は、ステンレス、アルミ、鋼板などの金属で構成されている。したがって、独立収納区画128の内壁面は金属で覆われていることになる。なお、箱体126と蓋体127は必ずしもその全てを金属で構成する必要はなく、例えば独立収納区画128の内壁面だけでも良い。具体的な方法としては、内壁に金属板を貼り付けたり、蒸着工法等で金属皮膜を形成したりしても良い。 A box 126 is arranged inside the second storage section 104c. The box 126 is formed such that the wall facing the heat insulating door 121 is opened and the other surface is substantially closed. An open part of the box 126 constitutes an open part 126a. On the other hand, a lid 127 is attached to the heat insulating door 121. When the heat insulating door 121 is in a closed state, a part of the lid 127 enters the open portion 126a of the box 126, and substantially seals the box 126 to form an independent storage section 128. In the present embodiment, the box body 126 and the lid body 127 are made of metal such as stainless steel, aluminum, or a steel plate. Therefore, the inner wall surface of the independent storage section 128 is covered with metal. Note that the box body 126 and the lid body 127 are not necessarily all made of metal, and may be only the inner wall surface of the independent storage section 128, for example. As a specific method, a metal plate may be attached to the inner wall, or a metal film may be formed by a vapor deposition method or the like.
 さらに、断熱扉121を透明すなわち光透過性の高い樹脂、あるいはガラスで成形するとともに、蓋体127を電磁波が漏洩しない径の複数の孔を設けた施した金属で形成することで、電磁波の漏洩を防止し、かつ第二の収納区画104c内部の視認性を向上することが可能となる。 Furthermore, the heat insulating door 121 is formed of a transparent or highly light-transmitting resin or glass, and the lid 127 is formed of a metal provided with a plurality of holes having a diameter that does not leak electromagnetic waves. And the visibility inside the second storage section 104c can be improved.
 本実施の形態において蓋体127は、金属板にパンチング加工(直径6mm)を施した物を使用している。また、透明でかつ耐熱性を有した樹脂としては、例えばポリカーボネート、ポリエチレンテレフタレート、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリアクリロニトリル、ポリシクロオレフィン等があるが、これに限るものではない。 In the present embodiment, the lid 127 is made of a metal plate that has been punched (diameter 6 mm). Examples of the transparent and heat resistant resin include, but are not limited to, polycarbonate, polyethylene terephthalate, polyether ether ketone, polyether sulfone, polyacrylonitrile, polycycloolefin, and the like.
 本構成にすることで、第二の収納区画104cすなわち独立収納区画128内部をパンチングの孔を通して確認することができるので、使用者の使い勝手を向上することができる。 By adopting this configuration, the second storage section 104c, that is, the inside of the independent storage section 128 can be confirmed through a punching hole, so that the user's convenience can be improved.
 また蓋体127はパンチングを施した金属ではなく、金属メッシュで構成しても同様の効果が得られる。その際にもメッシュは電磁波が漏洩しない目開きにする必要がある。 The same effect can be obtained even if the lid 127 is made of a metal mesh instead of punched metal. In that case as well, the mesh must be open so that electromagnetic waves do not leak.
 さらに、断熱扉121を透明の樹脂あるいはガラスで構成するとともに、透明な樹脂あるいはガラスで構成された蓋体127に可視光域において透明な導電性膜を備えることで、第二の収納区画から電磁波が漏洩することを防止するとともに、第二の収納区画内の視認性を更に高めることが可能となる。透明の導電性膜としては、酸化錫あるいは、酸化インジウムに酸化錫を添加したものあるいは、酸化錫化合物にアンチモン、フッ素を添加したものあるいは、酸化亜鉛にアルミニウムを添加したもののうち少なくとも1種類を成分としたものが挙げられるが、これに限るものではない。 Further, the heat insulating door 121 is made of transparent resin or glass, and the lid 127 made of transparent resin or glass is provided with a conductive film that is transparent in the visible light range, so that electromagnetic waves can be generated from the second storage compartment. Can be prevented, and the visibility in the second storage compartment can be further enhanced. The transparent conductive film is composed of at least one of tin oxide or indium oxide added with tin oxide, tin oxide compound added with antimony or fluorine, or zinc oxide added with aluminum. However, it is not limited to this.
 蓋体127に透明の導電性膜を備えることにより、パンチングを施した金属や金属メッシュで構成した蓋体127に比べて、第二の収納区画104cの内部を金属で遮ることが無い。そのため、より視認性を向上することが可能になり、使用者の使い勝手を向上することが可能となる。 By providing the lid 127 with a transparent conductive film, the inside of the second storage section 104c is not blocked by metal compared to the lid 127 made of punched metal or metal mesh. Therefore, it becomes possible to improve visibility more and to improve the usability of the user.
 なお、本実施の形態において断熱扉121と蓋体127を別構成としたが、蓋体127が断熱扉121を兼ねる構成にしても同様の効果を得ることができるとともに、より視認性を向上することが可能となる。 In the present embodiment, the heat insulating door 121 and the lid 127 are configured separately, but the same effect can be obtained even when the lid 127 also serves as the heat insulating door 121, and the visibility is further improved. It becomes possible.
 第二の収納区画104c内の箱体126内には、食品(被冷却物)120を載置して収納するケース129が設けられており、使用者は、断熱扉121を開くことによりケース129を手前方向に引き出し、食品120の出し入れをすることができる。なお、断熱扉121の開放動作としては様々なものが考えられ、断熱扉121の上下辺のいずれかを軸にして回転させても良く、また、断熱扉121の左右辺を軸にして回転させても良い。さらには、スライドレール等を用いて断熱扉121を手前方向に水平移動させても良い。また、ケース129は、断熱扉121の動作に連動してもしなくてもどちらでも良く、本実施の形態における効果に変わりはない。 In the box 126 in the second storage section 104c, a case 129 for storing food (an object to be cooled) 120 is provided and stored, and the user opens the heat insulating door 121 to open the case 129. The food 120 can be put in and taken out. Various opening operations of the heat insulating door 121 are conceivable, and the heat insulating door 121 may be rotated about any one of the upper and lower sides of the heat insulating door 121, and may be rotated about the left and right sides of the heat insulating door 121. May be. Furthermore, you may horizontally move the heat insulation door 121 to a near direction using a slide rail. Further, the case 129 may or may not be interlocked with the operation of the heat insulating door 121, and the effect in the present embodiment is not changed.
 箱体126の天面にはアンテナ130が設けられ、電磁波発生装置131と同軸ケーブル等で電気的に接続されている。また、同じく箱体126の天面には温度検知器132が設けられ、制御装置133と電気的に接続されている。さらにこの制御装置133は、電磁波発生装置131とも電気的に接続されている。電磁波発生装置131は、半導体素子を用いて構成された電磁波波発振器(図示せず)と、電磁波発振器の出力信号を増幅する、半導体素子を用いて構成された電磁波増幅器(図示せず)とで構成される。電磁波増幅器の半導体素子には、GaN材料を利用した電界効果トランジスタが用いられる。 An antenna 130 is provided on the top surface of the box 126 and is electrically connected to the electromagnetic wave generator 131 by a coaxial cable or the like. Similarly, a temperature detector 132 is provided on the top surface of the box 126 and is electrically connected to the control device 133. Further, the control device 133 is also electrically connected to the electromagnetic wave generator 131. The electromagnetic wave generator 131 includes an electromagnetic wave oscillator (not shown) configured using a semiconductor element, and an electromagnetic wave amplifier (not shown) configured using a semiconductor element that amplifies an output signal of the electromagnetic wave oscillator. Composed. A field effect transistor using a GaN material is used for a semiconductor element of an electromagnetic wave amplifier.
 なお、電磁波増幅器はGaN材料の他に、SiやGaAs、SiCなどその他の半導体素子を用いてもよい。また、アンテナ130や温度検知器132は、必ずしも箱体126の天面にある必要はなく、背面や側面、底面にあっても良い。また、温度検知器132には様々な方式が考えられるが、例えば、赤外線を検知できる赤外線センサや、温度による抵抗値の変化を利用したサーミスタ等を用いると良い。 The electromagnetic wave amplifier may use other semiconductor elements such as Si, GaAs and SiC in addition to the GaN material. Further, the antenna 130 and the temperature detector 132 do not necessarily need to be on the top surface of the box body 126, and may be on the back surface, the side surface, or the bottom surface. Various methods are conceivable for the temperature detector 132. For example, an infrared sensor capable of detecting infrared rays, a thermistor using a change in resistance value due to temperature, or the like may be used.
 また、前述した圧縮機109、冷却ファン113、ラジアント加熱手段114、ダンパ119は、制御装置133と電気的に接続されている。 In addition, the compressor 109, the cooling fan 113, the radiant heating means 114, and the damper 119 described above are electrically connected to the control device 133.
 [冷蔵庫の動作及び作用]
 以上のように構成された本実施の形態の冷蔵庫100について、以下その動作、作用を説明する。
[Operation and action of refrigerator]
About the refrigerator 100 of this Embodiment comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御装置133からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機109の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)である程度凝縮液化し、さらに冷蔵庫本体である断熱箱体101の側面や背面、また断熱箱体101の前面間口に配設された冷媒配管(図示せず)などを経由し断熱箱体101の結露を防止しながら凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機109への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器112に至る。 First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by a signal from the control device 133 according to the temperature set in the refrigerator, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 109 is condensed to some extent by a condenser (not shown), and further, the side surface and the rear surface of the heat insulating box body 101 which is the refrigerator main body, and the front opening of the heat insulating box body 101. The heat insulating box 101 is condensed and liquefied while preventing the condensation of the heat insulating box 101 via a refrigerant pipe (not shown) disposed in the tube, and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 109 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 112.
 ここで、低温低圧の液冷媒は、冷却ファン113の動作により各貯蔵室内の空気と熱交換され、冷却器112内の冷媒は蒸発気化する。この時、冷却室110内で各貯蔵室を冷却するための冷気を生成する。低温の冷気は、風路やダンパによって、冷蔵室104、第二の冷凍室105、製氷室106、第一の冷凍室107、野菜室108に分流される。そして、分流された冷気によって、それぞれの目的温度帯にまで各室内は冷却される。 Here, the low-temperature and low-pressure liquid refrigerant exchanges heat with the air in each storage chamber by the operation of the cooling fan 113, and the refrigerant in the cooler 112 evaporates. At this time, cool air for cooling each storage chamber in the cooling chamber 110 is generated. The cold cold air is diverted to the refrigerator compartment 104, the second freezer compartment 105, the ice making compartment 106, the first freezer compartment 107, and the vegetable compartment 108 by an air passage or a damper. And each room | chamber is cooled to each target temperature range by the divided cold air.
 次に、第二の収納区画104cにおいて、冷凍および保存を行う際の冷却について説明する。冷却室110内に配置された冷却器112は、冷凍サイクルによって、-40℃~-20℃程度に冷却される。これによって冷却室110内の空気が冷却され、冷却された空気は、冷却ファン113によって吐出口118aを通り第二の収納区画104c内に送出される。このとき、ダンパ119は第二の収納区画104c内を設定温度に保つように吐出口118aを開閉し、第二の収納区画104cに送出される冷気の量を調節する。 Next, cooling when performing freezing and storage in the second storage section 104c will be described. The cooler 112 disposed in the cooling chamber 110 is cooled to about −40 ° C. to −20 ° C. by the refrigeration cycle. As a result, the air in the cooling chamber 110 is cooled, and the cooled air is sent by the cooling fan 113 through the discharge port 118a and into the second storage section 104c. At this time, the damper 119 opens and closes the discharge port 118a so as to keep the inside of the second storage section 104c at the set temperature, and adjusts the amount of cool air sent to the second storage section 104c.
 吐出口118aの下流側には箱体126が配置されており、吐出口118aから第二の収納区画104c内に送出された冷気は、箱体126に当接し、箱体126自体を冷却する。前述したように、箱体126は、少なくともその一部に金属が用いられているため、その良好な熱伝導性により箱体126全体をすばやく、かつ、均一に冷却することが可能である。この時、断熱扉121に取り付けられた蓋体127も箱体126と同一の金属で構成されているため、熱伝導性が良く、すばやく均一に冷却されることになる。したがって、箱体126と蓋体127に囲まれた独立収納区画128内は、温度分布のばらつきを最小限に抑えて均一に冷却されることとなる。また、金属の箱体126に積極的に冷気を当接させることにより、箱体126を急速に冷却し、それによって、独立収納区画128内に収納された食品120を急速に冷凍することが可能となる。 A box body 126 is disposed on the downstream side of the discharge port 118a, and the cool air sent from the discharge port 118a into the second storage section 104c contacts the box body 126 to cool the box body 126 itself. As described above, since the metal is used for at least part of the box 126, the entire box 126 can be cooled quickly and uniformly due to its good thermal conductivity. At this time, since the lid 127 attached to the heat insulating door 121 is also made of the same metal as the box 126, it has good thermal conductivity and is quickly and uniformly cooled. Therefore, the inside of the independent storage section 128 surrounded by the box body 126 and the lid body 127 is uniformly cooled while minimizing variation in temperature distribution. In addition, it is possible to rapidly cool the box body 126 by positively bringing cold air into contact with the metal box body 126, thereby rapidly freezing the food 120 stored in the independent storage section 128. It becomes.
 第二の収納区画104c内を循環し、箱体126を冷却した冷気は、吸入口118cから冷却室110に帰還し、冷却器112によって再び冷却される。 The cold air that circulates in the second storage section 104c and cools the box 126 returns to the cooling chamber 110 from the suction port 118c and is cooled again by the cooler 112.
 箱体126の天面に取り付けられた温度検知器132は、独立収納区画128内部の空気温度、ケース129、または、食品120の温度を検知することができる。この温度情報は、電気的に接続された制御装置133に電気信号として送られ、制御装置133は、事前に設定された温度になるよう、冷却ファン113や冷凍サイクルを適切に制御する。具体的には、制御装置133は、冷却ファン113や冷凍サイクルの運転間隔を可変させる。 The temperature detector 132 attached to the top surface of the box 126 can detect the air temperature inside the independent storage section 128, the case 129, or the temperature of the food 120. This temperature information is sent as an electrical signal to the electrically connected control device 133, and the control device 133 appropriately controls the cooling fan 113 and the refrigeration cycle so that the temperature is set in advance. Specifically, the control device 133 varies the operation interval of the cooling fan 113 and the refrigeration cycle.
 なお、冷凍サイクルに蒸気圧縮式冷凍システムを用いる場合には、制御装置133は、圧縮機109の回転数を制御して、冷却器112の温度自体を可変させることも可能である。 In the case where a vapor compression refrigeration system is used in the refrigeration cycle, the control device 133 can control the rotation speed of the compressor 109 to vary the temperature of the cooler 112 itself.
 また、本実施の形態では、第二の収納区画104cの設定温度を、約-10℃とし、解凍の手間削減と長期保存を両立させることができる。なお、第二の収納区画104cの設定温度は、通常の冷凍温度である-20℃程度にすることで、より長期の保存を安心して行うことができるなど、温度帯により使い勝手が異なるため、この温度帯に限るものではない。 Further, in the present embodiment, the set temperature of the second storage section 104c is set to about −10 ° C., and it is possible to achieve both reduction in the time and labor for thawing and long-term storage. In addition, since the set temperature of the second storage section 104c is about −20 ° C., which is a normal freezing temperature, it can be stored for a longer period of time, and the convenience varies depending on the temperature range. It is not limited to the temperature range.
 上述したように、本実施の形態5では、独立収納区画128内は、温度検知器132、制御装置133、冷凍サイクル、及びその他の冷却手段によって約-10℃に温度調整されている。仮に、この独立収納区画128内のケース129に、比較的高温である約15℃程度の食品120を収納するとする。独立収納区画128内は約-10℃に温度調節されているため、収納された食品120は周囲から熱を奪われ、徐々に温度が低下していく。この食品120の温度は、箱体126の天面に設けられた温度検知器132によって検知され、5℃まで低下したところで、制御装置133から電磁波発生装置131に信号が送られ、電磁波発生装置131で電磁波を発生させる。この電磁波の周波数は2.54GHzである。この電磁波は、電気的に接続された同軸ケーブル等でアンテナ130に送られ、アンテナ130から食品120に対して照射される。この時、食品120に印加する電力は約0.1~3Wであり、食品120を冷却するエネルギーよりも十分に小さく、電磁波を照射することで食品120が温度上昇することはない。なお、電磁波の周波数を2.54GHzであるとしたが、本実施の形態での効果はこの周波数に限定されるものではなく、例えば、300MHz以上3THz以下であれば良い。 As described above, in the fifth embodiment, the temperature in the independent storage section 128 is adjusted to about −10 ° C. by the temperature detector 132, the control device 133, the refrigeration cycle, and other cooling means. Assume that the food 120 having a relatively high temperature of about 15 ° C. is stored in the case 129 in the independent storage section 128. Since the temperature in the independent storage section 128 is adjusted to about −10 ° C., the stored food 120 is deprived of heat from the surroundings, and the temperature gradually decreases. The temperature of the food 120 is detected by a temperature detector 132 provided on the top surface of the box 126, and when the temperature decreases to 5 ° C., a signal is sent from the control device 133 to the electromagnetic wave generator 131, and the electromagnetic wave generator 131. To generate electromagnetic waves. The frequency of this electromagnetic wave is 2.54 GHz. This electromagnetic wave is sent to the antenna 130 by an electrically connected coaxial cable or the like, and is irradiated to the food 120 from the antenna 130. At this time, the electric power applied to the food 120 is about 0.1 to 3 W, which is sufficiently smaller than the energy for cooling the food 120, and the temperature of the food 120 does not rise by irradiating electromagnetic waves. In addition, although the frequency of electromagnetic waves was 2.54 GHz, the effect in this Embodiment is not limited to this frequency, For example, what is necessary is just 300 MHz or more and 3 THz or less.
 ここで、食品120は、肉などの内部に水分を含んだ食品であるとする。電磁波を照射しない場合は、食品120は、その表面から中心部に向かって徐々に凍結していくことになる。一方、電磁波を照射した食品120は、表面温度の低下を抑制することができるので、表面から先に凍結していくことを抑制することができ、表面温度の低下を抑制した上で食品120の内部温度も序々に低下していくので、食品120の内外温度差を抑えながら冷却することが可能となり、進行速度の極めて速い凍結が食品120内部で生じる。 Here, it is assumed that the food 120 is a food containing moisture inside meat or the like. When the electromagnetic wave is not irradiated, the food 120 is gradually frozen from the surface toward the center. On the other hand, since the food 120 irradiated with electromagnetic waves can suppress a decrease in surface temperature, the food 120 can be prevented from freezing first from the surface, and after the decrease in the surface temperature is suppressed, Since the internal temperature gradually decreases, it is possible to cool the food 120 while suppressing the temperature difference between the inside and outside of the food 120, and freezing with an extremely fast traveling speed occurs inside the food 120.
 また、食品120の内外温度差を抑えながら冷却するためには、電磁波の照射に加えて、独立収納区画128内部を比較的温度変化の少ない安定状態に維持する必要があり、箱体126と蓋体127が金属で構成されていることは、温度分布のばらつきを抑制し、運転中の温度変化幅を少なくすることに寄与している。 In addition, in order to cool the food 120 while suppressing the temperature difference between the inside and outside, it is necessary to maintain the inside of the independent storage section 128 in a stable state with relatively little temperature change in addition to the irradiation of electromagnetic waves. The fact that the body 127 is made of metal contributes to suppressing variation in temperature distribution and reducing the temperature change width during operation.
 またさらに、使用者の安全上、電磁波が独立収納区画128外に漏洩することを防止する必要があり、箱体126と蓋体127が金属であることは、この目的に合致しているものである。なお、箱体126と蓋体127の嵌合部は電磁波が漏れないような構成になっている。また、電磁波漏洩防止という観点においても、箱体126と蓋体127はその全てを金属で構成する必要はなく、独立収納区画128の内壁面のみで良い。 Furthermore, for the safety of the user, it is necessary to prevent electromagnetic waves from leaking outside the independent storage compartment 128, and the fact that the box body 126 and the lid body 127 are made of metal meets this purpose. is there. The fitting portion between the box body 126 and the lid body 127 is configured such that electromagnetic waves do not leak. Also, from the viewpoint of preventing electromagnetic wave leakage, the box body 126 and the lid body 127 need not be all made of metal, and only the inner wall surface of the independent storage section 128 may be used.
 次に、第二の収納区画104cにおいて、解凍を行う際の冷却について説明する。解凍時、吐出口118aはダンパ119により閉塞される。冷却室110内に配置された冷却器112は、冷凍サイクルによって、-40℃~-20℃程度に冷却される。これによって冷却室110内の空気が冷却され、冷却ファン113によって強制的に送り出された冷気は搬送風路を通り第一の収納区画104bへ送出される。第一の収納区画104bを冷却し、温度の上がった冷気は通気口118bを通り第二の収納区画104c内に送出される。 Next, cooling when performing thawing in the second storage section 104c will be described. During thawing, the discharge port 118a is closed by the damper 119. The cooler 112 disposed in the cooling chamber 110 is cooled to about −40 ° C. to −20 ° C. by the refrigeration cycle. As a result, the air in the cooling chamber 110 is cooled, and the cold air forcedly sent out by the cooling fan 113 is sent to the first storage section 104b through the conveyance air passage. The first storage compartment 104b is cooled, and the cool air whose temperature has risen is sent into the second storage compartment 104c through the vent 118b.
 前述の通り、第一の収納区画104bは1℃~5℃に設定されているため、第二の収納区画104cには、1℃~5℃程度の冷気が送出されることになる。従って、第二の収納区画104cを冷蔵温度に設定することができる。 As described above, since the first storage section 104b is set to 1 ° C. to 5 ° C., cold air of about 1 ° C. to 5 ° C. is sent to the second storage section 104c. Therefore, the second storage section 104c can be set to the refrigeration temperature.
 通気口118bの下流側には箱体126が配置されており、通気口118bから第二の収納区画104c内に送出された冷気は、箱体126に当接する。前述したように、箱体126は、少なくともその一部に金属が用いられているため、その良好な熱伝導性により箱体126全体をすばやく、かつ、均一な温度にすることが可能である。従って、第二の収納区画104cを、冷凍および保存のための温度設定である約-10℃から解凍に適した冷蔵温度に昇温する時間を短縮することができる。昇温時間の短縮は、解凍時間の短縮に繋がるため、使用者の使い勝手を向上させ、消エネ性を向上させることができる。 The box body 126 is disposed on the downstream side of the vent hole 118b, and the cold air sent from the vent hole 118b into the second storage section 104c contacts the box body 126. As described above, since the metal is used for at least part of the box 126, the entire box 126 can be quickly and uniformly heated due to its good thermal conductivity. Therefore, it is possible to shorten the time for raising the temperature of the second storage compartment 104c from about −10 ° C., which is a temperature setting for freezing and storage, to a refrigeration temperature suitable for thawing. Since shortening the temperature raising time leads to shortening of the thawing time, it is possible to improve the user-friendliness and to improve the energy consumption.
 第二の収納区画104c内を循環し、箱体126を冷却した冷気は、吸入口118cから冷却室110に帰還し、冷却器112によって再び冷却される。 The cold air that circulates in the second storage section 104c and cools the box 126 returns to the cooling chamber 110 from the suction port 118c and is cooled again by the cooler 112.
 ここで、本実施の形態5の冷蔵庫において、解凍実験を行った結果を以下に示す。実施例として、電磁波発生装置131の出力を20Wとし、第二の収納区画104cの温度を5℃として解凍を行った結果、解凍時間は50分要したが、解凍後の温度を23箇所測定した結果、温度ムラは約3℃しかなかった。一方、比較例として、電子レンジなどを想定して電磁波の出力を300W程度に上げた場合では、解凍後の温度ムラは約20℃程度あった。なお、一般的な解凍方法(冷蔵庫内で解凍する場合)では、解凍ムラは約3℃であったが、解凍に約20時間も要した。 Here, the result of the thawing experiment in the refrigerator of the fifth embodiment is shown below. As an example, the output of the electromagnetic wave generator 131 was 20 W, and the temperature of the second storage section 104c was 5 ° C. As a result of thawing, the thawing time required 50 minutes, but the temperature after thawing was measured at 23 locations. As a result, the temperature unevenness was only about 3 ° C. On the other hand, as a comparative example, when the output of electromagnetic waves was increased to about 300 W assuming a microwave oven or the like, the temperature unevenness after thawing was about 20 ° C. In a general thawing method (when thawing in a refrigerator), the thawing unevenness was about 3 ° C., but thawing took about 20 hours.
 この結果、本実施の形態の冷凍装置は、解凍後の温度ムラを低減し、さらに解凍の時間を短縮することが可能となることが示された。 As a result, it was shown that the refrigeration apparatus of the present embodiment can reduce temperature unevenness after thawing and further shorten the thawing time.
 本実施の形態では解凍に使用する電磁波の電力、つまり電磁波発生装置131の出力を20Wで行ったがこれに限るものではなく、解凍に使用する電力は100W以下、望ましくは50W以下が温度ムラを低減できるため、望ましい。 In this embodiment, the power of the electromagnetic wave used for thawing, that is, the output of the electromagnetic wave generator 131 is 20 W. However, the present invention is not limited to this, and the power used for thawing is 100 W or less, preferably 50 W or less. This is desirable because it can be reduced.
 さらに本実施の形態では温度ムラを低減できるので、冷凍食品を例えば-5℃~-10℃まで解凍して包丁などで必要な分だけカットし、残りを再凍結することが可能となる。 Further, in this embodiment, since the temperature unevenness can be reduced, the frozen food can be thawed to, for example, −5 ° C. to −10 ° C., cut as much as necessary with a knife, and the rest can be re-frozen.
 また、温度検知器132が解凍終了を検知すると、自動的に制御装置133より解凍終了の信号を発信し、電磁波発生装置131の出力を停止することができるため、使用者は過熱の心配をする必要がない。なお、冷蔵庫100にブザーや光などの報知手段を設け、使用者に解凍終了を知らせることで、解凍後の取り出し忘れを防止することができる。万が一、解凍後の食品の取り出しを忘れた場合も、第二の収納区画104cは約-10℃に設定することができるため、食品等の傷みを抑制し安心して保存することができる。 Further, when the temperature detector 132 detects the end of thawing, a signal indicating the end of thawing can be automatically transmitted from the control device 133 and the output of the electromagnetic wave generator 131 can be stopped, so that the user is concerned about overheating. There is no need. It should be noted that a notification device such as a buzzer or light is provided in the refrigerator 100 to notify the user of the end of thawing, thereby preventing forgetting to take out after thawing. Even if you forget to take out the food after thawing, the second storage compartment 104c can be set to about −10 ° C., so that it can be stored safely with reduced damage to the food.
 独立収納区画128にはケース129が配置されているが、使用者は断熱扉121を開放し、ケース129を手前側に引き出すことができる。この状態で、食品等の食品120をケース129内に載置した後、再びケース129を元の位置に戻し、断熱扉121を閉めることになる。ケース129が無い場合を考えると、独立収納区画128の奥側へは手が届きにくかったり、また、手前側に食品120を多数収納した場合には、奥側のスペースにアクセスしづらくなったり、収納性が落ちることになる。ケース129を用い、手前に引き出せるように構成することにより、ケース129の奥側のスペースへの食品120の収納性を向上させ、利便性を向上させることができる。また、前述したように、独立収納区画128の少なくとも内壁は金属で構成されており、ケース129内部もすばやく温度分布のばらつきを最小限に抑えて、均一に冷却することが可能である。したがって、金属で囲まれた独立収納区画128内にケース129を配置することで、使用者の食品120の収納に際する利便性の向上と、温度分布のばらつきを抑えた均一な温度環境の維持を両立させていることになる。 Although the case 129 is arranged in the independent storage section 128, the user can open the heat insulating door 121 and pull the case 129 to the near side. In this state, after the food 120 such as food is placed in the case 129, the case 129 is returned to its original position and the heat insulating door 121 is closed. Considering the case without the case 129, it is difficult to reach the back side of the independent storage section 128, and when many foods 120 are stored on the front side, it is difficult to access the space on the back side. Storability will fall. By using the case 129 so that it can be pulled out to the front, the storage property of the food 120 in the space on the back side of the case 129 can be improved, and convenience can be improved. Further, as described above, at least the inner wall of the independent storage section 128 is made of metal, and the inside of the case 129 can be quickly cooled while minimizing variations in temperature distribution to the minimum. Therefore, by arranging the case 129 in the independent storage compartment 128 surrounded by metal, it is possible to improve the convenience of storing the user's food 120 and to maintain a uniform temperature environment with reduced temperature distribution variation. Both.
 また、本実施の形態では、一般的な成人の使用者を想定した場合、第二の収納区画104cは腰程の高さに位置するため、ケース129の引出し操作および食品120の出し入れの姿勢を自然にすることができ、ケース129内の視認性も良好である。第二の収納区画104cは解凍室としても使用されるため、一般的な冷蔵庫の機能である保存ではなく調理を行うことになるため、庫内に食品120を入れている時間が短くなる。従って、その開閉頻度は増加する可能性があるため、楽な姿勢で使え、視認性がよいことは、使い勝手の向上に非常に有効であるといえる。 Further, in the present embodiment, when a general adult user is assumed, the second storage section 104c is positioned at a waistline height, so that the posture for pulling out the case 129 and taking in and out the food 120 is set. It can be natural and the visibility in the case 129 is also good. Since the second storage section 104c is also used as a thawing chamber, cooking is performed instead of storage, which is a function of a general refrigerator, so that the time during which the food 120 is put in the storage is shortened. Therefore, since the frequency of opening and closing may increase, it can be said that it is very effective to improve usability that it can be used in an easy posture and has good visibility.
 また、断熱扉121を開放すると、冷蔵庫100外の暖気が、独立収納区画128内部に流入することになるが、独立収納区画128内壁は金属で構成されているため、一旦温度上昇したとしてもすばやく設定温度まで復帰することができる。 When the heat insulating door 121 is opened, the warm air outside the refrigerator 100 flows into the independent storage compartment 128, but the inner wall of the independent storage compartment 128 is made of metal, so even if the temperature rises once It can return to the set temperature.
 本実施の形態では、電磁波発生装置131に、半導体素子を用いた電磁波発振器と電磁波増幅器を用いている。そのため、従来、食品の加熱に多く使われている電磁波発生装置であるマグネトロンに比べ設置スペースを小さくすることができる。また、マグネトロンは単一周波数しか発生することができないため、調理区画内で共振を起こし、共振点の部分のみが加熱されるなど温度ムラの原因となることから、調理区画内にスタラーファンなどの電磁波攪拌器を設ける必要があった。しかし、半導体素子を用いた電磁波発振器は動作中に周波数を変動させることができるため、周波数を変動させることで、共振点を遷移させることができ、電磁波攪拌器を必要としない。従って、独立収納区画128の庫内容積を小さくすることができるため、箱体126の設置スペースも削減することができる。これにより、第一の収納区画104bの収納性の向上と、第二の収納区画104cを低温に維持するのに必要なエネルギーの削減による省エネ性の向上を実現することができる。さらに、食品120の電磁波吸収特性に合わせた周波数を照射することも可能となるため、照射効率を高めることができ、さらに省エネ性を向上させることができる。 In the present embodiment, an electromagnetic wave oscillator and an electromagnetic wave amplifier using a semiconductor element are used for the electromagnetic wave generator 131. Therefore, the installation space can be reduced as compared with a magnetron, which is an electromagnetic wave generator that has been conventionally used for heating foods. In addition, since the magnetron can generate only a single frequency, it causes resonance in the cooking compartment, and only the portion of the resonance point is heated, resulting in temperature unevenness. It was necessary to provide an electromagnetic stirrer. However, since the frequency of an electromagnetic wave oscillator using a semiconductor element can be changed during operation, the resonance point can be changed by changing the frequency, and an electromagnetic wave stirrer is not required. Therefore, since the internal volume of the independent storage section 128 can be reduced, the installation space for the box body 126 can also be reduced. Thereby, the improvement of the storage property of the 1st storage division 104b and the improvement of energy saving by the reduction of the energy required in order to maintain the 2nd storage division 104c at low temperature are realizable. Furthermore, since it becomes possible to irradiate the frequency matched with the electromagnetic wave absorption characteristic of the foodstuff 120, irradiation efficiency can be improved and energy saving property can be improved further.
 電磁波発生装置131は電磁波を発生する際に発熱を伴うが、本実施の形態において、電磁波発生装置131は冷蔵室104の背面に設置されているため、隣接する庫内温度を最小に抑えることができ、省エネ性を著しく低下させることはない。 Although the electromagnetic wave generator 131 generates heat when generating the electromagnetic wave, in this embodiment, since the electromagnetic wave generator 131 is installed on the back surface of the refrigerator compartment 104, it is possible to minimize the adjacent interior temperature. It does not significantly reduce energy savings.
 なお、本実施の形態では電磁波発生装置131を断熱箱体101背面に設置したが、断熱箱体101の外側、例えば、機械室101a内や断熱箱体101天面に設置しても、同様の効果が得られる。また、電磁波発生装置131が低出力であり、表面温度上昇幅が小さい場合は、貯蔵室内に設置しても、省エネ性を著しく低下させることはない。 In the present embodiment, the electromagnetic wave generator 131 is installed on the back surface of the heat insulating box body 101. However, the same thing can be said if it is installed outside the heat insulating box body 101, for example, in the machine room 101a or on the top surface of the heat insulating box body 101. An effect is obtained. In addition, when the electromagnetic wave generator 131 has a low output and the surface temperature rise is small, even if it is installed in the storage room, the energy saving performance is not significantly reduced.
 以上のように、本実施の形態においては、冷蔵室104内には冷蔵温度帯で維持される第一の収納区画104bと、冷蔵温度帯より低い温度帯として例えば凍結温度より低い約-10℃に維持される第二の収納区画104cとを有し、電磁波発生装置131より発振された電磁波を第二の収納区画104cに導入するものである。これにより、第二の収納区画において食品120の内外温度差を抑えながら冷却する高品位冷凍と解凍を実現することができるため、専用の貯蔵室を設ける必要が無く、冷蔵庫100の収納性の低下を最小限に止めて、高品位冷凍と高品位解凍を実現することができる。 As described above, in the present embodiment, the first storage section 104b maintained in the refrigeration temperature zone in the refrigeration chamber 104, and a temperature zone lower than the refrigeration temperature zone, for example, about −10 ° C. lower than the freezing temperature. The second storage section 104c is maintained at the same position, and electromagnetic waves oscillated from the electromagnetic wave generator 131 are introduced into the second storage section 104c. As a result, high-quality freezing and thawing can be realized in the second storage compartment while cooling the food 120 while suppressing a difference in temperature between the inside and outside of the food 120, so there is no need to provide a dedicated storage room, and the storage capacity of the refrigerator 100 is reduced. Can be achieved with high quality freezing and high quality thawing.
 また、電磁波発生装置131を、半導体素子を用いた電磁波発振器と電磁波増幅器からなるものとしたことで、マグネトロンなどに比べて電磁波発生装置131の設置スペースを小さくすることができるため、更に冷蔵庫の収納性を向上させることができる。 Further, since the electromagnetic wave generator 131 is composed of an electromagnetic wave oscillator and an electromagnetic wave amplifier using a semiconductor element, the installation space of the electromagnetic wave generator 131 can be reduced as compared with a magnetron or the like. Can be improved.
 また、半導体素子を用いた電磁波発振器は発生する電磁波の周波数を変動させることができるため、第二の収納区画104c内に導入された電磁波の反射特性を変動させることで、スタラーファンなどの電磁波攪拌器を取り付ける必要がないため、第二の収納区画104cの設置スペースも削減することができる。これにより、更に冷蔵庫の収納性を向上させると共に、低温に維持される第二の収納区画104cを小さくすることによる省エネ性の向上を実現することができる。 In addition, since an electromagnetic wave oscillator using a semiconductor element can change the frequency of the generated electromagnetic wave, the electromagnetic wave of a stirrer fan or the like can be changed by changing the reflection characteristics of the electromagnetic wave introduced into the second storage section 104c. Since it is not necessary to attach a stirrer, the installation space for the second storage section 104c can also be reduced. Thereby, while improving the storage property of a refrigerator, the energy-saving improvement by making 2nd storage division 104c maintained at low temperature small can be implement | achieved.
 また、庫内断熱箱体118に第一の収納区画104bと第二の収納区画104cを連通する通気口118bを備えたことにより、解凍時に素早く第二の収納区画104cの温度を上昇させることができるため、解凍時間が短縮でき、より使用者の使い勝手を向上することができる。また、解凍時間の短縮は、省エネ性の向上にも寄与する。 Further, by providing the interior heat insulation box 118 with the vent 118b that allows the first storage section 104b and the second storage section 104c to communicate with each other, the temperature of the second storage section 104c can be quickly raised during thawing. Therefore, the thawing time can be shortened, and the usability for the user can be further improved. In addition, shortening the thawing time contributes to improving energy saving.
 また、冷蔵室104を冷蔵庫100の最上部に配置し、第二の収納区画104cを冷蔵室104の最下部に設けたことにより、一般的な成人の腰程の高さに第二の収納区画104cが位置するため、ケース129の引出し操作および食品120の出し入れの姿勢を自然にすることができ、ケース129内の視認性も良好であり、使い勝手を向上させることができる。 Further, the refrigerator compartment 104 is arranged at the top of the refrigerator 100 and the second storage compartment 104c is provided at the bottom of the refrigerator compartment 104, so that the second storage compartment can be kept at the height of a general adult's waist. Since the position 104c is positioned, it is possible to make the posture of the case 129 to be pulled out and the food 120 to be taken in and out naturally, the visibility in the case 129 is good, and the usability can be improved.
 また、第二の収納区画104c内に、少なくとも1色以上のLEDを設け、冷凍中もしくは解凍中にLEDを発光させることで、独立収納区画128内での動作状況を解るようにすることで、使い勝手を向上することができる。 In addition, by providing at least one color LED in the second storage section 104c and emitting the LED during freezing or thawing, the operation status in the independent storage section 128 can be understood, Usability can be improved.
 また、冷凍中と解凍中でLEDの色を変化させ、例えば、冷凍時には寒色系の青色(波長450nm前後)のLEDを発光させ、解凍時には暖色系の赤色(波長660nm)などのLEDを発光させることで、使用者が視覚的に第二の収納区画104cの動作状況を把握することができ、更なる使い勝手を向上するとともに、色彩感覚に訴えることでデザイン性を向上することができる。 Also, the color of the LED is changed during freezing and thawing, for example, a cold blue LED (wavelength around 450 nm) is emitted during freezing, and a warm red (wavelength 660 nm) LED is emitted during thawing. Thus, the user can visually grasp the operation status of the second storage section 104c, and further improve the usability and improve the design by appealing to the color sense.
 (実施の形態6)
 図13は本発明の実施の形態6における冷蔵庫の正面図、図14は図13中のB-B断面を示す側面断面図である。
(Embodiment 6)
FIG. 13 is a front view of a refrigerator according to Embodiment 6 of the present invention, and FIG. 14 is a side sectional view showing a BB section in FIG.
 なお、実施の形態5と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、実施の形態5の構成に本実施の形態を組み合わせて実施することで不具合がない限り組み合わせて適用することが可能である。 In addition, although description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 5, and the same technical idea, unless there is a malfunction by combining this Embodiment with the structure of Embodiment 5, and implementing it. It is possible to apply in combination.
 本実施の形態において、冷蔵室204は冷蔵保存のために凍らない温度である冷蔵温度帯、通常1℃~5℃に設定される第一の収納区画204bと、冷蔵温度帯より低い温度帯として例えば凍結温度より低い約-10℃の凍結温度に設定することのできる第二の収納区画204cとを備える。 In the present embodiment, the refrigeration room 204 includes a refrigeration temperature zone that is a temperature that does not freeze for refrigerated storage, a first storage compartment 204b that is normally set to 1 ° C. to 5 ° C., and a temperature zone that is lower than the refrigeration temperature zone. For example, a second storage section 204c that can be set to a freezing temperature of about −10 ° C. lower than the freezing temperature is provided.
 第二の収納区画204cは、冷蔵室204内の最上段に設けられた庫内断熱箱体218にて構成され、食品120を冷凍、解凍、保存する空間として設けられている。庫内断熱箱体218には前面開口部とそれを閉塞する断熱扉221が設けられており、パッキン122によって断熱扉221と庫内断熱箱体218の間を空気的に遮断し、第二の収納区画204cを密閉状態に保っている。 The second storage section 204c is composed of an insulative heat insulating box 218 provided at the uppermost stage in the refrigerator compartment 204, and is provided as a space for freezing, thawing and storing the food 120. The inside heat insulating box 218 is provided with a front opening and a heat insulating door 221 that closes the front opening. The packing 122 air-blocks between the heat insulating door 221 and the inside heat insulating box 218, The storage compartment 204c is kept sealed.
 なお、庫内断熱箱体218の天面は、断熱箱体101の天面と一体に構成してもよく、庫内断熱箱体218の背面は、冷蔵室背面部材124と一体に構成してもよく、庫内断熱箱体218の左面は断熱箱体101左面と一体に構成してもよい。 The top surface of the inside heat insulation box 218 may be integrated with the top surface of the heat insulation box 101, and the back surface of the inside heat insulation box 218 is formed integrally with the refrigerator compartment back member 124. Alternatively, the left surface of the internal heat insulation box 218 may be configured integrally with the left surface of the heat insulation box 101.
 冷蔵室背面部材124と断熱箱体101との間には、冷却ファン113により送出された冷気を冷蔵室104へ搬送する搬送風路125が設けられている。庫内断熱箱体218背面上部には、搬送風路125の冷気を第二の収納区画204cに導入するための第二の収納区画用吐出口218が設けられ、庫内断熱箱体118右面奥部には、第一の収納区画204bより冷気を導入する通気口218bが設けられている。吐出口218aおよび通気口218bはダンパ119によって開閉自在に構成されている。庫内断熱箱体218背面下部には、第二の収納区画204cを冷却した冷気が吸い込まれる吸入口218cが設けられている。吸入口218cに吸い込まれた冷気は、再び冷却器112で熱交換され、冷たい冷気となり、循環を繰り返すことで第二の収納区画204cの冷却が行われる。 Between the refrigerator compartment back member 124 and the heat insulation box 101, a conveyance air passage 125 for conveying the cold air sent out by the cooling fan 113 to the refrigerator compartment 104 is provided. A second storage compartment discharge port 218 for introducing the cool air of the conveyance air passage 125 into the second storage compartment 204c is provided at the upper rear surface of the interior heat insulation box 218, and the right side of the interior heat insulation box 118 is located on the right rear side. The part is provided with a vent 218b for introducing cool air from the first storage section 204b. The discharge port 218 a and the vent port 218 b are configured to be opened and closed by a damper 119. A suction port 218c through which the cold air that has cooled the second storage section 204c is sucked is provided at the lower back of the interior heat insulation box 218. The cold air sucked into the suction port 218c is again heat-exchanged by the cooler 112, becomes cold cold air, and the second storage section 204c is cooled by repeating the circulation.
 なお、本実施の形態においてダンパ119は開口部を選択することができるシングルダンパとしたが、これに限定されない。例えば、ダンパ119をツインダンパとしてもよい。この場合、吐出口218aと通気口218bを別々に制御できるようにすることで、第二の収納区画204cの温度をより繊細に制御することができる。 In this embodiment, the damper 119 is a single damper capable of selecting an opening, but is not limited to this. For example, the damper 119 may be a twin damper. In this case, the temperature of the second storage section 204c can be more delicately controlled by allowing the discharge port 218a and the vent port 218b to be controlled separately.
 なお、冷凍サイクルには様々な方式が考えられる。例えば、圧縮機を用いる蒸気圧縮式冷凍システムや、吸収式冷凍システムや、ペルチェ式冷凍システムや、それらの組み合わせ等を用いることができる。 Various methods can be considered for the refrigeration cycle. For example, a vapor compression refrigeration system using a compressor, an absorption refrigeration system, a Peltier refrigeration system, a combination thereof, or the like can be used.
 第二の収納区画204c内部には、開放部126aを有する箱体126と、開放部126aを略閉塞する蓋体127が配置されている。 Inside the second storage section 204c, a box body 126 having an opening portion 126a and a lid body 127 that substantially closes the opening portion 126a are arranged.
 第二の収納区画204c内の箱体126内には、食品120を載置する載置盆229が設けられており、断熱扉221を開くことにより載置盆229を手前方向に引き出し、食品120の出し入れを可能にしている。また、載置盆229は、断熱扉221の動作に連動してもしなくてもどちらでも良く、本実施の形態における効果に変わりはない。 In the box 126 in the second storage section 204c, a placing tray 229 for placing the food 120 is provided. By opening the heat insulating door 221, the placing tray 229 is pulled out toward the front, and the food 120 It is possible to take in and out. Further, the mounting tray 229 may or may not be interlocked with the operation of the heat insulating door 221, and the effect in the present embodiment is not changed.
 [冷蔵庫の動作及び作用]
 次に、以上のように構成された本実施の形態の冷蔵庫100について、以下その動作、作用を説明する。
[Operation and action of refrigerator]
Next, the operation | movement and effect | action are demonstrated below about the refrigerator 100 of this Embodiment comprised as mentioned above.
 本発明の実施の形態5と同様にして、本実施の形態においても、冷蔵室204内に設けられた第二の収納区画204cにおいて、高品位の冷凍と解凍を実現することができる。このとき、食品120には、電磁波が照射されるため、他の冷却物を一切入れることができない。従って、第二の収納区画204cは高品位冷凍/解凍を行うために、日頃からあまり多くの食品を入れておくことができない。本実施の形態では、第二の収納区画204cは冷蔵室204の最上段に設けられている。冷蔵室204の最上段は、使用者が最も視認し辛く、手が届き難いため、使い勝手が悪い領域である。従って、冷蔵室204最上段に第二の収納区画204cを設けることは、実使用上、第一の収納区画204bの収納性の低下を最低限に抑える構造といえる。 As in the fifth embodiment of the present invention, high-quality freezing and thawing can be realized in the second storage section 204c provided in the refrigerator compartment 204 also in the present embodiment. At this time, since the food 120 is irradiated with electromagnetic waves, no other cooling material can be put therein. Therefore, since the second storage section 204c performs high-quality freezing / thawing, it is difficult to store a large amount of food on a daily basis. In the present embodiment, the second storage section 204 c is provided on the uppermost stage of the refrigerator compartment 204. The uppermost stage of the refrigerator compartment 204 is an area that is not easy to use because it is hard for the user to visually recognize and difficult to reach. Therefore, it can be said that providing the second storage section 204c in the uppermost stage of the refrigerator compartment 204 is a structure that minimizes the deterioration of the storage capacity of the first storage section 204b in actual use.
 さらに、本実施の形態では、断熱箱体101天面奥部に圧縮機109などを有する機械室101a設け、機械室101aは、冷蔵室104内の最上部の後方領域に食い込んで形成されているため、冷蔵室204の最上段は、他の領域に比べて奥行きが小さくなっている。従って、最上段に第二の収納区画204cを設けることで、第二の収納区画204cの奥まで見渡すことが容易になる。 Further, in the present embodiment, a machine room 101a having a compressor 109 or the like is provided at the back of the top surface of the heat insulation box 101, and the machine room 101a is formed by biting into the uppermost rear region in the refrigerator compartment 104. Therefore, the depth of the uppermost stage of the refrigerator compartment 204 is smaller than that of other areas. Therefore, by providing the second storage section 204c at the uppermost stage, it becomes easy to overlook the back of the second storage section 204c.
 冷蔵室204の最上段は、前述の通り手が届き難い場所であるが、第二の収納区画204cに載置盆229を設けることで、清掃を行い易く、使用者の使い勝手を上昇させることができる。なお、載置盆229を設置しなくてもよく、その場合は、断熱扉221は回転式扉または着脱式扉とする方が使い勝手が良い。 The uppermost stage of the refrigerator compartment 204 is a place where it is difficult to reach as described above. However, by providing the loading tray 229 in the second storage section 204c, it is easy to clean and the convenience of the user can be increased. it can. In addition, it is not necessary to install the mounting tray 229. In that case, it is easier to use the heat insulating door 221 as a rotary door or a detachable door.
 なお、断熱扉221の上辺を軸として回転させる回転式扉にすると、使用者が閉め忘れる心配が無いため、安心して使用することができる。 It should be noted that a rotary door that rotates around the upper side of the heat insulating door 221 can be used with peace of mind because the user does not have to worry about forgetting to close it.
 以上のように、本実施の形態においては、冷蔵室204を冷蔵庫100最上部に配置し、通常手が届きにくい冷蔵室204最上段に第二の収納区画204cを設けることで、保存食品を多く貯蔵できない第二の収納区画204c設置による、冷蔵室204の収納性低下の影響を実使用上最小限に抑えることができる。 As described above, in the present embodiment, the refrigerator compartment 204 is arranged at the top of the refrigerator 100, and the second storage compartment 204c is provided at the top of the refrigerator compartment 204, which is usually difficult to reach, so that a large amount of stored food can be obtained. It is possible to minimize the effect of lowering the storage capacity of the refrigerator compartment 204 due to the installation of the second storage section 204c that cannot be stored.
 また、断熱箱体101天面奥部に圧縮機109などを有する機械室101a設けることで、冷蔵室204の最上段は、他の領域に比べて奥行きが小さくなるため、最上段に設けられた第二の収納区画204cは奥まで見渡すことが容易になる。 Moreover, since the machine room 101a having the compressor 109 and the like is provided at the back of the top surface of the heat insulation box 101, the uppermost stage of the refrigerator compartment 204 is provided at the uppermost stage because the depth is smaller than other areas. The second storage section 204c can be easily viewed from the back.
 (実施の形態7)
 本発明の実施の形態7に係る冷蔵庫は、制御装置が、被冷却物の温度が凍結点以下の温度帯で一定時間保持されている状態で保冷室内の温度を急速に低下させるように制御する態様を例示するものである。
(Embodiment 7)
In the refrigerator according to the seventh embodiment of the present invention, the control device controls the temperature of the object to be cooled to be rapidly lowered in a state where the temperature of the object to be cooled is held for a certain period of time in a temperature zone below the freezing point. It illustrates an embodiment.
 図15は、本実施の形態7における冷蔵庫の概略構成を示す模式図である。図16は、本実施の形態7の冷蔵庫の動作(制御)と被冷却物及び貯蔵室内の温度経過を示す模式図である。 FIG. 15 is a schematic diagram showing a schematic configuration of the refrigerator in the seventh embodiment. FIG. 16 is a schematic diagram showing the operation (control) of the refrigerator according to the seventh embodiment and the temperature course of the object to be cooled and the storage chamber.
 [冷蔵庫の構成]
 図15に示すように、本発明の実施の形態7に係る冷蔵庫100は、実施の形態1に係る冷蔵庫100と基本的構成は同じであるが、反射電力検出手段37が設けられている点が異なる。
[Composition of refrigerator]
As shown in FIG. 15, the refrigerator 100 according to the seventh embodiment of the present invention has the same basic configuration as the refrigerator 100 according to the first embodiment, but is provided with a reflected power detection means 37. Different.
 反射電力検出手段37は、食品12に吸収されずに貯蔵室11内で反射されるマイクロ波の電力を検出する装置である。食品12に印加するマイクロ波の周波数が一定の場合、食品12の温度が変化すると反射電力のエネルギーも変化するので、この特性を利用して反射電力検出手段37で食品12の温度を検出することも可能である。また、この反射電力検出手段37では被冷却物の形状や量に応じて最もマイクロ波の吸収効率が高くなる周波数を検出できる。発信制御部29は、反射電力検出手段37で検出したマイクロ波の周波数を選択して発信装置26から発生させる処理部である。食品12に対して最適な周波数のマイクロ波を印加するのでマイクロ波の電力量を最低限に抑えることが可能である。 The reflected power detection means 37 is a device that detects the microwave power reflected in the storage chamber 11 without being absorbed by the food 12. When the frequency of the microwave applied to the food 12 is constant, the energy of the reflected power also changes when the temperature of the food 12 changes. Therefore, the reflected power detection means 37 detects the temperature of the food 12 using this characteristic. Is also possible. Further, the reflected power detection means 37 can detect the frequency at which the microwave absorption efficiency is highest depending on the shape and amount of the object to be cooled. The transmission control unit 29 is a processing unit that selects the frequency of the microwave detected by the reflected power detection unit 37 and generates the frequency from the transmission device 26. Since a microwave having an optimum frequency is applied to the food 12, it is possible to minimize the amount of microwave power.
 温度検知器30は、貯蔵室11に収納される食品12の温度を直接検出する。本実施の形態の場合、温度検知器30は、非接触で食品12の温度を検出することのできる装置である。なお、反射電力検出手段37と温度検知器30の複数の装置で食品12の温度を測定することで、温度検知の精度を向上させることも可能である。 The temperature detector 30 directly detects the temperature of the food 12 stored in the storage chamber 11. In the case of the present embodiment, the temperature detector 30 is a device that can detect the temperature of the food 12 in a non-contact manner. In addition, it is also possible to improve the temperature detection accuracy by measuring the temperature of the food 12 with a plurality of devices including the reflected power detection means 37 and the temperature detector 30.
 制御装置31は、マイクロ波発生装置25の動作を制御する装置である。温度検知器30および反射電力検出手段37から(または、いずれか一方の手段)の情報に基づいて食品12の温度が凍結点以上かつ10℃以下の範囲内で選定される閾値に到達した時点でマイクロ波発生装置25を作動させ、マイクロ波を食品12に印加するように制御を行う。 The control device 31 is a device that controls the operation of the microwave generator 25. When the temperature of the food 12 reaches a threshold selected within the range of the freezing point and 10 ° C. or less based on the information from the temperature detector 30 and the reflected power detection means 37 (or any one means). The microwave generator 25 is operated, and control is performed so that the microwave is applied to the food 12.
 [冷蔵庫の動作(制御)及び作用]
 まず、貯蔵室11に食品12を収納し、図16に示すように食品12の温度が5℃に到達した時点でマイクロ波発生装置25が作動し、貯蔵室11内へマイクロ波を印加する。マイクロ波の印加のタイミングは被冷却物の水分子が集合し始める10℃から、水分子間の凝集が強くなる5℃付近が良い。これらの温度域でマイクロ波が印加されると、水分子の凝集を効率的に抑制し、氷結晶核の生成も抑制されて安定的に過冷却状態にすることが可能となる。
[Operation (control) and action of refrigerator]
First, the food 12 is stored in the storage chamber 11, and when the temperature of the food 12 reaches 5 ° C. as shown in FIG. 16, the microwave generator 25 is activated to apply the microwave into the storage chamber 11. The timing of application of the microwave is preferably from 10 ° C. at which water molecules of the object to be cooled start to gather, and around 5 ° C. at which aggregation between the water molecules becomes strong. When microwaves are applied in these temperature ranges, aggregation of water molecules is efficiently suppressed, and generation of ice crystal nuclei is also suppressed, so that a stable supercooled state can be achieved.
 また、印加するマイクロ波の電力量としては食品12を冷却するエネルギーよりも小さく設定する。実験的には150gの豆腐に対し1W印加したときに温度低下して過冷却が安定的に発現することを確認している。 Also, the amount of microwave power to be applied is set smaller than the energy for cooling the food 12. Experimentally, it has been confirmed that when 1 W is applied to 150 g of tofu, the temperature is lowered and supercooling is stably exhibited.
 マイクロ波が印加されている間、保冷室内は-10℃から被冷却物の凍結点までの温度帯の間の一定温度で保持される。ここでは、一例として-10℃で維持する。-10℃雰囲気でマイクロ波が印加された状態では、被冷却物の凍結点が過ぎても凍結することなく、温度低下していき被冷却物の内外温度は均一化される。食品12の温度が凍結点を通過して貯蔵室11との温度差が小さくなってくると、冷却室の冷却エネルギーが食品12へ伝達されにくくなり、温度低下も緩やかになり一定温度に保持される。例えば、保冷室が-10℃で1Wのマイクロ波を印加した豆腐150gでは-4℃から-5℃で温度変化が小さくなって一定温度に維持される。この時の温度低下速度が一定値以下になった時点でカウントしていっての時間が経過したことを検知した後、冷却室内の温度をすばやく低下させるように制御装置31は冷却装置17を作動させる。 While the microwave is applied, the inside of the cool room is maintained at a constant temperature between -10 ° C. and the freezing point of the object to be cooled. Here, as an example, the temperature is maintained at −10 ° C. In a state where microwaves are applied in an atmosphere of −10 ° C., the temperature decreases without being frozen even when the freezing point of the object to be cooled passes, and the internal and external temperatures of the object to be cooled become uniform. When the temperature of the food 12 passes through the freezing point and the temperature difference from the storage chamber 11 becomes small, the cooling energy in the cooling chamber becomes difficult to be transmitted to the food 12, and the temperature decrease is moderated and held at a constant temperature. The For example, with 150 g of tofu with a 1 W microwave applied at −10 ° C. in the cold room, the temperature change decreases from −4 ° C. to −5 ° C. and is maintained at a constant temperature. The control device 31 operates the cooling device 17 so as to quickly decrease the temperature in the cooling chamber after detecting that the time that has been counted has elapsed when the temperature decrease rate at this time becomes a certain value or less. Let
 一例としては、このように被冷却物の内外温度が均一化された場合には、過冷却状態となる場合がある。このような場合に、例えば温度低下率が0.05℃/min以下で5分間経過した後に貯蔵室11内が-20℃になるように急激に温度低下させ、貯蔵室11が-20℃に到達する間、または-20℃に到達した後に被冷却物の過冷却が自然に解除される。 As an example, when the internal and external temperatures of the object to be cooled are made uniform in this way, there is a case where a supercooled state occurs. In such a case, for example, the temperature is rapidly lowered so that the temperature in the storage chamber 11 becomes −20 ° C. after 5 minutes at a temperature decrease rate of 0.05 ° C./min or less, and the storage chamber 11 is brought to −20 ° C. While reaching or after reaching −20 ° C., the supercooling of the object to be cooled is naturally released.
 過冷却解除すると数秒の内に均一で小さな氷結晶が形成されて、その潜熱で温度が凍結点まで上昇する。この状態では完全に凍結した状態ではなく、形成された氷結晶の間に未凍結部分が存在する。この未凍結部分の水分が大きな氷結晶に成長しないようにするには急速に凍結する必要がある。 When the supercooling is released, uniform and small ice crystals are formed within a few seconds, and the temperature rises to the freezing point due to the latent heat. In this state, it is not completely frozen, and there is an unfrozen portion between the formed ice crystals. In order to prevent the moisture in this unfrozen part from growing into large ice crystals, it is necessary to freeze it rapidly.
 よって、上記のように一定時間保持されて、温度低下も緩やかになり一定温度に保持される状態で過冷却が生じている場合には、被冷却物の過冷却状態が解除される前に保冷室内を急速に低温にしておくことで、過冷却解除時にはすでに急速凍結が可能な状態となっていて未凍結部分の氷結晶の成長を最低限に抑えて冷凍することができる。 Therefore, in the case where supercooling occurs while the temperature is kept constant as described above and maintained at a constant temperature, the temperature is kept before the supercooled state of the object to be cooled is released. By rapidly keeping the room at a low temperature, it is already in a state of being capable of rapid freezing when the supercooling is released, and freezing can be performed with minimal growth of ice crystals in the unfrozen part.
 また、制御装置は被冷却物の過冷却が解除して凍結点にまで温度が上昇したことを検知してからマイクロ波の印加を停止する。マイクロ波の電力が低減することでさらに被冷却物の過冷却後の急速凍結は加速することができる。 Also, the control device stops applying the microwave after detecting that the supercooling of the object to be cooled has been canceled and the temperature has risen to the freezing point. The rapid freezing after supercooling of the object to be cooled can be further accelerated by reducing the power of the microwave.
 以上のように、被冷却物が一定温度に保持された状態で保冷室の温度を低下させておくことで、内外温度がほぼ均一になった状態で被冷却物がすぐさま急速凍結されることで、外側から順に凍ることによる組織破壊が抑制され、大きな氷結晶を生成せず、氷結晶の成長を抑制した均一で小さな氷結晶を実現することができ、被冷却物の組織構造の破壊が起こらない高品位な凍結を実現することができる。 As described above, by lowering the temperature of the cold room while the object to be cooled is kept at a constant temperature, the object to be cooled is quickly frozen while the internal and external temperatures are almost uniform. The structure destruction by freezing in order from the outside is suppressed, large ice crystals are not generated, and uniform and small ice crystals can be realized with suppressed ice crystal growth, resulting in destruction of the structure of the object to be cooled. High quality freezing can be realized.
 さらに、被冷却物が過冷却状態になった場合には、過冷却解除の前に保冷室の温度を低下させておくことで、過冷却解除後に被冷却物がすぐさま急速凍結されることで、過冷却解除後の凍結不十分な水分も急速凍結され、過冷却で生成した均一で小さな氷結晶の成長を抑制し、被冷却物の構造を破壊が起こらない高品位な凍結を実現することができる。 Furthermore, if the object to be cooled becomes supercooled, the temperature of the cold insulation chamber is lowered before the supercooling is released, so that the object to be cooled is quickly frozen after the supercooling is released. Moisture that is insufficiently frozen after being released from supercooling is also quickly frozen, suppressing the growth of uniform and small ice crystals generated by supercooling, and realizing high-quality freezing that does not destroy the structure of the object to be cooled. it can.
 なお、一定時間とは、必ずしも予め決めた所定時間ではなく、例えば、被冷却物の品温が一定温度となってから所定時間経過した時間とするのが望ましく、この場合には、被冷却物の品温が例えば-3℃~-5℃といったある一定の範囲内でそれ以上低下しない場合を基点として、一定時間後を設定することができる。 The predetermined time is not necessarily a predetermined time, and is preferably a time after a predetermined time has elapsed since the product temperature of the object to be cooled becomes a constant temperature. For example, after a certain period of time, the product temperature can be set based on the case where the product temperature does not decrease further within a certain range such as -3 ° C to -5 ° C.
 また場合によっては、冷却開始から一定時間という時間設定としても良い。 In some cases, it may be set as a fixed time from the start of cooling.
 なお、0℃付近の凍結点以下に到達しないで凍結温度を一定時間維持した場合も、マイクロ波の印加が停止して急速凍結の状態になるので、被冷却物が緩慢凍結になることを回避できる。 Even if the freezing temperature is maintained for a certain period of time without reaching below the freezing point near 0 ° C, the application of microwaves is stopped and quick freezing is performed, so that the object to be cooled is prevented from slow freezing. it can.
 [変形例1]
 本実施の形態7における変形例1は、冷凍装置の動作(制御)の一例を示すものである。なお、本変形例1の冷凍装置の構成は、実施の形態7の冷凍装置と同じであるため、その詳細な説明を省略する。
[Modification 1]
The first modification in the seventh embodiment shows an example of the operation (control) of the refrigeration apparatus. In addition, since the structure of the freezing apparatus of this modification 1 is the same as the freezing apparatus of Embodiment 7, the detailed description is abbreviate | omitted.
 図17は、本変形例1の冷却装置の動作(制御)と被冷却物及び貯蔵室内の温度経過を示す模式図である。 FIG. 17 is a schematic diagram illustrating the operation (control) of the cooling device of the first modification and the temperature course of the object to be cooled and the storage chamber.
 [冷却装置の動作(制御)及び作用]
 まず、食品12を貯蔵室11に収納する。食品12の表面温度が一例として2℃に到達した時点でマイクロ波発生装置25を作動し、貯蔵室11内にマイクロ波が印加される。食品12は5℃付近で水分子の凝集が起こるが、マイクロ波が印加されると水の凝集が抑制されて氷結晶核の生成も抑えられる。また、被冷却物の表面部が2℃に到達して水分子の凝集が起こり始めていても印加されたマイクロ波によって凝集状態がなくなる。そして、氷結晶核の生成が抑えられて凍結点を超えても凍ることなく過冷却状態となる。過冷却状態が進んで食品12の温度が-4℃~-5℃に到達した時点を検知してマイクロ波の印加を停止する。この時、マイクロ波の電力分のエネルギーが減少することにより、被冷却物内の冷却エネルギーの割合が増加して-4℃~-5℃からさらに温度が低下し、深い過冷却状態を実現することができる。過冷却は深い(低温)ほど、過冷却解除後の凍結率が高くなり、高品質な冷凍ができる。
[Operation (control) and action of cooling device]
First, the food 12 is stored in the storage chamber 11. As an example, when the surface temperature of the food 12 reaches 2 ° C., the microwave generator 25 is activated, and the microwave is applied to the storage chamber 11. In the food 12, aggregation of water molecules occurs at around 5 ° C., but when microwaves are applied, aggregation of water is suppressed and generation of ice crystal nuclei is also suppressed. Further, even when the surface portion of the object to be cooled reaches 2 ° C. and water molecules start to aggregate, the aggregated state disappears due to the applied microwave. And generation | occurrence | production of an ice crystal nucleus is suppressed, and even if it exceeds a freezing point, it will be in a supercooled state without freezing. The application of microwaves is stopped when the supercooled state advances and the temperature of the food 12 reaches −4 ° C. to −5 ° C. is detected. At this time, by reducing the energy of the microwave power, the ratio of the cooling energy in the object to be cooled increases and the temperature further decreases from -4 ° C to -5 ° C, realizing a deep supercooled state. be able to. The deeper the supercooling (the lower the temperature), the higher the freezing rate after canceling the supercooling, and a high-quality freezing can be achieved.
 さらに、マイクロ波の印加を停止してからの温度低下の変化Δt(℃)が閾値以下になったことを検知して冷却室の温度を低下させることで、食品12がいつ過冷却を解除する前に急速凍結できる環境となり得る。なお、マイクロ波の印加を停止してからΔt(℃)が変化なし(温度低下しない)場合は直ちに冷却室の温度低下を開始することが望ましい。 Furthermore, the food 12 releases the supercooling at any time by detecting that the change Δt (° C.) in the temperature drop after the microwave application is stopped is lower than the threshold and lowering the temperature of the cooling chamber. It can be an environment that can be quickly frozen before. If Δt (° C.) does not change (no temperature drop) after the microwave application is stopped, it is desirable to immediately start the temperature drop of the cooling chamber.
 以上のように、被冷却物の凍結点を通過してから過冷却が安定的になる段階に到達した時点でマイクロ波の印加を停止することで、さらに低温の過冷却状態が実現でき、また、余剰のマイクロ波の電力を削減して省電力化も可能となる。 As described above, by stopping the application of the microwave when it reaches the stage where the supercooling becomes stable after passing through the freezing point of the object to be cooled, an even lower temperature supercooling state can be realized, Further, it is possible to save power by reducing surplus microwave power.
 (実施の形態8)
 本発明の実施の形態8に係る冷蔵庫は、被冷却物を冷却する冷却装置と、被冷却物を収納する貯蔵室と、マイクロ波を被冷却物に照射するように構成されているマイクロ波発生装置と、貯蔵室に設けられ、マイクロ波を透過するとともに冷気の流入可能な開口部を有する食品プレートと、制御装置と、を備え、制御装置が、被冷却物が貯蔵室に収納されると、冷却装置を停止させ、マイクロ波発生装置が、被冷却物にマイクロ波を照射し、マイクロ波発生装置を停止させ、冷却装置を作動させるように構成されている態様を例示するものである。
(Embodiment 8)
The refrigerator according to the eighth embodiment of the present invention includes a cooling device that cools an object to be cooled, a storage chamber that houses the object to be cooled, and a microwave generator configured to irradiate the object to be cooled with microwaves. An apparatus, a food plate that is provided in the storage chamber and has an opening through which microwaves can flow and into which cold air can flow, and a control device. The cooling device is stopped, and the microwave generator irradiates the object to be cooled with microwaves, stops the microwave generator, and operates the cooling device.
 [冷蔵庫の動作]
 次に、本実施の形態8に係る冷蔵庫の動作について、図18を参照しながら説明する。なお、本実施の形態8に係る冷蔵庫100は、実施の形態1に係る冷蔵庫100と同様に構成されているため、構成の詳細な説明は省略する。
[Refrigerator operation]
Next, the operation of the refrigerator according to the eighth embodiment will be described with reference to FIG. In addition, since the refrigerator 100 which concerns on this Embodiment 8 is comprised similarly to the refrigerator 100 which concerns on Embodiment 1, detailed description of a structure is abbreviate | omitted.
 図18は、本実施の形態8に係る冷蔵庫の冷却動作を模式的に示すフローチャートである。 FIG. 18 is a flowchart schematically showing the cooling operation of the refrigerator according to the eighth embodiment.
 まず、貯蔵室11内が、冷却装置17によって、約-7℃に温度調整されているとする。このとき、本実施の形態8に係る冷蔵庫100の使用者が、約15℃の食品12を貯蔵室11内の食品プレート20に載置したとする。 First, it is assumed that the temperature in the storage chamber 11 is adjusted to about −7 ° C. by the cooling device 17. At this time, it is assumed that the user of the refrigerator 100 according to the eighth embodiment places the food 12 having a temperature of about 15 ° C. on the food plate 20 in the storage chamber 11.
 図18に示すように、制御装置31は、温度検知器30が検知した食品12の温度Tを取得する(ステップS101)。ケース3に収納された食品12は、貯蔵室11内が約-7℃であるため、周囲に熱を奪われて、徐々に温度が低下する。 As shown in FIG. 18, the control device 31 acquires the temperature T of the food 12 detected by the temperature detector 30 (step S101). The food 12 stored in the case 3 has a temperature of about −7 ° C. in the storage chamber 11, and therefore the temperature is gradually lowered due to heat being taken away from the surroundings.
 そして、制御装置31は、ステップS101で取得した食品12の温度Tが、第1温度になる(ステップS101でYes)と、ステップS103に進む。ここで、第1温度は、食品12内の水分子が凝集する温度である。一般的には、10℃前後で、食品内の水分子は、凝集し始め、5℃で凝集が活発に起こる。このため、第1温度は、10℃以下、かつ、5℃以上の間で任意に設定することができる。 And the control apparatus 31 will progress to step S103, if the temperature T of the foodstuff 12 acquired by step S101 becomes 1st temperature (it is Yes at step S101). Here, the first temperature is a temperature at which water molecules in the food 12 aggregate. In general, water molecules in the food start to aggregate around 10 ° C., and aggregation occurs actively at 5 ° C. For this reason, 1st temperature can be arbitrarily set between 10 degreeC or less and 5 degreeC or more.
 ステップS103では、制御装置31は冷却装置17を停止させる、具体的には、ファン19を停止させる。そして、制御装置31は、マイクロ波発生装置25を作動させて、食品12にアンテナ24からマイクロ波を照射させる(ステップS104)。なお、食品12に照射されるマイクロ波の電力量は、食品12を冷却するエネルギーよりも小さくなるように、予め実験等で求めておくことができる。 In step S103, the control device 31 stops the cooling device 17, specifically, the fan 19 is stopped. And the control apparatus 31 operates the microwave generator 25, and irradiates the foodstuff 12 with a microwave from the antenna 24 (step S104). In addition, the electric energy of the microwave irradiated to the foodstuff 12 can be calculated | required beforehand by experiment etc. so that it may become smaller than the energy which cools the foodstuff 12. FIG.
 これにより、食品12内の水分子の凝集が抑制されるとともに、食品12内の温度ムラが抑制される。また、食品12内で、氷結晶核の生成も抑制されるので、食品12を安定して、過冷却状態にすることができる。 Thereby, aggregation of water molecules in the food 12 is suppressed, and temperature unevenness in the food 12 is suppressed. In addition, since the formation of ice crystal nuclei is suppressed in the food 12, the food 12 can be stably brought into a supercooled state.
 次に、制御装置31は、再び、温度検知器30が検知した食品12の温度Tを取得する(ステップS105)。そして、制御装置31は、ステップS105で取得した温度Tが、第2温度になる(ステップS106でYes)と、ステップS107に進む。ここで、第2温度は、第1温度よりも低く、最大氷結晶生成帯よりも低い温度である。一般的に、最大氷結晶生成帯は、0~-5℃であるため、第2温度は、-5℃より低い温度で、任意に設定することができる。なお、第2温度は、実質的に-5℃であってもよい。 Next, the control device 31 acquires again the temperature T of the food 12 detected by the temperature detector 30 (step S105). Then, when the temperature T acquired in step S105 becomes the second temperature (Yes in step S106), the control device 31 proceeds to step S107. Here, the second temperature is lower than the first temperature and lower than the maximum ice crystal formation zone. Generally, since the maximum ice crystal formation zone is 0 to −5 ° C., the second temperature can be arbitrarily set at a temperature lower than −5 ° C. Note that the second temperature may be substantially −5 ° C.
 ステップS107では、マイクロ波発生装置25を停止させて、食品12へのマイクロ波の照射を停止させる。マイクロ波の照射停止後、食品12の過冷却状態が自然に解除される。 In step S107, the microwave generator 25 is stopped, and the microwave irradiation to the food 12 is stopped. After the microwave irradiation is stopped, the supercooled state of the food 12 is naturally released.
 次に、制御装置31は、冷却装置17を作動させる(ステップS108)。具体的には、ファン19を作動させて、貯蔵室11内に冷気を積極的に送出する。このとき、食品プレート20は、金属で構成されているため、食品12よりも温度の低下が早く行われる。 Next, the control device 31 operates the cooling device 17 (step S108). Specifically, the fan 19 is operated to actively send out cool air into the storage chamber 11. At this time, since the food plate 20 is made of metal, the temperature lowers faster than the food 12.
 また、食品プレート20の下方には、冷気通風路23が形成されているので、食品プレート20に設けられている開口部21から、冷気が食品12に接触することができる。さらに、冷気通風路23により、食品12の表面全体にマイクロ波を照射することができる。このため、食品12の表面全体の温度を均一に冷却することができる。 Further, since the cold air ventilation path 23 is formed below the food plate 20, the cold air can contact the food 12 through the opening 21 provided in the food plate 20. Furthermore, the whole surface of the food 12 can be irradiated with microwaves by the cold air passage 23. For this reason, the temperature of the whole surface of the foodstuff 12 can be cooled uniformly.
 このように、本実施の形態8に係る冷蔵庫100では、食品12における凍結のムラを抑制することができ、食品12の品質を保つことができる。 Thus, in the refrigerator 100 according to the eighth embodiment, freezing unevenness in the food 12 can be suppressed, and the quality of the food 12 can be maintained.
 [変形例1]
 次に、本実施の形態8に係る冷蔵庫の変形例について、図19を参照しながら説明する。
[Modification 1]
Next, a modification of the refrigerator according to the eighth embodiment will be described with reference to FIG.
 本実施の形態8における変形例1の冷蔵庫は、制御装置が、温度検知器が検知した被冷却物の温度が第1温度よりも低い温度である第2温度になり、その後、被冷却物の温度が上昇するまでの時間である設定時間経過後に、マイクロ波発生装置を停止させる態様を例示するものである。 In the refrigerator of the first modification in the eighth embodiment, the temperature of the object to be cooled detected by the temperature detector becomes the second temperature that is lower than the first temperature by the control device. The mode which stops a microwave generator after the set time which is time until temperature rises is illustrated.
 図19は、本実施の形態8における変形例1の冷蔵庫の冷却動作を模式的に示すフローチャートである。なお、本変形例1の冷蔵庫は、実施の形態1に係る冷蔵庫と構成は同じであるため、その構成の説明は省略する。 FIG. 19 is a flowchart schematically showing the cooling operation of the refrigerator according to the first modification in the eighth embodiment. In addition, since the refrigerator of this modification 1 is the same structure as the refrigerator which concerns on Embodiment 1, description of the structure is abbreviate | omitted.
 図19に示すように、本変形例1の冷蔵庫の冷却動作は、実施の形態8に係る冷蔵庫の冷却動作と基本的動作は同じであるが、ステップS106とステップS107との間に、ステップS106a及びステップS106bが行われる点が異なる。 As shown in FIG. 19, the cooling operation of the refrigerator according to the first modification is the same as the cooling operation of the refrigerator according to the eighth embodiment, but between step S106 and step S107, step S106a And step S106b is different.
 具体的には、制御装置31は、温度検知器30が検知した食品12の温度Tが、第2温度になる(ステップS106でYes)と、制御装置31の図示されない時計部により、温度Tが第2温度になってからの時間tを計る(ステップS106a)。 Specifically, when the temperature T of the food 12 detected by the temperature detector 30 reaches the second temperature (Yes in step S106), the control device 31 causes the temperature T (not shown) of the control device 31 to change the temperature T. The time t after reaching the second temperature is measured (step S106a).
 制御装置31は、ステップS106で計時した時間tが、設定時間になる(ステップS106bでYes)と、マイクロ波発生装置25を停止させる(ステップS107)。ここで、設定時間は、食品12が第2温度になり、その後、食品12の温度が上昇するまでの時間であり、予め実験等により、その時間を設定することができる。 The control device 31 stops the microwave generator 25 when the time t counted in step S106 reaches the set time (Yes in step S106b) (step S107). Here, the set time is the time until the temperature of the food 12 rises after the food 12 reaches the second temperature, and the time can be set in advance by experiments or the like.
 このように構成された本変形例1の冷蔵庫100であっても、実施の形態8に係る冷蔵庫100と同様の作用効果を奏することができる。また、本変形例1の冷蔵庫100では、マイクロ波発生装置25の停止を遅らせることにより、食品12の過冷却状態をより長く維持することができ、過冷却状態が解除されるまでの食品12の温度をより低くすることができる。このため、食品12の品質をより、高く保つことができる。 Even with the refrigerator 100 of the first modification configured as described above, the same operational effects as those of the refrigerator 100 according to the eighth embodiment can be obtained. Moreover, in the refrigerator 100 of this modification 1, the supercooling state of the foodstuff 12 can be maintained longer by delaying the stop of the microwave generator 25, and the foodstuff 12 of the foodstuff 12 until a supercooling state is cancelled | released. The temperature can be lowered. For this reason, the quality of the foodstuff 12 can be kept higher.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の要旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the scope of the invention. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.
 本発明に係る冷蔵庫は、冷凍と解凍の両者とも温度均一化が図れ、高品位な冷凍と解凍が実現できるため、有用である。 The refrigerator according to the present invention is useful because it can achieve temperature uniformity in both freezing and thawing, and can realize high-quality freezing and thawing.
 11 貯蔵室
 12 対象物(食品)
 13 収納物ケース
 14 外枠ケース
 15 ドア部
 16 通気口
 17 冷却装置
 18 送風路
 19 ファン
 20 食品プレート
 21 開口部
 22 支持部
 23 冷気通風路
 24 印加手段(アンテナ)
 25 マイクロ波発生装置
 26 発信装置
 27 増幅器
 28 分配器
 29 発信制御部
 30 温度検知器
 31 制御装置
 32 支持体
 33 受け皿
 34 支軸
 35 モータ
11 Storage room 12 Object (food)
DESCRIPTION OF SYMBOLS 13 Storage case 14 Outer frame case 15 Door part 16 Ventilation hole 17 Cooling device 18 Blower path 19 Fan 20 Food plate 21 Opening part 22 Support part 23 Cold air ventilation path 24 Application means (antenna)
DESCRIPTION OF SYMBOLS 25 Microwave generator 26 Transmitter 27 Amplifier 28 Distributor 29 Transmission control part 30 Temperature detector 31 Control apparatus 32 Support body 33 Sauce plate 34 Support shaft 35 Motor

Claims (20)

  1.  被冷却物を冷却する冷蔵庫において、
     前記被冷却物を冷却する冷却装置と、
     前記被冷却物を収納する貯蔵室と、
     マイクロ波を印加するマイクロ波発生装置と、
     前記マイクロ波発生装置および前記冷却装置を制御する制御装置と、を備え、
     前記貯蔵室にはマイクロ波を透過するとともに冷気の流入可能な開口部を有する食品プレートが設けられていることを特徴とする、冷蔵庫。
    In the refrigerator that cools the object to be cooled,
    A cooling device for cooling the object to be cooled;
    A storage chamber for storing the object to be cooled;
    A microwave generator for applying a microwave;
    A control device for controlling the microwave generator and the cooling device,
    The refrigerator is characterized in that a food plate having an opening through which microwaves can pass and into which cool air can flow is provided in the storage chamber.
  2.  前記食品プレートは複数の開口部を備えることを特徴とする、請求項1記載の冷蔵庫。 The refrigerator according to claim 1, wherein the food plate has a plurality of openings.
  3.  前記食品プレートの下方側に冷気が流れる冷気通風路が形成されていることを特徴とする、請求項1または2に記載の冷蔵庫。 The refrigerator according to claim 1 or 2, wherein a cold air ventilation path through which cold air flows is formed below the food plate.
  4.  前記冷気通風路は食品プレートに備えられた支持部で形成されることを特徴とする、請求項3記載の冷蔵庫。 The refrigerator according to claim 3, wherein the cold air passage is formed by a support provided on a food plate.
  5.  前記食品プレートは前記貯蔵室に対して着脱自在であり、前記貯蔵室の内部空間を垂直方向に移動できることを特徴とする、請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein the food plate is detachable with respect to the storage room, and can move in the vertical direction in the internal space of the storage room.
  6.  前記食品プレートは回転するように構成されていることを特徴とする、請求項1から3のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the food plate is configured to rotate.
  7.  前記食品プレートの下方に受け皿を設けたことを特徴とする、請求項1から5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein a saucer is provided below the food plate.
  8.  前記貯蔵室の開口部を閉塞する扉をさらに備え、
     前記貯蔵室は、少なくとも冷蔵温度帯に設定することのできる冷蔵室を有し、
     前記冷蔵室内には冷蔵温度帯で維持される第一の収納区画と、前記冷蔵温度帯以下の温度領域を有する第二の収納区画が設けられ、
     前記冷蔵室は、前記マイクロ波発生装置より発振された電磁波を第二の収納区画に導入するように構成されていることを特徴とする、請求項1から7のいずれか1項に記載の冷蔵庫。
    A door for closing the opening of the storage chamber;
    The storage room has a refrigeration room that can be set to at least a refrigeration temperature zone,
    A first storage section maintained in a refrigeration temperature zone and a second storage section having a temperature region equal to or lower than the refrigeration temperature zone are provided in the refrigeration chamber,
    The refrigerator according to any one of claims 1 to 7, wherein the refrigerator compartment is configured to introduce an electromagnetic wave oscillated from the microwave generator into a second storage compartment. .
  9.  前記マイクロ波発生装置は、半導体素子を用いた電磁波発振器と電磁波増幅器からなることを特徴とする、請求項8に記載の冷蔵庫。 The refrigerator according to claim 8, wherein the microwave generation device includes an electromagnetic wave oscillator and an electromagnetic wave amplifier using a semiconductor element.
  10.  前記第二の収納区画は前記第一の収納区画と連通する通気口を備え、
     前記通気口には開閉機構が設けられていることを特徴とする、請求項8または9に記載の冷蔵庫。
    The second storage compartment has a vent in communication with the first storage compartment;
    The refrigerator according to claim 8 or 9, wherein the vent is provided with an opening / closing mechanism.
  11.  前記冷蔵庫は複数の貯蔵室を有し、
     前記冷蔵室は前記複数の貯蔵室のうち最上部に位置する貯蔵室で構成され、
     前記第二の収納区画は冷蔵室の最下部に設けられていることを特徴とする、請求項8から10のいずれか一項に記載の冷蔵庫。
    The refrigerator has a plurality of storage rooms,
    The refrigerator compartment is composed of a storage room located at the top of the plurality of storage rooms,
    The refrigerator according to any one of claims 8 to 10, wherein the second storage section is provided at a lowermost part of the refrigerator compartment.
  12.  前記冷蔵庫は複数の貯蔵室を有し、
     前記冷蔵室は前記複数の貯蔵室のうち最上部に位置する貯蔵室で構成され、
     前記第二の収納区画は冷蔵室の最上部に設けられていることを特徴とする、請求項8から10のいずれか一項に記載の冷蔵庫。
    The refrigerator has a plurality of storage rooms,
    The refrigerator compartment is composed of a storage room located at the top of the plurality of storage rooms,
    The refrigerator according to any one of claims 8 to 10, wherein the second storage section is provided at an uppermost part of the refrigerator compartment.
  13.  前記冷却装置は少なくとも圧縮機を有する冷凍サイクルであり、
     前記圧縮機は、前記冷蔵庫の奥側上部に設けられていることを特徴とする、請求項8から12のいずれか一項に記載の冷蔵庫。
    The cooling device is a refrigeration cycle having at least a compressor;
    The refrigerator according to any one of claims 8 to 12, wherein the compressor is provided at an upper part on the back side of the refrigerator.
  14.  前記第二の収納区画には複数の孔を有する金属で構成されている蓋体が備えられていることを特徴とする、請求項8から13のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 8 to 13, wherein the second storage section is provided with a lid made of a metal having a plurality of holes.
  15.  前記第二の収納区画には少なくとも可視光域において透明な導電性膜が設けられている蓋体が備えられていることを特徴とする、請求項8から13のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 8 to 13, wherein the second storage compartment is provided with a lid provided with a transparent conductive film at least in a visible light region. .
  16.  前記第二の収納区画には少なくとも1つ以上のLEDが設けられていて、
     冷凍中あるいは解凍中の少なくともいずれか一方の動作時にはLEDが発光されるように構成されていることを特徴とする、請求項8から15のいずれか一項に記載の冷蔵庫。
    The second storage compartment is provided with at least one LED,
    The refrigerator according to any one of claims 8 to 15, wherein the LED is configured to emit light during operation of at least one of freezing and thawing.
  17.  前記制御装置は、前記被冷却物の温度が凍結点以下の温度帯で一定時間保持されている状態で前記貯蔵室内の温度を急速に低下させるように制御することを特徴とする、請求項1から16のいずれか1項に記載の冷蔵庫。 2. The control device according to claim 1, wherein the temperature of the object to be cooled is controlled to rapidly decrease the temperature in the storage chamber in a state where the temperature of the object to be cooled is maintained for a certain period of time in a temperature zone below the freezing point. The refrigerator of any one of 1-16.
  18.  前記制御装置は、前記被冷却物の温度が凍結点以下より低下した温度帯あるいは最大氷結晶生成帯を通過した温度帯で一定時間保持するようなエネルギー量の前記マイクロ波を印加することを特徴とする、請求項17に記載の冷蔵庫。 The control device applies the microwave having an energy amount so as to be held for a certain period of time in a temperature zone in which the temperature of the object to be cooled is lower than the freezing point or a temperature zone in which the maximum ice crystal formation zone has passed. The refrigerator according to claim 17.
  19.  前記制御装置は、前記被冷却物の温度が凍結点以下より低下した温度帯あるいは最大氷結晶生成帯を通過した温度で一定時間保持した後、前記マイクロ波の印加を停止して前記箱体の温度を低下させるように制御することを特徴とする請求項17または18に記載の冷蔵庫。 The control device holds the temperature of the object to be cooled below a freezing point or a temperature passing through the maximum ice crystal formation zone for a certain period of time, and then stops applying the microwave to The refrigerator according to claim 17 or 18, wherein the refrigerator is controlled so as to lower the temperature.
  20.  前記制御装置は、前記被冷却物の温度が凍結点以下の温度帯で一定時間保持されている間に前記被冷却物が過冷却の状態にある場合には、前記被冷却物の過冷却が解除するより前に前記箱体の温度を低下させるように制御することを特徴とする、請求項17から19のいずれか1項に記載の冷蔵庫。
     
     
     
     
     
    When the object to be cooled is in a supercooled state while the temperature of the object to be cooled is maintained for a certain period of time in a temperature zone below the freezing point, the control device performs overcooling of the object to be cooled. The refrigerator according to any one of claims 17 to 19, wherein the refrigerator is controlled so as to lower the temperature of the box before being released.




PCT/JP2011/003076 2010-06-01 2011-06-01 Refrigerator WO2011152047A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012518253A JPWO2011152047A1 (en) 2010-06-01 2011-06-01 refrigerator

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010125578 2010-06-01
JP2010-125578 2010-06-01
JP2011-002677 2011-01-11
JP2011002677 2011-01-11
JP2011-044635 2011-03-02
JP2011044638 2011-03-02
JP2011-044638 2011-03-02
JP2011044635 2011-03-02

Publications (1)

Publication Number Publication Date
WO2011152047A1 true WO2011152047A1 (en) 2011-12-08

Family

ID=45066438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003076 WO2011152047A1 (en) 2010-06-01 2011-06-01 Refrigerator

Country Status (2)

Country Link
JP (1) JPWO2011152047A1 (en)
WO (1) WO2011152047A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252635A (en) * 2010-06-01 2011-12-15 Panasonic Corp Preservation device, and method of preserving of the same
CN103836877A (en) * 2014-03-20 2014-06-04 合肥美的电冰箱有限公司 Refrigerator with microwave oven and control method thereof
CN104236233A (en) * 2014-09-15 2014-12-24 合肥美的电冰箱有限公司 Control method for refrigerator and refrigerator
WO2015079604A1 (en) * 2013-11-28 2015-06-04 株式会社 東芝 Refrigerator
JP2016080307A (en) * 2014-10-21 2016-05-16 三菱電機株式会社 refrigerator
WO2016077953A1 (en) * 2014-11-17 2016-05-26 何素华 Refrigerator
WO2018193990A1 (en) * 2017-04-21 2018-10-25 ダイキン工業株式会社 Cooling device
CN110057122A (en) * 2019-04-22 2019-07-26 石狮影见机械科技有限责任公司 A kind of refrigeration equipment for capableing of even solidification agar
US10465976B2 (en) 2016-05-19 2019-11-05 Bsh Home Appliances Corporation Cooking within a refrigeration cavity
CN110810496A (en) * 2019-09-18 2020-02-21 江南大学 Microwave treatment method and device for fruit and vegetable enzyme-inactive fresh-keeping in low-temperature environment
WO2020161207A1 (en) * 2019-02-07 2020-08-13 BSH Hausgeräte GmbH Method for treating a foodstuff in a storage compartment of a domestic refrigeration appliance through temperature control and simultaneous application of electromagnetic radiation, and domestic refrigeration appliance
CN111928566A (en) * 2020-08-05 2020-11-13 安徽康佳同创电器有限公司 Refrigerator with heating and cold storage functions
EP3614078A4 (en) * 2017-04-21 2021-01-06 Daikin Industries, Ltd. Cooling device
CN113474605A (en) * 2018-12-06 2021-10-01 Lg电子株式会社 Refrigerator with a door
CN113790558A (en) * 2021-09-18 2021-12-14 珠海格力电器股份有限公司 Refrigerator with a door
EP3910272A4 (en) * 2019-01-23 2022-03-02 Haier Smart Home Co., Ltd. Heating apparatus and refrigerator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935769A (en) * 1982-08-20 1984-02-27 三洋電機株式会社 Refrigerator
JPS6199088A (en) * 1984-10-22 1986-05-17 松下冷機株式会社 Refrigerator with high-frequency thawing device
JPS63118584A (en) * 1986-11-07 1988-05-23 三洋電機株式会社 Refrigerator
JPH02115675A (en) * 1988-10-26 1990-04-27 Hitachi Ltd Refrigeration ice box with thawing device
JPH0668975A (en) * 1992-08-21 1994-03-11 Asahi Glass Co Ltd Microwave oven
JP2000000080A (en) * 1998-06-15 2000-01-07 Fuji Electric Co Ltd Thawing house
JP2002364980A (en) * 2001-06-11 2002-12-18 Matsushita Refrig Co Ltd Cooking appliance and cooking method
JP2005058150A (en) * 2003-08-19 2005-03-10 Matsushita Electric Ind Co Ltd Food thawing apparatus
JP2007006702A (en) * 2001-07-03 2007-01-18 Matsushita Electric Ind Co Ltd Method and device for cooking food
JP2009229037A (en) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp Food storage device, refrigerator, ice making device, high frequency cooker and high frequency radiation device
JP2009300069A (en) * 2008-10-10 2009-12-24 Panasonic Corp Refrigerator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935769A (en) * 1982-08-20 1984-02-27 三洋電機株式会社 Refrigerator
JPS6199088A (en) * 1984-10-22 1986-05-17 松下冷機株式会社 Refrigerator with high-frequency thawing device
JPS63118584A (en) * 1986-11-07 1988-05-23 三洋電機株式会社 Refrigerator
JPH02115675A (en) * 1988-10-26 1990-04-27 Hitachi Ltd Refrigeration ice box with thawing device
JPH0668975A (en) * 1992-08-21 1994-03-11 Asahi Glass Co Ltd Microwave oven
JP2000000080A (en) * 1998-06-15 2000-01-07 Fuji Electric Co Ltd Thawing house
JP2002364980A (en) * 2001-06-11 2002-12-18 Matsushita Refrig Co Ltd Cooking appliance and cooking method
JP2007006702A (en) * 2001-07-03 2007-01-18 Matsushita Electric Ind Co Ltd Method and device for cooking food
JP2005058150A (en) * 2003-08-19 2005-03-10 Matsushita Electric Ind Co Ltd Food thawing apparatus
JP2009229037A (en) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp Food storage device, refrigerator, ice making device, high frequency cooker and high frequency radiation device
JP2009300069A (en) * 2008-10-10 2009-12-24 Panasonic Corp Refrigerator

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252635A (en) * 2010-06-01 2011-12-15 Panasonic Corp Preservation device, and method of preserving of the same
WO2015079604A1 (en) * 2013-11-28 2015-06-04 株式会社 東芝 Refrigerator
JP2015105757A (en) * 2013-11-28 2015-06-08 株式会社東芝 Refrigerator
TWI570375B (en) * 2013-11-28 2017-02-11 東芝生活電器股份有限公司 Refrigerator
CN103836877A (en) * 2014-03-20 2014-06-04 合肥美的电冰箱有限公司 Refrigerator with microwave oven and control method thereof
CN103836877B (en) * 2014-03-20 2016-08-17 合肥美的电冰箱有限公司 There is refrigerator and the control method thereof of micro-wave oven
CN104236233A (en) * 2014-09-15 2014-12-24 合肥美的电冰箱有限公司 Control method for refrigerator and refrigerator
JP2016080307A (en) * 2014-10-21 2016-05-16 三菱電機株式会社 refrigerator
WO2016077953A1 (en) * 2014-11-17 2016-05-26 何素华 Refrigerator
US10465976B2 (en) 2016-05-19 2019-11-05 Bsh Home Appliances Corporation Cooking within a refrigeration cavity
EP3614078A4 (en) * 2017-04-21 2021-01-06 Daikin Industries, Ltd. Cooling device
CN110462314B (en) * 2017-04-21 2022-09-13 大金工业株式会社 Cooling device
US11262115B2 (en) 2017-04-21 2022-03-01 Daikin Industries, Ltd. Cooling apparatus
CN110462314A (en) * 2017-04-21 2019-11-15 大金工业株式会社 Cooling device
WO2018193990A1 (en) * 2017-04-21 2018-10-25 ダイキン工業株式会社 Cooling device
EP3614079A4 (en) * 2017-04-21 2021-01-06 Daikin Industries, Ltd. Cooling device
JP2018179478A (en) * 2017-04-21 2018-11-15 ダイキン工業株式会社 Cooling apparatus
US11885538B2 (en) 2018-12-06 2024-01-30 Lg Electronics Inc. Refrigerator
CN113474605A (en) * 2018-12-06 2021-10-01 Lg电子株式会社 Refrigerator with a door
CN113474605B (en) * 2018-12-06 2023-09-22 Lg电子株式会社 Refrigerator with a refrigerator body
AU2020212872B2 (en) * 2019-01-23 2022-09-29 Haier Smart Home Co., Ltd. Heating apparatus and refrigerator
EP3910272A4 (en) * 2019-01-23 2022-03-02 Haier Smart Home Co., Ltd. Heating apparatus and refrigerator
WO2020161207A1 (en) * 2019-02-07 2020-08-13 BSH Hausgeräte GmbH Method for treating a foodstuff in a storage compartment of a domestic refrigeration appliance through temperature control and simultaneous application of electromagnetic radiation, and domestic refrigeration appliance
CN113424003A (en) * 2019-02-07 2021-09-21 Bsh家用电器有限公司 Method for treating food in a storage compartment of a domestic refrigeration appliance by means of temperature control and simultaneous electromagnetic radiation, and domestic refrigeration appliance
CN110057122A (en) * 2019-04-22 2019-07-26 石狮影见机械科技有限责任公司 A kind of refrigeration equipment for capableing of even solidification agar
CN110810496A (en) * 2019-09-18 2020-02-21 江南大学 Microwave treatment method and device for fruit and vegetable enzyme-inactive fresh-keeping in low-temperature environment
CN111928566A (en) * 2020-08-05 2020-11-13 安徽康佳同创电器有限公司 Refrigerator with heating and cold storage functions
CN113790558A (en) * 2021-09-18 2021-12-14 珠海格力电器股份有限公司 Refrigerator with a door

Also Published As

Publication number Publication date
JPWO2011152047A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
WO2011152047A1 (en) Refrigerator
JP5281691B2 (en) Storage device and storage method
WO2011135865A1 (en) Refrigerator
JP4781378B2 (en) Food storage device, refrigerator, ice making device and high-frequency cooking device
JP4827788B2 (en) refrigerator
KR100889821B1 (en) Refrigerator Having Temperature- Controlled Chamber
WO2011135863A1 (en) Refrigeration device, refrigerator provided with refrigeration device, and refrigeration device operating method
US20080047294A1 (en) Refrigerator
JP5334892B2 (en) refrigerator
JP4253775B2 (en) refrigerator
AU2007351997A1 (en) Refrigerator and frozen food preservation method
JP2010230307A (en) Refrigerating method and refrigerating device
WO2014122780A1 (en) Refrigerator
JP5093308B2 (en) Cryopreservation device
JP4775340B2 (en) refrigerator
WO2013000969A2 (en) A cooling device preventing freezing of foodstuffs placed in the fresh food compartment
JP2013029220A (en) Refrigerator
US6490878B1 (en) Cold sales cabinet
WO2002101306A1 (en) Refrigerator
JP2002372358A (en) Refrigerator
US5403609A (en) Method and equipment for storing foodstuffs, plants, vegetables, meats and other organic substances
JP2021060171A (en) refrigerator
JP2004286346A (en) Cooking device
CN112648774A (en) Refrigerator with a door
KR20090124497A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789460

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518253

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789460

Country of ref document: EP

Kind code of ref document: A1