JP4779141B2 - Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier - Google Patents

Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier Download PDF

Info

Publication number
JP4779141B2
JP4779141B2 JP2006243672A JP2006243672A JP4779141B2 JP 4779141 B2 JP4779141 B2 JP 4779141B2 JP 2006243672 A JP2006243672 A JP 2006243672A JP 2006243672 A JP2006243672 A JP 2006243672A JP 4779141 B2 JP4779141 B2 JP 4779141B2
Authority
JP
Japan
Prior art keywords
core material
carrier core
carrier
powder
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006243672A
Other languages
Japanese (ja)
Other versions
JP2008065106A (en
Inventor
岳志 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2006243672A priority Critical patent/JP4779141B2/en
Publication of JP2008065106A publication Critical patent/JP2008065106A/en
Application granted granted Critical
Publication of JP4779141B2 publication Critical patent/JP4779141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、高画質な電子写真を提供するための乾式現像用キャリア芯材、およびその製造法、並びにそのキャリア芯材を用いたキャリアに関するものである。   The present invention relates to a carrier core material for dry development for providing high-quality electrophotography, a production method thereof, and a carrier using the carrier core material.

電子写真の乾式現像法は、現像剤である粉体のトナーを感光体上の静電潜像に付着させ、当該付着したトナーを所定の紙等へ転写して現像する方法である。この方法は、トナーのみを含む1成分系現像剤を用いる方法と、トナーおよび磁性キャリアとを含む2成分系現像剤を用いる方法に大別される。近年では、トナーの荷電制御が容易で安定した高画質が得ることができ、かつ高速現像が可能な2成分系現像法が主流になっている。   The electrophotographic dry development method is a method in which a powder toner as a developer is attached to an electrostatic latent image on a photosensitive member, and the attached toner is transferred to a predetermined paper or the like for development. This method is roughly divided into a method using a one-component developer containing only toner and a method using a two-component developer containing toner and a magnetic carrier. In recent years, a two-component development method has become mainstream, in which toner charge control is easy, stable image quality can be obtained, and high-speed development is possible.

電子写真現像機は、フルカラー化、高画質化、高速化の傾向にあるが、これらの要求に応えるために小粒径の重合トナーが開発され、それに伴い磁性キャリアの粒径も小粒径化が進んでいる。一方、パソコンの普及とともに、電子写真現像機においても、いわゆるMFP(マルチ・ファンクション・プリンター)市場が拡大し、ドキュメントの出力能力だけでなく、ランニングコストも厳しく評価されるようになってきている。   Electrophotographic developing machines tend to be full color, high image quality, and high speed. To meet these demands, polymerized toner with small particle size has been developed, and the particle size of magnetic carrier has been reduced accordingly. Is progressing. On the other hand, with the widespread use of personal computers, the so-called MFP (multifunction printer) market has expanded in electrophotographic developing machines, and not only the document output capability but also running costs have been rigorously evaluated.

電子写真現像機のランニングコストは、トナーや磁性キャリアなどの消耗品のコストに大きく依存する。現在使われている磁性キャリアの多くは、芯材として球状のソフトフェライトを用いており、その芯材の表面を樹脂でコーティングしたものである。しかし、印刷回数が進むに伴い、キャリア表面がトナーや外添剤により汚染される現象、すなわちスペントが起こり、結果としてトナーの帯電が低下する。そのため多くの電子写真現像機では、カウントしたドキュメント印刷枚数が一定値になると、磁性キャリアをトナーとともに交換することとしている。   The running cost of an electrophotographic developing machine greatly depends on the cost of consumables such as toner and magnetic carrier. Many of the magnetic carriers currently used use spherical soft ferrite as a core material, and the surface of the core material is coated with a resin. However, as the number of times of printing progresses, the phenomenon that the carrier surface is contaminated with toner or external additives, that is, spent occurs, and as a result, the charge of the toner decreases. Therefore, in many electrophotographic developing machines, when the counted number of printed documents reaches a certain value, the magnetic carrier is exchanged together with the toner.

そこで、このような問題を軽減するために、鉄粉キャリアに替えて軽金属を用いたフェライトキャリアを用いること(特許文献1)、磁性体分散型キャリア等、キャリアの真比重を小さくすること(特許文献2)などが提案されている。しかし、トナーへのダメージを満足できるレベルに軽減するまでには至っていない。
一方、キャリア芯材中に非磁性酸化物相を存在させることによりキャリアの比重を低減する技術も知られている(特許文献3)。
Therefore, in order to alleviate such problems, a ferrite carrier using a light metal is used instead of the iron powder carrier (Patent Document 1), and the true specific gravity of the carrier such as a magnetic material dispersion type carrier is reduced (patent) Document 2) has been proposed. However, the damage to the toner has not yet been reduced to a satisfactory level.
On the other hand, a technique for reducing the specific gravity of a carrier by making a non-magnetic oxide phase present in the carrier core material is also known (Patent Document 3).

特開平10−104884号公報Japanese Patent Laid-Open No. 10-104884 特許第2738734号公報Japanese Patent No. 2738734 特開昭63―184764号公報Japanese Unexamined Patent Publication No. Sho 63-184664

磁性キャリアの交換寿命を延ばすためには、キャリア芯材がトナーへ与えるストレスを減らすことが肝要である。キャリア芯材の比重を小さくすれば、電子写真現像機内での電子写真現像剤の攪拌混合時にトナーへ与えるストレスが低減できる。この点、特許文献3に開示される非磁性酸化物相を存在させることによりキャリアの比重を低減する手法は有効であると考えられる。   In order to extend the exchange life of the magnetic carrier, it is important to reduce the stress applied to the toner by the carrier core material. If the specific gravity of the carrier core material is reduced, the stress applied to the toner during the stirring and mixing of the electrophotographic developer in the electrophotographic developing machine can be reduced. In this regard, it is considered that the technique of reducing the specific gravity of carriers by making the nonmagnetic oxide phase disclosed in Patent Document 3 exist is effective.

しかしながら、本発明者らの検討によれば、例えば特許文献3に記載された方法で磁性キャリアを製造し、これを用いた電子写真現像剤を前記MFP(マルチ・ファンクション・プリンター)等に適用した場合、磁性キャリアの交換寿命を延長させることができるほどの効果は得られないことがわかった。すなわち、キャリア芯材の比重を小さくするだけでは、昨今の高性能電子写真現像機において、充分満足できる改善効果は得られない。   However, according to the study by the present inventors, for example, a magnetic carrier is manufactured by a method described in Patent Document 3, and an electrophotographic developer using the magnetic carrier is applied to the MFP (multifunction printer) or the like. In this case, it has been found that the effect of extending the exchange life of the magnetic carrier cannot be obtained. In other words, if the specific gravity of the carrier core material is simply reduced, a sufficiently satisfactory improvement effect cannot be obtained in recent high-performance electrophotographic developing machines.

発明者らはその原因について種々検討したところ、非磁性物質の添加によって磁性部の焼結が阻害され、そのためにキャリア芯材の残留磁化が増加し、現像機内において現像剤の流動性が悪くなることがわかった。その結果、現像機内での撹拌抵抗が増大するため、スペントが発生し、磁性キャリアの交換寿命が延長しなかったと考えられた。   The inventors have made various investigations on the cause of this, and as a result of the addition of the non-magnetic substance, the sintering of the magnetic part is hindered, which increases the residual magnetization of the carrier core material, resulting in poor developer fluidity in the developing machine. I understood it. As a result, it was considered that the agitation resistance in the developing machine was increased, so that spent was generated and the exchange life of the magnetic carrier was not extended.

本発明はこのような問題に鑑み、MFP等の高性能電子写真現像機に適用した場合でも安定した高画質で高速現像が可能で、かつ磁性キャリアの交換寿命を向上できるキャリア芯材および磁性キャリアを提供しようというものである。   In view of such problems, the present invention provides a carrier core material and a magnetic carrier capable of high-speed development with stable high image quality and improved magnetic carrier replacement life even when applied to a high-performance electrophotographic developing machine such as an MFP. Is to provide.

発明者らは詳細な研究の結果、上記目的は、見掛け密度が小さく、残留磁化が小さく、かつ高電圧印加時の電気抵抗が高いキャリア芯材によって実現できることがわかった。そして、そのようなキャリア芯材を得るには、非磁性成分を原料の時点で極めて微細に粉砕しておくこと、および焼成後に酸化処理を施すことが重要であるという知見を得た。   As a result of detailed studies, the inventors have found that the above object can be realized by a carrier core material having a small apparent density, a small residual magnetization, and a high electric resistance when a high voltage is applied. And in order to obtain such a carrier core material, the knowledge that it was important to grind | pulverize a nonmagnetic component very finely at the time of a raw material, and to give an oxidation process after baking was acquired.

すなわち本発明では、MO・Fe23、M成分は1種以上の2価の金属元素、で表される組成の磁性部と、SiO2を含んでなる非磁性部を有し、見掛け密度が2.0g/cm3以下、残留磁化が3A・m2/kg以下、印加電圧250Vにおける電気抵抗が105Ω・cm以上である粉体からなる電子写真現像剤用キャリア芯材が提供される。その非磁性部を構成するSiO2は、平均粒子径が2μm以下に微細化された非磁性酸化物からなる原料に由来するものである。前記非磁性部にはSiO2の他に、Fe23が含まれていて構わない。粉体中のSi含有量は4〜20質量%であることが望ましい。 That is, in the present invention, MO · Fe 2 O 3 , the M component has a magnetic part having a composition represented by one or more divalent metal elements, and a nonmagnetic part containing SiO 2 , and the apparent density There 2.0 g / cm 3 or less, residual magnetization 3A · m 2 / kg or less, an electrophotographic developer carrier core material for electrical resistance made of the powder is 10 5 Ω · cm or more is provided at an applied voltage of 250V The The SiO 2 constituting the nonmagnetic portion is derived from a raw material made of a nonmagnetic oxide refined to an average particle size of 2 μm or less. The nonmagnetic portion may contain Fe 2 O 3 in addition to SiO 2 . The Si content in the powder is desirably 4 to 20% by mass.

前記M成分を構成する元素としてはMn、Mg、Fe等の2価の金属元素が挙げられる。原料中のFeは、「MO・Fe23」中の「Fe23」の部分を構成するとともに、一部は2価のM元素として「MO」の部分を構成し、場合によってはさらにFe23として非磁性部を構成する。M成分がMn、Mg、Feの1種以上からなる場合、当該粉体中に含まれるMn、Mg、Feの配合比が下記(1)式を満たす組成であることが望ましい。
50≦Fe23/(MnO+MgO+Fe23)×100≦100 ……(1)
Examples of the elements constituting the M component include divalent metal elements such as Mn, Mg, and Fe. Fe in the raw material constitutes “Fe 2 O 3 ” part of “MO · Fe 2 O 3 ” and part of “MO” as a divalent M element. Further, a nonmagnetic part is formed as Fe 2 O 3 . When M component consists of 1 or more types of Mn, Mg, and Fe, it is desirable that the compounding ratio of Mn, Mg, and Fe contained in the powder satisfies the following formula (1).
50 ≦ Fe 2 O 3 / (MnO + MgO + Fe 2 O 3 ) × 100 ≦ 100 (1)

ただし、上式においてMnO、MgOおよびFe23の箇所には、Mn、MgおよびFeの配合比をそれぞれMnO、MgOおよびFe23のモル比に換算した値が代入される。
例えば、粉体中に含有される金属元素のモル比がMn:Mg:Fe=1:1:6である場合だと、(1)式中にMnO=1、MgO=1、Fe23=6/2=3が代入され、Fe23/(MnO+MgO+Fe23)×100の値は、3/(1+1+3)×100=60となる。また、後述の表1における実施例3の場合だと、(1)式にMnO=43、MgO=0、Fe23=57を代入すると、Fe23/(MnO+MgO+Fe23)×100の値は、57/(43+0+57)×100=57となる。
However, the values obtained by converting the compounding ratios of Mn, Mg, and Fe into the molar ratios of MnO, MgO, and Fe 2 O 3 are substituted for MnO, MgO, and Fe 2 O 3 in the above formula.
For example, when the molar ratio of the metal elements contained in the powder is Mn: Mg: Fe = 1: 1: 6, MnO = 1, MgO = 1, Fe 2 O 3 in the formula (1) = 6/2 = 3 is substituted, and the value of Fe 2 O 3 / (MnO + MgO + Fe 2 O 3 ) × 100 is 3 / (1 + 1 + 3) × 100 = 60. Further, in the case of Example 3 in Table 1 described later, when MnO = 43, MgO = 0, and Fe 2 O 3 = 57 are substituted into the formula (1), Fe 2 O 3 / (MnO + MgO + Fe 2 O 3 ) × The value of 100 is 57 / (43 + 0 + 57) × 100 = 57.

このキャリア芯材を樹脂で被覆することにより、電子写真現像用磁性キャリアが構築される。   By covering this carrier core material with resin, a magnetic carrier for electrophotographic development is constructed.

このようなキャリア芯材の製造法として、平均粒子径が2μm以下に微細化されたSiO2粉末を他の原料と混合してスラリーを得る工程、前記スラリーを噴霧乾燥させて造粒物を得る工程、前記造粒物を1150〜1350℃で焼成して磁性部と非磁性部を有する複合構造の焼成物を得る工程、前記焼成物を酸化性雰囲気中に加熱することにより高抵抗層を形成する工程(「高抵抗化処理工程」という)、を有する電子写真現像剤用キャリア芯材の製造法が提供される。前記スラリーを得る工程におい混合する原料の配合は、全磁性部原料100質量部に対し、非磁性部原料10〜70質量部の範囲とすることが好ましい。
焼成前や高抵抗化処理工程前には適宜、粒度調整を行う工程が挿入される。
ここで、「平均粒子径」は、レーザー回折式粒度分布測定装置によって求まるD50(メジアン径)が採用できる。
As a method for producing such a carrier core material, a step of obtaining a slurry by mixing SiO 2 powder refined to an average particle size of 2 μm or less with other raw materials, and spray-drying the slurry to obtain a granulated product A step of firing the granulated product at 1150 to 1350 ° C. to obtain a fired product having a composite structure having a magnetic part and a non-magnetic part, and forming the high resistance layer by heating the fired product in an oxidizing atmosphere There is provided a method for producing a carrier core material for an electrophotographic developer having a step (referred to as “high resistance treatment step”). The blending of raw materials to be mixed in the step of obtaining the slurry is preferably in the range of 10 to 70 parts by mass of the nonmagnetic part raw material with respect to 100 parts by mass of the total magnetic part raw material.
A step of adjusting the particle size is appropriately inserted before firing and before the resistance increasing treatment step.
Here, as the “average particle diameter”, D 50 (median diameter) obtained by a laser diffraction particle size distribution analyzer can be adopted.

なお、本明細書でいう「キャリア芯材」は、樹脂被覆される前の段階、すなわち、上記の高抵抗化処理工程を終えた段階のものを意味する。したがって、キャリア芯材の特性(前記の見掛け密度、残留磁化、電気抵抗)は、この段階の粉体を用いて測定されるものである。   In addition, the “carrier core material” in the present specification means a stage before resin coating, that is, a stage after the high resistance treatment process is finished. Therefore, the characteristics of the carrier core material (the apparent density, residual magnetization, and electrical resistance) are measured using the powder at this stage.

本発明によれば、微細化された非磁性酸化物粉体を原料として使用することにより、比重(見掛け密度)が小さく、かつ残留磁化の小さいキャリア芯材が提供された。このキャリア芯材を用いると、従来の非磁性部を有するキャリア芯材で見られた、現像機内で撹拌抵抗が増大するという問題が解消され、MFP等の高性能電子写真現像機において良好な画質特性が実現されるとともに、磁性キャリアの交換寿命を顕著に向上できることが期待される。   According to the present invention, a carrier core material having a small specific gravity (apparent density) and a small residual magnetization is provided by using a refined nonmagnetic oxide powder as a raw material. When this carrier core material is used, the problem that the stirring resistance increases in the developing machine, which is seen with the conventional carrier core material having a non-magnetic part, is solved, and good image quality is obtained in a high-performance electrophotographic developing machine such as an MFP. It is expected that the properties can be realized and the exchange life of the magnetic carrier can be remarkably improved.

前述のように、磁性部と非磁性部を混合させることによって軽量化を図った従来のキャリア芯材では、原料として添加された非磁性酸化物が障害となって、焼成時に磁性部の焼結が不十分となりやすく、それが原因で残留磁化が増加し、現像機内での攪拌抵抗が増大するという問題が生じた。高抵抗化処理(後述)を施すと残留磁化の増加が一層大きくなるため、残留磁化低減と高抵抗化の両立を図ることは特に難しかった。   As described above, in the conventional carrier core material that is reduced in weight by mixing the magnetic part and the nonmagnetic part, the nonmagnetic oxide added as a raw material becomes an obstacle, and the magnetic part is sintered during firing. As a result, the residual magnetization increases and the stirring resistance in the developing machine increases. When the high resistance treatment (described later) is performed, the increase in residual magnetization is further increased, and it has been particularly difficult to achieve both reduction in residual magnetization and high resistance.

発明者らは磁性部の焼結を阻害しないような非磁性酸化物の添加手法について、詳細な検討を重ねてきた。その結果、原料として添加する非磁性酸化物(SiO2)を予め充分に微細化しておくことが極めて有効であることを知見した。ソフトフェライト等の磁性部を焼成により生成させる場合、焼成に供するための造粒物を得るために、通常、焼成より前の工程では、各種原料粉の混合物をバインダー等を用いて湿式粉砕する処理が行われる。この湿式粉砕による微細化だけでは非磁性酸化物による前記焼結阻害を充分に解消することができない。本発明のキャリア芯材を得るためには、湿式粉砕を行う前の「原料粉」の段階で、非磁性酸化物を充分に微細化することが重要である。 The inventors have conducted detailed studies on a nonmagnetic oxide addition method that does not inhibit the sintering of the magnetic part. As a result, it has been found that it is extremely effective to sufficiently refine the nonmagnetic oxide (SiO 2 ) added as a raw material in advance. When a magnetic part such as soft ferrite is produced by firing, in order to obtain a granulated product for firing, usually a process of wet-grinding a mixture of various raw material powders using a binder or the like in a step prior to firing. Is done. The above-described sintering inhibition due to the nonmagnetic oxide cannot be sufficiently eliminated only by the refinement by wet pulverization. In order to obtain the carrier core material of the present invention, it is important to sufficiently refine the nonmagnetic oxide at the stage of “raw material powder” before wet pulverization.

このように非磁性酸化物の微細化を原料粉の段階で行うことが磁性部の焼結阻害を軽減する上で極めて有利となる理由については、現時点では充分解明されていないが、原料粉の段階で微細化された非磁性酸化物は焼成時においてFe、Mn、Mg等の拡散を阻害しにくい性質を有し、これにより磁性部の焼結が促進されるのではないかと考えられる。
以下、本発明を特定するための事項について説明する。
The reason why the refinement of the nonmagnetic oxide at the raw material powder stage is extremely advantageous in reducing the inhibition of sintering of the magnetic part has not been fully elucidated at this time. The non-magnetic oxide refined in stages has the property that it is difficult to inhibit the diffusion of Fe, Mn, Mg, etc. during firing, and this is thought to promote the sintering of the magnetic part.
Hereinafter, matters for specifying the present invention will be described.

〔磁性部〕
本発明のキャリア芯材における磁性部は、MO・Fe23で表される組成のフェライト構造を有するものが対象となる。M成分は2価の金属元素であり、アルカリ土類金属や遷移金属が対象になるが、例えばMn、Mg、Feが挙げられる。M成分をFeのみで構成することもできるが、2種類以上を混合して用いることによって磁気的特性の制御可能範囲を拡大することができる。軽元素であるMgの含有はキャリア芯材の見掛け密度を低減する上でも有効である。
[Magnetic part]
The magnetic part in the carrier core material of the present invention is the one having a ferrite structure having a composition represented by MO.Fe 2 O 3 . The M component is a divalent metal element, which is an alkaline earth metal or transition metal, and examples thereof include Mn, Mg, and Fe. The M component can be composed of only Fe, but the controllable range of magnetic characteristics can be expanded by using a mixture of two or more types. Inclusion of Mg, which is a light element, is also effective in reducing the apparent density of the carrier core material.

〔非磁性部〕
非磁性部は、磁性キャリアの軽量化の観点から、真比重が3.5g/cm3以下の非磁性酸化物を採用することが好ましい。そのような好適な例として本発明ではSiO2を利用する。非磁性部の含有量は、見掛け密度が後述の適正範囲になるのに充分な量を確保する必要があるが、具体的には後述する磁性部原料と非磁性部原料の配合組成範囲において見掛け密度と電気抵抗を適正範囲にコントロールできる。一方、電気抵抗をコントロールするため、後述する高抵抗化処理によりFe2+をFe3+にし、Fe23を非磁性部の一部として含ませる場合もある。Fe23相の割合を制御することで電気抵抗を適正範囲にコントロールできる。非磁性部にはSiO2、Fe23の他、不純物結晶が含まれていて構わない。ただし、非磁性部中に占めるSiO2+Fe23の量は50質量%以上確保されていることが望ましい。
[Nonmagnetic part]
The nonmagnetic part preferably employs a nonmagnetic oxide having a true specific gravity of 3.5 g / cm 3 or less from the viewpoint of reducing the weight of the magnetic carrier. As such a preferred example, SiO 2 is used in the present invention. The content of the non-magnetic part needs to be sufficient to ensure that the apparent density is in the appropriate range described later. Specifically, the apparent density is within the composition range of the magnetic part raw material and the non-magnetic part raw material described later. Density and electrical resistance can be controlled within appropriate ranges. On the other hand, in order to control the electrical resistance, Fe 2+ may be changed to Fe 3+ and Fe 2 O 3 may be included as a part of the non-magnetic portion by a high resistance treatment described later. The electric resistance can be controlled within an appropriate range by controlling the proportion of the Fe 2 O 3 phase. The nonmagnetic portion may contain impurity crystals in addition to SiO 2 and Fe 2 O 3 . However, it is desirable that the amount of SiO 2 + Fe 2 O 3 occupying in the nonmagnetic part is secured by 50% by mass or more.

〔見掛け密度〕
発明者らの検討の結果、磁性キャリアによるトナーへのダメージを充分軽減するためには、キャリア芯材の見掛け密度を2.0g/cm3以下に低減させることが重要であることがわかった。1.7g/cm3以下とすることがより好ましく、1.5g/cm3以下が一層好ましい。キャリア芯材の見掛け密度は、非磁性部を構成する酸化物の種類、非磁性部中のSiO2の含有量、磁性部に使用するM成分元素の種類等によってコントロールすることができる。
[Apparent density]
As a result of investigations by the inventors, it has been found that it is important to reduce the apparent density of the carrier core material to 2.0 g / cm 3 or less in order to sufficiently reduce the damage to the toner by the magnetic carrier. It is more preferably 1.7 g / cm 3 or less, and even more preferably 1.5 g / cm 3 or less. The apparent density of the carrier core material can be controlled by the kind of oxide constituting the nonmagnetic part, the content of SiO 2 in the nonmagnetic part, the kind of M component element used in the magnetic part, and the like.

〔残留磁化〕
磁性キャリアの残留磁化が大きくなると、前述のように現像機内での現像剤の攪拌抵抗が増大し、耐スペント性の低下、ひいては磁性キャリア寿命の低下を招く。種々検討の結果、磁性キャリアの寿命を改善するには、キャリア芯材として残留磁化を3A・m2/kg以下に抑える必要があることがわかった。2.5A・m2/kg以下とすることがより好ましい。キャリア芯材の残留磁化は、微細化されたSiO2の原料粉末を使用することによってコントロールできる。
[Residual magnetization]
As the residual magnetization of the magnetic carrier increases, the stirring resistance of the developer in the developing machine increases as described above, resulting in a decrease in spent resistance and, in turn, a decrease in the lifetime of the magnetic carrier. As a result of various studies, it has been found that in order to improve the life of the magnetic carrier, it is necessary to suppress the residual magnetization to 3 A · m 2 / kg or less as the carrier core material. More preferably, it is 2.5 A · m 2 / kg or less. The residual magnetization of the carrier core material can be controlled by using a refined raw material powder of SiO 2 .

〔高電圧印加時の電気抵抗〕
電子写真現像において高品位の画像特性を安定して実現するためには、磁性キャリアが高い電気抵抗を有していることが要求される。発明者らの詳細な検討によれば、印加電圧250Vにおける電気抵抗が105Ω・cm以上であるキャリア芯材を使用することにより、高性能MFPにおいても高品位の画像特性が安定して得られ、高電圧を印加した場合でもキャリアのブレークダウンが防止できる。キャリア芯材の高い電気抵抗は、焼成後の酸化処理(後述の高抵抗化処理)によって付与することができる。
[Electric resistance when high voltage is applied]
In order to stably realize high-quality image characteristics in electrophotographic development, the magnetic carrier is required to have a high electric resistance. According to the detailed study by the inventors, by using a carrier core material having an electric resistance of 10 5 Ω · cm or more at an applied voltage of 250 V, high-quality image characteristics can be stably obtained even in a high-performance MFP. Therefore, breakdown of carriers can be prevented even when a high voltage is applied. The high electrical resistance of the carrier core material can be imparted by oxidation treatment after firing (high resistance treatment described later).

印加電圧250Vにおける電気抵抗は以下のようにして求めることができる。水平に置かれた絶縁板(例えばテフロン(登録商標)でコートされたアクリル板)の上に、電極として表面を電解研磨した板厚2mmの真鍮板2枚を、電極間距離が2mmとなるように配置する。2枚の電極板はその法線方向が水平方向となるようにする。2枚の電極板の間の空隙に被測定粉体200±1mgを装入したのち、それぞれの電極板の背後に断面積240mm2の磁石を配置して電極間に被測定粉体のブリッジを形成させる。この状態で電極間に250Vの直流電圧を印加し、被測定粉体を流れる電流値を4端子法により測定する。その電流値と、電極間距離2mmおよび断面積240mm2から、被測定粉体の電気抵抗(体積抵抗に相当する次元のもの)を算出する。なお、使用する磁石は粉体がブリッジを形成できる限り、種々のものが使用できるが、後述実施例では表面磁束密度が1000ガウス以上の永久磁石(フェライト磁石)を使用している。 The electrical resistance at an applied voltage of 250 V can be obtained as follows. Two brass plates having a thickness of 2 mm and having an electropolished surface as electrodes are placed on an insulating plate (for example, an acrylic plate coated with Teflon (registered trademark)) placed horizontally so that the distance between the electrodes is 2 mm. To place. The normal direction of the two electrode plates is set to be the horizontal direction. After inserting 200 ± 1 mg of the powder to be measured into the gap between the two electrode plates, a magnet having a cross-sectional area of 240 mm 2 is arranged behind each electrode plate to form a bridge of the powder to be measured between the electrodes. . In this state, a DC voltage of 250 V is applied between the electrodes, and the current value flowing through the powder to be measured is measured by the four-terminal method. From the current value, the distance between the electrodes of 2 mm, and the cross-sectional area of 240 mm 2 , the electric resistance of the powder to be measured (the dimension corresponding to the volume resistance) is calculated. Various magnets can be used as long as the powder can form a bridge. In the examples described later, a permanent magnet (ferrite magnet) having a surface magnetic flux density of 1000 gauss or more is used.

〔キャリア芯材の粒子径〕
本発明のキャリア芯材は、レーザー回折式粒度分布測定装置(日機装株式会社製マイクロトラック、Model 9320−X100)による平均粒子径D50が概ね20〜70μm程度であり、25〜50μmのものがより好適な対象となる。
[Particle diameter of carrier core material]
The carrier core material of the present invention has an average particle diameter D50 of about 20 to 70 [mu] m by a laser diffraction particle size distribution measuring apparatus (Microtrack, Model 9320-X100 manufactured by Nikkiso Co., Ltd.), and more preferably 25 to 50 [ mu] m. Suitable target.

このような本発明のキャリア芯材は、例えば以下の製造法によって得ることができる。
〔磁性部原料〕
磁性部として上記のMO・Fe23で表される組成のスピネル型ソフトフェライトを生成させるために、Fe供給源としてはFe23が好適に使用できる。Fe以外のM成分供給源としては、例えばMnの場合MnCO3やMn34等が、Mgの場合MgCO3、Mg(OH)2、MgO等が好適に使用できる。これら、磁性部の原料をここでは「磁性部原料」と呼んでいる。各磁性部原料は、FeおよびM成分の金属元素の配合比が焼成後に目標値になるように秤量する。
Such a carrier core material of the present invention can be obtained, for example, by the following production method.
[Raw material]
To produce a spinel type soft ferrite having a composition represented by the MO · Fe 2 O 3 as a magnetic unit, as the Fe source Fe 2 O 3 can be preferably used. As the M component supply source other than Fe, for example, MnCO 3 , Mn 3 O 4 or the like can be suitably used in the case of Mn, and MgCO 3 , Mg (OH) 2 , MgO or the like can be suitably used in the case of Mg. These raw materials for the magnetic part are referred to herein as “magnetic part raw materials”. Each magnetic part raw material is weighed so that the mixing ratio of Fe and M component metal elements becomes a target value after firing.

各磁性部原料は、まだ造粒されていない乾燥状態の粒子からなる段階において、平均粒子径D50が5μm以下、例えば0.1〜2.0μmの範囲に微細化されていることが望ましい。予め上記の粒度に調整されている粉体原料を用意するか、あるいは乾式ボールミル等で粉砕することによって粒度調整する。非磁性酸化物原料と混合した後に粉砕処理することによって、各磁性部原料の粒度を上記の粒度に相当するように調整してもよい。 Each magnetic part raw material is desirably refined to an average particle diameter D 50 of 5 μm or less, for example, in the range of 0.1 to 2.0 μm, in a stage comprising dry particles that have not yet been granulated. A powder raw material that has been previously adjusted to the above particle size is prepared, or the particle size is adjusted by grinding with a dry ball mill or the like. The particle size of each magnetic part material may be adjusted so as to correspond to the above particle size by pulverizing after mixing with the nonmagnetic oxide material.

〔SiO2原料〕
非磁性部の原料となるSiO2(まだ造粒されていない乾燥状態の粒子からなるもの)は、平均粒子径D50が2μm以下になるように微細化されているものを使用する必要がある。D50が1μm以下、例えば0.1〜1.0μmの範囲に微細化されたものを使用することが一層好ましい。この段階での粒子径が大きすぎると、焼成時に磁性部の焼結を妨げ好ましくない。また、粒子内部の組成の均一性が低下することによりキャリアが飛散する可能性があるため好ましくない。したがって、非磁性部原料としては予め上記のように粒子が微細化されている粉体原料を用意するか、あるいは乾式ボールミル等で粉砕することによって上記の範囲に充分に微細化したものを使用する。SiO2の原料粉末は、キャリア芯材の粉体中にSiが4〜20重量%含有されるように秤量することが好ましい。
[SiO 2 raw material]
It is necessary to use SiO 2 (made of particles that have not been granulated yet) that has been refined so that the average particle diameter D 50 is 2 μm or less as the raw material for the nonmagnetic part. . It is more preferable to use one having a D 50 of 1 μm or less, for example, in the range of 0.1 to 1.0 μm. If the particle size at this stage is too large, sintering of the magnetic part is hindered during firing, which is not preferable. Moreover, since the uniformity of the composition inside a particle | grain falls and a carrier may fly, it is unpreferable. Therefore, as the nonmagnetic part raw material, a powder raw material in which particles are refined as described above is prepared in advance, or a material sufficiently refined in the above range by pulverizing with a dry ball mill or the like is used. . The raw material powder of SiO 2 is preferably weighed so that 4 to 20% by weight of Si is contained in the powder of the carrier core material.

〔スラリー化〕
上記の磁性部原料および非磁性部原料を秤量した後、これらを媒体液中で混合攪拌することによってスラリー化する。スラリー化する前に、原料の混合物に対して必要に応じて乾式で粉砕処理を加えてもよい。原料粉と媒体液の混合比は、スラリーの固形分濃度が50〜90質量%になるようにすることが望ましい。媒体液は水にバインダー、分散剤等を添加したものを用意する。バインダーとしては例えばポリビニルアルコールが好適に使用でき、その媒体液中濃度は0.5〜2質量%程度とすればよい。分散剤としては例えばポリカルボン酸アンモニウム系のものが好適に使用でき、その媒体液中濃度も0.5〜2質量%程度とすればよい。その他、潤滑剤や、焼結促進剤としてリンやホウ酸等を添加することができる。混合攪拌して得られたスラリーに対し、さらに湿式粉砕を施すことが好ましい。
[Slurry]
After weighing the magnetic part raw material and the nonmagnetic part raw material, they are slurried by mixing and stirring them in a medium solution. Prior to slurrying, the raw material mixture may be subjected to a dry pulverization treatment as necessary. The mixing ratio of the raw material powder and the medium liquid is preferably such that the slurry has a solid content concentration of 50 to 90% by mass. A medium solution prepared by adding a binder, a dispersant and the like to water is prepared. For example, polyvinyl alcohol can be suitably used as the binder, and the concentration in the medium liquid may be about 0.5 to 2% by mass. As the dispersant, for example, an ammonium polycarboxylate-based one can be preferably used, and the concentration in the medium liquid may be about 0.5 to 2% by mass. In addition, phosphorus, boric acid, or the like can be added as a lubricant or a sintering accelerator. It is preferable to further wet-grind the slurry obtained by mixing and stirring.

〔造粒〕
造粒は、上記スラリーを噴霧乾燥機に導入することによって好適に実施できる。噴霧乾燥時の雰囲気温度は100〜300℃程度とすればよい。これにより、概ね粒子径10〜200μmの造粒粉を得ることができる。得られた造粒粉は製品最終粒径を考慮して、振動ふるい等で大きすぎる粒子や微粉を除去することにより粒度調整することが望ましい。
[Granulation]
Granulation can be suitably carried out by introducing the slurry into a spray dryer. The atmospheric temperature during spray drying may be about 100 to 300 ° C. Thereby, a granulated powder having a particle diameter of about 10 to 200 μm can be obtained. It is desirable to adjust the particle size of the obtained granulated powder by taking into consideration the final particle size of the product and removing particles and fine particles that are too large using a vibration sieve or the like.

〔焼成〕
次に、造粒粉を1150〜1350℃に加熱した炉に投入して、ソフトフェライトを合成するための一般的な手法で焼成することにより、フェライトを生成させる。この段階で磁性部の焼結を進め、内部空孔および表面空孔を低減しておくことが好ましい。内部空孔および表面空孔が多いと、この後、高抵抗化処理した場合、残留磁化が増加するため好ましくない。焼成温度が1150℃より低いと焼結が充分に進行しない場合があり、残留磁化を安定して低減させることが困難になる。1170〜1300℃程度で焼成することが特に好ましい。この焼成によりフェライト構造の磁性部と非磁性部を有する複合構造の焼成物が得られる。
[Baking]
Next, the granulated powder is put into a furnace heated to 1150 to 1350 ° C. and fired by a general method for synthesizing soft ferrite, thereby generating ferrite. It is preferable to advance the sintering of the magnetic part at this stage to reduce the internal vacancies and the surface vacancies. If there are a large number of internal vacancies and surface vacancies, the residual magnetization increases when the resistance is increased thereafter, which is not preferable. If the firing temperature is lower than 1150 ° C., sintering may not proceed sufficiently, and it will be difficult to stably reduce the residual magnetization. It is particularly preferable to fire at about 1170 to 1300 ° C. By this firing, a fired product having a composite structure having a ferrite magnetic part and a non-magnetic part is obtained.

得られた焼成物は、この段階で粒度調整することが望ましい。例えば、焼成物をハンマーミル等で粗解粒し、次に気流分級機で1次分級し、さらに振動ふるいまたは超音波ふるいで粒度を揃える処理を行うことにより、粒度調整された焼成物を得ることができる。さらに磁場選鉱機にかけ、非磁性粒子を除去することが望ましい。   It is desirable to adjust the particle size of the obtained fired product at this stage. For example, the baked product is coarsely pulverized with a hammer mill or the like, then subjected to primary classification with an airflow classifier, and further subjected to a process of aligning the particle size with a vibration sieve or an ultrasonic sieve to obtain a baked product with an adjusted particle size. be able to. Further, it is desirable to remove the non-magnetic particles by applying a magnetic separator.

〔高抵抗化処理〕
上記焼成物を酸化性雰囲気中に加熱することにより高抵抗層を形成し、高抵抗化する。加熱雰囲気は、大気、または酸素と窒素の混合雰囲気とすればよい。加熱温度は200〜800℃好ましくは250〜600℃とし、処理時間は30min〜5h程度とすればよい。
以上のようにして、見掛け密度の低減、残留磁化の低減、および高抵抗化を同時に実現した本発明のキャリア芯材が得られる。
[High resistance treatment]
By heating the fired product in an oxidizing atmosphere, a high resistance layer is formed and the resistance is increased. The heating atmosphere may be air or a mixed atmosphere of oxygen and nitrogen. The heating temperature may be 200 to 800 ° C., preferably 250 to 600 ° C., and the treatment time may be about 30 min to 5 h.
As described above, it is possible to obtain the carrier core material of the present invention that simultaneously realizes a reduction in apparent density, a reduction in residual magnetization, and an increase in resistance.

〔磁性キャリアの製造〕
高抵抗化されたキャリア芯材に、樹脂コーティングを施す。コーティング樹脂としては、シリコーン系樹脂が好ましい。コーティング樹脂を溶剤(トルエン等)に20〜40質量%程度溶解させ、樹脂溶液を調製する。コーティング操作は、樹脂溶液とキャリア芯材との混合比を重量比で、キャリア芯材:樹脂溶液=10:1から5:1の範囲となるように容器中で混合した後、150〜250℃にて加熱撹拌することにより実施できる。被覆量は溶媒乾燥前の状態でキャリア芯材100質量部に対し樹脂0.1〜10質量部が付着するように調整すればよい。上記の樹脂溶液の濃度および樹脂溶液とキャリア芯材との混合比によって樹脂の被覆量をコントロールすることができる。コーティング後に、さらに加熱処理を施して樹脂被覆層を硬化させることによって、磁性キャリアが得られる。
[Manufacture of magnetic carrier]
Resin coating is applied to the high-resistance carrier core material. As the coating resin, a silicone resin is preferable. The coating resin is dissolved in a solvent (toluene or the like) at about 20 to 40% by mass to prepare a resin solution. In the coating operation, the mixing ratio of the resin solution and the carrier core material is mixed in a container so that the mixing ratio of the carrier core material: resin solution = 10: 1 to 5: 1 is 150 to 250 ° C. It can be carried out by heating and stirring at. What is necessary is just to adjust a coating amount so that 0.1-10 mass parts of resin may adhere with respect to 100 mass parts of carrier core materials in the state before solvent drying. The resin coating amount can be controlled by the concentration of the resin solution and the mixing ratio of the resin solution and the carrier core material. After the coating, a heat treatment is further performed to cure the resin coating layer, thereby obtaining a magnetic carrier.

〔電子写真現像剤の製造〕
得られた磁性キャリアを、適切な粒径を有するトナーと混合することによって、電子写真現像剤を得ることができる。
[Manufacture of electrophotographic developer]
An electrophotographic developer can be obtained by mixing the obtained magnetic carrier with a toner having an appropriate particle size.

《実施例1》
平均粒子径D50が約1μmに微粉砕されたFe23粉を用意した。また、平均粒子径D50が約4μmのSiO2粉を乾式ボールミルで粉砕することにより、平均粒子径D50が約1μmの微細なSiO2粉を用意した。これらの原料粉を秤量して、Fe23=100質量部に対しSiO2=20質量部となる配合比とした。一方、水に、分散剤としてポリカルボン酸アンモニウム系分散剤を1.5質量%、湿潤剤としてサンノプコ(株)製「SNウェット980」を0.05質量%、バインダーとしてポリビニルアルコールを0.02質量%添加した液(媒体液)を準備した。この媒体液に前記秤量された原料粉を投入し、攪拌することにより、これら投入した物質の濃度が75質量%のスラリーを得た。このスラリーを湿式ボールミルにて湿式粉砕し、しばらく攪拌した後、スプレードライヤーにて該スラリーを約180℃の熱風中に噴霧し、粒径10〜200μmの乾燥造粒物を得た。
Example 1
Fe 2 O 3 powder finely pulverized to an average particle diameter D 50 of about 1 μm was prepared. Further, a fine SiO 2 powder having an average particle diameter D 50 of about 1 μm was prepared by pulverizing SiO 2 powder having an average particle diameter D 50 of about 4 μm with a dry ball mill. These raw material powders were weighed to obtain a blending ratio of SiO 2 = 20 parts by mass with respect to Fe 2 O 3 = 100 parts by mass. On the other hand, in water, 1.5% by mass of an ammonium polycarboxylate dispersant as a dispersant, 0.05% by mass of “SN Wet 980” manufactured by San Nopco Co., Ltd. as a wetting agent, and 0.02% of polyvinyl alcohol as a binder. A liquid (medium liquid) added by mass% was prepared. The above-mentioned weighed raw material powder was put into this medium solution and stirred to obtain a slurry having a concentration of 75% by mass of these charged substances. This slurry was wet pulverized with a wet ball mill, stirred for a while, and then sprayed into hot air at about 180 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 to 200 μm.

この造粒物から網目61μmと25μmの篩網を用いて粗粒、微粒を分離した造粒物を、1170℃、窒素雰囲気下で5h焼成し、フェライト化させた。このフェライト化した焼成物をハンマーミルで解粒し、風力分級機を用いて微粉を除去し、網目54μmの振動ふるいで粒度調整した。   A granulated product obtained by separating coarse particles and fine particles from the granulated product using a sieve mesh having a mesh size of 61 μm and 25 μm was baked at 1170 ° C. in a nitrogen atmosphere for 5 hours to be ferritized. The ferritized fired product was pulverized with a hammer mill, fine powder was removed using an air classifier, and the particle size was adjusted with a vibrating screen having a mesh size of 54 μm.

粒度調整された焼成物を400℃の大気下で3h保持することにより高抵抗化処理を施し、キャリア芯材を得た。
この粉体は、X線回折の結果、MO・Fe23型の磁性部と、SiO2、Fe23を含む複合構造を有することが確認された(以下の各実施例において同様)。
The fired product whose particle size was adjusted was held at 400 ° C. in the atmosphere for 3 hours to give a high resistance treatment, thereby obtaining a carrier core material.
As a result of X-ray diffraction, this powder was confirmed to have an MO · Fe 2 O 3 type magnetic part and a composite structure containing SiO 2 and Fe 2 O 3 (the same applies to the following examples). .

このキャリア芯材について、見掛け密度、残留磁化、250V印加時の電気抵抗を以下のようにして測定した。
〔見掛け密度〕
JIS Z2504:2000に準拠して行った。
With respect to this carrier core material, the apparent density, residual magnetization, and electric resistance when 250 V was applied were measured as follows.
[Apparent density]
This was performed according to JIS Z2504: 2000.

〔残留磁化〕
室温専用振動試料型磁力計(VSM)(東英工業株式会社製)により測定した。
[Residual magnetization]
It measured with the vibration sample type magnetometer (VSM) (made by Toei Industry Co., Ltd.) only for room temperature.

〔250V印加時の電気抵抗〕
このキャリア芯材のサンプルを測定環境温度20±2℃、湿度60±5%RH環境下に1日放置した試料から200±1mgの粉体を採取し、前述の方法で電極間距離2mmの間にブリッジさせて電気抵抗を測定した。測定には絶縁抵抗計(東亜ディーケーケー株式会社製、SM−8220)を用い、所定電圧(250V)を印加してから1min後に指示する値を静抵抗の値として読み取った。算出された電気抵抗(体積抵抗と同様の次元で表したもの)が105Ω・cm以上であれば十分な高抵抗化が実現できていると評価する。この値が104Ω・cm未満のものをブレークダウンと評価し、後述の表1中にはB.Dと表記した。
[Electric resistance when 250V is applied]
A sample of 200 ± 1 mg was collected from a sample of this carrier core material left in a measurement environment temperature of 20 ± 2 ° C. and a humidity of 60 ± 5% RH for one day. And the electrical resistance was measured. For the measurement, an insulation resistance meter (SM-8220, manufactured by Toa DKK Co., Ltd.) was used, and the value indicated 1 min after applying a predetermined voltage (250 V) was read as the value of the static resistance. If the calculated electrical resistance (expressed in the same dimension as the volume resistance) is 10 5 Ω · cm or more, it is evaluated that a sufficiently high resistance can be realized. When this value was less than 10 4 Ω · cm, it was evaluated as breakdown, and it was expressed as BD in Table 1 described later.

次に、シリコーン系樹脂(信越化学製、KR251)をトルエンに溶解させてコーティング樹脂溶液を準備した。前記キャリア芯材と樹脂溶液とを質量比でキャリア芯材:樹脂溶液=9:1の割合で撹拌機に導入し、樹脂溶液にキャリア芯材を3h浸漬しながら150〜250℃の範囲で加熱撹拌した。これにより、キャリア芯材100質量部に対し樹脂が1.0質量部の割合でコーティングされた。この樹脂被覆されたキャリア芯材を熱風循環式加熱装置にて250℃で5h加熱することにより、樹脂被覆層を硬化させて、実施例1に係る磁性キャリアを得た。   Next, a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., KR251) was dissolved in toluene to prepare a coating resin solution. The carrier core material and the resin solution are introduced into the stirrer at a mass ratio of carrier core material: resin solution = 9: 1, and heated in the range of 150 to 250 ° C. while immersing the carrier core material in the resin solution for 3 hours. Stir. Thereby, the resin was coated at a ratio of 1.0 part by mass with respect to 100 parts by mass of the carrier core material. The resin-coated carrier core material was heated at 250 ° C. for 5 hours with a hot-air circulating heating device to cure the resin coating layer, whereby the magnetic carrier according to Example 1 was obtained.

この磁性キャリアと、粒径1μm程度の市販のトナーとを混合して電子写真現像剤を製造し、耐スペント性、および画像特性を評価した。
耐スペント性は次の方法で評価を行った。上記樹脂コートしたキャリアと市販トナーをトナー濃度10%となるように混合して現像剤を作成し、測定環境温度20±2℃、湿度60±5%RH環境下で1日放置したものを使用した。得られた現像剤100gを内蓋付きポリ瓶(100cc)へ入れ、シェイキングマシーン(レッドデビル)にセットして撹拌した。この攪拌操作を受けた後のキャリアを走査型電子顕微鏡(SEM)により観察した。トナースペントが観察されないものを◎(極めて良好)、トナースペントがわずかで許容範囲内(使用可能)のものを○(良好)、トナースペントが観察され、許容範囲外のものを△(やや不良)、トナースペントが多くて使用できないものを×(不良)と評価し、○評価以上を合格と判定した。
This magnetic carrier was mixed with a commercially available toner having a particle size of about 1 μm to produce an electrophotographic developer, and the spent resistance and image characteristics were evaluated.
The spent resistance was evaluated by the following method. The above-mentioned resin-coated carrier and commercially available toner are mixed so that the toner concentration becomes 10%, and a developer is prepared. The developer is left for one day in a measurement environment temperature of 20 ± 2 ° C. and humidity of 60 ± 5% RH. did. 100 g of the obtained developer was put into a plastic bottle (100 cc) with an inner lid, set on a shaking machine (red devil), and stirred. The carrier after receiving this stirring operation was observed with a scanning electron microscope (SEM). ◎ (very good) when toner spent is not observed, ○ (good) when toner spent is slight and within acceptable range (usable), △ (slightly poor) when toner spent is observed and outside acceptable range Those that could not be used due to a large amount of toner spent were evaluated as x (defect), and those rated as o or better were determined to be acceptable.

画像特性については、この電子写真現像剤を用いてデジタル反転現像方式を採用する40枚機を評価機として使用し、画像濃度、カブリ濃度、キャリア飛び、細線再現性、画質について、初期画像を評価した。このうち、「画質」は全体的な評価を示したものである。評価基準は、◎は非常に良好なレベル、○は良好なレベル、△は使用可能なレベル、×は使用不可なレベルとした。ここで○評価が、現在実用化されている高性能な電子写真現像剤と同等レベルであり、○評価以上を合格と判定した。
これらの結果を表1に示す。表中のSi含有量は分析結果である(以下の各例において同様)。
As for image characteristics, the 40-sheet machine adopting the digital reversal development system using this electrophotographic developer is used as an evaluation machine, and the initial image is evaluated for image density, fog density, carrier skip, fine line reproducibility, and image quality. did. Of these, “image quality” indicates the overall evaluation. The evaluation criteria are as follows: ◎ is a very good level, ◯ is a good level, Δ is a usable level, and x is a non-usable level. Here, ◯ evaluation is the same level as a high-performance electrophotographic developer that is currently in practical use, and ◯ evaluation or more was determined to be acceptable.
These results are shown in Table 1. The Si content in the table is an analysis result (the same applies in the following examples).

《実施例2》
Fe23=100質量部に対しSiO2=60質量部となる配合比で秤量し、焼成温度を1290℃とした以外は、実施例1と同様の条件で実験を行った。使用した原料粉も実施例1と同じである。
Example 2
The experiment was performed under the same conditions as in Example 1 except that the mixture was weighed at a blending ratio of SiO 2 = 60 parts by mass with respect to Fe 2 O 3 = 100 parts by mass and the firing temperature was 1290 ° C. The raw material powder used is the same as in Example 1.

《実施例3》
原料として、平均粒子径D50が約1μmに微粉砕されたMn34を加え、MO・Fe23のフェライト組成においてMnとFeの配合比がMnOとFe23のモル比に換算してMnO:Fe23=43:57となるように秤量した以外は、実施例1と同様の条件で実験を行った。この場合、(Fe23+Mn34)=100質量部に対しSiO2=20質量部となる配合比とした。Mn34以外の原料粉は実施例1と同じものを使用した。
Example 3
As a raw material, Mn 3 O 4 finely pulverized to an average particle diameter D 50 of about 1 μm is added, and the MO / Fe 2 O 3 ferrite composition has a Mn / Fe molar ratio of MnO / Fe 2 O 3. The experiment was performed under the same conditions as in Example 1 except that the weight was converted so that MnO: Fe 2 O 3 = 43: 57. In this case, the blending ratio was SiO 2 = 20 parts by mass with respect to (Fe 2 O 3 + Mn 3 O 4 ) = 100 parts by mass. The same raw material powder as in Example 1 was used except for Mn 3 O 4 .

《実施例4》
(Fe23+Mn34)=100質量部に対しSiO2=40質量部となる配合比で秤量した以外は、実施例3と同様の条件で実験を行った。使用した原料粉も実施例3と同じである。
Example 4
The experiment was performed under the same conditions as in Example 3, except that the weight ratio was (Fe 2 O 3 + Mn 3 O 4 ) = 100 parts by mass with a mixing ratio of SiO 2 = 40 parts by mass. The raw material powder used is the same as in Example 3.

《実施例5》
原料として、平均粒子径D50が約1μmに微粉砕されたMgCO3を加え、MO・Fe23のフェライト組成においてMgとFeの配合比がMgOとFe23のモル比に換算してMgO:Fe23=20:80となるように秤量した以外は、実施例1と同様の条件で実験を行った。この場合、(Fe23+MgCO3)=100質量部に対しSiO2=20質量部となる配合比とした。MgCO3以外の原料粉は実施例1と同じものを使用した。
Example 5
As a raw material, MgCO 3 finely pulverized to an average particle diameter D 50 of about 1 μm is added. In the MO · Fe 2 O 3 ferrite composition, the compounding ratio of Mg and Fe is converted to a molar ratio of MgO and Fe 2 O 3. Then, the experiment was performed under the same conditions as in Example 1 except for weighing so that MgO: Fe 2 O 3 = 20: 80. In this case, the blending ratio was SiO 2 = 20 parts by mass with respect to (Fe 2 O 3 + MgCO 3 ) = 100 parts by mass. The same raw material powder as in Example 1 was used except for MgCO 3 .

《比較例1》
Fe23=100質量部に対しSiO2=10質量部となる配合比で秤量した以外は、実施例1と同様の条件で実験を行った。使用した原料粉も実施例1と同じである。
<< Comparative Example 1 >>
The experiment was performed under the same conditions as in Example 1 except that the mixture was weighed at a compounding ratio of SiO 2 = 10 parts by mass with respect to Fe 2 O 3 = 100 parts by mass. The raw material powder used is the same as in Example 1.

《比較例2》
高抵抗化処理工程を省略したこと以外は、実施例1と同様の条件で実験を行った。
<< Comparative Example 2 >>
The experiment was performed under the same conditions as in Example 1 except that the high resistance treatment step was omitted.

《比較例3》
Fe23=100質量部に対しSiO2=40質量部となる配合比で秤量し、焼成温度を1050℃とした以外は、実施例1と同様の条件で実験を行った。使用した原料粉も実施例1と同じである。
<< Comparative Example 3 >>
The experiment was performed under the same conditions as in Example 1 except that the mixture was weighed at a compounding ratio of SiO 2 = 40 parts by mass with respect to Fe 2 O 3 = 100 parts by mass and the firing temperature was 1050 ° C. The raw material powder used is the same as in Example 1.

《比較例4》
平均粒子径D50が約4μmのSiO2原料粉末を使用し、Fe23=100質量部に対しSiO2=20質量部となる配合比で秤量し、焼成温度を1170℃とした以外は、実施例1と同様の条件で実験を行った。使用した原料粉も実施例1と同じである。
<< Comparative Example 4 >>
A SiO 2 raw material powder having an average particle diameter D 50 of about 4 μm was used, and weighed at a blending ratio of SiO 2 = 20 parts by mass with respect to Fe 2 O 3 = 100 parts by mass, and the firing temperature was 1170 ° C. The experiment was performed under the same conditions as in Example 1. The raw material powder used is the same as in Example 1.

Figure 0004779141
Figure 0004779141

表1からわかるように、極めて微細化した非磁性部原料を適正量使用した各実施例のキャリア芯材は、見掛け密度が2.0g/cm3以下、残留磁化3A・m2/kg以下、印加電圧250Vにおける電気抵抗が105Ω・cm以上特性を兼ね備えている。これを使用した電子写真現像剤ではスペントが発生せず、高品位な画像を得ることができた。 As can be seen from Table 1, the carrier core material of each example using an appropriate amount of a very fine non-magnetic part material has an apparent density of 2.0 g / cm 3 or less, a residual magnetization of 3 A · m 2 / kg or less, The electric resistance at an applied voltage of 250 V has a characteristic of 10 5 Ω · cm or more. In the electrophotographic developer using this, no spent was generated and a high-quality image could be obtained.

これに対し、比較例1では非磁性酸化物の添加量が少なかったのでキャリア芯材の見掛け密度が高くなった。そのため、現像機内の撹拌トルクを低減することができず、これを使用した電子写真現像剤ではスペントが発生し、画像特性も劣った。比較例2では高抵抗化処理を行わなかったことにより、電子写真現像剤において上記実施例のものより画質画像特性に劣った。比較例3では焼成温度が低すぎたことにより残留磁化が高くなった。このため、見掛け密度および電気抵抗が良好であったにもかかわらず、現像剤として使用した場合に流動性が悪く、撹拌トルクを満足に低減することができなかった。また、トナーとの混合性が悪く、上記実施例のものより画質画像特性に劣った。比較例4は使用した非磁性部原料の平均粒子径D50が2μmを超えて大きかったことにより、この非磁性部原料が磁性部の焼結を阻害する要因になったものと考えられ、キャリア芯材の残留磁化が大きくなった。その結果、実施例1に比べ画像特性はかなり悪かった。 On the other hand, in Comparative Example 1, the apparent density of the carrier core material increased because the amount of nonmagnetic oxide added was small. For this reason, the stirring torque in the developing machine cannot be reduced, and the electrophotographic developer using the developing machine generates a spent and inferior image characteristics. In Comparative Example 2, since the high resistance treatment was not performed, the image quality characteristics of the electrophotographic developer were inferior to those of the above examples. In Comparative Example 3, the remanent magnetization was increased because the firing temperature was too low. For this reason, although the apparent density and electrical resistance were good, the fluidity was poor when used as a developer, and the stirring torque could not be reduced satisfactorily. Further, the mixing property with the toner was poor, and the image quality characteristics were inferior to those of the above examples. In Comparative Example 4, since the average particle diameter D 50 of the used nonmagnetic part raw material was larger than 2 μm, it is considered that this nonmagnetic part raw material became a factor inhibiting the sintering of the magnetic part. The remanent magnetization of the core material increased. As a result, the image characteristics were considerably worse than those of Example 1.

Claims (6)

MO・Fe23、M成分は2価の金属元素、で表される組成の磁性部と、SiO2を含んでなる非磁性部を有し、見掛け密度が2.0g/cm3以下、残留磁化が3A・m2/kg以下、印加電圧250Vにおける電気抵抗が105Ω・cm以上である粉体からなる電子写真現像剤用キャリア芯材。 MO · Fe 2 O 3 , the M component has a magnetic part having a composition represented by a divalent metal element, and a nonmagnetic part containing SiO 2 , and an apparent density of 2.0 g / cm 3 or less, A carrier core material for an electrophotographic developer comprising a powder having a remanent magnetization of 3 A · m 2 / kg or less and an electric resistance of 10 5 Ω · cm or more at an applied voltage of 250 V. 前記M成分はMn、Mg、Feの1種以上からなり、当該粉体中に含まれるMn、Mg、Feの配合比が下記(1)式を満たすものである請求項1に記載の電子写真現像剤用キャリア芯材。
50≦Fe23/(MnO+MgO+Fe23)×100≦100 ……(1)
ただし、上式においてMnO、MgOおよびFe23の箇所には、Mn、MgおよびFeの配合比をそれぞれMnO、MgOおよびFe23のモル比に換算した値が代入される。
2. The electrophotography according to claim 1, wherein the M component is composed of one or more of Mn, Mg, and Fe, and a mixing ratio of Mn, Mg, and Fe contained in the powder satisfies the following formula (1). Carrier core material for developer.
50 ≦ Fe 2 O 3 / (MnO + MgO + Fe 2 O 3 ) × 100 ≦ 100 (1)
However, the values obtained by converting the compounding ratios of Mn, Mg, and Fe into the molar ratios of MnO, MgO, and Fe 2 O 3 are substituted for MnO, MgO, and Fe 2 O 3 in the above formula.
前記非磁性部中のSiO2が、平均粒子径2μm以下に微細化されたSiO2原料粉末に由来するものである請求項1または2に記載の電子写真現像剤用キャリア芯材。 3. The carrier core material for an electrophotographic developer according to claim 1, wherein the SiO 2 in the nonmagnetic part is derived from a SiO 2 raw material powder refined to an average particle diameter of 2 μm or less. 当該粉体中のSi含有量が4〜20質量%である請求項1〜3のいずれかに記載の電子写真現像剤用キャリア芯材。   The carrier core material for an electrophotographic developer according to any one of claims 1 to 3, wherein the Si content in the powder is 4 to 20% by mass. 平均粒子径が2μm以下に微細化されたSiO2粉末を他の原料と混合してスラリーを得る工程、前記スラリーを噴霧乾燥させて造粒物を得る工程、前記造粒物を1150〜1350℃で焼成して磁性部と非磁性部を有する複合構造の焼成物を得る工程、前記焼成物を酸化性雰囲気中に加熱することにより高抵抗層を形成する工程(「高抵抗化処理工程」という)、を有する請求項1〜4のいずれかに記載の電子写真現像剤用キャリア芯材の製造法。 A step of obtaining a slurry by mixing SiO 2 powder refined to an average particle size of 2 μm or less with other raw materials, a step of obtaining a granulated product by spray drying the slurry, and a step of 1150 to 1350 ° C. A step of obtaining a fired product having a composite structure having a magnetic part and a non-magnetic part by firing at a step of forming a high resistance layer by heating the fired product in an oxidizing atmosphere (referred to as “high resistance treatment step”) The manufacturing method of the carrier core material for electrophotographic developers in any one of Claims 1-4 which have these. 請求項1〜4のいずれかに記載のキャリア芯材を樹脂で被覆してなる電子写真現像用磁性キャリア。   A magnetic carrier for electrophotographic development, wherein the carrier core material according to claim 1 is coated with a resin.
JP2006243672A 2006-09-08 2006-09-08 Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier Active JP4779141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243672A JP4779141B2 (en) 2006-09-08 2006-09-08 Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243672A JP4779141B2 (en) 2006-09-08 2006-09-08 Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier

Publications (2)

Publication Number Publication Date
JP2008065106A JP2008065106A (en) 2008-03-21
JP4779141B2 true JP4779141B2 (en) 2011-09-28

Family

ID=39287871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243672A Active JP4779141B2 (en) 2006-09-08 2006-09-08 Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier

Country Status (1)

Country Link
JP (1) JP4779141B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948342B2 (en) * 2007-09-26 2012-06-06 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer
JP5517471B2 (en) 2008-03-11 2014-06-11 キヤノン株式会社 Two-component developer
JP5324113B2 (en) * 2008-03-26 2013-10-23 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer and method for producing the same
JP5443723B2 (en) * 2008-10-02 2014-03-19 Dowaエレクトロニクス株式会社 Magnetic particles, carrier core material, method for producing the same, carrier and developer
JP4864147B2 (en) 2009-03-25 2012-02-01 シャープ株式会社 Manufacturing method of resin-coated carrier, resin-coated carrier, two-component developer, developing device, image forming apparatus, and image forming method
JP5461870B2 (en) * 2009-04-06 2014-04-02 Dowaエレクトロニクス株式会社 Magnetic particles, carrier core material, method for producing the same, carrier and electrophotographic developer
JP4864116B2 (en) 2009-04-30 2012-02-01 シャープ株式会社 Resin-coated carrier, method for producing the same, two-component developer including the resin-coated carrier, developing device, and image forming apparatus
JP5431820B2 (en) * 2009-07-27 2014-03-05 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5635784B2 (en) * 2010-03-12 2014-12-03 Dowaエレクトロニクス株式会社 Ferrite particles and production method thereof, carrier for electrophotographic development using ferrite particles, developer for electrophotography
JP2014153469A (en) * 2013-02-06 2014-08-25 Fuji Xerox Co Ltd Carrier for electrostatic charge image development, developer for electrostatic charge image development, process cartridge, and image forming apparatus
JP2016024405A (en) * 2014-07-23 2016-02-08 富士ゼロックス株式会社 Carrier for electrostatic charge image development, electrostatic charge image developer, developer cartridge, process cartridge, and image forming apparatus
EP4098622A4 (en) * 2020-01-27 2024-03-27 Powdertech Co., Ltd. Ferrite powder and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184764A (en) * 1986-09-02 1988-07-30 Kawasaki Steel Corp Carrier for electrophotographic developer and production thereof
JP4409335B2 (en) * 2004-03-31 2010-02-03 三井金属鉱業株式会社 Magnetite particles and method for producing the same
JP4961571B2 (en) * 2006-02-14 2012-06-27 Dowaエレクトロニクス株式会社 Manufacturing method of carrier core material

Also Published As

Publication number Publication date
JP2008065106A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4779141B2 (en) Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier
JP4961571B2 (en) Manufacturing method of carrier core material
JP5037982B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
WO2012124484A1 (en) Carrier core for electronograph developer, carrier for electronograph developer, and electronograph developer
JP5377386B2 (en) Carrier core material for electrophotographic developer, production method thereof, carrier for electrophotographic developer, and electrophotographic developer
JP2008241742A5 (en)
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6757872B1 (en) Ferrite particles, carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
JP5314457B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP4963618B2 (en) Carrier core material for electrophotographic developer, method for producing the same, and electrophotographic developer
JP2008175883A (en) Ferrite carrier for electrophotographic developer and electrophotographic developer
WO2011001940A1 (en) Electrophotographic developer carrier core material, manufacturing method therefor, electrophotographic developer carrier, and electrophotographic developer
JP2007273505A (en) Ferromagnetic material powder, carrier for electrophotography developer and their production process, and electrophotography developer
JP5229856B2 (en) Carrier for electrophotographic developer and electrophotographic developer
JP6177473B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP4938883B2 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, electrophotographic developer, and method for producing carrier core material for electrophotographic developer
JP6742119B2 (en) Core material for carrier, carrier, developer and electrophotographic development system
JP4948342B2 (en) Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer
JP2003034533A (en) Ferromagnetic material powder and carrier of developing agent for electronic photograph
JP5407060B2 (en) Carrier core material and electrophotographic developer
JP5627072B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP2009244788A (en) Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer
WO2017175647A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer
WO2022244573A1 (en) Carrier core material, and carrier for electrophotographic development and electrophotographic developer employing same
JP2012048256A (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4779141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250