JP2013029220A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2013029220A
JP2013029220A JP2011163972A JP2011163972A JP2013029220A JP 2013029220 A JP2013029220 A JP 2013029220A JP 2011163972 A JP2011163972 A JP 2011163972A JP 2011163972 A JP2011163972 A JP 2011163972A JP 2013029220 A JP2013029220 A JP 2013029220A
Authority
JP
Japan
Prior art keywords
refrigerator
electromagnetic wave
cooling
detection means
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011163972A
Other languages
Japanese (ja)
Inventor
Satoshi Furusawa
佐登志 古澤
Yoshihiro Sakamoto
芳弘 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011163972A priority Critical patent/JP2013029220A/en
Publication of JP2013029220A publication Critical patent/JP2013029220A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Abstract

PROBLEM TO BE SOLVED: To solve the problem with a refrigerator including a dielectric heating device, wherein there is no energy-saving conscious and high quality refrigerator.SOLUTION: The refrigerator includes: a refrigerator body; a cooling device for cooling the inside of the refrigerator; an electromagnetic wave radiation device for performing high frequency heating; and a detecting device for detecting an operation state of a cooling mechanism in the refrigerator. The radiated power of the electromagnetic wave radiation device is varied based on a result detected by the detecting device, and foods are controlled by cold air and electromagnetic waves so that a temperature of the foods is in a predetermined temperature zone which is preset. Accordingly, a temperature of the foods is stably and finely controlled. As a result, a high quality refrigerator that keeps the energy efficiency of the refrigerator can be achieved.

Description

本発明は、電磁波により食材を加熱する手段を備えた冷蔵庫に関し、詳しくは、冷蔵庫の冷却機構の動作パターンに応じて電磁波の出力を制御することにより、高品質な食材の保存を可能とする冷蔵庫に関するものである。   The present invention relates to a refrigerator provided with means for heating food by electromagnetic waves, and in particular, a refrigerator that enables preservation of high-quality food by controlling the output of electromagnetic waves according to the operation pattern of the cooling mechanism of the refrigerator. It is about.

近年、家庭用冷蔵庫では、利用者の生活スタイルの変化や、食材の保存品質に対する要求の高まりを背景として、長期保存(或いは冷凍保存)食材のうまみ保持、鮮度保持を実現する機能の搭載が進んでいる。この種の機能を実現する手段として、「急速冷凍」、「過冷却現象を応用した冷凍」等が一般的に知られている。   In recent years, household refrigerators have been equipped with functions to maintain the umami and freshness of long-term (or frozen) foods against the backdrop of changes in user lifestyles and growing demands for the quality of foods to be stored. It is out. As means for realizing this kind of function, “rapid freezing”, “freezing applying a supercooling phenomenon”, and the like are generally known.

例えば、「急速冷凍」は、食材を冷凍する際、食材に極低温冷気を直接吹きつけることにより、食材温度が所定温度帯(最大氷結晶生成帯:−1℃〜−5℃)にある期間を極力短くする冷凍方法である。この方法により、食材内部における大きな氷結晶の生成・成長、および、これに伴う細胞組織の損傷を抑制した保存が可能となる。   For example, the “rapid freezing” is a period in which the temperature of the food is in a predetermined temperature zone (maximum ice crystal formation zone: −1 ° C. to −5 ° C.) by directly blowing the cryogenic cold air onto the food when freezing the food. Is a refrigeration method that shortens as much as possible. By this method, the generation and growth of large ice crystals inside the food material and the preservation while suppressing the damage of the cell tissue associated therewith are possible.

このようにして保存された食材を解凍した場合、細胞内部成分(所謂、うまみ成分)の流出が抑えられることから、解凍調理の段階においても食材本来のうまみが保持される等の効果が得られる。反面、この冷却方式では、急速冷凍用に高性能、且つ大型の圧縮機が必要となる等、部品の配設やコスト面での課題が挙げられる。   When the food stored in this manner is thawed, the outflow of cell internal components (so-called umami components) is suppressed, so that the original umami of the food can be maintained even during the thawing cooking stage. . On the other hand, in this cooling method, there are problems in the arrangement of components and cost, such as the need for a high-performance and large-sized compressor for quick freezing.

また、「急速冷凍」とは異なるアプローチで高品質保存を行う方法として「過冷却現象を応用した冷凍」が報告されている(例えば、特許文献2参照)。ここで、過冷却現象とは、食材を特定の冷却条件で冷却した際に、凍結点以下の温度帯においても未凍結状態が維持される現象を指す。特に、該状態にある食材に強制的に刺激を与えた場合、過冷却状態は解除され、急速に凍結状態に移行する。この移行の際に生成される氷結晶は小規模なものに留まることが知られている。   In addition, “refrigeration applying the supercooling phenomenon” has been reported as a method for high-quality storage by an approach different from “rapid freezing” (see, for example, Patent Document 2). Here, the supercooling phenomenon refers to a phenomenon in which an unfrozen state is maintained even in a temperature range below the freezing point when the food is cooled under specific cooling conditions. In particular, when the food in this state is forcibly stimulated, the supercooled state is released and the state rapidly shifts to the frozen state. It is known that the ice crystals generated during this transition remain small.

従って、この現象を利用して食材を凍結することにより、解凍後においても食材のうまみを保持する効果が得られる。反面、食材を過冷却状態とする為に、凍結点を通過する前後で食材の表面と内部の温度差を小さく保つとともに、未凍結状態を維持したまま通過させる最大氷結晶生成帯を必要がある等、食材に応じたきめ細やかな温度制御が必要となる。   Therefore, by freezing the food using this phenomenon, the effect of maintaining the flavor of the food even after thawing can be obtained. On the other hand, in order to keep the food in a supercooled state, it is necessary to keep the temperature difference between the surface and the inside of the food small before and after passing through the freezing point, and to have a maximum ice crystal formation zone that allows the food to pass while maintaining the unfrozen state. Therefore, fine temperature control according to the ingredients is required.

一方、従来の家庭用冷蔵庫は、圧縮機、凝縮器、絞り弁および蒸発器で構成される冷凍サイクルと、蒸発器にて冷却された冷気を、送風ファンおよび風路に導入すると共に、該冷気をダンパを介して庫内に送り込む冷却機構を備えている。この冷却機構の運転状態を、庫外(外気温度)や庫内温度等の種々の検知結果に応じて制御することにより、庫内を適温に保冷している。   On the other hand, a conventional household refrigerator introduces a refrigeration cycle including a compressor, a condenser, a throttle valve, and an evaporator, and cold air cooled by the evaporator into a blower fan and an air passage, and Is provided with a cooling mechanism that feeds the gas into the cabinet via a damper. By controlling the operating state of the cooling mechanism in accordance with various detection results such as the outside temperature (outside air temperature) and the inside temperature, the inside of the warehouse is kept at a suitable temperature.

従って、従来の冷却機構のみで高品質な冷凍を実現するためには、ダンパなどの部品点数の増加のほか、圧縮機の回転数制御、送風手段の回転制御、ダンパの開閉制御など、冷却機構の運転状態をよりきめ細かく制御する必要があり、制御プロセスの複雑化を招くなどの課題が生じる。   Therefore, in order to realize high-quality refrigeration using only the conventional cooling mechanism, in addition to increasing the number of parts such as dampers, cooling mechanisms such as compressor speed control, blower rotation control, damper open / close control, etc. It is necessary to finely control the operation state of the system, and problems such as complicating the control process arise.

これらの課題を解決するため、冷却機構の運転状態を制御することなしに、高周波放射による誘電加熱の出力によって、食材の温度低下速度、温度維持、温度上昇速度を可変制
御する食品貯蔵装置の構成が開示されている。
In order to solve these problems, the structure of the food storage device that variably controls the temperature decrease rate, temperature maintenance, and temperature increase rate of the food by the output of dielectric heating by high frequency radiation without controlling the operating state of the cooling mechanism. Is disclosed.

以下、図4を用いて、従来の食品貯蔵室の動作を説明する。   Hereinafter, the operation of the conventional food storage room will be described with reference to FIG.

図4に示す様に、食品貯蔵装置300は貯蔵室301を有し、貯蔵室301の背面側には冷凍サイクルを構成する圧縮機302および冷却器303、および、冷却冷気を貯蔵室301内に循環させる冷却風路305および送風ファン304が設けられている。貯蔵室301の背面側には、さらに、高周波給電装置306が設けられ、ここで発生した高周波は送電手段(図示せず)を介してアンテナ307に送電される。   As shown in FIG. 4, the food storage device 300 has a storage chamber 301. On the back side of the storage chamber 301, a compressor 302 and a cooler 303 that constitute a refrigeration cycle, and cooling cold air are stored in the storage chamber 301. A cooling air passage 305 and a blower fan 304 to be circulated are provided. A high-frequency power feeding device 306 is further provided on the back side of the storage chamber 301, and the high frequency generated here is transmitted to the antenna 307 via a power transmission means (not shown).

該構成により、冷却風温度および冷却風量ともに一定とする冷却条件のもとで、食材は、アンテナ307から放射された高周波により誘電加熱される。例えば、冷却能力に比較して加熱能力を低(高)く設定した場合には、対応する冷却速度(加熱速度)で食材を冷却(加熱)することができる。また、冷却能力と加熱能力が等しくなるよう設定することにより、食材温度を維持することができる。以上の動作により、冷却風温度および冷却風量の制御、即ち、冷却能力に対する制御を行うことなしに、高周波照射の出力の増減だけで食材の温度制御を実現することが可能となる。   With this configuration, the food material is dielectrically heated by the high frequency radiated from the antenna 307 under cooling conditions in which both the cooling air temperature and the cooling air flow are constant. For example, when the heating capacity is set to be low (high) compared to the cooling capacity, the food can be cooled (heated) at a corresponding cooling rate (heating rate). In addition, the food material temperature can be maintained by setting the cooling capacity and the heating capacity to be equal. With the above operation, the temperature control of the food can be realized only by increasing / decreasing the output of the high-frequency irradiation without controlling the cooling air temperature and the cooling air amount, that is, controlling the cooling capacity.

特開2009−229037号公報JP 2009-229037 A

上記従来の構成のように、冷却能力を一定化し、その一部、或いは全てを加熱能力により相殺することにより、加熱能力のみの簡単な制御で、きめ細かい温度制御の実現が期待される。   As in the conventional configuration described above, it is expected that fine temperature control is realized by simple control of only the heating capacity by making the cooling capacity constant and canceling part or all of the cooling capacity by the heating capacity.

しかしながら、冷蔵庫における緩慢な解凍や、過冷却現象を応用した冷凍保存を行う場合等、温度制御期間が長期に及ぶ場合には、該期間中、冷却機構を一定の冷却風温度と冷却風量で冷却し続ける必要があり、エネルギー的な無駄が大きくなり、消費電力が増大するという課題がある。   However, when the temperature control period is long, such as when performing slow thawing in a refrigerator or storing frozen by applying the supercooling phenomenon, the cooling mechanism is cooled at a constant cooling air temperature and cooling air volume during that period. However, there is a problem that energy waste increases and power consumption increases.

本発明は、上記従来の課題を解決するもので、誘電加熱手段を備える冷蔵庫に於いて、省エネルギーに配慮した高品質の冷蔵庫を提供する。   The present invention solves the above-mentioned conventional problems, and provides a high-quality refrigerator considering energy saving in a refrigerator provided with dielectric heating means.

前記従来の課題を解決するために、本発明の冷蔵庫は、庫内に配置した検知手段により、冷蔵庫本体に配設される複数の冷却機構の運転状態を検知し、該検知結果に基づいて、電磁波放射手段の放射電力を可変し、冷却手段による冷気と電磁波放射手段から放射される電磁波により、食材温度を目的の温度帯に制御するものである。   In order to solve the conventional problem, the refrigerator of the present invention detects the operating states of a plurality of cooling mechanisms arranged in the refrigerator body by the detection means arranged in the refrigerator, and based on the detection results, The radiation power of the electromagnetic wave radiating means is varied, and the food material temperature is controlled to a target temperature range by the cold air from the cooling means and the electromagnetic waves radiated from the electromagnetic wave radiating means.

本発明の冷蔵庫は、冷蔵庫の冷却機構の運転状態に応じて、誘電加熱による加熱能力を制御することにより、冷却機構を間欠運転する場合においても、食材温度を安定に、且つ、きめ細かく制御することができるため、冷蔵庫の省エネ性を維持した高品質の冷蔵庫を実現することができる。   The refrigerator of the present invention controls the food temperature stably and finely even when the cooling mechanism is intermittently operated by controlling the heating capability by dielectric heating according to the operating state of the cooling mechanism of the refrigerator. Therefore, it is possible to realize a high-quality refrigerator that maintains the energy saving performance of the refrigerator.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の制御動作を示す制御ブロック図The control block diagram which shows the control action of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の動作説明図Operation | movement explanatory drawing of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の動作説明図Operation | movement explanatory drawing of the refrigerator in Embodiment 1 of this invention 従来の冷蔵庫の縦断面図Vertical section of a conventional refrigerator

請求項1に記載の発明は、冷蔵庫本体は、収容物を貯蔵する貯蔵室と、前記貯蔵室を冷却する冷却手段と、前記貯蔵室に収容された収容物に電磁波を照射する少なくとも一つ以上の電磁波放出部を備える電磁波放射手段と、前記冷却手段の運転状態を検知する検知手段と、を有し、
前記検知手段の検知結果に基づいて前記電磁波放射手段の放射電力を可変し、前記冷却手段による冷気と前記電磁波放射手段から放射される電磁波により、前記収容物を予め設定した所定の温度帯に制御する制御手段を備えるものである。
According to the first aspect of the present invention, the refrigerator main body includes at least one storage chamber for storing the stored items, cooling means for cooling the storage chamber, and irradiating the stored items stored in the store chamber with electromagnetic waves. An electromagnetic wave radiation means including an electromagnetic wave emission part, and a detection means for detecting an operating state of the cooling means,
The radiation power of the electromagnetic wave radiation means is varied based on the detection result of the detection means, and the contents are controlled to a predetermined temperature range set in advance by the cool air by the cooling means and the electromagnetic waves radiated from the electromagnetic wave radiation means. The control means to perform is provided.

これにより、必要な量のみ電磁波放射手段から放射することができるので、冷却機構を間欠運転する場合においても、食材の温度を安定に、且つ、きめ細かく制御できるため、省エネに配慮した冷蔵庫を提供できる。   As a result, only the necessary amount can be emitted from the electromagnetic wave radiation means, so that even when the cooling mechanism is intermittently operated, the temperature of the food can be controlled stably and finely, so that it is possible to provide a refrigerator considering energy saving. .

請求項2に記載の発明は、冷蔵庫内の各室への冷気流入を行うダンパ部をさらに備え、ダンパ部の開閉状態を検知する開閉検知手段が、ダンパ部の開(閉)動作を検知した場合に、制御手段が電磁波放射手段の放射電力を増加(減少)する。   The invention described in claim 2 further includes a damper portion that allows cold air to flow into each room in the refrigerator, and the opening / closing detection means that detects the opening / closing state of the damper portion detects an opening (closing) operation of the damper portion. In this case, the control means increases (decreases) the radiation power of the electromagnetic wave radiation means.

これにより、新たな冷却機構部品および冷却機構の制御を追加することなしに、きめこまかい温度制御が可能となる為、簡易な構成で、省エネに配慮した冷蔵庫を提供できる。   As a result, fine temperature control can be performed without adding new cooling mechanism parts and cooling mechanism control, and thus a refrigerator with a simple configuration and energy saving can be provided.

請求項3に記載の発明は、冷蔵庫内の各室に冷気送風を行う送風手段をさらに備え、送風手段の動作状態を検知する送風検知手段であり、送風検知手段が送風手段の起動(停止)を検知した場合に、制御手段が電磁波放射手段の放射電力を増加(減少)する。   Invention of Claim 3 is further provided with the ventilation means which performs cool air ventilation to each chamber in a refrigerator, and is a ventilation detection means which detects the operation state of a ventilation means, and ventilation detection means starts (stops) a ventilation means. When detecting the above, the control means increases (decreases) the radiation power of the electromagnetic wave radiation means.

これにより、新たな冷却機構部品および冷却機構の制御を追加することなしに、きめこまかい温度制御が可能となる為、簡易な構成で、省エネに配慮した冷蔵庫を提供できる。   As a result, fine temperature control can be performed without adding new cooling mechanism parts and cooling mechanism control, and thus a refrigerator with a simple configuration and energy saving can be provided.

請求項4に記載の発明は、冷蔵庫の前面部に設けられた複数の扉をさらに備え、扉開閉検知手段が、前記複数の扉の内、少なくとも一つの扉の開および閉状態を検知し、扉開閉検知手段が扉開状態を検出している期間内において、電磁波放射手段の運転を停止する。   The invention according to claim 4 further includes a plurality of doors provided on the front portion of the refrigerator, wherein the door opening / closing detection means detects an open and closed state of at least one of the plurality of doors, The operation of the electromagnetic wave radiating means is stopped during the period in which the door open / close detecting means detects the door open state.

これにより、高周波の庫外への放射を回避することができる為、簡易な構成で、安全性を確保した冷蔵庫を提供できる。   Thereby, since the radiation | emission to the exterior of a high frequency can be avoided, the refrigerator which ensured safety | security with a simple structure can be provided.

請求項5に記載の発明は、電磁波放射手段から放射される電磁波に、マイクロ波帯の電磁波を使用する。これにより、食材を効率よく誘電加熱することができるため、省エネに配慮した冷蔵庫を提供できる。   The invention according to claim 5 uses an electromagnetic wave in the microwave band as the electromagnetic wave radiated from the electromagnetic wave radiation means. Thereby, since a foodstuff can carry out dielectric heating efficiently, the refrigerator which considered energy saving can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の縦断面図であり、図2は本発明の実施の形態1における冷蔵庫の制御動作を示す制御ブロック図、図3a,図3bは、本発明の実施の形態1における冷蔵庫の動作説明図である。
(Embodiment 1)
1 is a longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a control block diagram showing a control operation of the refrigerator according to Embodiment 1 of the present invention, and FIGS. 3a and 3b are diagrams of the present invention. It is operation | movement explanatory drawing of the refrigerator in Embodiment 1. FIG.

図1に示すように、100は冷蔵庫本体の断熱箱体を示しており、主に鋼板を用いた外箱と、ABSなどの樹脂で成形された内箱と、外箱と内箱の空間に断熱材が設けられた構造により、周囲と断熱となっている。冷蔵庫本体100は、複数の貯蔵室に断熱区画されており、最上部に冷蔵室110、冷蔵室110の下部に貯蔵室120、野菜室140、そして最下部に冷凍室150が配置され、各室の前面には外気と区画するため、冷蔵庫本体の前面開口部に各々、扉が構成されている。   As shown in FIG. 1, reference numeral 100 denotes a heat insulation box body of a refrigerator main body. In an outer box mainly using a steel plate, an inner box formed of a resin such as ABS, and the space between the outer box and the inner box. The structure provided with a heat insulating material provides heat insulation with the surroundings. The refrigerator main body 100 is heat-insulated into a plurality of storage rooms. The refrigerator compartment 110 is arranged at the top, the storage compartment 120, the vegetable compartment 140 at the bottom of the refrigerator compartment 110, and the freezer compartment 150 at the bottom. In order to partition the outside from the outside air, a door is formed in each front opening of the refrigerator main body.

冷蔵庫本体100は、圧縮機121と凝縮器(図示せず)と減圧器(図示せず)と蒸発器(図示せず)とを備えて一連の冷媒流路を形成した冷凍サイクルである冷却手段を備えており、この冷却手段の動作により低温冷気が生成される。冷却手段の動作時に、送風手段122(図示せず)、通風窓であるダンパ123を連動させ、該低温冷気を庫内の各室内を循環することにより、各室の冷却を行う。   The refrigerator body 100 includes a compressor 121, a condenser (not shown), a decompressor (not shown), and an evaporator (not shown), and is a cooling means that is a refrigeration cycle in which a series of refrigerant flow paths are formed. The low-temperature cold air is generated by the operation of the cooling means. During the operation of the cooling means, the air blowing means 122 (not shown) and the damper 123, which is a ventilation window, are interlocked to circulate the low-temperature cold air in each room in the warehouse, thereby cooling each room.

貯蔵室120の背面側には、半導体素子やマグネトロンにより電磁波を給電する電磁波生成部127が設けられ、制御信号に応じて給電電力を可変可能である。   On the back side of the storage chamber 120, an electromagnetic wave generation unit 127 that supplies an electromagnetic wave by a semiconductor element or a magnetron is provided, and the supply power can be varied according to a control signal.

電磁波生成部127で発生した電磁波は、導波管などの送電手段128を介して、貯蔵室120の後部に配設された、たとえばアンテナである電磁波放出部129に送電される。電磁波放出部129から放射された電磁波電力は、貯蔵室120内および該内部に収容された食材を照射する。なお、電磁波放出部129は、放射部の長さを波長の1/2に設定した金属製のダイポールアンテナにて構成する。なお、アンテナの形状、配置はあくまで一例であり、放射する出力や指向性、設置寸法により適宜選択して使用する。   The electromagnetic wave generated by the electromagnetic wave generation unit 127 is transmitted to an electromagnetic wave emission unit 129 that is an antenna, for example, disposed at the rear of the storage chamber 120 via a power transmission unit 128 such as a waveguide. The electromagnetic wave power radiated from the electromagnetic wave emission unit 129 irradiates the food stored in the storage chamber 120 and in the interior thereof. The electromagnetic wave emission part 129 is configured by a metal dipole antenna in which the length of the radiation part is set to ½ of the wavelength. Note that the shape and arrangement of the antenna are merely examples, and the antenna is appropriately selected and used depending on the radiated output, directivity, and installation dimensions.

なお、貯蔵室120の内部には赤外線センサなどからなる温度検知装置203(図示せず)が設けられており、貯蔵室120内に置かれた食品の表面温度を検出することが可能となっている。温度検知装置203の検知情報は、制御手段126(図示せず)に送信されて利用される。   In addition, a temperature detection device 203 (not shown) including an infrared sensor or the like is provided inside the storage chamber 120, and it is possible to detect the surface temperature of food placed in the storage chamber 120. Yes. The detection information of the temperature detection device 203 is transmitted to the control means 126 (not shown) and used.

以上のように構成された冷蔵庫について、以下、その動作・作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement * effect | action is demonstrated below.

図2に示す様に、庫内を適温保冷する為、運転制御手段202は、庫内温度や庫外温度等、各種センサ201出力に基づいて、運転パターンを選択し、該運転パターンに従い、冷却手段の構成素である圧縮機121と、冷気循環手段である送風手段122およびダンパ123を間欠的に制御する。尚、以降、冷却手段と冷気循環手段の構成素を併せて、冷却機構124として記載するものとする。検知手段125は、冷却機構124の運転状態、即ち、送風手段122での送風や送風停止、ダンパ123の開閉、圧縮機121のON/OFFを検知し、制御手段126は、該検知結果に基づいて、電磁波放射手段130に制御信号を出力する。電磁波生成部127は、該制御信号に基づいて、給電電力を可変し、電磁波放出部129から放射される電磁波により、食材を誘電加熱する。なお、食品を効率よく加熱するには、食品内の水分を効率的に加熱する必要があり、好適な周波数としては、例えば、915MHz付近や2450MHz付近が上げられる。   As shown in FIG. 2, the operation control means 202 selects an operation pattern based on the output of various sensors 201 such as the internal temperature and the external temperature in order to keep the inside of the storage room at an appropriate temperature. The compressor 121 which is a component of the means, and the air blowing means 122 and the damper 123 which are cold air circulation means are intermittently controlled. In the following, the constituent elements of the cooling means and the cold air circulation means will be described together as the cooling mechanism 124. The detecting means 125 detects the operating state of the cooling mechanism 124, that is, the blowing or blowing stop in the blowing means 122, the opening and closing of the damper 123, the ON / OFF of the compressor 121, and the control means 126 is based on the detection result. The control signal is output to the electromagnetic wave radiation means 130. The electromagnetic wave generation unit 127 varies the feeding power based on the control signal, and dielectrically heats the foodstuff with the electromagnetic wave radiated from the electromagnetic wave emission unit 129. In addition, in order to heat food efficiently, it is necessary to heat the water | moisture content in food efficiently, As a suitable frequency, for example, 915 MHz vicinity and 2450 MHz vicinity are raised.

次に、図を用い、冷却機構124を間欠的に運転した場合の庫内温度、電磁波出力、および食材表面温度の関係を説明する。   Next, the relationship between the internal temperature, the electromagnetic wave output, and the food surface temperature when the cooling mechanism 124 is intermittently operated will be described with reference to the drawings.

図3aは、本実施の形態との比較の為、電磁波放出手段が所定量の電磁波を常時出力した場合の冷蔵庫の動作説明図を示している。また、図3bは、冷却機構の運転状態に応じて電磁波放出手段の出力制御を行った場合の冷蔵庫の動作説明図を示している。なお、説明の簡単の為、以下、冷却機構124をダンパ123の開閉動作として説明を行う。   FIG. 3 a shows an operation explanatory diagram of the refrigerator when the electromagnetic wave emitting means always outputs a predetermined amount of electromagnetic waves for comparison with the present embodiment. Moreover, FIG. 3b has shown the operation | movement explanatory drawing of the refrigerator at the time of performing output control of the electromagnetic wave emission means according to the driving | running state of a cooling mechanism. For the sake of simplicity, the cooling mechanism 124 will be described as an opening / closing operation of the damper 123 below.

なお、冷却機構124の動作がダンパ123の開閉動作であることに拘るものではなく、圧縮機121の運転および停止、或いは、送風手段122の運転、停止等、他の冷却機構の動作であってもかまわない。   It should be noted that the operation of the cooling mechanism 124 is not limited to the opening / closing operation of the damper 123, but the operation of other cooling mechanisms such as the operation and stop of the compressor 121 or the operation and stop of the blower 122. It doesn't matter.

図3aに示す様に、庫内温度は、冷蔵庫の断熱特性や外気温度等の因子により、ダンパの閉時において温度上昇する。庫内温度が設定温度TCmax(上限)に到達すると、冷却機構であるダンパを開放し、冷気流入を行うことにより、庫内温度を急速に低下させる。その後、庫内の冷却を待ち、所定のタイミングでダンパを再び閉鎖し、冷気の流入を停止する。   As shown in FIG. 3a, the internal temperature rises when the damper is closed due to factors such as the heat insulation characteristics of the refrigerator and the outside air temperature. When the internal temperature reaches the set temperature TCmax (upper limit), the internal temperature is rapidly lowered by opening the damper, which is a cooling mechanism, and performing cool air inflow. Then, waiting for cooling in the warehouse, the damper is closed again at a predetermined timing, and the inflow of cold air is stopped.

このように、一般的な家庭用冷蔵庫では、ダンパ、送風手段、圧縮機等の冷却機構を、間欠的に動作させることで、冷蔵庫庫内の温度を長期的(平均的)に一定に保つとともに、冷却に係わる消費エネルギーを抑制している。   As described above, in a general household refrigerator, a cooling mechanism such as a damper, a blower, or a compressor is intermittently operated to keep the temperature in the refrigerator cabinet constant over a long period (average). The energy consumption related to cooling is suppressed.

この際、この冷却機構の間欠動作に伴う流入冷気により、冷気に晒される食材の表面の温度も同様に上下動する(図3a最下図中の点線)。この時、食材に一定量の電磁波を印加し誘電加熱を行った場合、ダンパ123の開と閉の期間で、冷却能力と加熱能力の関係に差異が生じ、結果として、食材に過剰、或いは過小な熱量が供給される期間が発生する。   At this time, the temperature of the surface of the food material exposed to the cold also moves up and down in the same manner due to the inflowing cold accompanying the intermittent operation of the cooling mechanism (dotted line in the lowermost diagram in FIG. 3a). At this time, when a certain amount of electromagnetic wave is applied to the food material and dielectric heating is performed, a difference occurs in the relationship between the cooling capacity and the heating capacity during the opening and closing period of the damper 123, and as a result, the food material is excessive or too small. A period during which a sufficient amount of heat is supplied occurs.

この為、各々の期間で食材の冷却速度のばらつきが生じるとともに、食材そのものも常に寒暖に晒されている状態となる(図3a最下図中の実線)。例えば、高品質の冷凍方法により過冷却現象下にある食材等は、この熱量変動をきっかけとして、より高い温度で過冷却が解除されてしまう等、結果として、通常に冷凍した場合と同等の冷凍品質に制限されてしまうことが懸念される。   For this reason, variation in the cooling rate of the food material occurs in each period, and the food material itself is always exposed to cold and warm (solid line in the bottom diagram of FIG. 3a). For example, food under supercooling due to a high-quality freezing method, such as when the amount of heat is triggered, the supercooling is released at a higher temperature. There is a concern that quality will be limited.

次に、図3bでは、ダンパの開時等、冷気の流入がある場合には電磁波を増加させ、同様に、ダンパの閉時等、冷気の流入が無い場合には電磁波を減少させるように電磁波放射手段の制御を行った場合を示している。ここで、冷却機構の間欠動作に応じて電磁波の出力を制御し、冷却機構の流入冷気により生じる食材表面の温度変動(図3b最下図中の点線)を吸収することにより、食材に供給される相対的な熱量を安定化し、表面温度の変動を抑制することができる(図3b最下図中の実線)。   Next, in FIG. 3b, the electromagnetic wave is increased when there is inflow of cold air, such as when the damper is opened, and similarly, the electromagnetic wave is decreased so as to decrease when there is no inflow of cold air, such as when the damper is closed. The case where the radiation means is controlled is shown. Here, the output of the electromagnetic wave is controlled according to the intermittent operation of the cooling mechanism, and the temperature fluctuation (the dotted line in the lowermost diagram in FIG. 3b) generated by the inflowing cold air of the cooling mechanism is absorbed to be supplied to the food. The relative amount of heat can be stabilized and the fluctuation of the surface temperature can be suppressed (solid line in the bottom diagram in FIG. 3b).

従って、冷却機構が間欠動作している場合においても、冷却能力と加熱能力により定まる冷却速度を保持することができるため、安定した温度制御を実現することができる。   Therefore, even when the cooling mechanism is intermittently operated, the cooling rate determined by the cooling capacity and the heating capacity can be maintained, so that stable temperature control can be realized.

以上の動作により、冷却機構の間欠動作中においても、食材の温度をより安定的に、きめ細かく制御することができるため、冷蔵庫の省エネ性を維持した高品質の冷蔵庫を実現することができる。   With the above operation, the temperature of the food can be controlled more stably and finely even during the intermittent operation of the cooling mechanism, so that a high-quality refrigerator that maintains the energy-saving performance of the refrigerator can be realized.

本発明にかかる冷蔵庫は、家庭用または業務用冷蔵庫におけるきめ細かい温度制御を、簡易に実現する手段であり、その結果を用いて、食材の高品位保存などに実施、応用できるものである。   The refrigerator according to the present invention is a means for easily realizing fine temperature control in household or commercial refrigerators, and can be implemented and applied to high-quality preservation of foods using the result.

100 冷蔵庫本体
110 冷蔵室
120 貯蔵室
121 圧縮機
122 送風手段
123 ダンパ
124 冷却機構
125 検知手段
126 制御手段
127 電磁波生成部
128 送電手段
129 電磁波放出部
130 電磁波放射手段
140 野菜室
150 冷凍室
201 各種センサ
202 運転制御手段
203 温度検知装置
300 食品貯蔵装置
301 貯蔵室
302 圧縮機
303 冷却器
304 送風ファン
305 冷却風路
306 高周波給電装置
307 アンテナ
DESCRIPTION OF SYMBOLS 100 Refrigerator main body 110 Refrigerating room 120 Storage room 121 Compressor 122 Blowing means 123 Damper 124 Cooling mechanism 125 Detection means 126 Control means 127 Electromagnetic wave production | generation part 128 Electric power transmission means 129 Electromagnetic wave emission part 130 Electromagnetic wave radiation means 140 Vegetable room 150 Freezing room 201 Various sensors 202 Operation Control Means 203 Temperature Detection Device 300 Food Storage Device 301 Storage Room 302 Compressor 303 Cooler 304 Blower Fan 305 Cooling Air Path 306 High Frequency Power Supply Device 307 Antenna

Claims (5)

冷蔵庫本体は、収容物を貯蔵する貯蔵室と、前記貯蔵室を冷却する冷却手段と、前記貯蔵室に収容された収容物に電磁波を照射する少なくとも一つ以上の電磁波放出部を備える電磁波放射手段と、前記冷却手段の運転状態を検知する検知手段と、を有し、
前記検知手段の検知結果に基づいて前記電磁波放射手段の放射電力を可変し、前記冷却手段による冷気と前記電磁波放射手段から放射される電磁波により、前記収容物を予め設定した所定の温度帯に制御する制御手段を備えることを特徴とする冷蔵庫。
The refrigerator main body includes a storage chamber for storing the stored items, a cooling unit for cooling the storage chambers, and an electromagnetic wave emitting unit including at least one electromagnetic wave emission unit that irradiates the stored items stored in the storage chamber with electromagnetic waves. And detecting means for detecting the operating state of the cooling means,
The radiation power of the electromagnetic wave radiation means is varied based on the detection result of the detection means, and the contents are controlled to a predetermined temperature range set in advance by the cool air by the cooling means and the electromagnetic waves radiated from the electromagnetic wave radiation means. The refrigerator characterized by including the control means to do.
貯蔵室へ冷気流入を行うダンパ部をさらに備え、
前記検知手段は、前記ダンパ部の開閉状態を検知する開閉検知手段であり、
前記開閉検知手段が前記ダンパ部の開動作を検知した場合に、
前記制御手段が電磁波放射手段の放射電力を増加することを特徴とする請求項1記載の冷蔵庫。
It is further equipped with a damper part that cools air into the storage room,
The detection means is an open / close detection means for detecting an open / closed state of the damper portion,
When the opening / closing detection means detects an opening operation of the damper portion,
The refrigerator according to claim 1, wherein the control means increases the radiated power of the electromagnetic wave radiation means.
貯蔵室に冷気送風を行う送風手段をさらに備え、
前記検知手段は、前記送風手段の動作状態を検知する送風検知手段であり、
前記送風検知手段が前記送風手段の起動を検知した場合に、
前記制御手段が電磁波放射手段の放射電力を増加することを特徴とする請求項1または2に記載の冷蔵庫。
It further comprises air blowing means for blowing cold air into the storage room,
The detection means is an air blowing detection means for detecting an operating state of the air blowing means,
When the air blowing detection means detects the activation of the air blowing means,
The refrigerator according to claim 1 or 2, wherein the control means increases the radiation power of the electromagnetic wave radiation means.
前記冷蔵庫の前面部に設けられた複数の扉をさらに備え、
前記検知手段は、前記複数の扉の内、少なくとも一つの扉の開および閉状態を検知する扉開閉検知手段であり、
前記扉開閉検知手段が扉開状態を検出している期間内において、電磁波放射手段の運転を停止することを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。
It further comprises a plurality of doors provided on the front part of the refrigerator,
The detection means is a door opening / closing detection means for detecting an open and closed state of at least one of the plurality of doors,
The refrigerator according to any one of claims 1 to 3, wherein the operation of the electromagnetic wave radiation means is stopped during a period in which the door opening / closing detection means detects the door open state.
前記電磁波放射手段から放射される電磁波が、マイクロ波帯の電磁波であることを特徴とした請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein the electromagnetic wave radiated from the electromagnetic wave radiation means is an electromagnetic wave in a microwave band.
JP2011163972A 2011-07-27 2011-07-27 Refrigerator Withdrawn JP2013029220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011163972A JP2013029220A (en) 2011-07-27 2011-07-27 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011163972A JP2013029220A (en) 2011-07-27 2011-07-27 Refrigerator

Publications (1)

Publication Number Publication Date
JP2013029220A true JP2013029220A (en) 2013-02-07

Family

ID=47786425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011163972A Withdrawn JP2013029220A (en) 2011-07-27 2011-07-27 Refrigerator

Country Status (1)

Country Link
JP (1) JP2013029220A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067216A (en) * 2018-10-23 2020-04-30 パナソニックIpマネジメント株式会社 Refrigerator and control method therefor
JP2020067213A (en) * 2018-10-23 2020-04-30 パナソニックIpマネジメント株式会社 refrigerator
WO2020140709A1 (en) * 2019-01-04 2020-07-09 海尔智家股份有限公司 Heating device and refrigerator having same
JPWO2019093365A1 (en) * 2017-11-08 2020-11-26 四国計測工業株式会社 Microwave aging device and microwave aging method
CN112393277A (en) * 2020-10-13 2021-02-23 华帝股份有限公司 Integrated cooker with refrigeration function and control method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019093365A1 (en) * 2017-11-08 2020-11-26 四国計測工業株式会社 Microwave aging device and microwave aging method
JP7202310B2 (en) 2017-11-08 2023-01-11 四国計測工業株式会社 Microwave aging apparatus and microwave aging method
JP2020067216A (en) * 2018-10-23 2020-04-30 パナソニックIpマネジメント株式会社 Refrigerator and control method therefor
WO2020084865A1 (en) * 2018-10-23 2020-04-30 パナソニックIpマネジメント株式会社 Refrigerator and control method thereof
JP2020067213A (en) * 2018-10-23 2020-04-30 パナソニックIpマネジメント株式会社 refrigerator
JP7228789B2 (en) 2018-10-23 2023-02-27 パナソニックIpマネジメント株式会社 Refrigerator and its control method
JP7308427B2 (en) 2018-10-23 2023-07-14 パナソニックIpマネジメント株式会社 refrigerator
WO2020140709A1 (en) * 2019-01-04 2020-07-09 海尔智家股份有限公司 Heating device and refrigerator having same
CN112393277A (en) * 2020-10-13 2021-02-23 华帝股份有限公司 Integrated cooker with refrigeration function and control method thereof
CN112393277B (en) * 2020-10-13 2022-12-02 华帝股份有限公司 Integrated cooker with refrigeration function and control method thereof

Similar Documents

Publication Publication Date Title
JP4948562B2 (en) refrigerator
US8261572B2 (en) Food heat-exchange device and refrigerator having the same
WO2011118198A1 (en) Heating device and refrigerator
JP5334892B2 (en) refrigerator
WO2011152047A1 (en) Refrigerator
WO2011135863A1 (en) Refrigeration device, refrigerator provided with refrigeration device, and refrigeration device operating method
US11668512B2 (en) Refrigerator and method for controlling the same
JP2013061089A (en) Refrigerator
WO2011135865A1 (en) Refrigerator
JP2013029220A (en) Refrigerator
JP2011038715A (en) Refrigerator
AU2018202123B2 (en) Refrigerator and method for controlling the same
WO2018076583A1 (en) Refrigerator
JP2017215087A (en) refrigerator
JP2022189869A (en) refrigerator
KR100483919B1 (en) Refrigerator Having Temperature-Controlled Chamber Utlizing Thermoelectric Module
JP7308427B2 (en) refrigerator
JP2014134379A (en) Refrigerator
JP7199052B2 (en) refrigerator
JP2002147919A (en) Business-use refrigerator provided with defrosting function
JP2004286346A (en) Cooking device
JP2004353919A (en) Cooker
KR20090124496A (en) Refrigerator and controlling method of the same
JP6282255B2 (en) refrigerator
JP2013036643A (en) Food storage device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007