JP2009244788A - Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer - Google Patents

Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer Download PDF

Info

Publication number
JP2009244788A
JP2009244788A JP2008094063A JP2008094063A JP2009244788A JP 2009244788 A JP2009244788 A JP 2009244788A JP 2008094063 A JP2008094063 A JP 2008094063A JP 2008094063 A JP2008094063 A JP 2008094063A JP 2009244788 A JP2009244788 A JP 2009244788A
Authority
JP
Japan
Prior art keywords
core material
carrier core
electrophotographic developer
carrier
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008094063A
Other languages
Japanese (ja)
Inventor
Kimihiro Akata
公宏 赤田
Toshiya Kitamura
利哉 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008094063A priority Critical patent/JP2009244788A/en
Publication of JP2009244788A publication Critical patent/JP2009244788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrier core material for an electrophotographic developer that improves the volume resistivity value, without causing decrease in the magnetic characteristics nor decrease in powder characteristics, and to provide a method of manufacturing the same. <P>SOLUTION: The carrier core material for the electrophotographic developer contains a magnetite or soft ferrite, and has an oxide layer of 0.1 m<SP>2</SP>/g to 0.2 m<SP>2</SP>/g in specific surface area formed on its surface, by carrying out a heat treatment under an inert atmosphere of 300 to 400°C after mechanical agitation for 30 to 180 minutes at a rotating speed of 2,000 to 4,000 rpm, the volume resistivity value being not less than 1.0E+07(Ω cm), when a voltage of 100V is applied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子写真の乾式現像法において用いられる電子写真現像剤用キャリア芯材およびその製造方法、電子写真現像剤用キャリア、並びに電子写真現像剤に関する。   The present invention relates to a carrier core material for an electrophotographic developer used in an electrophotographic dry development method, a method for producing the same, a carrier for an electrophotographic developer, and an electrophotographic developer.

電子写真の乾式現像法は、現像剤である粉体のトナーを感光体上の静電潜像に付着させ、当該付着したトナーを所定の紙等へ転写して現像する方法である。ここで、現像剤としては、トナーと電子写真現像剤用キャリア粉(以下、キャリア粉と記載する場合がある)とを含む2成分系現像剤を用いる2成分系現像法およびトナーのみを含む1成分系現像剤を用いる一成分系現像法とがある。最近は、トナーの荷電制御が容易で、安定した高画質が得られ、また高速現像が可能であるなどの理由から、殆どの場合2成分系現像法が用いられている。   The electrophotographic dry development method is a method in which a powder toner as a developer is attached to an electrostatic latent image on a photosensitive member, and the attached toner is transferred to a predetermined paper or the like for development. Here, the developer includes a two-component developing method using a two-component developer including toner and carrier powder for electrophotographic developer (hereinafter sometimes referred to as carrier powder) and toner only 1 There is a one-component development method using a component developer. Recently, in most cases, a two-component development method has been used because charge control of the toner is easy, a stable high image quality is obtained, and high-speed development is possible.

2成分系現像法は、キャリア粉を用いてトナーを帯電させ、キャリア粉と伴にトナーを搬送する。そのため2成分系の電子複写機用現像剤に用いられるキャリア粉には、磁気特性、静電特性(体積抵抗値等)、粉体特性(流動性等)、耐久性など、様々な特性が要求される。電子写真の画質を左右する重要な要因として、キャリア粉とトナーとの摩擦帯電量が挙げられる。この摩擦帯電量が、所定値より低くなると画像の白紙部分にトナーが飛散する所謂カブリを生じコピー画質を低下させ、逆に所定値よりも高いと濃度の低い画質となってしまう。このため摩擦帯電量は、適正値に調整されていることが必要である。   In the two-component development method, the toner is charged using carrier powder, and the toner is conveyed along with the carrier powder. For this reason, carrier powders used in two-component developer for electronic copying machines require various properties such as magnetic properties, electrostatic properties (volume resistance, etc.), powder properties (fluidity, etc.), and durability. Is done. An important factor affecting the image quality of electrophotography is the amount of triboelectric charge between carrier powder and toner. When the triboelectric charge amount is lower than a predetermined value, so-called fogging in which toner is scattered on the blank paper portion of the image is generated, and the copy image quality is lowered. Conversely, when the triboelectric charge amount is higher than the predetermined value, the image quality is low. For this reason, the triboelectric charge amount needs to be adjusted to an appropriate value.

2成分系で用いるキャリア粉は、マグネタイトまたはソフトフェライト(以下、単にフェライトと記載する場合がある。)を含むキャリア芯材(以下、キャリア芯材と記載する場合がある。)の表面に樹脂を被覆したものである。当該構成をとることで、キャリア粉自体の帯電量と、機械的耐久性とを確保できる。一方、キャリア粉の静電特性は、被覆する樹脂と同様にキャリア芯材を構成するフェライトの特性にも支配される。従来のキャリア粉においては、キャリア芯材の静電特性である体積抵抗値が低いことに起因して、静電荷像の電荷がキャリア芯材を通じてリークしてしまい、静電荷像を乱し画像欠陥を引き起こすといった問題が見られた。   The carrier powder used in the two-component system has a resin on the surface of a carrier core material (hereinafter sometimes referred to as carrier core material) containing magnetite or soft ferrite (hereinafter sometimes simply referred to as ferrite). It is coated. By taking this configuration, the charge amount of the carrier powder itself and the mechanical durability can be ensured. On the other hand, the electrostatic characteristics of the carrier powder are governed by the characteristics of the ferrite constituting the carrier core material as well as the resin to be coated. In conventional carrier powders, the electrostatic charge of the carrier core material has a low volume resistance value, and the charge of the electrostatic charge image leaks through the carrier core material, disturbing the electrostatic charge image and causing image defects. The problem of causing was seen.

キャリア芯材の体積抵抗値が低いことに起因する画像欠陥に対する対策として、特許文献1には、RH(管状炉)炉やベルト炉等の雰囲気炉で300℃〜600℃での静的酸化処理を行う方法が記載されている。この酸化処理法で得られる酸化被膜の比表面積はBET値で0.1000〜0.3000であり、図2に示す、後述する従来の技術に係るキャリア芯材のSEM写真のように、キャリア芯材の表面に不均一に存在する粗い被膜である。   As a countermeasure against image defects caused by the low volume resistance value of the carrier core material, Patent Document 1 describes a static oxidation treatment at 300 ° C. to 600 ° C. in an atmosphere furnace such as an RH (tubular furnace) furnace or a belt furnace. The method of doing is described. The specific surface area of the oxide film obtained by this oxidation treatment method is 0.1000 to 0.3000 in BET value, and as shown in the SEM photograph of the carrier core material according to the prior art described later shown in FIG. It is a rough coating that exists unevenly on the surface of the material.

また、特許文献2には、トナーの粒径を小さくして高画質化を達成しようとする試みがなされ、それに伴いキャリアの粒径を小さくする技術が記載されている。   Japanese Patent Application Laid-Open No. 2004-228561 describes an attempt to achieve high image quality by reducing the particle size of the toner, and a technique for reducing the particle size of the carrier accordingly.

特開2003−34533号公報JP 2003-34533 A 特開2005−300734号公報JP-A-2005-300734

しかしながら、本発明者等の検討によれば、従来の技術に係る高温での静的酸化処理は、キャリア粉の磁気特性の低下や流動性の悪化を引き起こす。さらに、キャリア芯材粒子
に形成された酸化被膜は、例えば、図2のSEM写真により明らかなように、粒界に沿って不均一に形成され、緻密性にかけるものである。このようなキャリア芯材粒子を用いてキャリア粉を製造すると、表面の凹凸による粒子同士の絡み合いや、トナー運搬などに不都合が生じる可能性があり、結果としてキャリア粉の特性の低下や寿命が短くなるなどの問題が起こる。
However, according to the study by the present inventors, the static oxidation treatment at a high temperature according to the prior art causes a decrease in the magnetic properties and fluidity of the carrier powder. Furthermore, the oxide film formed on the carrier core particle is formed nonuniformly along the grain boundary, as shown in the SEM photograph of FIG. When carrier powder is produced using such carrier core particles, there is a possibility of inconvenience between particles due to surface irregularities and toner transportation, resulting in deterioration of carrier powder characteristics and short life. Problems such as become.

また、キャリア粉を構成するキャリア粒子の粒径を小さくすると、1粒子あたりの磁力が低下することとなり、キャリア粉の飛散量が増大する(所謂、カブリ現象)といった問題が生じる。   Further, if the particle diameter of the carrier particles constituting the carrier powder is reduced, the magnetic force per particle is lowered, and there is a problem that the amount of scattering of the carrier powder is increased (so-called fog phenomenon).

本発明は上記問題点を解決し、電子写真画像の高画質化を実現するものである。
即ち、本発明は、磁気特性低下や粉体特性低下を引き起こすことなく、体積抵抗値を改善出来る電子写真現像剤用キャリア芯材およびその製造方法、当該キャリア芯材から製造される電子写真現像剤用キャリア、並びに、当該電子写真現像剤用キャリアと所定のトナーとを含む電子写真現像剤の提供を課題とする。
The present invention solves the above problems and realizes high image quality of electrophotographic images.
That is, the present invention relates to a carrier core material for an electrophotographic developer capable of improving a volume resistance value without causing a decrease in magnetic characteristics and powder characteristics, a method for producing the same, and an electrophotographic developer produced from the carrier core material. An object of the present invention is to provide a carrier for electrophotography and an electrophotographic developer including the carrier for electrophotographic developer and a predetermined toner.

上述の課題を解決するため、本発明者らは鋭意検討を重ねた結果、高画質化のためにはキャリア芯材としてフェライトを使用するが、当該フェライトを機械的に高速撹拌することで、キャリア芯材表面に酸化被膜を形成することに想到した。そして、当該機械的高速撹拌により表面に酸化被膜が形成されたキャリア芯材が、十分な体積抵抗値を発揮するという優れた静電的特性を有することを知見した。ところが、当該機械的高速撹拌により、1KOe下における磁化や残留磁化、保磁力の上昇といった磁気的特性が低下することも知見した。そこで、本発明者らは、当該機械的高速撹拌の後、磁化回復を目的とする熱処理を施す構成に想到した。その結果、得られた電子写真用キャリア芯材が高い体積抵抗値と、高磁力特性とを有することを知見し、本発明を完成したものである。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, ferrite is used as a carrier core material in order to improve image quality. The inventors came up with the idea of forming an oxide film on the surface of the core material. And it discovered that the carrier core material in which the oxide film was formed in the surface by the said mechanical high-speed stirring has the outstanding electrostatic characteristic that a sufficient volume resistance value is exhibited. However, it has also been found that the magnetic characteristics such as magnetization under 1 KOe, residual magnetization, and increase in coercive force are reduced by the mechanical high-speed stirring. Therefore, the present inventors have come up with a configuration in which heat treatment for the purpose of magnetization recovery is performed after the mechanical high-speed stirring. As a result, it was found that the obtained electrophotographic carrier core material has a high volume resistance value and a high magnetic force characteristic, and the present invention has been completed.

即ち、上述の課題を解決するための第1の発明は、
マグネタイトまたはソフトフェライトを含み、
表面に、回転数2000rpm以上、4000rpm以下の範囲で攪拌した後、不活性雰囲気下で熱処理を行うことにより形成される、比表面積が0.1m/g以上、0.2m/g以下の酸化被膜を有し、
100Vの電圧を印加したときの体積抵抗値が1.0E+07Ω・cm以上であることを特徴とする電子写真現像剤用キャリア芯材である。
That is, the first invention for solving the above-described problem is
Including magnetite or soft ferrite,
A specific surface area of 0.1 m 2 / g or more and 0.2 m 2 / g or less formed by performing heat treatment in an inert atmosphere after stirring on the surface at a rotational speed of 2000 rpm or more and 4000 rpm or less. Having an oxide film,
A carrier core material for an electrophotographic developer, having a volume resistance value of 1.0E + 07 Ω · cm or more when a voltage of 100 V is applied.

第2の発明は、
前記マグネタイトまたはソフトフェライトは、一般式(MFe3−x)O(但し、Mは、Mg、Mn、Ca、Ti、Cu、Zn、Sr、Niからなる群より選ばれる少なくとも1種の金属、0<x<3)で表わされるものであることを特徴とする第1の発明に記載の電子写真現像剤用キャリア芯材である。
The second invention is
The magnetite or soft ferrite has a general formula (M x Fe 3-x ) O 4 (where M is at least one selected from the group consisting of Mg, Mn, Ca, Ti, Cu, Zn, Sr, Ni). The carrier core material for an electrophotographic developer according to the first invention, characterized in that the metal is represented by 0 <x <3).

第3の発明は、
1KOeの磁場においての磁力が40〜75emu/g
残留磁化が、0.5〜1.1emu/gであることを特徴とする第1または第2の発明に記載の電子写真現像剤用キャリア芯材である。
The third invention is
Magnetic force in a magnetic field of 1 KOe is 40 to 75 emu / g
The carrier core material for an electrophotographic developer according to the first or second invention, wherein the residual magnetization is 0.5 to 1.1 emu / g.

第4の発明は、
マグネタイト粒子を含む粉またはソフトフェライト粒子を含む粉を、回転数2000rpm以上、4000rpm以下の範囲で攪拌した後、
不活性雰囲気下で熱処理を行うことを特徴とする電子写真現像剤用キャリア芯材の製造
方法である。
The fourth invention is:
After stirring the powder containing magnetite particles or the powder containing soft ferrite particles in the range of rotation speed 2000rpm or more and 4000rpm or less,
A method for producing a carrier core material for an electrophotographic developer, wherein the heat treatment is performed in an inert atmosphere.

第5の発明は、
第1から第4の発明のいずれかに記載の電子写真現像剤用キャリア芯材が、樹脂被覆されたものであることを特徴とする電子写真現像剤用キャリアである。
The fifth invention is:
An electrophotographic developer carrier characterized in that the carrier core material for an electrophotographic developer according to any one of the first to fourth inventions is coated with a resin.

第6の発明は、
第1から第3の発明のいずれかに記載の電子写真現像剤用キャリア芯材、または、第5の発明に記載の電子写真現像剤用キャリアと、
所定のトナーとを含むことを特徴とする電子写真現像剤である。
The sixth invention is:
The carrier core material for an electrophotographic developer according to any one of the first to third inventions, or the carrier for an electrophotographic developer according to the fifth invention,
An electrophotographic developer comprising a predetermined toner.

本発明によれば、電気的特性と磁化特性とにおいて優れたキャリア芯材が提供される。さらに、当該キャリア芯材を用いて製造されたキャリア粉および電子写真現像剤を用いれば、キャリア付着飛散が抑えられ、またリーク現象も見られない高画質な電子写真像が提供される。   According to the present invention, a carrier core material excellent in electrical characteristics and magnetization characteristics is provided. Furthermore, if the carrier powder and the electrophotographic developer produced using the carrier core material are used, a high-quality electrophotographic image can be provided in which carrier adhesion scattering is suppressed and no leakage phenomenon is observed.

以下、本発明に係るキャリア芯材およびその製造方法、当該キャリア芯材から製造される電子写真現像剤用キャリア、並びに、当該電子写真現像剤用キャリアと所定のトナーとを含む電子写真現像剤について詳細に説明する。   Hereinafter, a carrier core material and a manufacturing method thereof according to the present invention, a carrier for an electrophotographic developer manufactured from the carrier core material, and an electrophotographic developer including the carrier for an electrophotographic developer and a predetermined toner. This will be described in detail.

本発明に係るキャリア芯材は、上述のように、マグネタイトまたはソフトフェライトを含み、表面に、回転数2000rpm以上、4000rpm以下の範囲で、30分間以上、180分間以下の機械的攪拌した後、300℃以上、400℃以下の不活性雰囲気下で熱処理を行うことにより形成される、比表面積が0.1〜0.2m/gの酸化被膜を有し、100Vの電圧を印加したときの体積抵抗値が1.0E+07Ω・cm以上であるという優れた電気的特性を発揮するキャリア芯材である。 As described above, the carrier core material according to the present invention contains magnetite or soft ferrite, and after mechanical stirring for 30 minutes or more and 180 minutes or less at a rotational speed of 2000 rpm or more and 4000 rpm or less on the surface, A volume when a voltage of 100 V is applied, having an oxide film with a specific surface area of 0.1 to 0.2 m 2 / g, formed by performing heat treatment in an inert atmosphere of at least 400 ° C. and at most 400 ° C. It is a carrier core material that exhibits excellent electrical characteristics that its resistance value is 1.0E + 07 Ω · cm or more.

まず、本発明のキャリア芯材として用いられるフェライトは、Feで表わされるマグネタイト、または、一般式(MFe3−x)Oで表されるソフトフェライトである。当該一般式において、組成Mは、Mn、Co、Ni、Cu、Zn等の1種、あるいはこれらの金属元素の複数種の混合物であるスピネル型酸化物の固溶体である。たとえば、XがZnのZnフェライトは反強磁性体であり強磁性を示さないが、他のスピネルフェライトに亜鉛を添加すると磁性を強める働きがある。MnとZnで構成されたフェライトは、きわめて高い透磁率を示す。従って、目的とする特性に応じてフェライトを選択すればよい。本発明のキャリア芯材としては、高画質化を目的とするため、高磁化特性を有し、低残留磁化かつ低保磁力であることが好ましい。 First, the ferrite used as the carrier core material of the present invention is magnetite represented by Fe 3 O 4 or soft ferrite represented by the general formula (M x Fe 3-x ) O 4 . In the general formula, the composition M is a solid solution of a spinel oxide that is one kind of Mn, Co, Ni, Cu, Zn, or a mixture of plural kinds of these metal elements. For example, Zn ferrite with X being Zn is an antiferromagnetic material and does not exhibit ferromagnetism, but when zinc is added to other spinel ferrite, it has a function of enhancing magnetism. Ferrite composed of Mn and Zn exhibits extremely high magnetic permeability. Therefore, the ferrite may be selected according to the target characteristics. The carrier core material of the present invention preferably has high magnetization characteristics, low residual magnetization and low coercive force in order to improve image quality.

本発明に係るキャリア芯材の体積抵抗値は、100Vの電圧を印加したときの体積抵抗値が1.0E+07Ω・cm以上である。この水準の体積抵抗値があれば、キャリア芯材さらにはキャリアとしても、トナーとの間で充分な摩擦帯電性を保持することが可能であり、静電荷像の電荷のリークが発生せず、画質の低下をが起こらない。   The volume resistance value of the carrier core material according to the present invention is 1.0E + 07 Ω · cm or more when a voltage of 100 V is applied. If there is a volume resistance value of this level, it is possible to maintain sufficient triboelectric chargeability with the toner as a carrier core material or even a carrier, and no charge leakage of the electrostatic charge image occurs, The image quality does not deteriorate.

さらに、本発明に係るキャリア芯材は、高い磁場において所望の磁力を保持できるものであり、1KOeの磁場においての磁力が40〜75emu/g、残留磁化が、0.5〜1.1emu/gであり、キャリアとしての特性が充分に得られる。そして、保磁力が10Oe以下であれば、キャリア粒子の飛散やキャリア付着といった問題が起こらない。   Furthermore, the carrier core material according to the present invention can maintain a desired magnetic force in a high magnetic field, and the magnetic force in a magnetic field of 1 KOe is 40 to 75 emu / g, and the residual magnetization is 0.5 to 1.1 emu / g. Thus, sufficient carrier characteristics can be obtained. If the coercive force is 10 Oe or less, problems such as scattering of carrier particles and carrier adhesion do not occur.

さらに、本発明に係るキャリア芯材は、見掛け密度が高いので充填性がよく、また流動
性も良いという粉体特性を有し、トナーとの接触帯電性が良好である。
Furthermore, since the carrier core material according to the present invention has a high apparent density, it has good powder properties such as good filling properties and fluidity, and has good contact chargeability with the toner.

本発明に係るキャリア芯材およびキャリアは以下のような工程で製造することが出来る。
[秤量・混合]
Feで表記されるマグネタイトを使用する場合、鉱石系Fe23または塩化鉄系Fe2Oを準備する。
一般式(MFe3−x)Oで表記される組成のソフトフェライトを使用する場合、Fe原料としては、Fe23が好適に使用できる。Fe以外のM成分原料としては、Mnの場合MnCO3やMn34等が、Mgの場合MgCO3やMg(OH)2等が好適に使用で
きる。M 成分のFe、M、Mgはそれぞれ単独で含有させることもできるが、複合して
含有させると磁気特性の制御範囲を拡大できる利点がある。これらの原料を、各金属元素の配合比が目標値になるように秤量し、これらを混合して、金属原料混合物を得る。
The carrier core material and the carrier according to the present invention can be manufactured by the following steps.
[Weighing and mixing]
When using magnetite represented by Fe 3 O 4 , ore-based Fe 2 O 3 or iron chloride-based Fe 2 O is prepared.
When soft ferrite having a composition represented by the general formula (M x Fe 3-x ) O 4 is used, Fe 2 O 3 can be suitably used as the Fe raw material. As the M component raw material other than Fe, MnCO 3 and Mn 3 O 4 can be suitably used in the case of Mn, and MgCO 3 and Mg (OH) 2 can be suitably used in the case of Mg. The M component Fe, M, and Mg can be contained alone, respectively, but if they are contained in combination, there is an advantage that the control range of magnetic properties can be expanded. These raw materials are weighed so that the blending ratio of each metal element becomes a target value, and these are mixed to obtain a metal raw material mixture.

[粉砕・造粒]
秤量・混合した金属原料混合物を振動ミルなどの粉砕機にて粉砕する。当該粉砕において、平均粒径5μm以下に粉砕することが望ましく、より好ましくは1μm以下とする。これら粉砕物を、媒体液中で混合撹拌することによってスラリー化する。なお、スラリー化前に、必要に応じて、混合粉砕物へさらに乾式で粉砕処理を加えてもよい。原料粉と媒体液の混合比は、スラリーの固形分濃度が50〜90質量%になるようにすることが望ましい。媒体液は、水に、バインダー、分散剤等を添加したものを用意する。バインダーとしては、例えばポリビニルアルコールが好適に使用でき、その媒体液中濃度は0.5〜2質量%程度とすればよい。分散剤としては、例えばポリカルボン酸アンモニウム系のものが好適に使用でき、その媒体液中濃度も0.5〜2質量%程度とすればよい。その他、潤滑剤や、焼結促進剤として、リンやホウ酸等を添加することができる。混合攪拌して得られたスラリーに対し、さらに湿式粉砕を施すことが好ましい。この工程の後、造粒工程により、粒子の粒径が1〜150μmの造粒粉が得られる。得られた造粒粉は、製品最終粒径を考慮して、粗粒および微粒を振動ふるいで除外して粒度調製すると良い。製品最終粒径(体積平均粒径)を20 〜120μm とするためには、当該造粒粉の個々の粒子の粒径が30〜130μmの範囲に収まるように調製しておくことが好ましい。
[Crushing and granulation]
The weighed and mixed metal raw material mixture is pulverized by a pulverizer such as a vibration mill. In the pulverization, it is desirable to pulverize to an average particle diameter of 5 μm or less, more preferably 1 μm or less. These pulverized materials are slurried by mixing and stirring in a medium solution. In addition, you may add a grinding | pulverization process further to a mixed pulverized material by dry type before slurrying as needed. The mixing ratio of the raw material powder and the medium liquid is preferably such that the slurry has a solid content concentration of 50 to 90% by mass. The medium liquid is prepared by adding a binder, a dispersant and the like to water. As the binder, for example, polyvinyl alcohol can be suitably used, and the concentration in the medium liquid may be about 0.5 to 2% by mass. As the dispersant, for example, an ammonium polycarboxylate-based one can be preferably used, and the concentration in the medium liquid may be about 0.5 to 2% by mass. In addition, phosphorus, boric acid, or the like can be added as a lubricant or a sintering accelerator. It is preferable to further wet-grind the slurry obtained by mixing and stirring. After this step, a granulated powder having a particle size of 1 to 150 μm is obtained by the granulation step. The obtained granulated powder may be adjusted in particle size in consideration of the final particle size of the product by removing coarse particles and fine particles with a vibration sieve. In order to set the final product particle size (volume average particle size) to 20 to 120 μm, it is preferable to prepare such that the particle size of the individual particles of the granulated powder falls within the range of 30 to 130 μm.

〔焼成〕
次に、造粒物を1000℃〜1300℃の温度で1〜24時間保持して本焼成を行う。この時の焼成雰囲気としては、酸素濃度が0.1容量%未満、好ましくは0.01%以下の不活性ガス中の雰囲気下で行う事が良い。この焼成雰囲気の酸素濃度が0.1%容量以下であれば、ヘマタイト相の生成が阻止出来、目的とする磁化が得られる。またフェライトの組成によっては、適宜、仮焼成工程を加えても良い。当該仮焼工程の雰囲気としては、上記本焼成と同様の条件でも良いし、500℃以下であれば空気中でも良い。
[Baking]
Next, the granulated product is subjected to main baking at a temperature of 1000 ° C. to 1300 ° C. for 1 to 24 hours. The firing atmosphere at this time is preferably carried out in an inert gas atmosphere having an oxygen concentration of less than 0.1% by volume, preferably 0.01% or less. If the oxygen concentration in this firing atmosphere is 0.1% or less, the formation of a hematite phase can be prevented and the desired magnetization can be obtained. Depending on the composition of the ferrite, a temporary firing step may be added as appropriate. The atmosphere of the calcination step may be the same conditions as in the main firing, or in air as long as it is 500 ° C. or lower.

〔機械的撹拌〕
得られた焼成物を、解粒、分級して目的の粒径に調製する。次に室温で焼成物の粒子に対し、大気中もしくは酸素濃度が20〜100容量%に制御された雰囲気下で機械的高速撹拌処理を行う。攪拌回転数は2000rpm〜4000rpmが良く、より好ましくは2500rpm〜3500rpmが良い。撹拌時間は、30分〜180分間、処理中の温度は50〜150℃となる。
(Mechanical stirring)
The obtained fired product is pulverized and classified to prepare a target particle size. Next, mechanical high-speed stirring treatment is performed on the particles of the fired product at room temperature in the air or in an atmosphere in which the oxygen concentration is controlled to 20 to 100% by volume. The stirring rotation speed is preferably 2000 rpm to 4000 rpm, more preferably 2500 rpm to 3500 rpm. The stirring time is 30 minutes to 180 minutes, and the temperature during the treatment is 50 to 150 ° C.

攪拌に用いる機械は、例えば、スーパーミキサー等、一般的な高速攪拌機を使用できる。当該攪拌により、粒子同士、あるいは攪拌機の羽と粒子、あるいは攪拌機の側面と粒子との衝突、さらにはせん断力により、摩擦熱やメカノケミカル反応が起こる。この結果、当該摩擦熱やメカノケミカル反応により、焼成物の表面全体に体積抵抗値の高い緻密で強
固な酸化膜が形成される。回転数が2000rpm以上あれば、摩擦熱やメカノケミカル反応を起こすために、十分な機械的エネルギーが供給される。また、回転数4000rpm以下であれば、機械的エネルギーの過剰による粒子の割れを回避出来る。また攪拌における攪拌時間30分間〜180分間が良く、より好ましくは60分間〜120分間である。攪拌時間が30分間以上あれば、十分な酸化膜が形成される。一方、攪拌時間が180分間以下であれば、粒子の破壊による磁気特性の低下を回避することが出来る。
As a machine used for stirring, for example, a general high-speed stirrer such as a super mixer can be used. By the stirring, frictional heat or mechanochemical reaction occurs due to collision between the particles or between the blades and particles of the stirrer or between the side surface of the stirrer and the particles, and also with shearing force. As a result, a dense and strong oxide film having a high volume resistance value is formed on the entire surface of the fired product by the frictional heat or mechanochemical reaction. If the rotational speed is 2000 rpm or more, sufficient mechanical energy is supplied to cause frictional heat and mechanochemical reaction. Moreover, if the rotational speed is 4000 rpm or less, cracking of particles due to excessive mechanical energy can be avoided. Moreover, the stirring time in stirring is 30 minutes-180 minutes, More preferably, it is 60 minutes-120 minutes. If the stirring time is 30 minutes or more, a sufficient oxide film is formed. On the other hand, if the stirring time is 180 minutes or less, it is possible to avoid a decrease in magnetic properties due to particle breakage.

本発明に係るキャリア芯材は、その粒子表面に上記機械的高速攪拌により形成される滑らかで、均一な上、緻密な酸化被膜を有してなるものである。そして、攪拌回転数および攪拌時間が上記範囲であることで、良好な酸化被膜が形成され、剥離などの問題も起きず、満足な静電特性が得られる。具体的には、100V電圧の印加で1.0E+07Ω・cm以上の体積抵抗値を有するものとなる。   The carrier core material according to the present invention has a smooth, uniform and dense oxide film formed on the particle surface by the mechanical high-speed stirring. And since a favorable oxide film is formed and problems, such as peeling, do not arise because a stirring rotation speed and stirring time are the said range, satisfactory electrostatic characteristics are acquired. Specifically, it has a volume resistance value of 1.0E + 07 Ω · cm or more when a voltage of 100 V is applied.

〔熱処理〕
次に、焼成物の熱処理を雰囲気炉にて行う。この処理の目的は、当該焼成物が前工程での機械的処理により受けた負荷に起因する磁化低下を回復させるためである。
当該雰囲気炉としては、外部の酸素などの影響の低い、密閉型のバッチ式炉が良い。雰囲気としては、窒素やアルゴンなどの不活性雰囲気が好ましい。温度としては、250℃〜500℃が好ましい。より好ましくは300〜400℃が好ましく、処理時間としては、3分間〜60分間が好ましい。温度は、300℃以以上あれば、磁化低下を回復させるのに十分な熱エネルギーであり、400℃以下であれば、熱処理中の粒子の焼結を回避出来、不活性雰囲気中の不純物などの影響を受け難くなる。
〔Heat treatment〕
Next, the fired product is heat-treated in an atmosphere furnace. The purpose of this treatment is to recover the decrease in magnetization caused by the load that the fired product has received by the mechanical treatment in the previous step.
As the atmosphere furnace, a closed batch furnace having a low influence of external oxygen or the like is preferable. The atmosphere is preferably an inert atmosphere such as nitrogen or argon. As temperature, 250 to 500 degreeC is preferable. More preferably, 300-400 degreeC is preferable, and as processing time, 3 minutes-60 minutes are preferable. If the temperature is 300 ° C. or higher, the thermal energy is sufficient to recover the magnetization drop. If the temperature is 400 ° C. or lower, sintering of the particles during the heat treatment can be avoided, and impurities such as impurities in the inert atmosphere can be avoided. It becomes difficult to be affected.

〔解砕、分級〕
得られた焼成物を例えばハンマーミル解粒等で粗粉砕し、次に、例えば気流分級機で1次分級して、非形状粒子および微粒子を除去し、さらに振動ふるいまたは超音波ふるいにて粒度をそろえることが望ましい。その後、磁場選鉱機にかけて非磁性成分を除去し、体積平均粒径 が20〜120μmのキャリア芯材を得ることができる。
[Disintegration, classification]
The obtained fired product is coarsely pulverized by, for example, hammer mill pulverization, etc., and then subjected to primary classification using, for example, an airflow classifier to remove non-shaped particles and fine particles, and further, the particle size is determined using a vibration sieve or an ultrasonic sieve. It is desirable to have Thereafter, a non-magnetic component is removed by applying a magnetic separator, and a carrier core material having a volume average particle size of 20 to 120 μm can be obtained.

こうして得られたキャリア芯材は、それ自体でキャリアとして使用する事も出来る。さらに、当該キャリア芯材に樹脂被覆を行ってキャリアとすることも好ましい。   The carrier core material thus obtained can be used as a carrier by itself. Furthermore, it is also preferable to carry out resin coating on the carrier core material to make a carrier.

〔樹脂被覆〕
得られたキャリア芯材に対して樹脂被覆を施しキャリア粉を製造する。被覆樹脂としてはシリコーン系樹脂が好ましい。樹脂被覆を行うには、前記樹脂を溶剤に希釈してキャリア芯材の表面に被覆するのが一般的である。溶剤としては、前記樹脂が可溶なものであればよい。前記樹脂として有機溶媒に可溶なものを用いるのであればトルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、メタノール等を溶剤に使用することができる。所定樹脂が水溶性樹脂またはエマルジョンタイプの樹脂であれば、水を用いることができる。
[Resin coating]
Resin coating is applied to the obtained carrier core material to produce carrier powder. A silicone resin is preferable as the coating resin. In order to perform resin coating, the resin is generally diluted with a solvent and coated on the surface of the carrier core material. Any solvent may be used as long as the resin is soluble. If a resin soluble in an organic solvent is used, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methanol or the like can be used as the solvent. If the predetermined resin is a water-soluble resin or an emulsion type resin, water can be used.

溶剤で希釈した所定樹脂をキャリア芯材の表面へ被覆するには、浸漬法、スプレー法、刷毛塗り法等が適用できる。所定樹脂が被覆されたキャリア芯材を乾燥させるとキャリア粉を得ることができる。このような湿式法による樹脂被覆の他、キャリア芯材表面に所定樹脂粉体を付着させる乾式法によってもキャリア粉を得ることができる。   In order to coat the surface of the carrier core material with the predetermined resin diluted with a solvent, a dipping method, a spray method, a brush coating method, or the like can be applied. When the carrier core material coated with the predetermined resin is dried, carrier powder can be obtained. In addition to resin coating by such a wet method, the carrier powder can also be obtained by a dry method in which a predetermined resin powder is adhered to the surface of the carrier core material.

上記、湿式法、乾式法のいずれにしても、キャリア芯材の表面に被覆した所定樹脂を焼きつけるのが好ましい。例えば固定式または流動式の電気炉、ロータリー式電気炉、バーナー炉などを使用して、外部加熱方式または内部加熱方式で、キャリア芯材の表面に被覆された所定樹脂を焼きつけることが好ましい。マイクロウェーブによる焼きつけも可能で
ある。焼きつけ温度は所定樹脂によって異なるが、融点以上またはガラス転移点以上の温度が必要である。所定樹脂が、熱硬化性樹脂または縮合型樹脂である場合は、硬化が十分に進む温度にまで上げる必要がある。
Regardless of the wet method or the dry method, it is preferable to bake the predetermined resin coated on the surface of the carrier core material. For example, it is preferable to bake the predetermined resin coated on the surface of the carrier core material by an external heating method or an internal heating method using a fixed or fluid electric furnace, a rotary electric furnace, a burner furnace, or the like. Baking with microwaves is also possible. The baking temperature varies depending on the predetermined resin, but a temperature higher than the melting point or higher than the glass transition point is required. When the predetermined resin is a thermosetting resin or a condensation type resin, it is necessary to raise the temperature to a temperature at which the curing proceeds sufficiently.

[電子写真現像剤]
得られたキャリア粉と、所定のトナーとを混合することで、2成分系の電子写真現像剤を得ることが出来る。
[Electrophotographic developer]
A two-component electrophotographic developer can be obtained by mixing the obtained carrier powder and a predetermined toner.

以下、実施例に基き本発明を詳細に説明する。なお、本発明はこの実施例に限定されるものではない。なお、測定は以下のようにして行った。   Hereinafter, the present invention will be described in detail based on examples. In addition, this invention is not limited to this Example. The measurement was performed as follows.

[体積抵抗値測定]
印加電圧10V、100Vにおける体積抵抗値(電気抵抗)の測定方法について説明する。
水平に置かれた絶縁板(例えばテフロン(登録商標)でコートされたアクリル板)の上に、電極板として表面を電解研磨した板厚2mmの真鍮板2枚を、電極間距離が2mmとなるように配置する。当該2枚の電極板は、その法線方向が水平方向となるように設置する。この2枚の電極板間の空隙に被測定粉体200±1mgを装入したのち、それぞれの電極板の背後に断面積240mmの磁石を配置して、電極板間に被測定粉体のブリッジを形成させる。この状態で電極板間に1000Vの直流電圧を印加し、被測定粉体を流れる電流値を4端子法により測定する。その電流値と、電極板間距離2mmおよび断面積240mmから、被測定粉体の電気抵抗(体積抵抗に相当する次元のもの)を算出する。なお、使用する磁石は粉体がブリッジを形成できる限り、種々のものが使用できるが、後述実施例では表面磁束密度が1000ガウス以上の永久磁石(フェライト磁石)を使用している。
[Volume resistance measurement]
A method for measuring a volume resistance value (electric resistance) at applied voltages of 10 V and 100 V will be described.
On a horizontally placed insulating plate (for example, an acrylic plate coated with Teflon (registered trademark)), two brass plates having a thickness of 2 mm whose surfaces are electropolished as electrode plates have a distance between the electrodes of 2 mm. Arrange so that. The two electrode plates are installed such that the normal direction is the horizontal direction. After inserting 200 ± 1 mg of the powder to be measured into the gap between the two electrode plates, a magnet having a cross-sectional area of 240 mm 2 is arranged behind each electrode plate, and the powder to be measured is placed between the electrode plates. Form a bridge. In this state, a DC voltage of 1000 V is applied between the electrode plates, and the value of the current flowing through the powder to be measured is measured by the four-terminal method. From the current value, the distance between the electrode plates of 2 mm, and the cross-sectional area of 240 mm 2 , the electric resistance of the powder to be measured (the dimension corresponding to the volume resistance) is calculated. Various magnets can be used as long as the powder can form a bridge. In the examples described later, a permanent magnet (ferrite magnet) having a surface magnetic flux density of 1000 gauss or more is used.

[飽和磁化測定]
飽和磁化(σs)測定は、VSM(東英工業株式会社製、VSM−P7)により行った。
[Saturation magnetization measurement]
Saturation magnetization (σs) was measured by VSM (manufactured by Toei Kogyo Co., Ltd., VSM-P7).

[1KOe下における磁化測定]
1KOe下における磁化(σ1000)測定は、VSM(東英工業株式会社製、VSM−P7)により行った。
[Measurement of magnetization under 1 KOe]
The magnetization (σ 1000 ) measurement under 1 KOe was performed by VSM (manufactured by Toei Kogyo Co., Ltd., VSM-P7).

[残留磁化測定]
残留磁化(σr)測定は、VSM(東英工業株式会社製、VSM−P7)により行った。
[Residual magnetization measurement]
The residual magnetization (σr) was measured by VSM (manufactured by Toei Kogyo Co., Ltd., VSM-P7).

[保磁力測定]
保磁力(Hc)測定は、VSM(東英工業株式会社製、VSM−P7)により行った。
[Coercivity measurement]
The coercive force (Hc) was measured by VSM (manufactured by Toei Industry Co., Ltd., VSM-P7).

[比表面積]
比表面積は、BET法により測定した。
[Specific surface area]
The specific surface area was measured by the BET method.

[平均粒径測定]
平均粒径測定は、マイクロトラック粒度分析計(日機装株式会社製、マイクロトラックModel9320−X100)により行った。
[Average particle size measurement]
The average particle size was measured with a Microtrac particle size analyzer (Nikkiso Co., Ltd., Microtrac Model 9320-X100).

[粉体の見掛け密度]
粉体の見掛け密度は、JISZ−2504により測定した。
[Apparent density of powder]
The apparent density of the powder was measured according to JISZ-2504.

[流動度]
流動度は、JISZ−2052により測定した。
[Fluidity]
The fluidity was measured according to JISZ-2052.

〈焼成物(フェライト)の調製〉
Fe原料粉として、平均粒子径D50が約1μmに微粉砕されたFe粉を準備した。
一方、水に、分散剤としてポリカルボン酸アンモニウム系分散剤を1.0質量%、湿潤剤としてサンノプコ(株)製「SNウェット980」を0.05質量%、バインダーとしてポリビニルアルコールを0.02質量%添加した液(媒体液)を準備した。
前記秤量されたFe原料粉を媒体液に投入して、攪拌することにより、これら投入した物質の濃度が76質量%のスラリーを得た。このスラリーを湿式ボールミルにて湿式粉砕し、しばらく攪拌した。その後、スプレードライヤーにて当該スラリーを約180℃の熱風中に噴霧し、粒径10〜200μmの乾燥造粒物を得た。
<Preparation of fired product (ferrite)>
As the Fe raw material powder, Fe 2 O 3 powder finely pulverized to an average particle diameter D50 of about 1 μm was prepared.
On the other hand, 1.0% by mass of an ammonium polycarboxylate dispersant as a dispersant, 0.05% by mass of “SN Wet 980” manufactured by San Nopco Co., Ltd., and 0.02% of polyvinyl alcohol as a binder in water. A liquid (medium liquid) added by mass% was prepared.
The weighed Fe raw material powder was put into a medium solution and stirred to obtain a slurry having a concentration of 76% by mass of the added substance. The slurry was wet pulverized with a wet ball mill and stirred for a while. Then, the said slurry was sprayed in the hot air of about 180 degreeC with the spray dryer, and the dry granulated material with a particle size of 10-200 micrometers was obtained.

この造粒物から、網目61μmの篩網を用いて粗粒を分離し、網目25μmの篩網を用いて微粒を分離した後、窒素雰囲気下1000℃で5hr焼成し、フェライト化させた。このフェライト化した焼成物をハンマーミルで解粒し、風力分級機を用いて微粉を除去し、さらに網目54μmの振動ふるいで粒度調整して焼成物とした。   From this granulated material, coarse particles were separated using a sieve mesh having a mesh size of 61 μm, fine particles were separated using a sieve mesh having a mesh size of 25 μm, and then fired at 1000 ° C. for 5 hours in a nitrogen atmosphere to be ferritized. The ferritized fired product was pulverized with a hammer mill, fine powder was removed using an air classifier, and the particle size was adjusted with a vibrating screen having a mesh size of 54 μm to obtain a fired product.

〔実施例1〕
得られた焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)を用いて、攪拌回転数3000rpm、攪拌処理時間120分間の機械的処理を施した。尚、攪拌時の温度は80℃であった。そして、当該機械的処理を施した焼成物へ、処理温度300℃、窒素中で5分間の熱処理を施すことにより実施例1に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。さらに、このキャリア芯材の3000倍のSEM写真像を図1に示す。
[Example 1]
5 kg of the obtained fired product was subjected to a mechanical treatment using a super mixer (FS-GS-10JD type, manufactured by Fukae Pautech Co., Ltd.) with a stirring speed of 3000 rpm and a stirring time of 120 minutes. In addition, the temperature at the time of stirring was 80 degreeC. And the carrier core material which concerns on Example 1 was obtained by performing the heat processing for 5 minutes in process temperature 300 degreeC and nitrogen to the baked material which performed the said mechanical process. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material. Further, an SEM photographic image of 3000 times the carrier core material is shown in FIG.

〔実施例2〕
実施例1と同様にして粒度調製された焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)を用いて、攪拌回転数3500rpm、攪拌処理時間60分間の機械的処理を施した。尚、攪拌時の温度は90℃であった。そして、当該機械的処理を施した焼成物へ、RH炉にて処理温度300℃窒素中で5分間の熱処理を施すことにより、実施例2に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。
[Example 2]
Using a super mixer (FS-GS-10JD type, manufactured by Fukae Pautech Co., Ltd.), 5 kg of a calcined product prepared in the same manner as in Example 1 was mechanically treated with a stirring speed of 3500 rpm and a stirring time of 60 minutes. Was given. In addition, the temperature at the time of stirring was 90 degreeC. And the carrier core material which concerns on Example 2 was obtained by performing the heat processing for 5 minutes in process temperature 300 degreeC nitrogen with the RH furnace to the baked material which performed the said mechanical process. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material.

〔実施例3〕
実施例1と同様にして粒度調製された焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)を用いて、攪拌回転数2500rpm、攪拌処理時間180分間の機械的処理を施した。尚、攪拌時の温度は90℃であった。そして、当該機械的処理を施した焼成物へ、RH炉にて処理温度300℃窒素中で5分間の熱処理を施すことにより、実施例3に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。
Example 3
Using a super mixer (FS-GS-10JD type, manufactured by Fukae Pautech Co., Ltd.), 5 kg of the calcined product prepared in the same manner as in Example 1 was mechanically treated with a stirring speed of 2500 rpm and a stirring time of 180 minutes. Was given. In addition, the temperature at the time of stirring was 90 degreeC. And the carrier core material which concerns on Example 3 was obtained by performing the heat processing for 5 minutes in 300 degreeC nitrogen treatment temperature in the RH furnace to the baked material which performed the said mechanical process. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material.

〔実施例4〕
実施例1と同様にして粒度調整された焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)を用いて、攪拌回転数3000rpm、攪拌処理時間120分間の機械的処理を施した。尚、攪拌時の温度は80℃であった。そして、当該機械的処理を施した焼成物へ、RH炉にて処理温度400℃窒素中で5分間の熱処
理を施すことにより、実施例4に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。
Example 4
Using a super mixer (FS-GS-10JD type, manufactured by Fukae Pautech Co., Ltd.), 5 kg of the calcined product whose particle size was adjusted in the same manner as in Example 1, mechanical treatment at a stirring speed of 3000 rpm and a stirring time of 120 minutes. Was given. In addition, the temperature at the time of stirring was 80 degreeC. And the carrier core material which concerns on Example 4 was obtained by performing the heat processing for 5 minutes in process temperature 400 degreeC nitrogen with the RH furnace to the baked material which performed the said mechanical process. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material.

〔実施例5〕
実施例1と同様にして粒度調整された焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)を用いて、攪拌回転数3000rpm、攪拌処理時間120分間の機械的処理を施した。尚、攪拌時の温度は80℃であった。そして、当該機械的処理を施した焼成物へ、RH炉にて処理温度300℃窒素中で3分間の熱処理を施すことにより、実施例5に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。
Example 5
Using a super mixer (FS-GS-10JD type, manufactured by Fukae Pautech Co., Ltd.), 5 kg of the calcined product whose particle size was adjusted in the same manner as in Example 1, mechanical treatment at a stirring speed of 3000 rpm and a stirring time of 120 minutes. Was given. In addition, the temperature at the time of stirring was 80 degreeC. And the carrier core material which concerns on Example 5 was obtained by performing the heat processing for 3 minutes in process temperature 300 degreeC nitrogen by the RH furnace to the baked material which performed the said mechanical process. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material.

〔実施例6〕
実施例1と同様にして粒度調整された焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)を用いて、攪拌回転数3000rpm、攪拌処理時間120分間の機械的処理を施した。尚、攪拌時の温度は80℃であった。そして、当該機械的処理を施した焼成物へ、RH炉にて処理温度300℃窒素中で30分間の熱処理を施すことにより、実施例6に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。
Example 6
Using a super mixer (FS-GS-10JD type, manufactured by Fukae Pautech Co., Ltd.), 5 kg of the calcined product whose particle size was adjusted in the same manner as in Example 1, mechanical treatment at a stirring speed of 3000 rpm and a stirring time of 120 minutes. Was given. In addition, the temperature at the time of stirring was 80 degreeC. And the carrier core material which concerns on Example 6 was obtained by performing the heat processing for 30 minutes in process temperature 300 degreeC nitrogen with the RH furnace to the baked material which performed the said mechanical process. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material.

〔実施例7〕
実施例1と同様にして粒度調整された焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)を用いて、攪拌回転数3000rpm、攪拌処理時間120分間の機械的処理を施した。尚、攪拌時の温度は80℃であった。そして、当該機械的処理を施した焼成物へ、RH炉にて処理温度300℃窒素中で60分間の熱処理を施すことにより、実施例7に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。
Example 7
Using a super mixer (FS-GS-10JD type, manufactured by Fukae Pautech Co., Ltd.), 5 kg of the calcined product whose particle size was adjusted in the same manner as in Example 1, mechanical treatment at a stirring speed of 3000 rpm and a stirring time of 120 minutes. Was given. In addition, the temperature at the time of stirring was 80 degreeC. And the carrier core material which concerns on Example 7 was obtained by performing the heat processing for 60 minutes in process temperature 300 degreeC nitrogen with the RH furnace to the baked material which performed the said mechanical process. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material.

〔比較例1〕
実施例1と同様にして粒度調製された焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)を用いて、攪拌回転数3000rpm、攪拌処理時間120分間の機械的処理を施した。尚、攪拌時の温度は80℃であった。そして、当該機械的処理を施した焼成物へ、RH炉にて処理温度200℃窒素中で5分間の熱処理を施すことにより、比較例1に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。
[Comparative Example 1]
Using a super mixer (FS-GS-10JD type, manufactured by Fukae Pautech Co., Ltd.), 5 kg of a calcined product prepared in the same manner as in Example 1 was mechanically treated with a stirring speed of 3000 rpm and a stirring time of 120 minutes. Was given. In addition, the temperature at the time of stirring was 80 degreeC. And the carrier core material which concerns on the comparative example 1 was obtained by performing the heat processing for 5 minutes in process temperature 200 degreeC nitrogen with the RH furnace to the baked material which performed the said mechanical process. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material.

〔比較例2〕
実施例1と同様にして粒度調製された焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)で攪拌回転数3000rpm、攪拌処理時間120分間の機械的処理を施した。尚、攪拌時の温度は80℃であった。そして、当該機械的処理を施した焼成物へ、RH炉にて処理温度600℃窒素中で5分間の熱処理を施すことにより比較例2に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。
[Comparative Example 2]
5 kg of the calcined product whose particle size was prepared in the same manner as in Example 1 was subjected to mechanical treatment with a super mixer (FS-GS-10JD, manufactured by Fukae Pautech Co., Ltd.) at a stirring speed of 3000 rpm and a stirring time of 120 minutes. . In addition, the temperature at the time of stirring was 80 degreeC. And the carrier core material which concerns on the comparative example 2 was obtained by performing the heat processing for 5 minutes in process temperature 600 degreeC nitrogen with the RH furnace to the baked material which performed the said mechanical process. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material.

〔比較例3〕
実施例1と同様にして粒度調製された焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)で攪拌回転数3000rpm、攪拌処理時間120分間の機械的処理を施した。尚、攪拌時の温度は80℃であった。そして、当該機械的処理を施した焼成物へ、RH炉にて処理温度300℃窒素中で5分間施すことにより比較例3に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。
[Comparative Example 3]
5 kg of the calcined product whose particle size was prepared in the same manner as in Example 1 was subjected to mechanical treatment with a super mixer (FS-GS-10JD, manufactured by Fukae Pautech Co., Ltd.) at a stirring speed of 3000 rpm and a stirring time of 120 minutes. . In addition, the temperature at the time of stirring was 80 degreeC. And the carrier core material which concerns on the comparative example 3 was obtained by giving to the baked material which performed the said mechanical process for 5 minutes in process temperature 300 degreeC nitrogen by RH furnace. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material.

〔比較例4〕
実施例1と同様にして粒度調製された焼成物5kgを、スーパーミキサー(深江パウテック株式会社製、FS−GS−10JD型)で攪拌回転数3000rpm、攪拌処理時間240分間の機械的処理を施した。尚、攪拌時の温度は100℃であった。そして、当該機械的処理を施した焼成物へ、RH炉にて処理温度300℃窒素中で5分間施すことにより比較例4に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。
[Comparative Example 4]
5 kg of the calcined product whose particle size was prepared in the same manner as in Example 1 was subjected to mechanical treatment with a super mixer (FS-GS-10JD type, manufactured by Fukae Pautech Co., Ltd.) at a stirring rotation speed of 3000 rpm and a stirring treatment time of 240 minutes. . In addition, the temperature at the time of stirring was 100 degreeC. And the carrier core material which concerns on the comparative example 4 was obtained by giving to the baked material which performed the said mechanical process for 5 minutes in process temperature 300 degreeC nitrogen by RH furnace. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material.

〔比較例5〕
実施例1と同様にして粒度調整された焼成物を、RH炉にて処理温度500℃大気中で100分間の熱処理を施して比較例5に係るキャリア芯材を得た。このキャリア芯材の磁気特性、静電特性、粉体特性を表1に示す。さらに、このキャリア芯材の3000倍のSEM写真像を図2に示す。
[Comparative Example 5]
The calcined product whose particle size was adjusted in the same manner as in Example 1 was subjected to a heat treatment for 100 minutes in an atmosphere at a processing temperature of 500 ° C. in an RH furnace to obtain a carrier core material according to Comparative Example 5. Table 1 shows the magnetic properties, electrostatic properties, and powder properties of this carrier core material. Further, an SEM photograph image of the carrier core material 3000 times is shown in FIG.

〔実施例1〜7および比較例1〜5のまとめ〕
スーパーミキサーを用い回転数2000rpm以上、4000rpm以下の範囲で、30分間以上、180分間以下の機械的攪拌した後、300℃以上、400℃以下の不活性雰囲気下で熱処理を行った実施例1〜7に係るキャリア芯材は、比表面積が0.1〜0.
2m/gの酸化被膜を有し、100Vの電圧を印加したときの体積抵抗値が1.0E+07Ω・cm以上を示した。さらに、実施例1〜7に係るキャリア芯材の磁気特性は、1KOeの磁場においての磁化の値が高く、かつ残留磁化、保磁力の値は低く、優れていた。また、実施例1〜7に係るキャリア芯材の粉体特性は、見掛け密度が高く、また流動性も良く、優れていた。
[Summary of Examples 1-7 and Comparative Examples 1-5]
Example 1 in which heat treatment was performed in an inert atmosphere of 300 ° C. or more and 400 ° C. or less after mechanical stirring for 30 minutes or more and 180 minutes or less in the range of 2000 rpm or more and 4000 rpm or less using a super mixer. 7 has a specific surface area of 0.1-0.
It had an oxide film of 2 m 2 / g, and the volume resistance value when a voltage of 100 V was applied was 1.0E + 07 Ω · cm or more. Furthermore, the magnetic properties of the carrier cores according to Examples 1 to 7 were excellent because the magnetization value in a magnetic field of 1 KOe was high, and the residual magnetization and coercive force values were low. Moreover, the powder characteristics of the carrier core materials according to Examples 1 to 7 were excellent because of high apparent density and good fluidity.

これに対し、熱処理温度が200℃と低温であった比較例1に係るキャリア芯材は、熱処理温度が低いため磁化回復が満足出来ておらず、磁気特性はσ1000が63.4emu/gと低かった。 On the other hand, the carrier core material according to Comparative Example 1 in which the heat treatment temperature was as low as 200 ° C. did not satisfy the magnetization recovery because the heat treatment temperature was low, and the magnetic characteristics were σ 1000 of 63.4 emu / g. It was low.

また、熱処理温度が600℃と高温であった比較例2に係るキャリア芯材は、熱処理温度が高いため粒子同士が焼結し、粉体特性は、見掛け密度が2.18g/cmと低く、また流動度が24.5s/50gと高く、流動性が悪かった。 In addition, the carrier core material according to Comparative Example 2 in which the heat treatment temperature was as high as 600 ° C. has a high heat treatment temperature, so that the particles are sintered together, and the powder properties are as low as 2.18 g / cm 3 in apparent density. The fluidity was as high as 24.5 s / 50 g and the fluidity was poor.

また、攪拌回転数が500rpmであった比較例3に係るキャリア芯材は、機械的酸化処理が弱いため酸化膜が形成されず、体積抵抗値は、5.1E+05Ω・cmと低かった。   Further, in the carrier core material according to Comparative Example 3 in which the stirring rotation speed was 500 rpm, an oxide film was not formed because the mechanical oxidation treatment was weak, and the volume resistance value was as low as 5.1E + 05 Ω · cm.

また、攪拌回転数が3000rpmであったが、攪拌時間が240分間と長かった比較例4に係るキャリア芯材は、機械的酸化処理が強く、形成された酸化膜が剥離したため、体積抵抗値は、5.6E+06Ω・cmと低かった。   Moreover, although the stirring rotation speed was 3000 rpm, the carrier core material according to Comparative Example 4 in which the stirring time was as long as 240 minutes was strong in mechanical oxidation treatment, and the formed oxide film was peeled off. It was as low as 5.6E + 06 Ω · cm.

従来の技術に係る比較例5は、酸化膜が不均一であり、体積抵抗値が5.6E+05Ω・cmと低かった。見掛け密度は2.16g/cmと低く、流動度も24.4s/50gと高く、流動性が悪かった。 In Comparative Example 5 according to the prior art, the oxide film was non-uniform and the volume resistance value was as low as 5.6E + 05 Ω · cm. The apparent density was as low as 2.16 g / cm 3 , the fluidity was as high as 24.4 s / 50 g, and the fluidity was poor.

本発明に係るキャリア芯材のSEM写真である。It is a SEM photograph of the carrier core material concerning the present invention. 従来の技術に係るキャリア芯材のSEM写真である。It is a SEM photograph of the carrier core material concerning the conventional technology.

Claims (6)

マグネタイトまたはソフトフェライトを含み、
表面に、回転数2000rpm以上、4000rpm以下の範囲で攪拌した後、不活性雰囲気下で熱処理を行うことにより形成される、比表面積が0.1m/g以上、0.2m/g以下の酸化被膜を有し、
100Vの電圧を印加したときの体積抵抗値が1.0E+07Ω・cm以上であることを特徴とする電子写真現像剤用キャリア芯材。
Including magnetite or soft ferrite,
A specific surface area of 0.1 m 2 / g or more and 0.2 m 2 / g or less formed by performing heat treatment in an inert atmosphere after stirring on the surface at a rotational speed of 2000 rpm or more and 4000 rpm or less. Having an oxide film,
A carrier core material for an electrophotographic developer, having a volume resistance value of 1.0E + 07 Ω · cm or more when a voltage of 100 V is applied.
前記マグネタイトまたはソフトフェライトは、一般式(MFe3−x)O(但し、Mは、Mg、Mn、Ca、Ti、Cu、Zn、Sr、Niからなる群より選ばれる少なくとも1種の金属、0<x<3)で表わされるものであることを特徴とする請求項1に記載の電子写真現像剤用キャリア芯材。 The magnetite or soft ferrite has a general formula (M x Fe 3-x ) O 4 (where M is at least one selected from the group consisting of Mg, Mn, Ca, Ti, Cu, Zn, Sr, Ni). 2. The carrier core material for an electrophotographic developer according to claim 1, wherein the carrier core material is represented by metal, 0 <x <3). 1KOeの磁場においての磁力が40〜75emu/g
残留磁化が、0.5〜1.1emu/gであることを特徴とする請求項1または2に記載の電子写真現像剤用キャリア芯材。
Magnetic force in a magnetic field of 1 KOe is 40 to 75 emu / g
The carrier core material for an electrophotographic developer according to claim 1 or 2, wherein the residual magnetization is 0.5 to 1.1 emu / g.
マグネタイト粒子を含む粉またはソフトフェライト粒子を含む粉を、回転数2000rpm以上、4000rpm以下の範囲で攪拌した後、
不活性雰囲気下で熱処理を行うことを特徴とする電子写真現像剤用キャリア芯材の製造方法。
After stirring the powder containing magnetite particles or the powder containing soft ferrite particles in the range of rotation speed 2000rpm or more and 4000rpm or less,
A method for producing a carrier core material for an electrophotographic developer, wherein the heat treatment is performed in an inert atmosphere.
請求項1から請求項4のいずれかに記載の電子写真現像剤用キャリア芯材が、樹脂被覆されたものであることを特徴とする電子写真現像剤用キャリア。   The carrier for an electrophotographic developer according to any one of claims 1 to 4, wherein the carrier core material for an electrophotographic developer is coated with a resin. 請求項1から請求項3のいずれかに記載の電子写真現像剤用キャリア芯材、または、請求項5に記載の電子写真現像剤用キャリアと、
所定のトナーとを含むことを特徴とする電子写真現像剤。
The carrier core material for an electrophotographic developer according to any one of claims 1 to 3, or the carrier for an electrophotographic developer according to claim 5,
An electrophotographic developer comprising a predetermined toner.
JP2008094063A 2008-03-31 2008-03-31 Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer Pending JP2009244788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094063A JP2009244788A (en) 2008-03-31 2008-03-31 Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094063A JP2009244788A (en) 2008-03-31 2008-03-31 Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer

Publications (1)

Publication Number Publication Date
JP2009244788A true JP2009244788A (en) 2009-10-22

Family

ID=41306708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094063A Pending JP2009244788A (en) 2008-03-31 2008-03-31 Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer

Country Status (1)

Country Link
JP (1) JP2009244788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897916B1 (en) * 2010-10-15 2012-03-14 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2016200669A (en) * 2015-04-08 2016-12-01 Dowaエレクトロニクス株式会社 Carrier core material and method for forming the material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897916B1 (en) * 2010-10-15 2012-03-14 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
WO2012049900A1 (en) * 2010-10-15 2012-04-19 Dowaエレクトロニクス株式会社 Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
CN102859447A (en) * 2010-10-15 2013-01-02 同和电子科技有限公司 Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
CN102859447B (en) * 2010-10-15 2014-07-23 同和电子科技有限公司 Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
US8883388B2 (en) 2010-10-15 2014-11-11 Dowa Electronics Materials Co., Ltd. Carrier core particle for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
JP2016200669A (en) * 2015-04-08 2016-12-01 Dowaエレクトロニクス株式会社 Carrier core material and method for forming the material

Similar Documents

Publication Publication Date Title
JP4961571B2 (en) Manufacturing method of carrier core material
JP4779141B2 (en) Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier
JP5037982B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
EP2584410B1 (en) Carrier core for electronograph developer, carrier for electronograph developer, and electronograph developer
US9329514B2 (en) Carrier core particle for electrophotographic developer, method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer
JP2008241742A5 (en)
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5314457B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP4963618B2 (en) Carrier core material for electrophotographic developer, method for producing the same, and electrophotographic developer
JP2006524627A (en) Mg-based ferrite, carrier for electrophotographic development containing the ferrite, and developer containing the carrier
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5229856B2 (en) Carrier for electrophotographic developer and electrophotographic developer
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP5822377B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2009237155A (en) Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer
JP2009244788A (en) Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5129079B2 (en) Carrier core material, method for producing the same, and magnetic carrier for electrophotographic developer
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2009122133A (en) Carrier core material for electrophotographic developer and method for manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer
JP6121675B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP6061423B2 (en) Carrier core material, carrier for electrophotographic development using the same and developer for electrophotography
JP5407060B2 (en) Carrier core material and electrophotographic developer
WO2024204645A1 (en) Ferrite particles, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2023151599A (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP2023151510A (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer