JP2009237155A - Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer - Google Patents

Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer Download PDF

Info

Publication number
JP2009237155A
JP2009237155A JP2008081961A JP2008081961A JP2009237155A JP 2009237155 A JP2009237155 A JP 2009237155A JP 2008081961 A JP2008081961 A JP 2008081961A JP 2008081961 A JP2008081961 A JP 2008081961A JP 2009237155 A JP2009237155 A JP 2009237155A
Authority
JP
Japan
Prior art keywords
carrier
core material
carrier core
electrophotographic developer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008081961A
Other languages
Japanese (ja)
Inventor
Masahiro Nakamura
昌弘 中村
Yoshiaki Aiki
良明 相木
Toshiya Kitamura
利哉 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008081961A priority Critical patent/JP2009237155A/en
Publication of JP2009237155A publication Critical patent/JP2009237155A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrier core material for electrophotographic developer capable of preventing the occurrence of carrier scattering causing abnormality of image and achieving high effect in preventing peeling-off of the resin coated on a coat core material and to provide a carrier using this core material and a manufacturing method for the carrier core material. <P>SOLUTION: This carrier core material for electrophotographic developer contains magnetite or soft ferrite expressed in the following formula: (M<SB>x</SB>Fe<SB>3-x</SB>)O<SB>4</SB>(wherein M is divalent metal such as Fe, Mg, Mn, Ca, Ti, Cu, Zn, Sr, Ni or the like and 0≤x<1) and Al<SB>2</SB>O<SB>3</SB>having 0.1 mass% or more and 1 mass% or less by Al conversion and solid-dissolved in a ferrite phase. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子写真現像剤用キャリア芯材およびその製造方法、電子写真現像剤用キャリア、並びに電子写真現像剤に係り、更に詳細には、プリンター等で使用される電子写真現像に用いられる電子写真現像剤用キャリア芯材およびその製造方法、電子写真現像剤用キャリア、並びに電子写真現像剤に関する。   The present invention relates to a carrier core material for an electrophotographic developer and a method for producing the same, a carrier for an electrophotographic developer, and an electrophotographic developer, and more specifically, an electron used for electrophotographic development used in a printer or the like. The present invention relates to a carrier core material for a photographic developer and a method for producing the same, a carrier for an electrophotographic developer, and an electrophotographic developer.

従来、複写機、プリンター等で使用される電子写真現像方法としては、カスケード法、磁気ブラシ現像法、その他の方法が用いられている。近年は、感光体ドラム上に形成された静電潜像に、磁気ブラシを介してトナー像を顕像化させた後、熱定着させて画像を得る磁気ブラシ現像法が一般的な手段である。さらに最近では、当該磁気ブラシをトナーのみで形成する一成分系現像剤より、トナーを電子写真現像剤用キャリア(本発明において、「キャリア」と記載する場合がある。)の粒子上に電気的に配向させて磁気ブラシを形成する二成分系現像剤が多用されている。   Conventionally, as an electrophotographic developing method used in a copying machine, a printer, etc., a cascade method, a magnetic brush developing method, and other methods are used. In recent years, a general method is a magnetic brush developing method in which an electrostatic latent image formed on a photosensitive drum is visualized with a toner image via a magnetic brush and then thermally fixed to obtain an image. . More recently, the toner is electrically formed on particles of a carrier for an electrophotographic developer (in the present invention, sometimes referred to as “carrier”) than a one-component developer that forms the magnetic brush only with toner. Two-component developers that are oriented to form a magnetic brush are often used.

二成分系現像剤ではキャリアとして、当該キャリア粒子を構成する芯材(本発明において、「キャリア芯材」と記載する場合がある。)の表面にトナーと逆帯電性の樹脂を適度に被覆させたものが用いられる。キャリアの粒子が、磁気スリーブ上に形成する磁気ブラシは、磁気特性や表面形状により、ブラシチェーンの粒子同士の保持力を変化させることが知られている。画像現像時の条件により、現像スリーブの回転によって得られる遠心力が保持力に勝る結果、磁気ブラシからキャリアが飛散し感光体上に付着する現象(キャリア付着)が発生する。当該感光体上に付着したキャリアは、そのまま転写部に至ることがあるが、当該感光体上にキャリアが付着した状態では、当該キャリア周辺のトナー像が転写紙に転写されない為、画像異常となるものである。   In the two-component developer, as a carrier, the surface of the core material constituting the carrier particles (in the present invention, sometimes referred to as “carrier core material”) is appropriately coated with a toner and a reversely chargeable resin. Is used. It is known that the magnetic brush formed by the carrier particles on the magnetic sleeve changes the holding force between the particles of the brush chain depending on the magnetic characteristics and the surface shape. Depending on the conditions during image development, the centrifugal force obtained by the rotation of the developing sleeve is superior to the holding force, and as a result, a phenomenon occurs in which carriers are scattered from the magnetic brush and adhere to the photosensitive member (carrier adhesion). The carrier attached on the photoconductor may reach the transfer portion as it is, but in the state where the carrier is attached on the photoconductor, the toner image around the carrier is not transferred onto the transfer paper, resulting in an image abnormality. Is.

また、市場においては、当該電子写真に関して高画質化、電子写真用現像剤に関しては長寿命化の要求が高まっている。それに伴い、使用されているトナーの粒子は小粒径化され、当該トナーと混合されて用いられているキャリア粒子を小粒径化し、高画質を得ることが試みられている。
しかし、当該小粒径化されたキャリア粒子は、ますます、キャリア付着やキャリア飛散を発生し易いという問題があった。磁気ブラシを形成した小粒径キャリアの粒子間の保持力は、一個一個の粒子の持つ磁力と、粒子同士が結合している部分の面積に比例して強くなるため、小粒径化は保持力を阻害していると推測できる。
In the market, there is a growing demand for higher image quality for electrophotography and longer life for electrophotographic developers. Accompanying this, attempts have been made to reduce the particle size of the toner particles used and to reduce the particle size of the carrier particles used by mixing with the toner to obtain high image quality.
However, the carrier particles having a reduced particle size are more likely to cause carrier adhesion and carrier scattering. The holding force between the particles of the small particle carrier that forms the magnetic brush increases in proportion to the magnetic force of each particle and the area of the part where the particles are bonded to each other. It can be inferred that it is inhibiting the power.

一方、現像機の高速化に伴い、現像機内での撹拌負荷が増加し、撹拌ストレスによる磁性キャリア表面の樹脂の剥離が発生するという問題もある。その結果、キャリア芯材が露出することになり、電荷のリークが生じる。このような電荷のリークは画質劣化の原因の一つであるため、従来の磁性キャリアでは、被覆樹脂の膜厚を厚くすることで樹脂の剥離を防いでいる。
しかし、キャリア芯材と樹脂との間の結合力(接着力)が不十分であると、使用時間が増すにつれて、粒子同士の衝突により、樹脂皮膜の摩耗や破損が起こり、当該皮膜が脱離する。その際、キャリア芯材が表面露出し、帯電性が不均一となることから、画像劣化を引き起こす。
On the other hand, as the speed of the developing machine increases, the stirring load in the developing machine increases, and there is a problem that the resin on the surface of the magnetic carrier is peeled off due to stirring stress. As a result, the carrier core material is exposed, and charge leakage occurs. Since such charge leakage is one of the causes of image quality deterioration, the conventional magnetic carrier prevents the resin from peeling by increasing the thickness of the coating resin.
However, if the bonding force (adhesive strength) between the carrier core material and the resin is insufficient, as the usage time increases, the resin film wears and breaks due to collisions between the particles, and the film is detached. To do. At that time, the surface of the carrier core material is exposed and the chargeability becomes non-uniform, which causes image deterioration.

ここで、例えば特許文献1は、キャリア芯材にAlを1〜50質量%含有させ、樹脂の耐久性を向上させることを提案している。
特開平9−190016号公報
Here, for example, Patent Document 1 proposes that the carrier core material contains 1 to 50% by mass of Al 2 O 3 to improve the durability of the resin.
Japanese Patent Laid-Open No. 9-190016

しかしながら、本発明者らの検討によると、特許文献1に記載の技術では、Alの存在による磁気特性の低下と、当該磁気特性の低下に伴う現像画質の劣化が懸念される。 However, according to studies by the present inventors, the technique described in Patent Document 1 is concerned with a decrease in magnetic characteristics due to the presence of Al 2 O 3 and a deterioration in development image quality due to the decrease in the magnetic characteristics.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、画像異常の原因であるキャリア飛散を抑制し、且つコート芯材に被覆される樹脂の剥離を防止する効果の高いキャリア芯材およびその製造方法、キャリア、並びに、電子写真現像剤を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to suppress the scattering of the carrier that is the cause of the image abnormality and the resin coated on the coat core material. An object of the present invention is to provide a carrier core material having a high effect of preventing peeling, a method for producing the same, a carrier, and an electrophotographic developer.

本発明者らが、上記課題を解決すべく鋭意検討を重ねた結果、キャリア芯材中にAlを、従来技術において省みられることのなかった濃度で分散させることにより、上記課題が解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies by the present inventors to solve the above-mentioned problems, Al 2 O 3 is dispersed in a carrier core material at a concentration that has not been omitted in the prior art. The inventors have found that this can be solved, and have completed the present invention.

即ち、上記課題を解決するための第1の手段は、
Feで表記されるマグネタイト、または、一般式(MFe3−x)O(但し、Mは、Mg、Mn、Ca、Ti、Cu、Zn、Sr、Niからなる群より選ばれる少なくとも1種の金属、0<x<3)で表記されるソフトフェライトを有し、
当該マグネタイトまたはソフトフェライト中にAlが固溶し、
当該マグネタイトまたはソフトフェライト中に0.1質量%以上、1質量%以下のAlが含有されていることを特徴とする電子写真現像剤用キャリア芯材である。
That is, the first means for solving the above problems is
Magnetite represented by Fe 3 O 4 or general formula (M x Fe 3-x ) O 4 (where M is selected from the group consisting of Mg, Mn, Ca, Ti, Cu, Zn, Sr, Ni) At least one metal having a soft ferrite represented by 0 <x <3),
Al 2 O 3 is dissolved in the magnetite or soft ferrite,
A carrier core material for an electrophotographic developer, wherein the magnetite or soft ferrite contains 0.1% by mass or more and 1% by mass or less of Al.

第2の手段は、
前記マグネタイトまたはソフトフェライト中に固溶されたAlの粒径が、1μm以上、5μm以下であることを特徴とする第1の手段に記載の電子写真現像用キャリア芯材である。
The second means is
The carrier core material for electrophotographic development according to the first means, wherein the particle diameter of Al 2 O 3 dissolved in the magnetite or soft ferrite is 1 μm or more and 5 μm or less.

第3の手段は、
媒体液中へ、Alを粉末状態またはコロイド状態で分散させる工程と、
前記Alを分散させた媒体液中へ、Fe粉末と、金属M粉末(Mは、Fe、Mg、Mn、Ca、Ti、Cu、Zn、Sr、Niからなる群より選ばれた少なくとも1種の金属)とを分散させ、攪拌することによってスラリーを得る工程と、
得られたスラリーを乾燥し造粒して造粒粉を得る工程と、
得られた造粒粉を、酸素濃度が1%以下の雰囲気下において焼成し、磁性相を有する焼成物を得る工程と、
得られた焼成物を粉砕処理して粉末化し、その後に、所定の粒度分布とする工程と、
を順次行うことを特徴とする第1の手段に記載の電子写真現像剤用キャリア芯材の製造方法である。
The third means is
Dispersing Al 2 O 3 in a powder or colloidal state in a medium solution;
Fe powder and metal M powder (M is at least selected from the group consisting of Fe, Mg, Mn, Ca, Ti, Cu, Zn, Sr, Ni in the medium liquid in which the Al 2 O 3 is dispersed. 1 type of metal) is dispersed and stirred to obtain a slurry;
A step of drying and granulating the obtained slurry to obtain a granulated powder;
Firing the obtained granulated powder in an atmosphere having an oxygen concentration of 1% or less to obtain a fired product having a magnetic phase;
The obtained fired product is pulverized and powdered, and then a predetermined particle size distribution is obtained.
The method for producing a carrier core material for an electrophotographic developer according to the first means, wherein the steps are sequentially performed.

第4の手段は、
粒径1μm以上、5μm以下のAlを、媒体液中へ分散させることを特徴とする第3の手段に記載の電子写真現像剤用キャリア芯材の製造方法である。
The fourth means is
The method for producing a carrier core material for an electrophotographic developer according to a third means, wherein Al 2 O 3 having a particle size of 1 μm or more and 5 μm or less is dispersed in a medium solution.

第5の手段は、
第1または第2の手段に記載の電子写真現像剤用キャリア芯材が、熱硬化性樹脂によって被覆されていることを特徴とする電子写真現像剤用キャリアである。
The fifth means is
An electrophotographic developer carrier characterized in that the carrier core material for an electrophotographic developer described in the first or second means is coated with a thermosetting resin.

第6の手段は、
第5の手段に記載の電子写真現像剤用キャリアと、適宜なトナーとを含むことを特徴とする電子写真現像剤である。
The sixth means is
An electrophotographic developer comprising the carrier for an electrophotographic developer according to the fifth means and an appropriate toner.

本発明によれば、キャリア芯材中にAlを、従来技術において省みられることのなかった濃度で分散させることとしたため、画像異常の原因であるキャリア飛散を抑制し、且つコート芯材に被覆される樹脂の剥離を防止する効果の高いキャリア芯材およびその製造方法、キャリア、並びに、電子写真現像剤を提供できる。 According to the present invention, Al 2 O 3 is dispersed in the carrier core material at a concentration that has not been omitted in the prior art, so that carrier scattering, which is a cause of image abnormality, is suppressed, and the coated core is used. It is possible to provide a carrier core material having a high effect of preventing the resin coated on the material from being peeled off, a manufacturing method thereof, a carrier, and an electrophotographic developer.

以下、本発明について、1.キャリア芯材、2.キャリア、3.キャリア芯材およびキャリアの製造方法、4.電子写真現像剤、の順で説明する。
なお、本特許請求の範囲及び本明細書において、「%」は特記しない限り質量百分率を表すものとする。
Hereinafter, the present invention is as follows. Carrier core material, 2. Carrier, 3. 3. Carrier core material and carrier manufacturing method; The electrophotographic developer will be described in this order.
In the claims and the specification, “%” represents a mass percentage unless otherwise specified.

1.キャリア芯材
上述の如く、本発明に係るキャリア芯材は、Feで表記されるマグネタイト、または、一般式(MFe3−x)O(但し、Mは、Mg、Mn、Ca、Ti、Cu、Zn、Sr、Niからなる群より選ばれる少なくとも1種の金属、0<x<3)で表記されるソフトフェライトを有しており、当該マグネタイトまたはソフトフェライト中にはAlが固溶している。即ち、当該マグネタイトまたはソフトフェライト中には、当該Alに含有されていたAlが0.1質量%以上、1質量%以下、固溶している(本発明において「Al換算で0.1質量%以上、1質量%以下」と記載する場合がある)。具体的には、キャリア芯材がマグネタイトである場合、逆スピネル構造を持つ格子結晶中のFe原子をAl原子が置換して、FeAl3−xの置換型固溶体を形成している。
1. Carrier Core Material As described above, the carrier core material according to the present invention is a magnetite represented by Fe 3 O 4 or a general formula (M x Fe 3-x ) O 4 (where M is Mg, Mn, It has at least one metal selected from the group consisting of Ca, Ti, Cu, Zn, Sr, and Ni, and has soft ferrite represented by 0 <x <3), and the magnetite or soft ferrite contains Al. 2 O 3 is in solid solution. That is, in the magnetite or soft ferrite, Al contained in the Al 2 O 3 is in a solid solution of 0.1% by mass or more and 1% by mass or less (in the present invention, “0.1% in terms of Al”. 1 mass% or more and 1 mass% or less "). Specifically, when the carrier core material is magnetite, the Fe atom in the lattice crystal having an inverse spinel structure is substituted with an Al atom to form a substitutional solid solution of Fe x Al 3-x O 4 . .

[キャリア芯材を構成する粒子の表面性]
本発明者らの検討によれば、キャリア芯材への非磁性成分の添加(存在)の有無、添加量により、当該キャリア芯材を構成する粒子表面の凹凸の度合いやグレイン(表面に見られる凹状の筋に囲まれた隆起した凸部分)の成長性に大きな差異が見られる。
具体的には、Alを添加したキャリア芯材では、グレインが表面より外側に向けて成長し、凹凸性が大きくなる。また、係るキャリア芯材では、BET値で、0.1〜0.2m/g、表面粗さで、0.4〜0.6μmの範囲の表面性を有する。
なお、表面性の評価はBET(比表面積)、表面粗さ評価はレーザー顕微鏡を使用して行うことができる。
[Surface properties of particles constituting the carrier core]
According to the study by the present inventors, the degree of unevenness on the surface of the particles constituting the carrier core material and the grain (as seen on the surface) depending on the presence or absence and addition amount of the nonmagnetic component to the carrier core material. There is a large difference in the growth of the raised convex part surrounded by the concave streaks.
Specifically, in the carrier core material to which Al 2 O 3 is added, the grains grow outward from the surface, and the unevenness increases. The carrier core material has a surface property in the range of 0.1 to 0.2 m 2 / g in terms of BET value and in the range of 0.4 to 0.6 μm in terms of surface roughness.
The surface property can be evaluated using BET (specific surface area), and the surface roughness can be evaluated using a laser microscope.

このように、キャリア芯材へAlを添加することで、BET値および表面粗さの大きいキャリア芯材を得ることが出来る。そして、キャリア芯材のBET値および表面粗さを大きくすることにより、キャリア飛散が抑制される。これは、キャリア芯材のBET値および表面粗さを大きくすることで、電子写真現像機内で形成される磁気ブラシにおいて、粒子同士の接触面積が増え磁気ブラシの保持力が増大する為と考えられる。 Thus, a carrier core material having a large BET value and surface roughness can be obtained by adding Al 2 O 3 to the carrier core material. And carrier scattering is suppressed by enlarging the BET value and surface roughness of a carrier core material. This is considered to be because the contact area between the particles increases in the magnetic brush formed in the electrophotographic developing machine by increasing the BET value and the surface roughness of the carrier core material, and the holding power of the magnetic brush is increased. .

[キャリア芯材の組成]
本発明に係るキャリア芯材を構成する磁性成分物質は、対象となる電子写真現像装置の特性に合った磁気特性を有する物質を選択すればよい。例えば、画像特性を考慮した場合、マグネタイトであるFeや、ソフトフェライトであるMnFe3−x等が好適に用いられる。これらの磁性物質は、十分高い磁化率と低い残留磁化をもつためである。
一方、本発明のキャリア芯材では、上述のように、表面性を変化させるため非磁性成分を存在させる。なお、キャリアの磁気特性は、当該非磁性成分の存在比率に応じて低下するが、表面性と、キャリア芯材に必要とされる磁力や抵抗値とのバランスを考慮し、非磁性成分であるAlの添加量を調整することで、非常に再現性良くキャリアの特性を調整できる。
[Composition of carrier core material]
As the magnetic component substance constituting the carrier core material according to the present invention, a substance having a magnetic property suitable for the characteristics of the target electrophotographic developing apparatus may be selected. For example, in consideration of image characteristics, magnetite Fe 3 O 4 , soft ferrite Mn x Fe 3-x O 4 and the like are preferably used. This is because these magnetic substances have a sufficiently high magnetic susceptibility and low remanent magnetization.
On the other hand, in the carrier core material of the present invention, as described above, a nonmagnetic component is present in order to change the surface property. Note that the magnetic properties of the carrier are reduced according to the abundance ratio of the non-magnetic component, but it is a non-magnetic component in consideration of the balance between the surface property and the magnetic force and resistance value required for the carrier core material. By adjusting the amount of Al 2 O 3 added, the carrier characteristics can be adjusted with very good reproducibility.

具体的には、Al添加の場合は、例えば、キャリア芯材のメイン原料のFeとフェライトを合成するその他の金属酸化物の総量に対して、当該Alに由来するAl量が0.1質量%以上、1質量%以下となるよう原料混合時に添加すれば良い。当該Al量が0.1%以上であればキャリア芯材を構成するグレインの凹凸を確保でき、また1質量%以下であれば、キャリア形状が球状を大きく外れることがなく、現像機内での流動性を保ち、且つ、実用上必要な磁力を維持できる。更に望ましくは0.3質量%以上、1質量%以下の割合で添加するのがよい。Alの添加する形態は、粉末状であっても、コロイド溶液状であっても良い。 Specifically, in the case of adding Al 2 O 3 , for example, it is derived from Al 2 O 3 with respect to the total amount of other metal oxides that synthesize ferrite with Fe 2 O 3 as the main raw material of the carrier core material. What is necessary is just to add at the time of raw material mixing so that the amount of Al to be 0.1 mass% or more and 1 mass% or less. If the Al content is 0.1% or more, the unevenness of the grains constituting the carrier core material can be secured, and if it is 1% by mass or less, the carrier shape does not greatly deviate from the spherical shape, and the flow in the developing machine The magnetic force necessary for practical use can be maintained. More preferably, it is added at a ratio of 0.3% by mass or more and 1% by mass or less. The form in which Al 2 O 3 is added may be powder or colloidal solution.

[粒径]
本発明に係るキャリア芯材の粒度分布は、平均粒径が10μm以上、80μm以下であることが好ましい。キャリア芯材の粒径がこの範囲内にあると、画像特性が良好で、且つ、キャリア飛散が抑制出来るからである。よって、上記の粒度分布となるよう、製造工程中あるいは工程後に篩などにより分級処理を行うことが好ましい。
[Particle size]
The particle size distribution of the carrier core material according to the present invention preferably has an average particle size of 10 μm or more and 80 μm or less. This is because when the particle diameter of the carrier core is within this range, the image characteristics are good and carrier scattering can be suppressed. Therefore, it is preferable to perform a classification treatment with a sieve or the like during or after the production process so as to obtain the above particle size distribution.

2.キャリア
本発明に係るキャリアは、上述のキャリア芯材に、必要な帯電性に応じた熱硬化性樹脂類またはこれらの任意の組合せに係る樹脂を被覆してなる。
このような構成をとることにより、非磁性酸化物を添加しないキャリアと比較して、キャリア飛散が抑制され、破砕特性が大幅に改善される。樹脂被覆後のキャリアの破砕試験強度が良好になるのは、キャリア粒子の表面凹凸部と樹脂被覆面の接触面積に応じて、結合力が上がり、剥離を抑制できるからである。
2. Carrier The carrier according to the present invention is obtained by coating the above-described carrier core material with a thermosetting resin according to a required chargeability or a resin according to any combination thereof.
By adopting such a configuration, carrier scattering is suppressed and the crushing characteristics are greatly improved as compared with a carrier to which a nonmagnetic oxide is not added. The reason why the crushing test strength of the carrier after the resin coating is good is that the bonding force increases according to the contact area between the surface irregularities of the carrier particles and the resin coating surface, and peeling can be suppressed.

3.キャリア芯材およびキャリアの製造方法
本発明に係るキャリア芯材の製造においては、磁性粉となる原料の他にAl等の非磁性成分を併せて用いる。その際、非磁性成分の粒径が大きいと、粒子内で均一な分散性が悪くなったり、グレインの成長が不均一になったりすることがある。このため、非磁性成分は、5μm以下であることが好ましい。
3. Carrier Core Material and Carrier Manufacturing Method In the manufacture of the carrier core material according to the present invention, a nonmagnetic component such as Al 2 O 3 is used in addition to the raw material to be magnetic powder. At this time, if the particle size of the nonmagnetic component is large, uniform dispersibility in the particles may be deteriorated, and grain growth may be uneven. For this reason, it is preferable that a nonmagnetic component is 5 micrometers or less.

[原料]
Feで表記されるマグネタイト、または、一般式(MFe3−x)O(但し、Mは、Mg、Mn、Ca、Ti、Cu、Zn、Sr又はNi、又はこれらの任意に組合せたもの、0<x<3)で表記されるソフトフェライトのFe供給源としては、Feが好適に使用できる。Mの原料としては、Fe、Mg、Mn、Ca、Ti、Cu、Zn、Sr又はNi、及びこれら2価の金属を任意に組み合わせたものが好適に使用できる。例えば、MnであればMnCO、Mn等が使用でき、MgであればMgO、Mg(OH)、MgCOが好適に使用できる。そして、これらの原料の配合比を、当該マグネタイトまたはソフトフェライトの目的組成と一致させて秤量し混合して、金属原料混合物を得ることができる。
[material]
Magnetite represented by Fe 3 O 4 , or general formula (M x Fe 3-x ) O 4 (where M is Mg, Mn, Ca, Ti, Cu, Zn, Sr or Ni, or any of these) As an Fe supply source of soft ferrite represented by 0 <x <3), Fe 2 O 3 can be preferably used. As a raw material of M, Fe, Mg, Mn, Ca, Ti, Cu, Zn, Sr or Ni, and any combination of these divalent metals can be suitably used. For example, Mn can be MnCO 3 , Mn 3 O 4 or the like, and Mg can be suitably used MgO, Mg (OH) 2 , or MgCO 3 . Then, the mixing ratio of these raw materials is matched with the target composition of the magnetite or soft ferrite and weighed and mixed to obtain a metal raw material mixture.

金属原料に配合するAlの形態としては、酸化物であるAlが好適に使用される。
Alは、粉体状であっても、粒子を水分中に均一分散させたコロイド状液であっても良い。Al粒子の粒径が1μm以上、5μm以下であれば、キャリア芯材を構成
するグレインの凹凸を確保出来る。
As the form of Al blended with the metal raw material, Al 2 O 3 which is an oxide is preferably used.
Al 2 O 3 may be in a powder form or a colloidal liquid in which particles are uniformly dispersed in moisture. If the particle size of the Al 2 O 3 particles is 1 μm or more and 5 μm or less, the unevenness of the grains constituting the carrier core material can be secured.

〔スラリー化〕
上記の原料を秤量した後、これらを媒体液中で混合撹拌することによってスラリー化する(スラリー化工程)。当該スラリー化前に、必要に応じて、原料混合物へ乾式で粉砕処理を加えてもよい。原料粉と媒体液の混合比は、スラリーの固形分濃度が50〜90質量%になるようにすることが望ましい。媒体液は、水にバインダー、分散剤等を添加したものを用意する。バインダーとしては、例えばポリビニルアルコールが好適に使用でき、その媒体液中濃度は0.5〜2質量%程度とすればよい。分散剤としては、例えばポリカルボン酸アンモニウム系のものが好適に使用でき、その媒体液中濃度も0.5〜2質量%程度とすればよい。その他、潤滑剤や、焼結促進剤として、リンやホウ酸等を添加することができる。混合攪拌して得られたスラリーに対し、さらに湿式粉砕を施すことが好ましい。
[Slurry]
After weighing the above raw materials, they are slurried by mixing and stirring them in a medium solution (slurry process). Prior to the slurrying, if necessary, the raw material mixture may be subjected to a dry pulverization treatment. The mixing ratio of the raw material powder and the medium liquid is preferably such that the slurry has a solid content concentration of 50 to 90% by mass. The medium liquid is prepared by adding a binder, a dispersant and the like to water. As the binder, for example, polyvinyl alcohol can be suitably used, and the concentration in the medium liquid may be about 0.5 to 2% by mass. As the dispersant, for example, an ammonium polycarboxylate-based one can be preferably used, and the concentration in the medium liquid may be about 0.5 to 2% by mass. In addition, phosphorus, boric acid, or the like can be added as a lubricant or a sintering accelerator. It is preferable to further wet-grind the slurry obtained by mixing and stirring.

また、上記の媒体液中へ、Fe原料、M原料の添加前に、Alを先に分散させることが好ましい。Alの添加量は、上述したように、Al換算で0.1質量%以上、1質量%以下となる量とする。
当該Alの添加量が、Fe原料、M原料の量に対し非常に微量であるため、先に媒体液中に分散させることで、均一な分散状態を得られる。尤も、Fe原料及びM原料とAlの媒体液中への分散の順序は、上記の逆、また同時でも可能である。但し、その場合は、上記のスラリーの攪拌を十分に行ったり、湿式粉砕の回数を増やす等の処理を行ったりすることで、Alの分散性を上げることが求められる。
Moreover, it is preferable to disperse Al 2 O 3 first in the medium liquid before adding the Fe raw material and the M raw material. As described above, the amount of Al 2 O 3 added is 0.1% by mass or more and 1% by mass or less in terms of Al.
Since the addition amount of the Al 2 O 3 is very small with respect to the amounts of the Fe raw material and the M raw material, a uniform dispersion state can be obtained by first dispersing in the medium liquid. However, the order of dispersion of the Fe raw material, the M raw material and the Al 2 O 3 in the medium liquid can be reversed as described above or simultaneously. However, in that case, it is required to increase the dispersibility of Al 2 O 3 by sufficiently stirring the slurry or performing a treatment such as increasing the number of wet pulverizations.

また、上記の媒体液中へ、Fe原料、M原料の添加前に、Alを先に分散させることが好ましい。Alの添加量は、上述したように、Al換算で0.1質量%以上、1質量%以下となる量とする。
当該Alの添加量が、Fe原料、M原料の量に対し非常に微量であるため、先に媒体液中に分散させることで、均一な分散状態を得られる。尤も、Fe原料及びM原料とAlの媒体液中への分散の順序は、上記の逆、また同時でも可能である。但し、その場合は、上記のスラリーの攪拌を十分に行ったり、湿式粉砕の回数を増やす等の処理を行ったりすることで、Alの分散性を上げることが求められる。
Moreover, it is preferable to disperse Al 2 O 3 first in the medium liquid before adding the Fe raw material and the M raw material. As described above, the amount of Al 2 O 3 added is 0.1% by mass or more and 1% by mass or less in terms of Al.
Since the addition amount of the Al 2 O 3 is very small with respect to the amounts of the Fe raw material and the M raw material, a uniform dispersion state can be obtained by first dispersing in the medium liquid. However, the order of dispersion of the Fe raw material, the M raw material and the Al 2 O 3 in the medium liquid can be reversed as described above or simultaneously. However, in that case, it is required to increase the dispersibility of Al 2 O 3 by sufficiently stirring the slurry or performing a treatment such as increasing the number of wet pulverizations.

〔造粒〕
造粒は、上記スラリーを噴霧乾燥機に導入することによって好適に実施できる。噴霧乾燥時の雰囲気温度は100〜300℃程度とすればよい。これにより、概ね、粒子径が10〜200μmの造粒粉を得ることができる(造粒工程)。得られた造粒粉は製品最終粒径を考慮し、振動ふるい等を用いて、粗大粒子や微粉を除去することにより粒度調整することが望ましい。
[Granulation]
Granulation can be suitably carried out by introducing the slurry into a spray dryer. The atmospheric temperature during spray drying may be about 100 to 300 ° C. Thereby, the granulated powder whose particle diameter is 10-200 micrometers can be obtained in general (granulation process). It is desirable to adjust the particle size of the resulting granulated powder by removing coarse particles and fine powder using a vibration sieve or the like in consideration of the final particle size of the product.

〔焼成〕
次に、造粒粉を700〜1500℃程度に加熱した炉に投入して、マグネタイトまたはソフトフェライトを合成するための一般的な手法で焼成することにより、フェライトを生成させる(焼成工程)。焼成温度が700℃以上であれば、焼結がある程度進み、形状を維持でき、また、生成したフェライトの磁気特性が保たれるので、キャリア飛散が抑制される。1500℃超であると、粒子同士の過剰焼結が起こらず、異形粒子が生じることがない。当該観点からは、700〜1500℃程度で焼成することが好ましい。焼成温度の制御により、キャリア芯材へ所望のBET比表面積を付与することができる。具体的には、焼成温度を上げることでBET比表面積の値は低下し、焼成温度を下げることでBET比表面積の値を増加させることができる。
また、焼成雰囲気は、焼成品の磁力、電気抵抗等のキャリア粉体特性に関わっている。
特に磁力は、フェライトの種類によって、大きく影響を受けるため、焼成炉内の酸素濃度を1%以下の還元性の強い雰囲気とすることが望ましい。
[Baking]
Next, the granulated powder is put into a furnace heated to about 700 to 1500 ° C. and fired by a general technique for synthesizing magnetite or soft ferrite, thereby generating ferrite (firing step). If the firing temperature is 700 ° C. or higher, sintering proceeds to some extent, the shape can be maintained, and the magnetic properties of the generated ferrite are maintained, so that carrier scattering is suppressed. When the temperature is higher than 1500 ° C., excessive sintering between particles does not occur, and irregular particles do not occur. From this point of view, it is preferable to fire at about 700 to 1500 ° C. By controlling the firing temperature, a desired BET specific surface area can be imparted to the carrier core material. Specifically, the value of the BET specific surface area is decreased by raising the firing temperature, and the value of the BET specific surface area can be increased by lowering the firing temperature.
In addition, the firing atmosphere is related to carrier powder characteristics such as magnetic force and electrical resistance of the fired product.
In particular, since the magnetic force is greatly affected by the type of ferrite, it is desirable that the oxygen concentration in the firing furnace be a highly reducing atmosphere with a concentration of 1% or less.

得られた焼成物は、この段階で粒度調整することが望ましい。例えば、焼成物をハンマーミル等で粗解粒し、次に気流分級機で1次分級し、さらに、振動ふるい又は超音波ふるいで粒度を揃える処理を行うことにより、粒度調整された焼成物を得ることができる。当該粒度調整後、さらに磁場選鉱機にかけ、非磁性粒子を除去することが望ましい。   It is desirable to adjust the particle size of the obtained fired product at this stage. For example, the baked product is coarsely pulverized with a hammer mill or the like, then subjected to primary classification with an airflow classifier, and further subjected to a process of aligning the particle size with a vibration sieve or an ultrasonic sieve to obtain a baked product with adjusted particle size. Obtainable. After adjusting the particle size, it is desirable to remove the non-magnetic particles by applying a magnetic field separator.

〔高抵抗化処理〕
上記焼成物を酸化性雰囲気中にて加熱することにより、高抵抗層を形成し、高抵抗化してもよい(高抵抗化処理工程)。加熱雰囲気は、大気、又は、酸素と窒素の混合雰囲気とすればよい。加熱温度は200〜800℃、好ましくは250〜600℃とし、処理時間は30min〜5h程度とすればよい。
このようにして本発明に係るキャリア芯材を得ることができる。
[High resistance treatment]
By heating the fired product in an oxidizing atmosphere, a high resistance layer may be formed and the resistance may be increased (high resistance treatment step). The heating atmosphere may be air or a mixed atmosphere of oxygen and nitrogen. The heating temperature is 200 to 800 ° C., preferably 250 to 600 ° C., and the treatment time is about 30 min to 5 h.
Thus, the carrier core material according to the present invention can be obtained.

〔キャリアの製造〕
得られたキャリア芯材に、樹脂被覆を施す。被覆の方式としては乾式法、流動床、浸漬法等により被覆することができる。より好ましくはキャリア内部に樹脂を充填する観点から、浸漬法や乾式法がより好ましい。
ここでは浸漬法を例に挙げ説明する。被覆樹脂としては、シリコーン系樹脂やアクリル樹脂が好ましい。被覆樹脂を溶剤(トルエン等)に20〜40質量%程度溶解させ、樹脂溶液を調製する。被覆操作は、キャリア芯材に対して固形分で0.7〜10%の範囲となるように容器中で混合した後、150〜250℃にて加熱撹拌することにより実施できる。上記の樹脂溶液の濃度、および、樹脂溶液とキャリア芯材との混合比によって、樹脂の被覆量をコントロールすることができる。当該樹脂被覆後、さらに加熱処理を施して樹脂被覆層を硬化させることによって、本発明に係るキャリアが得られる。
[Manufacture of carriers]
The obtained carrier core material is coated with a resin. As a coating method, it can be coated by a dry method, a fluidized bed, a dipping method or the like. More preferably, from the viewpoint of filling the resin inside the carrier, an immersion method or a dry method is more preferable.
Here, the dipping method will be described as an example. As the coating resin, a silicone resin or an acrylic resin is preferable. About 20 to 40% by mass of the coating resin is dissolved in a solvent (toluene or the like) to prepare a resin solution. The coating operation can be carried out by heating and stirring at 150 to 250 ° C. after mixing in a container so that the solid content is 0.7 to 10% of the carrier core material. The coating amount of the resin can be controlled by the concentration of the resin solution and the mixing ratio of the resin solution and the carrier core material. After the resin coating, the carrier according to the present invention is obtained by further heat-treating the resin coating layer to cure it.

4.電子写真現像剤
得られた本発明に係るキャリアを、適切な粒径を有するトナーと混合することによって、電子写真現像剤を得ることができる。
4). Electrophotographic Developer An electrophotographic developer can be obtained by mixing the obtained carrier according to the present invention with a toner having an appropriate particle size.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples.

(実施例1)
原料として、平均粒子径D50が約2.2μmに微粉砕されたAl粉、Fe粉を用意した。Al粉は、Fe粉量に対して、Al換算で(当該Alに含有されているAlの質量%として)、1.0質量%となるように秤量した。尚、Al成分は、粉末状のものではなく、コロイド状の様に液状の形態で添加しても良い。
一方、水に、分散剤としてポリカルボン酸アンモニウム系分散剤を1.0質量%、湿潤剤としてサンノプコ(株)製「SNウェット980」を0.05質量%、バインダーとしてポリビニルアルコールを0.02質量%、添加した液(媒体液)を準備した。この媒体液にAl粉を投入し、十分に分散した後、前記秤量されたFe原料粉を投入して、攪拌することにより、これら投入した物質の濃度が76質量%のスラリーを得た。
このスラリーを湿式ボールミルにて湿式粉砕し、しばらく攪拌した後、スプレードライヤーにて該スラリーを約180℃の熱風中に噴霧し、粒径10〜200μmの乾燥造粒物を得た。
Example 1
As raw materials, Al 2 O 3 powder and Fe 2 O 3 powder finely pulverized to an average particle diameter D50 of about 2.2 μm were prepared. The Al 2 O 3 powder was weighed so as to be 1.0 mass% in terms of Al (as mass% of Al contained in the Al 2 O 3) with respect to the amount of Fe 2 O 3 powder. The Al 2 O 3 component may be added in a liquid form such as a colloidal form instead of a powdery form.
On the other hand, 1.0% by mass of an ammonium polycarboxylate dispersant as a dispersant, 0.05% by mass of “SN Wet 980” manufactured by San Nopco Co., Ltd., and 0.02% of polyvinyl alcohol as a binder in water. A liquid (medium liquid) added at a mass% was prepared. After the Al 2 O 3 powder is charged into this medium solution and sufficiently dispersed, the weighed Fe raw material powder is charged and stirred to obtain a slurry having a concentration of 76% by mass of these charged substances. It was.
This slurry was wet pulverized with a wet ball mill, stirred for a while, and then sprayed into hot air at about 180 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 to 200 μm.

この造粒物から、網目61μmの篩網を用いて粗粒を分離し、網目25μmの篩網を用いて微粒を分離した後、窒素雰囲気下1000℃で5hr焼成し、マグネタイト化させた。このマグネタイト化した焼成物をハンマーミルで解粒し、風力分級機を用いて微粉を除去し、網目54μmの振動ふるいで粒度調整した。   From this granulated material, coarse particles were separated using a sieve mesh having a mesh size of 61 μm, fine particles were separated using a sieve mesh having a mesh size of 25 μm, and then calcined at 1000 ° C. for 5 hours in a nitrogen atmosphere to be magnetized. The magnetized fired product was pulverized with a hammer mill, fine powder was removed using an air classifier, and the particle size was adjusted with a vibrating screen having a mesh size of 54 μm.

粒度調整された焼成物を、350℃の大気下で3hr保持することにより高抵抗化処理を施し、実施例1に係るキャリア芯材を得た。このキャリア芯材の添加剤の添加量と粉体特性、磁気特性、および後述する評価試験結果を表1に示す。
さらに、当該実施例に係るキャリア芯材のSEM写真像(2500倍)を図1に示す。
The fired product whose particle size was adjusted was held at 350 ° C. in the atmosphere for 3 hours to give a resistance increasing treatment, and the carrier core material according to Example 1 was obtained. Table 1 shows the amount of the carrier core additive added, powder characteristics, magnetic characteristics, and evaluation test results described later.
Furthermore, the SEM photograph image (2500 times) of the carrier core material which concerns on the said Example is shown in FIG.

(実施例2)
造粒物の焼成温度を1100℃とした以外は、実施例1と同様の操作を繰り返して本例のキャリア芯材を得た。
このキャリア芯材の添加剤の添加量と粉体特性、磁気特性、および後述する評価試験結果を表1に示す。
さらに、当該実施例に係るキャリア芯材のSEM写真像(2500倍)を図2に示す。
(Example 2)
A carrier core material of this example was obtained by repeating the same operation as in Example 1 except that the granulated product was fired at 1100 ° C.
Table 1 shows the amount of the carrier core additive added, powder characteristics, magnetic characteristics, and evaluation test results described later.
Furthermore, the SEM photograph image (2500 times) of the carrier core material which concerns on the said Example is shown in FIG.

(実施例3)
平均粒子径D50が約4.6μmに微粉砕されたAl粉を用意した。当該Al粉をFe粉量に対して、Al換算で、1.0質量%となるように秤量した以外は、実施例1と同様の操作を繰り返して本例のキャリア芯材を得た。
このキャリア芯材の添加剤の添加量と粉体特性、磁気特性、および後述する評価試験結果を表1に示す。
さらに、当該実施例に係るキャリア芯材のSEM写真像(2500倍)を図3に示す。
(Example 3)
Al 2 O 3 powder finely pulverized to an average particle diameter D50 of about 4.6 μm was prepared. The carrier core of the present example was repeated by repeating the same operation as in Example 1, except that the Al 2 O 3 powder was weighed to 1.0 mass% in terms of Al with respect to the amount of Fe 2 O 3 powder. The material was obtained.
Table 1 shows the amount of the carrier core additive added, powder characteristics, magnetic characteristics, and evaluation test results described later.
Furthermore, the SEM photograph image (2500 times) of the carrier core material which concerns on the said Example is shown in FIG.

(実施例4)
平均粒子径D50が約4.6μmに微粉砕されたAl粉を用意した。当該Al粉をFe粉量に対して、Al換算で、1.0質量%となるように秤量し、得られた乾燥造粒物の焼成温度を1100℃とした以外は、得られた実施例1と同様の操作を繰り返して本例のキャリア芯材を得た。
このキャリア芯材の添加剤の添加量と粉体特性、磁気特性、および後述する評価試験結果を表1に示す。
さらに、当該実施例に係るキャリア芯材のSEM写真像(2500倍)を図4に示す。
Example 4
Al 2 O 3 powder finely pulverized to an average particle diameter D50 of about 4.6 μm was prepared. The Al 2 O 3 powder was weighed to 1.0 mass% in terms of Al with respect to the amount of Fe 2 O 3 powder, and the calcining temperature of the obtained dried granulated product was 1100 ° C. The same operations as in Example 1 were repeated to obtain a carrier core material of this example.
Table 1 shows the amount of the carrier core additive added, powder characteristics, magnetic characteristics, and evaluation test results described later.
Furthermore, the SEM photograph image (2500 times) of the carrier core material which concerns on the said Example is shown in FIG.

(実施例5)
平均粒子径D50が約1.0μmに微粉砕されたAl粉を用意した。添加するAl粉をFe粉量に対して、Al換算で、0.5質量%となるように秤量した以外は、実施例1と同様の操作を繰り返して本例のキャリア芯材を得た。
このキャリア芯材の添加剤の添加量と粉体特性、磁気特性、および後述する評価試験結果を表1に示す。
(Example 5)
Al 2 O 3 powder finely pulverized to an average particle diameter D50 of about 1.0 μm was prepared. The carrier of this example was repeated by repeating the same operation as in Example 1 except that the Al 2 O 3 powder to be added was weighed so as to be 0.5% by mass in terms of Al with respect to the amount of Fe 2 O 3 powder. A core material was obtained.
Table 1 shows the amount of the carrier core additive added, powder characteristics, magnetic characteristics, and evaluation test results described later.

(比較例1)
平均粒子径D50が約0.24μmに微粉砕されたAl粉を用意した。当該Al粉を、Fe粉量に対して、Al換算で、1.5質量%となるように秤量した以外は、実施例1と同様の操作を繰り返して本例のキャリア芯材を得た。
このキャリア芯材の添加剤の添加量と粉体特性、磁気特性、および後述する評価試験結果を表1に示す。
さらに、当該比較例に係るキャリア芯材のSEM写真像(2500倍)を図5に示す。
(Comparative Example 1)
Al 2 O 3 powder finely pulverized to an average particle diameter D50 of about 0.24 μm was prepared. The carrier of this example was repeated by repeating the same operation as in Example 1 except that the Al 2 O 3 powder was weighed so as to be 1.5% by mass in terms of Al with respect to the amount of Fe 2 O 3 powder. A core material was obtained.
Table 1 shows the amount of the carrier core additive added, powder characteristics, magnetic characteristics, and evaluation test results described later.
Furthermore, the SEM photograph image (2500 times) of the carrier core material which concerns on the said comparative example is shown in FIG.

(キャリアの作製)
上記各実施例および比較例で得られたキャリア芯材へ、以下に記載の方法で樹脂を被覆した。
まずシリコーン系樹脂(信越化学製、KR251)をトルエンに溶解させて被覆樹脂溶液を準備した。当該被覆樹脂溶液とキャリア芯材とを撹拌機に導入した。このとき、被覆樹脂溶液中の固形分が、キャリア芯材の3%となる割合とした。
そして、樹脂溶液へキャリア芯材を3hr浸漬しながら、150〜250℃の範囲で加熱撹拌した。これにより、キャリア芯材100質量部に対し、3.0質量部の割合で樹脂が被覆された。
この樹脂被覆されたキャリア芯材を、熱風循環式加熱装置にて250℃で5hr加熱することにより、樹脂被覆層を硬化させて、上記各実施例および比較例に係るキャリアを得た。
(Creation of carrier)
The carrier core material obtained in each of the above Examples and Comparative Examples was coated with a resin by the method described below.
First, a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., KR251) was dissolved in toluene to prepare a coating resin solution. The coating resin solution and the carrier core material were introduced into a stirrer. At this time, the solid content in the coating resin solution was 3% of the carrier core material.
And it heat-stirred in the range of 150-250 degreeC, immersing the carrier core material in the resin solution for 3 hours. Thereby, resin was coat | covered in the ratio of 3.0 mass parts with respect to 100 mass parts of carrier core materials.
The resin-coated carrier core material was heated at 250 ° C. for 5 hours with a hot-air circulating heating device to cure the resin coating layer, thereby obtaining carriers according to the above-described examples and comparative examples.

(キャリア飛散の評価試験)
上記各実施例および比較例に係るキャリアのキャリア飛散の評価試験について説明する。
まず、直径50mm、表面磁力1000Gaussの磁気ドラムに、上記各実施例および比較例に係るキャリアを充填した。そして当該磁気ドラムを、270rpmで30分間回転させた後、当該磁気ドラムから飛散した粒子を回収し、その重量を測定することで行った。尚、キャリア飛散量は、比較例1に係るキャリア飛散量を「1.00」と規格化して評価しており、この値が大きいほどキャリア飛散量が多いことを示している。
当該評価試験結果を表1に示す。
(Evaluation test of carrier scattering)
An evaluation test of carrier scattering of the carriers according to the above examples and comparative examples will be described.
First, a magnetic drum having a diameter of 50 mm and a surface magnetic force of 1000 Gauss was filled with the carrier according to each of the above examples and comparative examples. And after rotating the said magnetic drum at 270 rpm for 30 minutes, the particle | grains which scattered from the said magnetic drum were collect | recovered, and it measured by measuring the weight. The carrier scattering amount is evaluated by standardizing the carrier scattering amount according to Comparative Example 1 as “1.00”, and the larger this value, the larger the carrier scattering amount.
The evaluation test results are shown in Table 1.

(破砕評価試験)
次に、実施例および比較例に係るキャリア100gをサンプルミル(協立理工株式会社
SK―M10型)に投入し、回転数16000rpmで120秒間破砕試験を行った。そして、当該破砕前と破砕後の体積平均粒子径D50の変化率(%)をレーザー回折式粒度分布測定装置(日機装株式会社製マイクロトラック、Model 9320−X100)により測定した。そして当該D50の変化率(%)の値をもって、実施例および比較例に係るキャリアの破砕評価を行った。
当該評価試験結果を表1に示す。
(Fracture evaluation test)
Next, 100 g of the carrier according to the example and the comparative example was put into a sample mill (Kyoritsu Riko Co., Ltd. SK-M10 type), and a crushing test was performed at a rotational speed of 16000 rpm for 120 seconds. And the change rate (%) of the volume average particle diameter D50 before the said crushing and after the crushing was measured by a laser diffraction type particle size distribution measuring device (Microtrack, Model 9320-X100 manufactured by Nikkiso Co., Ltd.). And the crushing evaluation of the carrier which concerns on an Example and a comparative example was performed with the value of the change rate (%) of the said D50.
The evaluation test results are shown in Table 1.

(まとめ)
Al粉添加量が、Fe粉量に対してAl換算で、0.1質量%以上、1質量%以下の範囲にある実施例1から実施例5に係るキャリア芯材は、いずれも良好な磁気特性を有していた。
さらに、実施例1から実施例5に係るキャリア芯材中にAlが1〜5μmの粒径
で固溶されている。この結果、実施例1から実施例5に係るキャリア芯材から製造されたキャリアのキャリア飛散試験結果は、後述する比較例1に係るキャリアのキャリア飛散試験結果を1.00と規格化したとき、0.39〜0.44の範囲に留まり良好であった。
(Summary)
The carrier core material according to Example 1 to Example 5 in which the Al 2 O 3 powder addition amount is in the range of 0.1% by mass or more and 1% by mass or less in terms of Al with respect to the Fe 2 O 3 powder amount. , Both had good magnetic properties.
Further, Al 2 O 3 is solid-dissolved in a particle diameter of 1 to 5 μm in the carrier core material according to Examples 1 to 5. As a result, when the carrier scattering test result of the carrier manufactured from the carrier core material according to Example 1 to Example 5 is standardized to 1.00, the carrier scattering test result of the carrier according to Comparative Example 1 described later, It was good in the range of 0.39 to 0.44.

ここで、実施例1から実施例5に係るキャリアと比較例1に係るキャリアとの破砕評価試験結果を検討してみると、実施例1から実施例5に係るキャリアは、比較例1に係るキャリアに比べて、D50変化率が半分以下であることが解る。つまり、実施例1から実施例5に係るキャリアは、キャリア芯材と樹脂被覆面との結合力が高く、破砕試験において樹脂被覆の剥離が抑制されているものと考えられる。この結果、実施例1から実施例5に係るキャリアでは、キャリア飛散試験においても微粉の発生が抑制されたものと考えられる。   Here, when the crush evaluation test results of the carrier according to Example 1 to Example 5 and the carrier according to Comparative Example 1 are examined, the carrier according to Example 1 to Example 5 is related to Comparative Example 1. It can be seen that the D50 change rate is less than half that of the carrier. That is, it is considered that the carriers according to Example 1 to Example 5 have a high bonding force between the carrier core material and the resin-coated surface, and the resin coating is prevented from being peeled in the crushing test. As a result, in the carriers according to Example 1 to Example 5, it is considered that the generation of fine powder was suppressed even in the carrier scattering test.

これに対し、 Al粉添加量が、Fe粉量に対してAl換算で、0.15質量%と高い比較例1に係るキャリア芯材の磁気特性(σs)は、各実施例に比べて低かった。さらに、比較例1に係るキャリアは、キャリア飛散試験において微粉の発生が多く、破砕試験においてもD50変化率が大きかった。 On the other hand, the magnetic properties (σs) of the carrier core material according to Comparative Example 1 in which the Al 2 O 3 powder addition amount is as high as 0.15% by mass in terms of Al with respect to the Fe 2 O 3 powder amount, It was low compared with the Example. Furthermore, the carrier according to Comparative Example 1 generated much fine powder in the carrier scattering test, and the D50 change rate was large in the crushing test.

上述の結果から、本発明者等は、実施例1から実施例5に係るキャリアにおいて、樹脂被覆後のキャリアの破砕試験強度が良好になるのは、キャリア芯材に固溶されたAlの粒径が1〜5μmの範囲にあることで、キャリア芯材粒子の表面凹凸が顕著となり樹脂被覆面の接触面積が増加することに応じて両者の結合力が上がり、剥離が抑制できたのであると考えている。
実施例1から実施例4に係るキャリア芯材と比較例1に係るキャリア芯材との表面状態の差異は、図1の結果より、実施例1から実施例4に係るキャリア芯材は比較例1に係るキャリア芯材より、表面の凹凸が著しいことからも裏付けられると考えられる。
From the above results, the present inventors show that the carrier crushing test strength after resin coating in the carriers according to Example 1 to Example 5 is good when the Al 2 O dissolved in the carrier core material is used. When the particle size of No. 3 is in the range of 1 to 5 μm, the surface irregularities of the carrier core particles become prominent and the contact area of the resin-coated surface increases. I believe that.
The difference in surface state between the carrier core material according to Example 1 to Example 4 and the carrier core material according to Comparative Example 1 is that the carrier core material according to Example 1 to Example 4 is a comparative example from the results of FIG. The carrier core material according to No. 1 is considered to be supported by the fact that the surface irregularities are remarkable.

産業上の利用分野Industrial application fields

現像画質を保ちながら、当該機器の現像機内における樹脂被覆の剥がれや脱離が低減され、且つキャリア飛散が著しく低減された電子写真現像剤用キャリアとして、複写機、プリンター等の現像機等に適用できる。   Apply to developing machines such as copiers, printers, etc. as a carrier for electrophotographic developer with reduced development and removal of the resin coating in the developing machine of the equipment while significantly reducing carrier scattering while maintaining the developed image quality. it can.

実施例1に係るキャリア芯材のSEM写真像である。2 is an SEM photographic image of a carrier core material according to Example 1. 実施例2に係るキャリア芯材のSEM写真像である。3 is a SEM photographic image of a carrier core material according to Example 2. 実施例3に係るキャリア芯材のSEM写真像である。4 is an SEM photographic image of a carrier core material according to Example 3. 実施例4に係るキャリア芯材のSEM写真像である。6 is an SEM photographic image of a carrier core material according to Example 4. 比較例1に係るキャリア芯材のSEM写真像である。2 is an SEM photographic image of a carrier core material according to Comparative Example 1.

Claims (6)

Feで表記されるマグネタイト、または、一般式(MFe3−x)O(但し、Mは、Mg、Mn、Ca、Ti、Cu、Zn、Sr、Niからなる群より選ばれる少なくとも1種の金属、0<x<3)で表記されるソフトフェライトを有し、
当該マグネタイトまたはソフトフェライト中にAlが固溶し、
当該マグネタイトまたはソフトフェライト中に0.1質量%以上、1質量%以下のAlが含有されていることを特徴とする電子写真現像剤用キャリア芯材。
Magnetite represented by Fe 3 O 4 or general formula (M x Fe 3-x ) O 4 (where M is selected from the group consisting of Mg, Mn, Ca, Ti, Cu, Zn, Sr, Ni) At least one metal having a soft ferrite represented by 0 <x <3),
Al 2 O 3 is dissolved in the magnetite or soft ferrite,
A carrier core material for an electrophotographic developer, wherein 0.1 mass% or more and 1 mass% or less of Al is contained in the magnetite or soft ferrite.
前記マグネタイトまたはソフトフェライト中に固溶されたAlの粒径が1μm以上、5μm以下であることを特徴とする請求項1に記載の電子写真現像用キャリア芯材。 2. The carrier core material for electrophotographic development according to claim 1, wherein the particle diameter of Al 2 O 3 solid-dissolved in the magnetite or soft ferrite is 1 μm or more and 5 μm or less. 媒体液中へ、Alを粉末状態またはコロイド状態で分散させる工程と、
前記Alを分散させた媒体液中へ、Fe粉末と、金属M粉末(Mは、Fe、Mg、Mn、Ca、Ti、Cu、Zn、Sr、Niからなる群より選ばれた少なくとも1種の金属)とを分散させ、攪拌することによってスラリーを得る工程と、
得られたスラリーを乾燥し造粒して造粒粉を得る工程と、
得られた造粒粉を、酸素濃度が1%以下の雰囲気下において焼成し、磁性相を有する焼成物を得る工程と、
得られた焼成物を粉砕処理して粉末化し、その後に、所定の粒度分布とする工程と、
を順次行うことを特徴とする請求項1に記載の電子写真現像剤用キャリア芯材の製造方法。
Dispersing Al 2 O 3 in a powder or colloidal state in a medium solution;
Fe powder and metal M powder (M is at least selected from the group consisting of Fe, Mg, Mn, Ca, Ti, Cu, Zn, Sr, Ni in the medium liquid in which the Al 2 O 3 is dispersed. 1 type of metal) is dispersed and stirred to obtain a slurry;
A step of drying and granulating the obtained slurry to obtain a granulated powder;
Firing the obtained granulated powder in an atmosphere having an oxygen concentration of 1% or less to obtain a fired product having a magnetic phase;
The obtained fired product is pulverized and powdered, and then a predetermined particle size distribution is obtained.
The method for producing a carrier core material for an electrophotographic developer according to claim 1, wherein:
粒径1μm以上、5μm以下のAlを、媒体液中へ分散させることを特徴とする請求項3に記載の電子写真現像剤用キャリア芯材の製造方法。 The method for producing a carrier core material for an electrophotographic developer according to claim 3, wherein Al 2 O 3 having a particle size of 1 µm or more and 5 µm or less is dispersed in a medium liquid. 請求項1または2に記載の電子写真現像剤用キャリア芯材が、熱硬化性樹脂によって被覆されていることを特徴とする電子写真現像剤用キャリア。   An electrophotographic developer carrier, wherein the carrier core material for an electrophotographic developer according to claim 1 or 2 is coated with a thermosetting resin. 請求項5に記載の電子写真現像剤用キャリアと、適宜なトナーとを含むことを特徴とする電子写真現像剤。   An electrophotographic developer comprising the carrier for an electrophotographic developer according to claim 5 and an appropriate toner.
JP2008081961A 2008-03-26 2008-03-26 Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer Pending JP2009237155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081961A JP2009237155A (en) 2008-03-26 2008-03-26 Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081961A JP2009237155A (en) 2008-03-26 2008-03-26 Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer

Publications (1)

Publication Number Publication Date
JP2009237155A true JP2009237155A (en) 2009-10-15

Family

ID=41251187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081961A Pending JP2009237155A (en) 2008-03-26 2008-03-26 Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer

Country Status (1)

Country Link
JP (1) JP2009237155A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075918A (en) * 2009-09-30 2011-04-14 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and method for producing the same, carrier for the electrophotographic developer, and the electrophotographic developer
JP2012025640A (en) * 2010-07-27 2012-02-09 Dowa Electronics Materials Co Ltd Ferrite particle and carrier for electrophotographic development using the same, developer for electrophotography, and method for producing ferrite particle
JP4897916B1 (en) * 2010-10-15 2012-03-14 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2016191737A (en) * 2015-03-30 2016-11-10 パウダーテック株式会社 Carrier core material for electrophotographic developer
JP2018155827A (en) * 2017-03-16 2018-10-04 Dowaエレクトロニクス株式会社 Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075918A (en) * 2009-09-30 2011-04-14 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and method for producing the same, carrier for the electrophotographic developer, and the electrophotographic developer
JP2012025640A (en) * 2010-07-27 2012-02-09 Dowa Electronics Materials Co Ltd Ferrite particle and carrier for electrophotographic development using the same, developer for electrophotography, and method for producing ferrite particle
JP4897916B1 (en) * 2010-10-15 2012-03-14 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
WO2012049900A1 (en) * 2010-10-15 2012-04-19 Dowaエレクトロニクス株式会社 Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
CN102859447A (en) * 2010-10-15 2013-01-02 同和电子科技有限公司 Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
KR101291909B1 (en) 2010-10-15 2013-07-31 도와 아이피 크리에이션 가부시키가이샤 Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
CN102859447B (en) * 2010-10-15 2014-07-23 同和电子科技有限公司 Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
US8883388B2 (en) 2010-10-15 2014-11-11 Dowa Electronics Materials Co., Ltd. Carrier core particle for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
JP2016191737A (en) * 2015-03-30 2016-11-10 パウダーテック株式会社 Carrier core material for electrophotographic developer
JP2018155827A (en) * 2017-03-16 2018-10-04 Dowaエレクトロニクス株式会社 Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same

Similar Documents

Publication Publication Date Title
JP5037982B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP2008241742A5 (en)
JP2008065106A (en) Carrier core material for electrophotographic development, method for manufacturing the same and magnetic carrier
KR101940594B1 (en) Ferrite particles and electrophotographic developer carrier using same, electrophotographic developer, and method for producing ferrite particles
JP5038002B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
US9164411B2 (en) Carrier core material for electrophotographic developer, method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer
JP2009237155A (en) Carrier core material for electrophotographic developer and its manufacturing method, carrier for electrophotographic developer, and electrophotographic developer
JP2008261955A5 (en)
JP4963618B2 (en) Carrier core material for electrophotographic developer, method for producing the same, and electrophotographic developer
JP5921801B2 (en) Carrier core material for electrophotographic developer and method for producing the same
JP5111062B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP2012025640A (en) Ferrite particle and carrier for electrophotographic development using the same, developer for electrophotography, and method for producing ferrite particle
JP2009003026A (en) Carrier for electrophotographic developer and electrophotographic developer
JP5324113B2 (en) Carrier core material for electrophotographic developer and method for producing the same
JP4948342B2 (en) Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer
JP5491720B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5352614B2 (en) Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5608335B2 (en) Carrier core material for electrophotographic developer, method for producing the same, carrier, and developer for electrophotography
JP5748258B2 (en) Carrier core material for electrophotographic developer and method for producing the same
JP6121675B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP2011028060A (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for the electrophotographic developer, and electrophotographic developer carrier
JP5627072B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP2009086545A (en) Carrier core material for electrophotographic developer and manufacturing method therefor, and carrier for electrophotographic developer
JP2009244788A (en) Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer