JP4948342B2 - Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer - Google Patents

Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer Download PDF

Info

Publication number
JP4948342B2
JP4948342B2 JP2007250171A JP2007250171A JP4948342B2 JP 4948342 B2 JP4948342 B2 JP 4948342B2 JP 2007250171 A JP2007250171 A JP 2007250171A JP 2007250171 A JP2007250171 A JP 2007250171A JP 4948342 B2 JP4948342 B2 JP 4948342B2
Authority
JP
Japan
Prior art keywords
core material
carrier core
electrophotographic developer
sio
electrophotographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007250171A
Other languages
Japanese (ja)
Other versions
JP2009080348A (en
Inventor
岳志 河内
利哉 北村
修次 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2007250171A priority Critical patent/JP4948342B2/en
Publication of JP2009080348A publication Critical patent/JP2009080348A/en
Application granted granted Critical
Publication of JP4948342B2 publication Critical patent/JP4948342B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、乾式現像用キャリア芯材、およびその製造法、そのキャリア芯材を用いた磁性キャリア、並びに電子写真現像剤に関するものである。   The present invention relates to a carrier core material for dry development, a production method thereof, a magnetic carrier using the carrier core material, and an electrophotographic developer.

電子写真の乾式現像法は、電子写真現像剤である粉体のトナーを感光体上の静電潜像に付着させ、当該付着したトナーを所定の紙等の媒体へ転写して現像する方法である。この方法は、電子写真現像剤として、トナーのみを含む1成分系現像剤を用いる方法と、トナーと磁性キャリアとを含む2成分系現像剤を用いる方法に大別される。近年では、トナーの荷電制御が容易で安定した高画質が得ることができ、かつ高速現像が可能な2成分系現像法が、電子写真現像剤の主流となっている。   The electrophotographic dry development method is a method in which powder toner, which is an electrophotographic developer, is attached to an electrostatic latent image on a photoreceptor, and the attached toner is transferred to a predetermined medium such as paper and developed. is there. This method is roughly classified into a method using a one-component developer containing only toner and a method using a two-component developer containing toner and a magnetic carrier as an electrophotographic developer. In recent years, a two-component development method in which toner charge control is easy and stable high image quality can be obtained and high-speed development is possible has become the mainstream of electrophotographic developers.

2成分現像剤を用いた現像方法において、磁性キャリアは現像機内でトナーと撹拌、混合されることで、トナーに所望の電荷を付与し、マグネットロール上に磁気ブラシを形成し、帯電したトナーを感光体上へ搬送する。マグネットロール上に残った磁性キャリアは再び現像機内に戻り、新たなトナーと撹拌、混合され、一定期間繰り返して使用される。従って、磁性キャリアは初期特性が耐刷期間中に変動せず、安定に維持されることが必要である。   In the developing method using a two-component developer, the magnetic carrier is stirred and mixed with the toner in the developing machine, thereby giving the toner a desired charge, forming a magnetic brush on the magnet roll, and charging the charged toner. Transport to the photoreceptor. The magnetic carrier remaining on the magnet roll returns to the developing machine again, and is agitated and mixed with new toner, and is repeatedly used for a certain period. Therefore, it is necessary for the magnetic carrier to maintain a stable initial characteristic without changing during the printing durability period.

従来から、2成分系電子写真用現像剤において、磁性キャリアは長期間使用するために現像器内で撹拌ストレスを受け、樹脂膜が剥れたり、また、芯材が露出することで電荷のリークが生じ、このような電荷のリークは画質劣化の原因の一つであった。   Conventionally, in a two-component electrophotographic developer, the magnetic carrier is subjected to agitation stress in the developing device for long-term use, and the resin film is peeled off or the core material is exposed, so that charge leakage occurs. Such charge leakage is one of the causes of image quality degradation.

そこで、特許文献1には、前記磁性キャリアへZrOやBiを添加し、さらに、酸化被覆処理を施してFeの存在比率の高い層を形成することで、電気抵抗を高めた磁性キャリアが提案されている。 Therefore, in Patent Document 1, electric resistance is increased by adding ZrO 2 or Bi 2 O 3 to the magnetic carrier and further performing an oxide coating process to form a layer having a high proportion of Fe 2 O 3. Enhanced magnetic carriers have been proposed.

本発明者らは、低密度物質であるSiOを添加して磁性キャリアの粒子密度を下げる検討を行っている。本発明者らはSiOを添加したキャリア芯材の抵抗に着目して鋭意検討をおこなった。その結果、SiOを磁性キャリア中に分散させた場合、SiO添加量に依存して抵抗値が増加することに想到し特許文献2として開示した。 The inventors of the present invention are studying to lower the particle density of the magnetic carrier by adding SiO 2 which is a low density substance. The present inventors have intensively studied paying attention to the resistance of the carrier core material added with SiO 2 . As a result, when SiO 2 was dispersed in a magnetic carrier, it was conceived that the resistance value increased depending on the amount of SiO 2 added, and disclosed as Patent Document 2.

また本発明者らは、SiOの平均粒径を2μm以下にすることで、見掛け密度が小さく、残留磁化が小さく、かつ、高抵抗化処理工程で高抵抗化することにより電圧印加時の電気抵抗が高い、キャリア芯材を得ることを特許文献3として開示した。 In addition, the inventors have made the average particle size of SiO 2 2 μm or less so that the apparent density is small, the residual magnetization is small, and the resistance is increased in the high resistance treatment process, thereby increasing the electric power during voltage application. Patent Document 3 discloses that a carrier core material having high resistance is obtained.

特開平2004−240322号公報Japanese Patent Laid-Open No. 2004-240322 特願2005−285652号Japanese Patent Application No. 2005-285652 特願2006−243672号Japanese Patent Application No. 2006-243672

本発明者らは、従来の技術に係る高い電気抵抗を有する磁性キャリアと、当該磁性キャリアの耐久性について鋭意研究を行った。
その結果、特許文献1に係る磁性キャリアは、樹脂膜の剥れや磁性キャリアのわれ、かけを引き起こし、画像特性の低下をきたすことを確認した。
次に、特許文献2に係る磁性キャリアは、電圧依存性を低下させるに足るSiO量を添加すると、今度は、磁性キャリア粉として必要な磁化が得られない場合があるという問題が生じた。
また、特許文献3に係る磁性キャリアは、高抵抗率化処理工程により高抵抗率化する場合、磁性相、SiO相、以外の相(Fe等)が生成するため、磁性キャリアの強度が低下するという課題があった。
The inventors of the present invention conducted intensive research on the magnetic carrier having a high electrical resistance according to the prior art and the durability of the magnetic carrier.
As a result, it was confirmed that the magnetic carrier according to Patent Document 1 causes peeling of the resin film, breakage of the magnetic carrier, and application of the magnetic carrier, resulting in deterioration of image characteristics.
Next, when the magnetic carrier according to Patent Document 2 is added with an amount of SiO 2 sufficient to reduce the voltage dependency, there arises a problem that the magnetization necessary for the magnetic carrier powder may not be obtained.
In addition, the magnetic carrier according to Patent Document 3 generates a phase other than the magnetic phase, SiO 2 phase (such as Fe 2 O 3 ) when the resistivity is increased by the resistivity increasing process step. There was a problem that the strength decreased.

本発明は、上述の状況のもとでなされたものであり、芯材抵抗の電圧依存性が低く、高抵抗率を有することで、磁性キャリアの交換寿命を長くすることの出来るキャリア芯材、およびその製造法、並びにそのキャリア芯材を用いた磁性キャリア、電子写真現像剤を提供しようとするものである。   The present invention has been made under the above-described situation, and the carrier core material that can increase the exchange life of the magnetic carrier by having a low voltage dependency of the core material resistance and having a high resistivity, And a manufacturing method thereof, a magnetic carrier using the carrier core material, and an electrophotographic developer.

本発明者らは、磁性キャリア粉として必要な磁化を有し、電圧依存性が低く高抵抗である、組成式:MnFe3−x(但し、0≦x≦1.0)で表記されるソフトフェライトキャリアを提供できないか、鋭意検討を行った。そして、ソフトフェライトキャリアのキャリア芯材中におけるSiOに着目し、磁性キャリアの合成過程においてSiOの結晶構造を構造転移させ、粒子内部でSiOの強固な3次元網目構造を形成させることに想到した。そして、当該キャリア芯材中でSiOが3次元網目構造を形成しているとき、当該キャリア芯材のSiOのXRDパターンにおいて、SiOのクオーツ結晶のピーク強度をI、SiOのクリストバライト結晶のピーク強度をIとしたとき、ピーク強度比(I/I)を0.35以上とすることで当該3次元網目構造を強固なものと出来ることを見出し、本発明を完成した。 The inventors have the necessary magnetization as magnetic carrier powder, have low voltage dependency and high resistance, and have the composition formula: Mn x Fe 3-x O 4 (where 0 ≦ x ≦ 1.0). We eagerly investigated whether the soft ferrite carrier indicated can be provided. Then, paying attention to SiO 2 in the carrier core material of the soft ferrite carrier, in the process of synthesizing the magnetic carrier, the crystal structure of SiO 2 is structurally transferred to form a strong three-dimensional network structure of SiO 2 inside the particles. I came up with it. When the SiO 2 in the carrier core material in so as to form the three dimensional network structure, the XRD pattern of the SiO 2 of the carrier core material, the peak intensity of the quartz crystal of SiO 2 I 1, SiO 2 cristobalite Assuming that the peak intensity of the crystal is I 2 , the inventors found that the three-dimensional network structure can be strengthened by setting the peak intensity ratio (I 1 / I 2 ) to 0.35 or more, thereby completing the present invention. .

即ち、上述の課題を解決する第1の手段は、
ソフトフェライトと、SiOと、を含む粒子で構成された電子写真現像剤用キャリア芯材であって、
当該電子写真現像剤用キャリア芯材中において、SiOが3次元網目構造を形成しており、
当該電子写真現像剤用キャリア芯材の粉末XRDパターンにおいて、SiOのクオーツ結晶のピーク強度をI、SiOのクリストバライト結晶のピーク強度をIとしたとき、ピーク強度比(I/I)が0.35以上であることを特徴とする電子写真現像剤用キャリア芯材である。
That is, the first means for solving the above-described problem is:
And soft ferrite, and SiO 2, a carrier core material for an electrophotographic developer composed of particles comprising,
In the carrier core material for the electrophotographic developer, SiO 2 forms a three-dimensional network structure,
In the powder XRD pattern of the carrier core material for an electrophotographic developer, when the peak intensity of the SiO 2 quartz crystal is I 1 and the peak intensity of the cristobalite crystal of SiO 2 is I 2 , the peak intensity ratio (I 1 / I 2 ) is a carrier core material for an electrophotographic developer, wherein the carrier core material is 0.35 or more.

第2の手段は、
前記電子写真現像剤用キャリア芯材中のSiO含有量が、Si換算で15wt%以下であることを特徴とする第1の手段に記載の電子写真現像剤用キャリア芯材である。
The second means is
The carrier core material for electrophotographic developer according to the first means, wherein the content of SiO 2 in the carrier core material for electrophotographic developer is 15 wt% or less in terms of Si.

第3の手段は、
前記ソフトフェライトが、一般式MFe3−x(但し、Mは2価をとる1種又は2種以上の金属、0≦x≦1.0)で表されることを特徴とする第1または第2の手段に記載の電子写真現像剤用キャリア芯材である。
The third means is
The soft ferrite is represented by a general formula M x Fe 3-x O 4 (where M is one or more metals having a valence of 2 or 0 ≦ x ≦ 1.0). The carrier core material for an electrophotographic developer according to the first or second means.

第4の手段は、
前記Mが、Fe、Mg、Mnから選択される1種又は2種以上の金属であることを特徴とする第3の手段に記載の電子写真現像剤用キャリア芯材である。
The fourth means is
The carrier core material for an electrophotographic developer according to the third means, wherein M is one or more metals selected from Fe, Mg, and Mn.

第5の手段は、
前記電子写真現像剤用キャリア芯材の、印加電圧10Vにおける抵抗率をR、印加電圧100Vにおける抵抗率をRとしたとき、当該抵抗率の比(R/R)が10以下
であることを特徴とする第1〜第4の手段のいずれかに記載の電子写真現像用キャリア芯材である。
The fifth means is
When the resistivity at an applied voltage of 10 V of the carrier core material for an electrophotographic developer is R 1 and the resistivity at an applied voltage of 100 V is R 2 , the resistivity ratio (R 1 / R 2 ) is 10 or less. The carrier core material for electrophotographic development according to any one of the first to fourth means.

第6の手段は、
平均粒子径が、15μm以上、70μm以下であることを特徴とする第1〜第5の手段のいずれかに記載の電子写真現像剤用キャリア芯材である。
The sixth means is
The carrier core material for an electrophotographic developer according to any one of the first to fifth means, wherein an average particle diameter is 15 μm or more and 70 μm or less.

第7の手段は、
一般式:MnFe3−x(但し、0≦x≦1.0)で表記される組成のソフトフェライトが生成するように成分調整されたFe原料およびMn原料と、結晶シリカとを混合してスラリーを得る工程と、
前記スラリーを噴霧乾燥させて造粒物を得る工程と、
前記造粒物を1200℃以上、1400℃以下にて焼成し、磁性相を有する焼成物を得る工程と、
得られた焼成物に解粒処理を行って粉末化し、その後に所定の粒度分布を持たせる工程とを有することを特徴とする第1〜第3の手段のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法である。
The seventh means is
An Fe raw material and an Mn raw material whose components are adjusted so that a soft ferrite having a composition represented by a general formula: Mn x Fe 3-x O 4 (where 0 ≦ x ≦ 1.0) is generated, and crystalline silica Mixing to obtain a slurry;
A step of spray-drying the slurry to obtain a granulated product;
Firing the granulated product at 1200 ° C. or more and 1400 ° C. or less to obtain a fired product having a magnetic phase;
The electrophotographic developer according to any one of the first to third means, wherein the obtained fired product is pulverized by pulverization and then given a predetermined particle size distribution. It is a manufacturing method of the carrier core material.

第8の手段は、
第1〜第6の手段のいずれかに記載の電子写真現像剤用キャリア芯材へ、樹脂を充填、または、樹脂を充填かつ被覆、してなることを特徴とする電子写真現像用磁性キャリア粉である。
The eighth means is
A magnetic carrier powder for electrophotographic development, wherein the carrier core material for an electrophotographic developer according to any one of the first to sixth means is filled with a resin, or filled and coated with a resin. It is.

第9の手段は、
第8の手段に記載の電子写真現像剤用磁性キャリア粉とトナーとを含むことを特徴とする電子写真現像剤である。
The ninth means is
An electrophotographic developer comprising the magnetic carrier powder for an electrophotographic developer according to the eighth means and a toner.

本発明によれば、キャリア芯材の合成過程においてSiOの結晶構造を構造転移させ、キャリア芯材を構成するソフトフェライト中にSiOの3次元網目構造を形成させることで、芯材抵抗の電圧依存性が低く、且つ、高抵抗率を有するキャリア芯材を得ることができた。 According to the present invention, in the process of synthesizing the carrier core material, the crystal structure of SiO 2 is structurally changed, and the three-dimensional network structure of SiO 2 is formed in the soft ferrite constituting the carrier core material. A carrier core material having low voltage dependency and high resistivity could be obtained.

以下、本発明を特定するための事項について説明する。   Hereinafter, matters for specifying the present invention will be described.

〔本発明に係るキャリア芯材〕
本発明に係るキャリア芯材は、ソフトフェライト中にSiOの3次元網目構造が形成されたものである。
まず、キャリア芯材を構成するソフトフェライトは、一般式MFe3−x(但し、0≦x≦1.0)で表されるものが好ましい。このとき、Mは、Fe、Mg、Mn、Ca、Ti、Cu、Zn、Sr、Ni等の2価をとる金属から選ばれる1種又は2種以上が好ましい。ここで、近年の環境問題を考慮すると、Mは重金属を含まないものが好ましい。そこで、当該観点からは、MがFeであるFeで表されるマグネタイトや、MがMnであるMnFe3−xで表されるマンガンフェライト、MがMgであるMgFe3−xで表されるマグネシウムフェライトが最も好ましい。
[Carrier Core Material According to the Present Invention]
The carrier core material according to the present invention is formed by forming a three-dimensional network structure of SiO 2 in soft ferrite.
First, the soft ferrite constituting the carrier core material is preferably one represented by the general formula M x Fe 3-x O 4 (where 0 ≦ x ≦ 1.0). At this time, M is preferably one or more selected from divalent metals such as Fe, Mg, Mn, Ca, Ti, Cu, Zn, Sr, and Ni. Here, considering recent environmental problems, M preferably does not contain heavy metals. Therefore, from this point of view, magnetite represented by Fe 3 O 4 in which M is Fe, manganese ferrite represented by Mn x Fe 3-x O 4 in which M is Mn, and Mg x in which M is Mg. Magnesium ferrite represented by Fe 3-x O 4 is most preferable.

次に、ソフトフェライト中にSiOの3次元網目構造について説明する。
本発明に係るキャリア芯材中のSiOは3次元網目構造を形成している。これは、当該キャリア芯材中のSiO原料として結晶シリカを用い、焼成温度1200℃〜140
0℃の範囲内で焼成を行うことにより、キャリア芯材を構成するソフトフェライト中でSiOの結晶構造が変化し、さらに、SiOの3次元網目構造が形成されたものと考えられる。
Next, the three-dimensional network structure of SiO 2 in soft ferrite will be described.
The SiO 2 in the carrier core material according to the present invention forms a three-dimensional network structure. This uses crystalline silica as the SiO 2 raw material in the carrier core material, and has a firing temperature of 1200 ° C. to 140 ° C.
It is considered that by firing within the range of 0 ° C., the crystal structure of SiO 2 changes in the soft ferrite constituting the carrier core material, and further, a three-dimensional network structure of SiO 2 is formed.

また、本発明に係るキャリア芯材中のソフトフェライトに含有されるSiOの3次元網目構造は、クリストバライト(Cristobalite)結晶またはクオーツ(Quartz)結晶である。ここで、2θ=約25.6°におけるSiOのピーク強度はクオーツ結晶のピークであり(本明細書において、ピーク強度Iと記載する場合がある。)、2θ=約31.1°におけるSiOのピーク強度はクリストバライト結晶のピークである(本明細書において、ピーク強度Iと記載する場合がある。)。この時、当該粉末XRDパターンにおいて、ピーク強度比(I/I)が0.35以上であるとき、当該SiOの3次元網目構造が、強固な機械的強度を発揮することも判明した。当該ピーク強度比(I/I)が0.35以上であることは、粒子内部のSiOが焼成により構造変化していることを示しているのではないかと考えられる。
そして、当該SiOの3次元網目構造が機械的強度も併せ持つことで、当該キャリア芯材が磁性キャリア粉となったときに必要な磁化を有し、高抵抗かつ電圧依存性が低い上に、機械的強度も有するキャリア芯材を得ることが出来るのだと考えられる。
Further, the three-dimensional network structure of SiO 2 contained in the soft ferrite in the carrier core material according to the present invention is a cristobalite crystal or a quartz crystal. Here, the peak intensity of SiO 2 at 2θ = about 25.6 ° is a peak of a quartz crystal (in this specification, sometimes referred to as peak intensity I 1 ), and at 2θ = about 31.1 °. The peak intensity of SiO 2 is a peak of cristobalite crystal (in this specification, it may be described as peak intensity I 2 ). At this time, when the peak intensity ratio (I 1 / I 2 ) is 0.35 or more in the powder XRD pattern, it was also found that the three-dimensional network structure of the SiO 2 exhibits strong mechanical strength. . That the peak intensity ratio (I 1 / I 2 ) is 0.35 or more is considered to indicate that the structure of SiO 2 inside the particle is changed by firing.
And since the three-dimensional network structure of the SiO 2 also has mechanical strength, it has necessary magnetization when the carrier core material becomes magnetic carrier powder, and has high resistance and low voltage dependency. It is considered that a carrier core material having mechanical strength can be obtained.

〔本発明に係るキャリア芯材の粉末XRDパターンの測定方法〕
電子写真現像剤用キャリア芯材中に含有されるSiOの粉末XRDパターンの測定方法について説明する。
まず、本発明に係るキャリア芯材を塩酸中で煮沸してフェライト相を溶解させ、残渣分をろ過、洗浄した後、乾燥させ、電子写真現像剤用キャリア芯材中に含有されるSiOとした。得られたSiOの粉末XRDパターンはX線回折装置(リガク製、RINT2000)を用いて測定した。X線源はコバルトを使用し、加速電圧40kV、電流30mAでX線を発生させた。粉末X線の測定条件は走査モード;FT、発散スリット;1/2°、散乱スピード;1/2°、受光スリット;0.15mm、回転速度;5.000rpm、走査範囲;25.000〜32.000°、サンプリング幅;0.01°、計数時間5秒、積算回数3回で測定を行った。得られたXRDパターンよりピークトップをピーク位置としてピーク強度を算出した。
[Method for Measuring Powder XRD Pattern of Carrier Core Material According to the Present Invention]
A method for measuring a powder XRD pattern of SiO 2 contained in the carrier core material for an electrophotographic developer will be described.
First, the carrier core material according to the present invention is boiled in hydrochloric acid to dissolve the ferrite phase, the residue is filtered and washed, and then dried, and the SiO 2 contained in the carrier core material for electrophotographic developer and did. The obtained powder XRD pattern of SiO 2 was measured using an X-ray diffractometer (Rigaku, RINT2000). Cobalt was used as the X-ray source, and X-rays were generated at an acceleration voltage of 40 kV and a current of 30 mA. Measurement conditions of powder X-ray are scanning mode; FT, divergence slit; 1/2 °, scattering speed; 1/2 °, light receiving slit; 0.15 mm, rotation speed: 5.000 rpm, scanning range; Measurement was performed at .000 °, sampling width: 0.01 °, counting time of 5 seconds, and number of integrations of 3 times. The peak intensity was calculated from the obtained XRD pattern with the peak top as the peak position.

〔キャリア芯材の粒子径〕
本発明のキャリア芯材は、レーザー回折式粒度分布測定装置(日機装株式会社製マイクロトラック、Model 9320−X100)による平均粒子径D50の値において、
概ね15〜70μm程度が好ましく、25〜50μmのものがより好適である。15μm以上あればキャリア付着が発生し難く好ましい。また、70μm以下であれば、所望の画像を得る事ができ好ましいからである。
[Particle diameter of carrier core material]
Carrier core material of the present invention is the average value of the particle diameter D 50 by laser diffraction particle size distribution analyzer (manufactured by Nikkiso Co., Ltd. Microtrac, Model 9320-X100),
Generally about 15-70 micrometers is preferable and the thing of 25-50 micrometers is more suitable. If it is 15 μm or more, it is preferable that carrier adhesion hardly occurs. Moreover, if it is 70 micrometers or less, a desired image can be obtained and it is preferable.

〔電気抵抗〕
本発明のキャリア芯材は、印加電圧10Vにおける抵抗率R、印加電圧100Vにおける抵抗率Rの比(R/R)が10以下であり好ましい。これは、(R/R)が10以下であることとは、換言すれば、抵抗率の電圧依存性が低いことであり、電荷のリークが発生し難くなることである。この結果、電子写真現像において、安定した画像を得ることができ好ましい。
[Electric resistance]
The carrier core material of the present invention preferably has a ratio (R 1 / R 2 ) of resistivity R 1 at an applied voltage of 10 V and resistivity R 2 at an applied voltage of 100 V of 10 or less. This means that (R 1 / R 2 ) is 10 or less, in other words, the voltage dependency of resistivity is low, and charge leakage is less likely to occur. As a result, a stable image can be obtained in electrophotographic development, which is preferable.

印加電圧10V、および、印加電圧100Vにおける電気抵抗は以下のようにして求めることができる。水平に置かれた絶縁板(例えばテフロン(登録商標)でコートされたアクリル板)の上に、電極として表面を電解研磨した板厚2mmの真鍮板2枚を、電極間距離が2mmとなるように配置する。この時、2枚の電極板はその法線方向が水平方向となるようにする。2枚の電極板の間の空隙に被測定粉体200±1mgを装入したのち、そ
れぞれの電極板の背後に断面積240mmの磁石を配置して電極間に被測定粉体のブリッジを形成させる。この状態で電極間に10V、または、100Vの直流電圧を印加し、被測定粉体を流れる電流値を4端子法により測定し、電気抵抗値を算出する。その電気抵抗値と、電極間距離2mmおよび断面積240mmから、被測定粉体の抵抗率を算出する(但し、抵抗率=電気抵抗値×断面積÷電極間距離)。なお、使用する磁石は粉体がブリッジを形成できる限り、種々のものが使用できるが、後述実施例では表面磁束密度が1000ガウス以上の永久磁石(フェライト磁石)を使用している。
The electrical resistance at an applied voltage of 10 V and an applied voltage of 100 V can be obtained as follows. Two brass plates having a thickness of 2 mm and having an electropolished surface as electrodes are placed on an insulating plate (for example, an acrylic plate coated with Teflon (registered trademark)) placed horizontally so that the distance between the electrodes is 2 mm. To place. At this time, the normal direction of the two electrode plates is horizontal. After inserting 200 ± 1 mg of the powder to be measured into the gap between the two electrode plates, a magnet having a cross-sectional area of 240 mm 2 is arranged behind each electrode plate to form a bridge of the powder to be measured between the electrodes. . In this state, a DC voltage of 10 V or 100 V is applied between the electrodes, the current value flowing through the powder to be measured is measured by the four-terminal method, and the electric resistance value is calculated. The resistivity of the powder to be measured is calculated from the electrical resistance value, the distance between electrodes of 2 mm, and the cross-sectional area of 240 mm 2 (where resistivity = electric resistance value × cross-sectional area / distance between electrodes). Various magnets can be used as long as the powder can form a bridge. In the examples described later, a permanent magnet (ferrite magnet) having a surface magnetic flux density of 1000 gauss or more is used.

このような本発明のキャリア芯材は、例えば、以下の製造方法によって得ることができる。   Such a carrier core material of the present invention can be obtained, for example, by the following manufacturing method.

〔原料〕
Fe供給源としては金属Fe、Fe、Feが好適に使用できる。Mnの原料としては、Mn供給源として金属Mn、MnO、Mn、Mn、MnCOが、好適に使用できる。そして、これらの原料の配合比を、該ソフトフェライトの目的組成と一致させて秤量し混合する。さらに、SiOとしては結晶シリカが好適に使用できる。上記、配合比に所定量のSiOを秤量し混合して、金属原料混合物を得る。
〔material〕
As the Fe supply source, metal Fe, Fe 3 O 4 , and Fe 2 O 3 can be preferably used. As a raw material of Mn, metal Mn, MnO 2 , Mn 2 O 3 , Mn 3 O 4 and MnCO 3 can be suitably used as a Mn supply source. Then, the mixing ratio of these raw materials is weighed and mixed so as to match the target composition of the soft ferrite. Further, as the SiO 2 crystalline silica can be suitably used. A predetermined amount of SiO 2 is weighed and mixed in the blending ratio to obtain a metal raw material mixture.

添加するSiOの原料としては、XRDパターンにおいて2θ=30〜32°に最大ピーク強度を有する結晶シリカであることが好ましい。当該結晶シリカは、高温においても安定に存在し、固溶することでキャリア芯材の磁化を著しく低下させることがないからである。一方、非晶質シリカは、焼成工程で非晶質シリカの液相を発生し、固溶してキャリア芯材の磁化を著しく低下させるとともに粒子同士の焼結を進め、球形の粒子形状維持を困難なものとする。
尚、当該結晶シリカは、上述のXRDパターンを満たすものであれば市販品を用いることが出来る。その場合、当該結晶シリカは、平均粒子径が1μm程度(0.5μm〜4μm)のものが好ましい。
The raw material of SiO 2 to be added is preferably crystalline silica having a maximum peak intensity at 2θ = 30 to 32 ° in the XRD pattern. This is because the crystalline silica is stably present even at high temperatures and does not significantly reduce the magnetization of the carrier core material when dissolved. Amorphous silica, on the other hand, generates a liquid phase of amorphous silica during the firing process, which solidly dissolves and significantly lowers the magnetization of the carrier core material and promotes sintering of the particles to maintain the spherical particle shape. It will be difficult.
In addition, the said crystalline silica can use a commercial item, if the above-mentioned XRD pattern is satisfy | filled. In that case, the crystalline silica preferably has an average particle diameter of about 1 μm (0.5 μm to 4 μm).

〔スラリー化〕
上記の原料を秤量した後、これらを媒体液中で混合撹拌することによってスラリー化する(スラリー化工程)。スラリー化する前に、原料の混合物に対して必要に応じて乾式で粉砕処理を加えてもよい。原料粉と媒体液の混合比は、スラリーの固形分濃度が50〜90質量%になるようにすることが望ましい。媒体液は、水にバインダー、分散剤等を添加したものを用意する。その他、潤滑剤や、焼結促進剤として、リンやホウ酸等を添加することができる。混合攪拌して得られたスラリーに対し、さらに湿式粉砕を施すことが好ましい。
[Slurry]
After weighing the above raw materials, they are slurried by mixing and stirring them in a medium solution (slurry process). Prior to slurrying, the raw material mixture may be subjected to a dry pulverization treatment as necessary. The mixing ratio of the raw material powder and the medium liquid is preferably such that the slurry has a solid content concentration of 50 to 90% by mass. The medium liquid is prepared by adding a binder, a dispersant and the like to water. In addition, phosphorus, boric acid, or the like can be added as a lubricant or a sintering accelerator. It is preferable to further wet-grind the slurry obtained by mixing and stirring.

〔造粒〕
造粒は、上記スラリーを噴霧乾燥機に導入することによって好適に実施できる。これにより、概ね、粒子径が10〜200μmの造粒粉を得ることができる(造粒工程)。得られた造粒粉は製品最終粒径を考慮し、振動ふるい等を用いて、大きすぎる粒子や微粉を除去することにより粒度調整することが望ましい。
[Granulation]
Granulation can be suitably carried out by introducing the slurry into a spray dryer. Thereby, the granulated powder whose particle diameter is 10-200 micrometers can be obtained in general (granulation process). It is desirable to adjust the particle size of the obtained granulated powder in consideration of the final particle size of the product by removing excessively large particles and fine powder using a vibration sieve or the like.

〔焼成〕
次に、造粒粉を1200〜1400℃に加熱した炉に投入して、ソフトフェライトを合成するための一般的な手法で焼成することにより、フェライトを生成させる(焼成工程)。また、焼成の際には、炉内の酸素分圧を制御して焼成を行う。炉内の酸素分圧の制御は窒素ガスやアルゴンガスなどの不活性ガス、または、これらの不活性ガスと酸素との混合ガスを炉内にフローさせることにより達成可能である。
[Baking]
Next, the granulated powder is put into a furnace heated to 1200 to 1400 ° C. and fired by a general method for synthesizing soft ferrite, thereby generating ferrite (firing step). In firing, firing is performed by controlling the oxygen partial pressure in the furnace. Control of the oxygen partial pressure in the furnace can be achieved by flowing an inert gas such as nitrogen gas or argon gas, or a mixed gas of these inert gas and oxygen into the furnace.

本発明者らは、焼成工程において粒子内部でSiOの3次元網目構造を形成する磁性粉末を製造する方法について、検討を重ねた。その結果、焼成工程において所定の範囲内の温度で焼成することが極めて有効であることを発見した。 The inventors have repeatedly studied a method for producing a magnetic powder that forms a three-dimensional network structure of SiO 2 inside the particles in the firing step. As a result, it was found that firing at a temperature within a predetermined range in the firing step is extremely effective.

ここで、焼成工程における最適な焼成温度について説明する。
本発明者らはSiOの結晶構造と粒子内部でのSiOの状態について検討をおこなった。その結果、1200℃〜1400℃の温度範囲において粒子内部のSiOが構造転移をし、SiO同士が成長を始めることがわかった。1200℃以上ではSiOの構造転移が起き、粒子内部でSiOの3次元網目構造が強固となるために目的の抵抗値を得ることができるため、好ましい。1400℃以下ではSiOの液相の発生による粒子同士の焼結が起こらないため、好ましい。
Here, the optimum firing temperature in the firing step will be described.
The present inventors have conducted studied SiO 2 states within the crystal structure and particle of SiO 2. As a result, it was found that SiO 2 inside the particles undergoes a structural transition in the temperature range of 1200 ° C. to 1400 ° C., and SiO 2 begins to grow. When the temperature is 1200 ° C. or higher, the structural transition of SiO 2 occurs, and the three-dimensional network structure of SiO 2 is strengthened inside the particle, so that a desired resistance value can be obtained, which is preferable. A temperature of 1400 ° C. or lower is preferable because sintering of particles due to generation of a liquid phase of SiO 2 does not occur.

得られた焼成物に対し、ハンマーミル、ボールミル等により解粒処理を行い、その後に篩分級を行うことにより、目的とする粒度分布を持たせることで、本発明に係る電子写真現像剤用磁性キャリア芯材を得る。   The obtained fired product is pulverized by a hammer mill, ball mill, etc., and then subjected to sieving to give the intended particle size distribution, thereby providing the magnetic properties for the electrophotographic developer according to the present invention. Obtain a carrier core.

〔磁性キャリア粉の製造〕
本発明に係る電子写真現像剤用キャリア芯材をシリコーン系樹脂やアクリル樹脂等で被覆し、帯電性の付与および耐久性の向上させることで電子写真現像剤用磁性キャリアを得ることが出来る。当該シリコーン系樹脂等の被覆方法は、公知の手法により行えば良い。
[Manufacture of magnetic carrier powder]
A magnetic carrier for an electrophotographic developer can be obtained by coating the carrier core material for an electrophotographic developer according to the present invention with a silicone-based resin, an acrylic resin, or the like to impart chargeability and improve durability. The method for coating the silicone resin or the like may be performed by a known method.

〔電子写真現像剤の製造〕
本発明に係る電子写真現像剤用磁性キャリアと適宜なトナーとを混合することで、本発明に係る電子写真現像剤を得ることが出来る。
[Manufacture of electrophotographic developer]
The electrophotographic developer according to the present invention can be obtained by mixing the magnetic carrier for the electrophotographic developer according to the present invention and an appropriate toner.

《実施例1》
Fe10kg、Mn3.6kg、SiOを2.7kg、純水5kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を60g添加して混合物とした。
SiOは、XRDパターンにおいて2θ=30〜32°に最大ピーク強度を有する結晶シリカを使用した。
当該混合物を湿式ボールミルにより粉砕処理し、FeとMnとSiOの混合スラリーを得た。原料の混合比は、前述のフェライトの組成式MnFe3−xにおいて、x=0.82となるよう算出したものである。
Example 1
10 kg of Fe 2 O 3 , 3.6 kg of Mn 3 O 4 , 2.7 kg of SiO 2 and 5 kg of pure water were dispersed, and 60 g of an ammonium polycarboxylate dispersant was added as a dispersant to obtain a mixture.
As SiO 2 , crystalline silica having a maximum peak intensity at 2θ = 30 to 32 ° in the XRD pattern was used.
The mixture was pulverized by a wet ball mill to obtain a mixed slurry of Fe 2 O 3 , Mn 3 O 4 and SiO 2 . The mixing ratio of the raw materials was calculated so that x = 0.82 in the above-described ferrite composition formula Mn x Fe 3-x O 4 .

このスラリーを湿式ボールミルにて湿式粉砕し、しばらく攪拌した後、スプレードライヤーにて該スラリーを熱風中に噴霧し、粒径10μm〜200μmの乾燥造粒物を得た。   The slurry was wet pulverized with a wet ball mill and stirred for a while, and then the slurry was sprayed into hot air with a spray dryer to obtain a dry granulated product having a particle size of 10 μm to 200 μm.

この造粒物から網目61μmと25μmの篩網を用いて粗粒、微粒を分離した後の造粒物を、1200℃、窒素雰囲気下で5hr焼成し、フェライト化させた。このフェライト化した焼成物をハンマーミルで解粒し、風力分級機を用いて微粉を除去し、網目54μmの振動ふるいで粒度調整し、平均粒径35μmの実施例1に係る電子写真現像剤用磁性キャリア芯材を得た。   The granulated product after separating coarse and fine particles from the granulated product using a sieve screen having a mesh size of 61 μm and 25 μm was calcinated at 1200 ° C. in a nitrogen atmosphere for 5 hours to be ferritized. The ferritized fired product is pulverized with a hammer mill, fine powder is removed using an air classifier, the particle size is adjusted with a vibrating screen having a mesh size of 54 μm, and the average particle size is 35 μm for the electrophotographic developer according to Example 1. A magnetic carrier core material was obtained.

得られた実施例1に係る電子写真現像剤用磁性キャリア芯材中において、3次元網目構造を形成しているSiO相の粉末XRDパターン、そのピーク強度比(I/I)を測定した。
発明の詳細な説明にて記載したように、フェライト相を塩酸中で煮沸溶解し、残渣分をろ過、洗浄した後、乾燥させて電子写真現像剤用キャリア芯材中に含有されるSiO
得た。当該SiOのXRDパターンを測定した。当該測定値、測定データを表1、図1(B)(XRDパターン)、および図2(B)に▲と太実線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(G)に示した。尚、図2(B)と後述する図2(A)(C)は、いずれも縦軸に抵抗率、横軸に印可電圧をとったグラフである。
In the obtained magnetic carrier core material for an electrophotographic developer according to Example 1, a powder XRD pattern of SiO 2 phase forming a three-dimensional network structure and its peak intensity ratio (I 1 / I 2 ) were measured. did.
As described in the detailed description of the invention, the ferrite phase is boiled and dissolved in hydrochloric acid, the residue is filtered and washed, and then dried to contain SiO 2 contained in the carrier core material for electrophotographic developer. Obtained. The XRD pattern of the SiO 2 was measured. The measured values and measured data are shown in Table 1, FIG. 1 (B) (XRD pattern), and FIG. 2 (B) using ▲ and thick solid lines, and a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material. Is shown in FIG. 2B and FIGS. 2A and 2C described later are graphs in which the vertical axis represents resistivity and the horizontal axis represents applied voltage.

《実施例2》
焼成において焼成温度を1250℃とした以外は、実施例1と同様にして、平均粒径35μmの実施例2に係る電子写真現像剤用磁性キャリア芯材を得た。
得られた実施例2に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(B)(XRDパターン)、および図2(B)に●と太一点鎖線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(H)に示した。
Example 2
A magnetic carrier core material for an electrophotographic developer according to Example 2 having an average particle size of 35 μm was obtained in the same manner as in Example 1 except that the firing temperature was 1250 ° C. in the firing.
The obtained magnetic carrier core material for an electrophotographic developer according to Example 2 was measured in the same manner as in Example 1, and the measured values and measured data are shown in Table 1, FIG. 1B (XRD pattern), and FIG. 2 (B) is shown using ● and a thick one-dot chain line, and FIG. 3 (H) shows a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material.

《実施例3》
Feを10kg、Mnを3.6kg、SiO(結晶シリカ)を5.4kgとした以外は、実施例1と同様にして、平均粒径35μmの実施例3に係る電子写真現像剤用キャリア芯材を得た。
得られた実施例3に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(C)(XRDパターン)、および図2(C)に▲と太実線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(K)に示した。
Example 3
The electrons according to Example 3 having an average particle diameter of 35 μm were obtained in the same manner as in Example 1 except that Fe 2 O 3 was changed to 10 kg, Mn 3 O 4 was changed to 3.6 kg, and SiO 2 (crystalline silica) was changed to 5.4 kg. A carrier core material for a photographic developer was obtained.
The obtained magnetic carrier core material for an electrophotographic developer according to Example 3 was measured in the same manner as in Example 1, and the measured values and measured data are shown in Table 1, FIG. 1C (XRD pattern), and FIG. 2 (C) is shown by using a solid line and a solid line, and a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material is shown in FIG. 3 (K).

《実施例4》
焼成において焼成温度を1250℃とした以外は、実施例3と同様にして、平均粒径35μmの実施例4に係る電子写真現像剤用キャリア芯材を得た。
得られた実施例4に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(C)(XRDパターン)、および図2(C)に●と太一点鎖線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(L)に示した。
Example 4
A carrier core material for an electrophotographic developer according to Example 4 having an average particle size of 35 μm was obtained in the same manner as in Example 3 except that the firing temperature was 1250 ° C. in the firing.
The obtained magnetic carrier core material for an electrophotographic developer according to Example 4 was measured in the same manner as in Example 1, and the measured values and measured data are shown in Table 1, FIG. 1C (XRD pattern), and In FIG. 2 (C), a black and thick one-dot chain line is used, and a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material is shown in FIG. 3 (L).

《実施例5》
Feを10kg、Mnを3.6kg、SiO(結晶シリカ)を1.4kgとし、焼成において焼成温度を1200℃とした以外は、実施例1と同様にして、平均粒径35μmの実施例5に係る電子写真現像剤用キャリア芯材を得た。
得られた実施例5に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(A)(XRDパターン)、および図2(A)に▲と太実線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(C)に示した。
Example 5
The average particle size was the same as in Example 1 except that 10 kg of Fe 2 O 3 , 3.6 kg of Mn 3 O 4 and 1.4 kg of SiO 2 (crystalline silica) were used, and the firing temperature was 1200 ° C. in firing. A carrier core material for an electrophotographic developer according to Example 5 having a diameter of 35 μm was obtained.
The obtained magnetic carrier core material for an electrophotographic developer according to Example 5 was measured in the same manner as in Example 1, and the measured values and measured data are shown in Table 1, FIG. 1 (A) (XRD pattern), and FIG. 2 (A) is shown using ▲ and a thick solid line, and a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material is shown in FIG. 3 (C).

《実施例6》
焼成において焼成温度を1250℃とした以外は、実施例5と同様にして、平均粒径35μmの実施例8に係る電子写真現像剤用キャリア芯材を得た。
得られた実施例8に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(A)(XRDパターン)、図2(A)に●と太一点鎖線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(D)に示した。
Example 6
A carrier core material for an electrophotographic developer according to Example 8 having an average particle size of 35 μm was obtained in the same manner as in Example 5 except that the baking temperature was 1250 ° C. in the baking.
For the obtained magnetic carrier core material for electrophotographic developer according to Example 8, the same measurement as in Example 1 was performed, and the measured values and measurement data were shown in Table 1, FIG. 1A (XRD pattern), FIG. 2 (A) is shown using ● and a thick one-dot chain line, and a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material is shown in FIG. 3 (D).

《比較例1》
焼成において焼成温度を1120℃とした以外は、実施例1と同様にして、平均粒径3
5μmの比較例1に係る電子写真現像剤用キャリア芯材を得た。
得られた比較例1に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(B)(XRDパターン)、および図2(B)に◆と細短破線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(E)に示した。
<< Comparative Example 1 >>
The average particle size was 3 in the same manner as in Example 1 except that the firing temperature was 1120 ° C. in the firing.
A carrier core material for an electrophotographic developer according to Comparative Example 1 having a thickness of 5 μm was obtained.
About the obtained magnetic carrier core material for electrophotographic developer according to Comparative Example 1, the same measurement as in Example 1 was performed, and the measurement values and measurement data were shown in Table 1, FIG. 1B (XRD pattern), and FIG. 2B shows the SEM photograph of 1000 times the SiO 2 phase structure in the carrier core material shown in FIG.

《比較例2》
焼成において焼成温度を1150℃とした以外は、実施例1と同様にして、平均粒径35μmの比較例2に係る電子写真現像剤用キャリア芯材を得た。
得られた比較例2に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(B)(XRDパターン)、および図2(B)に■と細長破線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(F)に示した。
<< Comparative Example 2 >>
A carrier core material for an electrophotographic developer according to Comparative Example 2 having an average particle size of 35 μm was obtained in the same manner as in Example 1 except that the firing temperature was 1150 ° C. in the firing.
For the magnetic carrier core material for electrophotographic developer according to Comparative Example 2 obtained, the same measurement as in Example 1 was performed, and the measured values and measurement data are shown in Table 1, FIG. 1B (XRD pattern), and In FIG. 2 (B), it is shown by using ■ and an elongated broken line, and a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material is shown in FIG. 3 (F).

《比較例3》
焼成において焼成温度を1120℃とした以外は、実施例3と同様にして、平均粒径35μmの比較例3に係る電子写真現像剤用キャリア芯材を得た。
得られた比較例3に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(C)(XRDパターン)、および図2(C)に◆と細短破線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(I)に示した。
<< Comparative Example 3 >>
A carrier core material for an electrophotographic developer according to Comparative Example 3 having an average particle size of 35 μm was obtained in the same manner as Example 3 except that the firing temperature was 1120 ° C. in the firing.
The obtained magnetic carrier core material for electrophotographic developer according to Comparative Example 3 was measured in the same manner as in Example 1, and the measured values and measured data are shown in Table 1, FIG. 1C (XRD pattern), and FIG. 2 (C) is shown using ◆ and a thin broken line, and an SEM photograph of 1000 times the SiO 2 phase structure in the carrier core material is shown in FIG. 3 (I).

《比較例4》
焼成において焼成温度を1150℃とした以外は、実施例3と同様にして、平均粒径35μmの比較例4に係る電子写真現像剤用キャリア芯材を得た。
得られた比較例4に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(C)(XRDパターン)、および図2(C)に■と細長破線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(J)に示した。
<< Comparative Example 4 >>
A carrier core material for an electrophotographic developer according to Comparative Example 4 having an average particle size of 35 μm was obtained in the same manner as in Example 3 except that the firing temperature was 1150 ° C. in the firing.
For the magnetic carrier core material for electrophotographic developer according to Comparative Example 4 obtained, the same measurement as in Example 1 was performed, and the measured values and measurement data are shown in Table 1, FIG. 1C (XRD pattern), and In FIG. 2 (C), it is shown by using ■ and an elongated broken line, and a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material is shown in FIG. 3 (J).

《比較例5》
焼成において焼成温度を1120℃とした以外は、実施例5と同様にして、平均粒径35μmの比較例5に係る電子写真現像剤用キャリア芯材を得た。
得られた比較例5に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(A)(XRDパターン)、および図2(A)に◆と細短破線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(A)に示した。
<< Comparative Example 5 >>
A carrier core material for an electrophotographic developer according to Comparative Example 5 having an average particle size of 35 μm was obtained in the same manner as in Example 5 except that the firing temperature was 1120 ° C. in the firing.
For the magnetic carrier core material for electrophotographic developer according to Comparative Example 5 obtained, the same measurement as in Example 1 was performed, and the measured values and measurement data are shown in Table 1, FIG. 1A (XRD pattern), and FIG. 2 (A) is shown by using ◆ and a thin broken line, and a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material is shown in FIG. 3 (A).

《比較例6》
焼成において焼成温度を1150℃とした以外は、実施例5と同様にして、平均粒径35μmの比較例6に係る電子写真現像剤用キャリア芯材を得た。
得られた比較例6に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(A)(XRDパターン)、および図2(A)に■と細長破線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図3(B)に示した。
<< Comparative Example 6 >>
A carrier core material for an electrophotographic developer according to Comparative Example 6 having an average particle size of 35 μm was obtained in the same manner as in Example 5 except that the firing temperature was 1150 ° C. in the firing.
The obtained magnetic carrier core material for electrophotographic developer according to Comparative Example 6 was measured in the same manner as in Example 1, and the measured values and measured data are shown in Table 1, FIG. 1 (A) (XRD pattern), and FIG. 2 (A) is shown by using ■ and an elongated broken line, and FIG. 3 (B) shows a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material.

《比較例7》
焼成において焼成温度を1130℃とし、SiOとして非晶質シリカを用いた以外は、実施例1と同様にして、平均粒径35μmの比較例7に係る電子写真現像剤用キャリア芯材を得た。
得られた比較例7に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(B)(XRDパターン)、および図2(B)に◇と細実線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図4(M)に示した。
<< Comparative Example 7 >>
A carrier core material for an electrophotographic developer according to Comparative Example 7 having an average particle size of 35 μm is obtained in the same manner as in Example 1 except that the firing temperature is 1130 ° C. and amorphous silica is used as SiO 2 in firing. It was.
For the obtained magnetic carrier core material for electrophotographic developer according to Comparative Example 7, the same measurements as in Example 1 were performed, and the measured values and measured data are shown in Table 1, FIG. 1B (XRD pattern), and FIG. 2 (B) shows a SEM photograph 1000 times as large as the SiO 2 phase structure in the carrier core material.

《比較例8》
焼成において焼成温度を1250℃とし、SiOとして非晶質シリカを用いた以外は、実施例1と同様にして、平均粒径35μmの比較例8に係る電子写真現像剤用キャリア芯材を得た。
得られた比較例8に係る電子写真現像剤用磁性キャリア芯材について、実施例1と同様の測定を行い、当該測定値、測定データを表1、図1(B)(XRDパターン)、および図2(B)に○と細一点鎖線を用いて示し、キャリア芯材におけるSiO相構造の1000倍のSEM写真を図4(N)に示した。
<< Comparative Example 8 >>
A carrier core material for an electrophotographic developer according to Comparative Example 8 having an average particle size of 35 μm is obtained in the same manner as in Example 1 except that the firing temperature is 1250 ° C. and amorphous silica is used as SiO 2. It was.
About the obtained magnetic carrier core material for electrophotographic developer according to Comparative Example 8, the same measurement as in Example 1 was performed, and the measurement values and measurement data were shown in Table 1, FIG. 1B (XRD pattern), and In FIG. 2 (B), a circle and a thin one-dot chain line are used, and a 1000 times SEM photograph of the SiO 2 phase structure in the carrier core material is shown in FIG. 4 (N).

(実施例1〜6および比較例1〜8のまとめ) (Summary of Examples 1-6 and Comparative Examples 1-8)

図1(A)〜(C)から明らかなように、SiOピークのIピーク強度は焼成温度の増加に伴って減少するが、Iピークは増加している。つまり、フェライトの焼成過程において、キャリア芯材の粒子内部および表面でSiOは、多形(同一の組成をもちながら異なる結晶構造をもち、異なる結晶形を示すこと。)であり、その結晶構造を変化させていることがわかる。さらに、図3の実施例に係る(G)実施例1、(H)実施例2、(K)実施例3、(L)実施例4、(C)実施例5、(D)実施例6から観察出来るよう
に、上記結晶構造の変化とともにSiOが粒子内部で成長し、強固な3次元網目構造を形成していることがわかる。一方、図2(A)〜(C)より明らかなように実施例1〜6に係るキャリア芯材は、電圧依存性が低く、且つ、高抵抗率を有していた。
As is clear from FIGS. 1A to 1C, the I 2 peak intensity of the SiO 2 peak decreases with an increase in the firing temperature, but the I 1 peak increases. That is, in the ferrite firing process, SiO 2 is polymorphic (having different crystal structures with the same composition but different crystal forms) in the inside and on the surface of the carrier core material. It turns out that it is changing. Furthermore, (G) Example 1, (H) Example 2, (K) Example 3, (L) Example 4, (C) Example 5, (D) Example 6 which concerns on the Example of FIG. As can be seen from the graph, it can be seen that SiO 2 grows inside the particles along with the change in the crystal structure, forming a strong three-dimensional network structure. On the other hand, as is clear from FIGS. 2A to 2C, the carrier core materials according to Examples 1 to 6 have low voltage dependency and high resistivity.

これに対し、図1(A)〜(C)から明らかなように、比較例1〜6に係るキャリア芯材では、Iのピーク強度よりもIのピーク強度が高い。さらに、図3の比較例に係る(E)比較例1、(F)比較例2、(I)比較例3、(J)比較例4、(A)比較例5、(B)比較例6から観察出来るように、粒子内部の3次元網目構造が存在しないか、または、存在しても構造が弱いものと考えられる。一方、図2(A)〜(C)より明らかなように比較例1〜6に係るキャリア芯材は、電圧依存性が高く、且つ、低抵抗率であり、比較例5、6では高電圧側ではブレークダウン(B.D)した。 In contrast, as is clear from FIGS. 1A to 1C, the carrier core materials according to Comparative Examples 1 to 6 have a peak intensity of I 2 higher than that of I 1 . Further, (E) Comparative Example 1, (F) Comparative Example 2, (I) Comparative Example 3, (J) Comparative Example 4, (A) Comparative Example 5, and (B) Comparative Example 6 according to the comparative example of FIG. As can be observed from the above, it is considered that the three-dimensional network structure inside the particle does not exist, or the structure is weak even if it exists. On the other hand, as is clear from FIGS. 2A to 2C, the carrier cores according to Comparative Examples 1 to 6 have high voltage dependency and low resistivity. In Comparative Examples 5 and 6, high voltage is applied. On the side, there was a breakdown (BD).

さらに、図1(B)から明らかなように、SiO原料として非晶質シリカを使用した比較例7、8では、IとIのピークが存在しなかった。そして図4の比較例に係る(M)比較例7、(N)比較例8から観察出来るように、粒子内部にSiOの3次元網目構造が存在せず、替わりに、SiOが一部固溶し、フェライト相以外の別の相が生成していることがわかる。一方、図2(B)より明らかなように比較例7、8に係るキャリア芯材は、電圧依存性は低いものの、低抵抗率であることがわかる。 Furthermore, as is clear from FIG. 1B, the peaks of I 1 and I 2 did not exist in Comparative Examples 7 and 8 using amorphous silica as the SiO 2 raw material. And as can be observed from (M) Comparative Example 7 and (N) Comparative Example 8 according to the comparative example of FIG. 4, there is no SiO 2 three-dimensional network structure inside the particles, and instead SiO 2 is partially It can be seen that another phase other than the ferrite phase is formed. On the other hand, as is clear from FIG. 2B, it can be seen that the carrier cores according to Comparative Examples 7 and 8 have a low resistivity although they have low voltage dependency.

以上のことから、実施例に係るソフトフェライトと、SiOと、を含む粒子で構成されたキャリア芯材であって、当該電子写真現像剤用キャリア芯材中において、SiOが3次元網目構造を形成しており、当該電子写真現像剤用キャリア芯材の粉末XRDパターンにおいて、SiOのクオーツ結晶のピーク強度をI、SiOのクリストバライト結晶のピーク強度をIとしたとき、ピーク強度比(I/I)が0.35以上であるキャリア芯材は、電圧依存性が低く、且つ、高抵抗率を有していた。この結果、当該キャリア芯材に樹脂を充填、または、樹脂を充填かつ被覆して作製されたキャリア粉は、高品質な画像特性を保ちながら交換寿命が長かった。 From the above, a carrier core material composed of particles containing soft ferrite and SiO 2 according to an example, and in the carrier core material for an electrophotographic developer, SiO 2 has a three-dimensional network structure. In the powder XRD pattern of the carrier core material for an electrophotographic developer, the peak intensity when the peak intensity of the SiO 2 quartz crystal is I 1 and the peak intensity of the cristobalite crystal of SiO 2 is I 2 The carrier core material having a ratio (I 1 / I 2 ) of 0.35 or more has low voltage dependency and high resistivity. As a result, the carrier powder produced by filling the carrier core material with resin or filling and coating the resin had a long exchange life while maintaining high quality image characteristics.

(A)実施例5、6、比較例5、6、に係る試料、(B)実施例1、2、比較例1、2、7、8、に係る試料、(C)実施例3、4、比較例3、4、に係る試料、のXRDパターンを示すグラフである。(A) Samples according to Examples 5 and 6 and Comparative Examples 5 and 6, (B) Samples according to Examples 1 and 2 and Comparative Examples 1, 2, 7, and 8, (C) Examples 3 and 4 10 is a graph showing an XRD pattern of samples according to Comparative Examples 3 and 4; (A)実施例5、6、比較例5、6、に係る試料、(B)実施例1、2、比較例1、2、7、8、に係る試料、(C)実施例3、4、比較例3、4、に係る試料、の抵抗率を示すグラフである。(A) Samples according to Examples 5 and 6 and Comparative Examples 5 and 6, (B) Samples according to Examples 1 and 2 and Comparative Examples 1, 2, 7, and 8, (C) Examples 3 and 4 5 is a graph showing the resistivity of samples according to Comparative Examples 3 and 4; 実施例および比較例に係る試料のSiO構造の1000倍のSEM写真である。1000 × SEM photograph of the SiO 2 structure of the samples according to examples and comparative examples. 比較例に係る試料のSiO構造の1000倍のSEM写真である。1000 × SEM photograph of the SiO 2 structure of the sample of the comparative example.

Claims (9)

ソフトフェライトと、SiOと、を含む粒子で構成された電子写真現像剤用キャリア芯材であって、
当該電子写真現像剤用キャリア芯材中において、SiOが3次元網目構造を形成しており、
当該電子写真現像剤用キャリア芯材の粉末XRDパターンにおいて、SiOのクオーツ結晶のピーク強度をI、SiOのクリストバライト結晶のピーク強度をIとしたとき、ピーク強度比(I/I)が0.35以上であることを特徴とする電子写真現像剤用キャリア芯材。
And soft ferrite, and SiO 2, a carrier core material for an electrophotographic developer composed of particles comprising,
In the carrier core material for the electrophotographic developer, SiO 2 forms a three-dimensional network structure,
In the powder XRD pattern of the carrier core material for an electrophotographic developer, when the peak intensity of the SiO 2 quartz crystal is I 1 and the peak intensity of the cristobalite crystal of SiO 2 is I 2 , the peak intensity ratio (I 1 / I 2 ) The carrier core material for an electrophotographic developer, wherein the carrier core material is 0.35 or more.
前記電子写真現像剤用キャリア芯材中のSiO含有量が、Si換算で15wt%以下であることを特徴とする請求項1に記載の電子写真現像剤用キャリア芯材。 2. The carrier core material for electrophotographic developer according to claim 1, wherein the content of SiO 2 in the carrier core material for electrophotographic developer is 15 wt% or less in terms of Si. 前記ソフトフェライトが、一般式MFe3−x(但し、Mは2価をとる1種又は2種以上の金属、0≦x≦1.0)で表されることを特徴とする請求項1または2に記載の電子写真現像剤用キャリア芯材。 The soft ferrite is represented by a general formula M x Fe 3-x O 4 (where M is one or more metals having a valence of 2 or 0 ≦ x ≦ 1.0). The carrier core material for an electrophotographic developer according to claim 1 or 2. 前記Mが、Fe、Mg、Mnから選択される1種又は2種以上の金属であることを特徴とする請求項3に記載の電子写真現像剤用キャリア芯材。   The carrier core material for an electrophotographic developer according to claim 3, wherein the M is one or more metals selected from Fe, Mg, and Mn. 前記電子写真現像剤用キャリア芯材の、印加電圧10Vにおける抵抗率をR、印加電圧100Vにおける抵抗率をRとしたとき、当該抵抗率の比(R/R)が10以下であることを特徴とする請求項1〜4のいずれかに記載の電子写真現像用キャリア芯材。 When the resistivity at an applied voltage of 10 V of the carrier core material for an electrophotographic developer is R 1 and the resistivity at an applied voltage of 100 V is R 2 , the resistivity ratio (R 1 / R 2 ) is 10 or less. The carrier core material for electrophotographic development according to any one of claims 1 to 4, wherein the carrier core material is for electrophotographic development. 平均粒子径が、15μm以上、70μm以下であることを特徴とする請求項1〜5のいずれかに記載の電子写真現像用キャリア芯材。   6. The carrier core material for electrophotographic development according to any one of claims 1 to 5, wherein an average particle diameter is 15 μm or more and 70 μm or less. 一般式:MnFe3−x(但し、0≦x≦1.0)で表記される組成のソフトフェライトが生成するように成分調整されたFe原料およびMn原料と、結晶シリカとを混合してスラリーを得る工程と、
前記スラリーを噴霧乾燥させて造粒物を得る工程と、
前記造粒物を1200℃以上、1400℃以下にて焼成し、磁性相を有する焼成物を得る工程と、
得られた焼成物に解粒処理を行って粉末化し、その後に所定の粒度分布を持たせる工程と、を有することを特徴とする請求項1〜3のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。
An Fe raw material and an Mn raw material whose components are adjusted so that a soft ferrite having a composition represented by a general formula: Mn x Fe 3-x O 4 (where 0 ≦ x ≦ 1.0) is generated, and crystalline silica Mixing to obtain a slurry;
A step of spray-drying the slurry to obtain a granulated product;
Firing the granulated product at 1200 ° C. or more and 1400 ° C. or less to obtain a fired product having a magnetic phase;
The obtained fired product is pulverized to be powdered, and thereafter has a predetermined particle size distribution. 4. The electrophotographic developer according to claim 1, Manufacturing method of carrier core material.
請求項1〜6のいずれかに記載の電子写真現像剤用キャリア芯材へ、樹脂を充填、または、樹脂を充填かつ被覆、してなることを特徴とする電子写真現像用磁性キャリア粉。   A magnetic carrier powder for electrophotographic development, wherein the carrier core material for an electrophotographic developer according to any one of claims 1 to 6 is filled with a resin, or filled and coated with a resin. 請求項8に記載の電子写真現像剤用磁性キャリア粉とトナーとを含むことを特徴とする電子写真現像剤。   An electrophotographic developer comprising the magnetic carrier powder for an electrophotographic developer according to claim 8 and a toner.
JP2007250171A 2007-09-26 2007-09-26 Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer Expired - Fee Related JP4948342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007250171A JP4948342B2 (en) 2007-09-26 2007-09-26 Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007250171A JP4948342B2 (en) 2007-09-26 2007-09-26 Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer

Publications (2)

Publication Number Publication Date
JP2009080348A JP2009080348A (en) 2009-04-16
JP4948342B2 true JP4948342B2 (en) 2012-06-06

Family

ID=40655128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007250171A Expired - Fee Related JP4948342B2 (en) 2007-09-26 2007-09-26 Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer

Country Status (1)

Country Link
JP (1) JP4948342B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567665B2 (en) 2010-07-29 2017-02-14 Jx Nippon Mining & Metals Corporation Sputtering target for magnetic recording film, and process for producing same
MY156716A (en) 2010-12-21 2016-03-15 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film and process for production thereof
US10409188B2 (en) * 2017-02-10 2019-09-10 Canon Kabushiki Kaisha Magnetic carrier, two-component developer, replenishing developer, and image forming method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376303A (en) * 1986-09-19 1988-04-06 Akishi Ueno Powdery material uniformly containing bivalent metal ferrite and manufacture thereof
JP3405630B2 (en) * 1994-12-26 2003-05-12 京セラ株式会社 Ferrite material
JP3409486B2 (en) * 1995-01-20 2003-05-26 富士ゼロックス株式会社 Electrostatic image developing carrier, method of manufacturing the same, and image forming method
JPH09292741A (en) * 1996-03-01 1997-11-11 Hitachi Metals Ltd Ferrite carrier
JP4668404B2 (en) * 2000-10-26 2011-04-13 Tdk株式会社 Magnetic material and coil parts using the magnetic material
JP4158081B2 (en) * 2001-04-09 2008-10-01 戸田工業株式会社 Soft magnetic hexagonal ferrite composite particle powder, green sheet using the soft magnetic hexagonal ferrite composite particle powder, and soft magnetic hexagonal ferrite sintered body
JP3872025B2 (en) * 2003-02-07 2007-01-24 パウダーテック株式会社 Carrier core material, coated carrier, electrophotographic two-component developer, and image forming method
JP4862181B2 (en) * 2005-06-22 2012-01-25 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic development and production method thereof, carrier for electrophotographic development, and electrophotographic developer
JP4001609B2 (en) * 2005-08-25 2007-10-31 パウダーテック株式会社 Carrier for electrophotographic developer and electrophotographic developer using the carrier
KR101121239B1 (en) * 2005-09-29 2012-03-23 도와 아이피 크리에이션 가부시키가이샤 Carrier core material for electrophotograph development, carrier for electrophotograph development and process for producing the same, and electrophotograph developing agent
JP4779141B2 (en) * 2006-09-08 2011-09-28 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier

Also Published As

Publication number Publication date
JP2009080348A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP4961571B2 (en) Manufacturing method of carrier core material
JP4779141B2 (en) Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier
JP5037982B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5194194B2 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2008241742A5 (en)
JP2011164224A (en) Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the manufacturing method
JP5314457B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP4963618B2 (en) Carrier core material for electrophotographic developer, method for producing the same, and electrophotographic developer
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP4948342B2 (en) Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer
JP2008261955A (en) Carrier core material for electrophotographic developer, method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer
JP5229856B2 (en) Carrier for electrophotographic developer and electrophotographic developer
JP2009237155A (en) Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer
JP5111041B2 (en) Magnetic carrier core material for electrophotographic development and method for producing the same, magnetic carrier and electrophotographic developer
JP5461870B2 (en) Magnetic particles, carrier core material, method for producing the same, carrier and electrophotographic developer
JP2010181525A (en) Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the method
JP5111062B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP6511320B2 (en) Carrier core material and method for manufacturing the same
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP6742119B2 (en) Core material for carrier, carrier, developer and electrophotographic development system
JP2009244788A (en) Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5407060B2 (en) Carrier core material and electrophotographic developer
JP5443723B2 (en) Magnetic particles, carrier core material, method for producing the same, carrier and developer
JP6978051B2 (en) Ferrite carrier core material for electrophotographic developer, carrier for electrophotographic developer and developer
WO2022250150A1 (en) Ferrite particle, carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees