JP6511320B2 - Carrier core material and method for manufacturing the same - Google Patents

Carrier core material and method for manufacturing the same Download PDF

Info

Publication number
JP6511320B2
JP6511320B2 JP2015079354A JP2015079354A JP6511320B2 JP 6511320 B2 JP6511320 B2 JP 6511320B2 JP 2015079354 A JP2015079354 A JP 2015079354A JP 2015079354 A JP2015079354 A JP 2015079354A JP 6511320 B2 JP6511320 B2 JP 6511320B2
Authority
JP
Japan
Prior art keywords
core material
carrier core
carrier
range
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015079354A
Other languages
Japanese (ja)
Other versions
JP2016200669A (en
Inventor
佐々木 信也
信也 佐々木
石川 洋平
洋平 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2015079354A priority Critical patent/JP6511320B2/en
Publication of JP2016200669A publication Critical patent/JP2016200669A/en
Application granted granted Critical
Publication of JP6511320B2 publication Critical patent/JP6511320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はキャリア芯材及びその製造方法に関するものである。   The present invention relates to a carrier core material and a method of manufacturing the same.

電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、感光体の表面に形成された静電潜像にトナーを付着させて可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。   In an image forming apparatus such as a facsimile, a printer, or a copying machine using an electrophotographic method, a toner is attached to an electrostatic latent image formed on the surface of a photosensitive member to make a visible image, and this visible image is formed on paper or the like After transfer, heat and pressure are applied for fixing. From the viewpoint of achieving high image quality and colorization, so-called two-component developers containing a carrier and a toner are widely used as developers.

二成分現像剤を用いた現像方式では、キャリアとトナーとを現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像ローラに現像剤を供給し、現像ローラ上で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。トナー移動後のキャリアは現像ローラ上に残留し、現像装置内で再びトナーと混合される。このため、キャリアの特性として、磁気ブラシを形成する磁気特性及び所望の電荷をトナーに付与する帯電特性が要求される。このようなキャリアとしては、マグネタイトや各種フェライト等からなるキャリア芯材の表面を樹脂で被覆した、いわゆるコーティングキャリアがこれまで多く用いられていた。また、コーティングキャリアに用いられていたこれまでのキャリア芯材は真球状であった。   In a developing method using a two-component developer, the carrier and the toner are stirred and mixed in a developing device, and the toner is charged to a predetermined amount by friction. Then, the developer is supplied to the rotating developing roller, a magnetic brush is formed on the developing roller, the toner is electrically moved to the photosensitive member through the magnetic brush, and the electrostatic latent image on the photosensitive member is released. Visualize. After the toner movement, the carrier remains on the developing roller and is again mixed with the toner in the developing device. For this reason, as the properties of the carrier, magnetic properties for forming a magnetic brush and charging properties for imparting a desired charge to the toner are required. As such a carrier, a so-called coated carrier in which the surface of a carrier core material made of magnetite, various ferrites or the like is coated with a resin, has been widely used. Moreover, the carrier core material used until now for the coating carrier was a spherical shape.

例えば特許文献1では、包絡係数が4.5未満のキャリア芯材の表面を特定の樹脂で被覆したキャリアが提案されている。この提案のキャリアは、キャリア芯材表面の凹凸を少なくしてコート樹脂層を均一にすることによって、キャリアが感光体に付着する現象を抑制しようとするものである。   For example, Patent Document 1 proposes a carrier in which the surface of a carrier core having an envelope coefficient of less than 4.5 is coated with a specific resin. The proposed carrier is intended to suppress the phenomenon in which the carrier adheres to the photosensitive member by reducing unevenness on the surface of the carrier core and making the coated resin layer uniform.

特開2005−106999号公報JP, 2005-106999, A

近年、画像形成装置における画像形成速度の高速化という市場要求に対応するため、現像ローラの回転速度を速めて、現像領域への現像剤の単位時間当たりの供給量を増加させる傾向にある。   In recent years, in order to meet the market demand for speeding up of the image forming speed in the image forming apparatus, the rotational speed of the developing roller tends to be increased to increase the supply amount of the developer per unit time to the developing area.

ところが、真球状のキャリア芯材を用いたコーティングキャリアでは、現像領域へのトナー供給が不十分となり画像濃度が低下する不具合があった。例えば、現像ローラの1周前の画像の影響を受けて画像濃度が低下する「現像メモリー」と呼ばれる不具合があった。   However, in the case of a coated carrier using a spherical carrier core material, the toner supply to the development region is insufficient and the image density is lowered. For example, there has been a problem called "development memory" in which the image density is reduced under the influence of the image one round before the development roller.

そこで、本発明の目的は、現像メモリーなどの不具合の発生を抑制できるキャリア芯材を提供することにある。   Therefore, an object of the present invention is to provide a carrier core material capable of suppressing the occurrence of a defect such as a development memory.

また本発明の他の目的は、長期間の使用においても安定して良好な画質画像を形成することができる電子写真現像用キャリア及び電子写真用現像剤を提供することにある。   Another object of the present invention is to provide a carrier for electrophotographic development and a developer for electrophotography which can stably form good image quality images even in long-term use.

本発明によれば、組成式MFe3−X(但し、MはMg,Mn,Ca,Ti,Sr,Cu,Zn,Niからなる群より選ばれる少なくとも1種の金属,0<X<1)で表される材料を主成分とするキャリア芯材であって、下記式から算出される包絡係数Eの平均値が5.0〜7.0の範囲であることを特徴とするキャリア芯材が提供される。なお、Mとして2種類以上の金属がある場合、Xは、それぞれの組成数の総計であり、当該2種類以上の金属によるFeとの置換数である。
E=(L−L)/L×100 ・・・・・・(1)
(式中、L:キャリア芯材投影像の周囲長,L:キャリア芯材投影像の包絡線の長さ)
According to the present invention, a composition formula M X Fe 3-X O 4 (wherein M is at least one metal selected from the group consisting of Mg, Mn, Ca, Ti, Sr, Cu, Zn, Ni, 0 < A carrier core material mainly composed of a material represented by X <1), wherein an average value of an envelope coefficient E calculated from the following equation is in the range of 5.0 to 7.0. A carrier core is provided. In addition, when there exist two or more types of metals as M, X is the total of the number of each composition, and is the number of substitution with Fe by the said two or more types of metals.
E = (L 1- L 2 ) / L 2 × 100 ... (1)
(Wherein, L 1 : perimeter of carrier core material projected image, L 2 : length of envelope of carrier core material projected image)

ここで、前記キャリア芯材には、前記包絡係数Eが7.0以上である粒子が20個数%以上含まれているのが好ましい。   Here, it is preferable that 20% by number or more of particles having the envelope coefficient E of 7.0 or more are contained in the carrier core material.

また、流動度としては30sec/50g〜50sec/50gの範囲であるのが好ましい。なお、本明細書において示す「〜」は、特に断りのない限り、その前後に記載の数値を下限値及び上限値として含む意味である。   Moreover, as a fluid degree, it is preferable that it is the range of 30 sec / 50g-50 sec / 50g. In addition, unless otherwise indicated, "-" shown in this specification is a meaning which includes the numerical value as described in the back and front as a lower limit and an upper limit.

キャリア芯材の体積平均粒径(以下、単に「平均粒径」と記すことがある)としては25μm〜40μmの範囲であるのが好ましい。   The volume average particle diameter of the carrier core material (hereinafter sometimes simply referred to as “average particle diameter”) is preferably in the range of 25 μm to 40 μm.

前記組成式のMとしてはMn又はMnMgであるのが好ましい。   As M in the above composition formula, it is preferable to be Mn or MnMg.

そしてまた、本発明によれば、前記記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリアが提供される。   Further, according to the present invention, there is provided a carrier for electrophotographic development characterized in that the surface of the carrier core material described above is coated with a resin.

さらに本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。   Further, according to the present invention, there is provided an electrophotographic developer including the carrier for electrophotographic development described above and a toner.

また本発明によれば、M成分原料(但し、MはMg,Mn,Ca,Ti,Sr,Cu,Zn,Niからなる群より選ばれる少なくとも1種の金属)、Fe成分原料を含み、焼成してなる第1焼成物を用い、前記第1焼成物と、体積平均粒径が前記第1焼成物の体積平均粒径よりも小さい金属化合物粉とを混合して混合物を得る工程と、前記混合物を還元雰囲気下でさらに焼成して第2焼成物を得る第2焼成工程とを有することを特徴とするキャリア芯材の製造方法が提供される。   Further, according to the present invention, M component raw material (wherein M is at least one metal selected from the group consisting of Mg, Mn, Ca, Ti, Sr, Cu, Zn, Ni) and Fe component raw material, and is fired Obtaining a mixture by mixing the first baked product and the metal compound powder having a volume average particle size smaller than the volume average particle size of the first baked product, using the first baked product obtained as And B. a second firing step of further firing the mixture in a reducing atmosphere to obtain a second fired product. A method for producing a carrier core material is provided.

前記金属化合物粉の体積平均粒径としては0.5μm〜17μmの範囲であるのが好ましい。   The volume average particle diameter of the metal compound powder is preferably in the range of 0.5 μm to 17 μm.

前記金属化合物粉の混合量としては、前記第1焼成物に対して5wt%〜50wt%の範囲であるのが好ましい。   The mixing amount of the metal compound powder is preferably in the range of 5 wt% to 50 wt% with respect to the first fired product.

前記金属化合物粉の組成は、前記第1焼成物の組成と同一であるのが好ましい。   The composition of the metal compound powder is preferably the same as the composition of the first baked product.

第1焼成工程における焼成温度としては700℃〜1300℃の範囲であるのが好ましい。   It is preferable that it is the range of 700 degreeC-1300 degreeC as a calcination temperature in a 1st baking process.

第2焼成工程における焼成温度としては1050℃〜1300℃の範囲であるのが好ましい。   The firing temperature in the second firing step is preferably in the range of 1050 ° C to 1300 ° C.

本発明に係るキャリア芯材によれば、現像メモリーなどの不具合の発生を抑制できる。これにより、本発明に係るキャリア芯材を含む現像剤を用いれば、長期間の使用においても安定して良好な画質画像を形成することができる。   According to the carrier core material of the present invention, it is possible to suppress the occurrence of problems such as developing memory. As a result, by using the developer containing the carrier core material according to the present invention, it is possible to stably form a good image quality image even in long-term use.

また、本発明に係る製造方法によれば、前記特性を有するキャリア芯材を効率的に製造できる。   Moreover, according to the manufacturing method concerning the present invention, the carrier core material which has the above-mentioned characteristic can be manufactured efficiently.

本発明のキャリア芯材の製造方法を説明する概説図Outline drawing explaining the manufacturing method of the carrier core material of the present invention 実施例1のキャリア芯材の部分拡大SEM写真である。7 is a partially enlarged SEM photograph of the carrier core material of Example 1. FIG. 実施例2のキャリア芯材の部分拡大SEM写真である。7 is a partially enlarged SEM photograph of a carrier core material of Example 2. FIG. 比較例1のキャリア芯材の部分拡大SEM写真である。7 is a partially enlarged SEM photograph of a carrier core material of Comparative Example 1; 比較例2のキャリア芯材の部分拡大SEM写真である。7 is a partially enlarged SEM photograph of a carrier core material of Comparative Example 2; 磁気ブラシ現像を行う現像装置の一例を示す概説図である。It is a schematic diagram showing an example of the development device which performs magnetic brush development.

本発明者等は、現像メモリーなどの不具合の発生を抑制できないか鋭意検討を重ねた結果、キャリア芯材の表面を樹脂で被覆してキャリアとしたときに、トナー保持性がよく且つトナーの帯電立ち上がりがよいと現像メモリーが抑制される傾向あるとの知見を得た。そしてさらに検討を続け、トナー保持性及びトナー帯電立ち上がり性を向上させるには、樹脂被覆キャリアとしたときに、被覆樹脂層に厚い部分と薄い部分とが存在していることが重要であることを見出した。被覆樹脂の電気抵抗は高く、被覆樹脂層の厚い部分でトナーが帯電され保持される。一方、被覆樹脂層の薄い部分は電気抵抗が低く、この部分からキャリアに溜まった電荷が放出されることでトナーの帯電立ち上がりが向上する。   The inventors of the present invention have conducted intensive studies to find out that problems such as development memory can not be suppressed. As a result, when the surface of the carrier core material is coated with resin to make the carrier, it has good toner retention and charging of the toner. We found that development memory tends to be suppressed if the rise is good. Further, in order to continue the study and to improve the toner holding property and the toner charge rising property, it is important that when the resin-coated carrier is used, it is important that a thick portion and a thin portion be present in the coated resin layer. I found it. The electrical resistance of the coating resin is high, and the toner is charged and held in the thick portion of the coating resin layer. On the other hand, the thin portion of the covering resin layer has low electric resistance, and the charge accumulated on the carrier is released from this portion, whereby the charge rising of the toner is improved.

そして、キャリア芯材の被覆樹脂層の厚い部分と薄い部分とを設けるためには、キャリア芯材を凹凸形状とすればよいとの着想を得た。   And in order to provide the thick part and thin part of the coating resin layer of a carrier core material, the idea that the carrier core material should be made uneven | corrugated shape was acquired.

そこで、本発明では、粒子形状を示す一つの指標である包絡係数Eの平均値が5.0以上7.0以下の範囲であることを規定した。包絡係数Eは、粒子表面の凹凸が少ないほどゼロに近づく。本発明では、キャリア芯材の包絡係数Eを前記範囲とし、すなわちキャリア芯材表面に所定の凹凸を形成することによって、樹脂被覆キャリアとしたときに、被覆樹脂層の厚い部分と薄い部分とが存在するようにした。包絡係数Eの平均値が5.0未満であると、キャリア芯材表面の凹凸が少なく、被覆樹脂層の層厚が全体的に均一となり、トナー保持性とトナーの帯電立ち上がり性を同時に満足させることが出来ない。一方、包絡係数Eの平均値が7.0を超えると、キャリア芯材表面の凹凸が大きすぎて、トナーとの混合性が悪化し現像剤撹拌時にトナーとの混合が十分に行われず、良好な帯電の立ち上がり性が得られないために現像メモリーが発生するおそれがある。包絡係数Eの平均値のより好ましい範囲は6.0〜7.0の範囲である。   Therefore, in the present invention, it is specified that the average value of the envelope coefficient E, which is one index indicating the particle shape, is in the range of 5.0 or more and 7.0 or less. The envelope coefficient E approaches zero as the surface roughness of the particle decreases. In the present invention, by making the envelope coefficient E of the carrier core material into the above range, that is, by forming predetermined irregularities on the surface of the carrier core material, thick and thin portions of the covering resin layer are obtained. It was made to exist. When the average value of the envelope coefficient E is less than 5.0, the irregularities on the surface of the carrier core material are small, the layer thickness of the covering resin layer becomes uniform overall, and the toner retention property and the charge rising property of the toner are simultaneously satisfied. I can not do it. On the other hand, when the average value of the envelope coefficient E exceeds 7.0, the irregularities on the surface of the carrier core material are too large, the mixing property with the toner is deteriorated, and the mixing with the toner is not sufficiently performed at the developer stirring. Development memory may occur due to the inability to obtain proper charge buildup. A more preferable range of the average value of the envelope coefficient E is in the range of 6.0 to 7.0.

また、本発明のキャリア芯材では、包絡係数Eが7.0以上である粒子が20個数%以上含まれているのが望ましい。このような表面凹凸の大きい粒子が含まれていることによって、現像ローラ上にキャリアによる磁気ブラシを形成した際に、磁気ブラシ先端部のキャリアと根本部のキャリアとを大きく循環させることができ、画像形成速度が速くなっても十分な画像濃度が得られるようになる。これにより現像メモリーの発生が一層抑制される。   Further, in the carrier core material of the present invention, it is desirable that 20 number% or more of particles having an envelope coefficient E of 7.0 or more are contained. By including such particles with large surface irregularities, when the magnetic brush is formed by the carrier on the developing roller, the carrier at the tip of the magnetic brush and the carrier at the base can be largely circulated. Even if the image forming speed is increased, sufficient image density can be obtained. Thereby, the generation of the development memory is further suppressed.

本発明のキャリア芯材の流動度は、30sec/50g〜50sec/50gの範囲が好ましい。キャリア芯材の流動度が30sec/50g未満であると、キャリア芯材の流動性がよいためトナーとの混合性は良好であるが、トナーとの摩擦力が低下し、十分な帯電の付与が行われないおそれがある。一方、キャリア芯材の流動度が50sec/50gを超えると、現像剤撹拌時にトナーとの混合が十分に行われず、良好な帯電の立ち上がり性が得られないことによる現像メモリーの発生が起こるおそれがある。   The flow rate of the carrier core material of the present invention is preferably in the range of 30 sec / 50 g to 50 sec / 50 g. If the flowability of the carrier core is less than 30 sec / 50 g, the flowability of the carrier core is good and the mixability with the toner is good, but the frictional force with the toner is reduced, and sufficient charging is given It may not be done. On the other hand, if the flow rate of the carrier core material exceeds 50 sec / 50 g, mixing with the toner is not sufficiently performed at the time of developer agitation, and development memory may be generated due to the failure to obtain good charge rising properties. is there.

本発明のキャリア芯材の体積平均粒径としては、25μm以上40μm未満の範囲が好ましく、より好ましくは30μm以上40μm以下の範囲である。   The volume average particle diameter of the carrier core material of the present invention is preferably in the range of 25 μm to less than 40 μm, and more preferably in the range of 30 μm to 40 μm.

本発明のキャリア芯材を構成するフェライト粒子の組成に特に限定はなく、組成式MFe3−X(但し、Mは、Mg,Mn,Ca,Ti,Sr,Cu,Zn,Niからなる群より選択される少なくとも1種の金属元素、0<X<1)で表されるものが例示される。これらの中でもMnMgフェライト、Mnフェライトが好ましい。 There is no particular limitation on the composition of the ferrite particles constituting the carrier core material of the present invention, and the composition formula M x Fe 3-X O 4 (where M is Mg, Mn, Ca, Ti, Sr, Cu, Zn, Ni And at least one metal element selected from the group consisting of: <0 <X <1). Among these, MnMg ferrite and Mn ferrite are preferable.

本発明のキャリア芯材は以下に説明する製造方法が好適である。図1に、本発明のキャリア芯材の製造方法を説明する概説図をSEM写真を交えて示す。まず特定組成の第1焼成物(フェライト粒子)を作製する。そして、第1焼成物と金属化合物粉とを混合して混合物を得る。金属化合物粉は第1焼成物よりも粒径が細かく、第1焼成物の表面に付着させる。次いで、この混合物を焼成する(第2焼成工程)。これにより第1焼成物の表面に付着した金属化合物粉が第1焼成物と共にフェライト化し、第2焼成物の表面に凹凸が形成される。以下、それぞれの工程について詳述する。   The carrier core material of the present invention is preferably produced by the method described below. FIG. 1 is a schematic view for explaining the method for producing a carrier core material of the present invention, together with SEM photographs. First, a first fired product (ferrite particles) of a specific composition is prepared. Then, the first baked product and the metal compound powder are mixed to obtain a mixture. The metal compound powder has a finer particle size than the first fired product, and is attached to the surface of the first fired product. Next, this mixture is fired (second firing step). As a result, the metal compound powder attached to the surface of the first baked product becomes ferrite together with the first baked product, and asperities are formed on the surface of the second baked product. Each step will be described in detail below.

まず、Fe成分原料、M成分原料を秤量する。なお、MはMg、Mn、Ca、Ti、Sr,Cu、Zn、Niからなる群より選ばれる少なくとも1種の金属元素である。Fe成分原料としては、Fe等が好適に使用される。M成分原料としては、MnであればMnCO、Mn等が使用でき、MgであればMgO、Mg(OH)、MgCOが好適に使用できる。また、Ca成分原料としては、CaO、Ca(OH)、CaCO等から選択される少なくとも1種の化合物が好適に使用される。Sr成分原料としては、SrCO、Sr(NOなどが好適に使用される。 First, the Fe component raw material and the M component raw material are weighed. M is at least one metal element selected from the group consisting of Mg, Mn, Ca, Ti, Sr, Cu, Zn, and Ni. Fe 2 O 3 or the like is suitably used as the Fe component material. As the M component material, MnCO 3 , Mn 3 O 4 or the like can be used for Mn, and MgO, Mg (OH) 2 , MgCO 3 can be suitably used for Mg. Further, as the Ca component material, at least one compound selected from CaO, Ca (OH) 2 , CaCO 3 and the like is suitably used. As the Sr component raw material, SrCO 3 , Sr (NO 3 ) 2 or the like is suitably used.

次いで、原料を分散媒中に投入しスラリーを作製する。本発明で使用する分散媒としては水が好適である。分散媒には、前記原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%〜90質量%の範囲が望ましい。より好ましくは60質量%〜80質量%である。60質量%以上であれば、造粒物中の粒子内細孔が少なく、焼成時の焼結不足を防ぐことができる   Then, the raw material is put into a dispersion medium to prepare a slurry. Water is preferred as the dispersion medium used in the present invention. A binder, a dispersing agent, etc. may be mix | blended with the dispersion medium if needed other than the said raw material. As a binder, for example, polyvinyl alcohol can be suitably used. As a compounding quantity of a binder, it is preferable that the density | concentration in a slurry sets it as about 0.5 mass%-2 mass%. Moreover, as a dispersing agent, ammonium polycarboxylate etc. can be used conveniently, for example. As a compounding quantity of a dispersing agent, it is preferable that the density | concentration in a slurry sets it as about 0.5 mass%-2 mass%. In addition, a lubricant, a sintering promoter, etc. may be blended. The solid content concentration of the slurry is preferably in the range of 50% by mass to 90% by mass. More preferably, it is 60 mass%-80 mass%. If it is 60% by mass or more, the number of pores in particles in the granulated material is small, and insufficient sintering at the time of firing can be prevented.

なお、秤量した原料を混合し仮焼成し解粒した後、分散媒に投入しスラリーを作製してもよい。仮焼成の温度としては750℃〜900℃の範囲が好ましい。750℃以上であれば、仮焼による一部フェライト化が進み、焼成時のガス発生量が少なく、固体間反応が十分に進むため、好ましい。一方、900℃以下であれば、仮焼による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。   In addition, after mixing the raw materials which were weighed and pre-baking and disaggregating, it may be thrown into a dispersion medium and a slurry may be produced. As temperature of temporary calcination, the range of 750 ° C-900 ° C is preferred. If the temperature is 750 ° C. or higher, it is preferable because partial ferritization by calcination proceeds, the amount of gas generation at the time of firing is small, and the reaction between solids sufficiently proceeds. On the other hand, if the temperature is 900 ° C. or lower, sintering by calcination is weak and the raw material can be sufficiently crushed in the later slurry pulverizing step, which is preferable. Moreover, as an atmosphere at the time of temporary baking, an air atmosphere is preferable.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は5μm以下が好ましく、より好ましくは1μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry produced as described above is wet-ground. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle diameter of the raw material after grinding is preferably 5 μm or less, more preferably 1 μm or less. A medium of a predetermined particle size may be embedded in a vibrating mill or ball mill. Examples of the material of the medium include iron-based chromium steel, oxide-based zirconia, titania, alumina and the like. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized material is adjusted depending on the pulverizing time, the rotation speed, the material and particle size of the medium to be used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100℃〜300℃の範囲が好ましい。これにより、粒径10μm〜100μmの球状の造粒物が得られる。次いで、得られた造粒物を振動ふるいを用いて分級し所定の粒径範囲の造粒物を作製する。   Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer and granulated into a sphere by spraying into an atmosphere. The atmosphere temperature at the time of spray drying is preferably in the range of 100 ° C to 300 ° C. Thereby, spherical granules with a particle diameter of 10 μm to 100 μm can be obtained. Next, the obtained granulated material is classified using a vibrating sieve to prepare a granulated material of a predetermined particle size range.

次に、前記の造粒物を所定温度に加熱した炉に投入して、第1焼成物としてのフェライト粒子を合成するための一般的な手法で第1焼成を行いフェライト粒子を生成させる。焼成温度としては700℃〜1300℃の範囲が好ましい。焼成温度が700℃未満であると、粒子の強度が十分に得られず以降の金属化合物粉との混合工程において粒子の割れが発生し、粒子形状が悪化してしまう不具合が生じる。また、焼成温度が1300℃を超えると、過剰焼結により以降の解粒工程において粒子の割れ欠けが発生し粒子形状が悪化してしまう不具合が生じる。また、第1焼成工程における焼成炉内の雰囲気については特に指定はない。コストの面からは大気雰囲気下で行うことが好ましいが、窒素雰囲気下など還元雰囲気下で実施してもよい。   Next, the granulated product is put into a furnace heated to a predetermined temperature, and the first firing is performed by a general method for synthesizing ferrite particles as the first fired product to generate ferrite particles. As a calcination temperature, the range of 700 degreeC-1300 degreeC is preferable. If the firing temperature is less than 700 ° C., the strength of the particles can not be obtained sufficiently, and cracking of the particles occurs in the subsequent mixing step with the metal compound powder, resulting in a defect that the particle shape is deteriorated. Further, if the firing temperature exceeds 1300 ° C., excessive sintering will cause cracking and chipping of particles in the subsequent granulation step, resulting in a problem that the particle shape is deteriorated. Further, the atmosphere in the firing furnace in the first firing step is not particularly specified. Although it is preferable to carry out under an air atmosphere from the viewpoint of cost, it may be carried out under a reducing atmosphere such as a nitrogen atmosphere.

このようにして得られた第1焼成物としてのフェライト粒子を解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。   The ferrite particles as the first fired product obtained in this manner are granulated. Specifically, for example, the fired product is granulated by a hammer mill or the like. The form of the particle size separation step may be either a continuous type or a batch type.

解粒処理後、必要により、粒径を所定範囲に揃えるため分級を行う。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の粒径としては25μm以上50μm未満が好ましい。なお、第1焼成物は、予め製造された粉を用いても構わない。   After the particle breaking treatment, if necessary, classification is performed in order to make the particle diameter in a predetermined range. As the classification method, conventionally known methods such as air classification and sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be made to be in a predetermined range with a vibrating sieve or an ultrasonic sieve. Furthermore, after the classification step, nonmagnetic particles may be removed by a magnetic field separator. As a particle size of a ferrite particle, 25 micrometers or more and less than 50 micrometers are preferable. In addition, you may use the powder manufactured beforehand as a 1st baked product.

その後、得られたフェライト粒子(第1焼成物)と金属化合物粉とを混合して混合物を作製する。ここで使用する金属化合物粉は、平均粒径がフェライト粒子の平均粒径よりも小さいものを用いる。小ささとしては、第1焼成物の平均粒径に対して、金属化合物の平均粒径が50%以下値のものがより好ましい。すなわち、混合することによってフェライト粒子表面に金属化合物粉を付着させる。金属化合物粉の組成に特に限定はないが、フェライト粒子の組成と同じ組成であるのが好ましい。組成は、組成式MFe3−Xにおいて、組成のXが、金属化合物と第1焼成物との比で300%以内、20%以上に同一であれば問題はない。組成の違いがあっても混合比で調整すれば良いからである。ただし、粉体の特性を安定するため、110%以内、90%以上が好ましい。 Thereafter, the obtained ferrite particles (first fired product) and the metal compound powder are mixed to prepare a mixture. The metal compound powder used here has an average particle size smaller than that of the ferrite particles. As smallness, the thing of the value whose average particle diameter of a metal compound is 50% or less is more preferable to the average particle diameter of the 1st calcination thing. That is, the metal compound powder is attached to the surface of the ferrite particles by mixing. The composition of the metal compound powder is not particularly limited, but preferably the same composition as that of the ferrite particles. There is no problem in the composition if the composition X in the composition formula M X Fe 3-X O 4 is the same within 300% and 20% or more in the ratio of the metal compound and the first baked product. Even if there is a difference in the composition, it may be adjusted by the mixing ratio. However, in order to stabilize the characteristics of the powder, the content is preferably 110% or less and 90% or more.

金属化合物粉の平均粒径としては、0.5μm以上17μm以下の範囲が好ましくは、より好ましくは1μm以上15μm以下の範囲である。金属化合物粉の平均粒径が0.5μmより小さい場合は、焼成物の表面に付着する粒子が小さく十分な凹凸形状が得られないおそれがある。一方、金属化合物粉の平均粒径が17μmより大きい場合は、第2焼成工程の後の解粒工程においてキャリア芯材表面に形成された凸部が剥がし取られ十分な凹凸形状が得られないおそれがある。   The average particle diameter of the metal compound powder is preferably in the range of 0.5 μm to 17 μm, and more preferably in the range of 1 μm to 15 μm. If the average particle diameter of the metal compound powder is smaller than 0.5 μm, the particles adhering to the surface of the fired product may be small and a sufficient uneven shape may not be obtained. On the other hand, when the average particle diameter of the metal compound powder is larger than 17 μm, the convex portions formed on the surface of the carrier core material may be peeled off in the particle size separation step after the second firing step, and a sufficient uneven shape may not be obtained. There is.

金属化合物粉の混合量としては、第1焼成物としてのフェライト粒子に対して5重量%以上50重量%以下さらに好ましくは5重量%以上30重量%以下が好ましい。混合量が5重量%より少ないとフェライト粒子の表面に十分な量の金属化合物粉が付着せず良好な凹凸形状が得られないおそれがある。一方、金属化合物粉の混合量が50重量%より多いとフェライト粒子の表面に付着しなかった金属化合物粉同士が焼結し異形粒子を形成して、流動度を悪化させるおそれがある。   The mixing amount of the metal compound powder is preferably 5% by weight to 50% by weight, more preferably 5% by weight to 30% by weight, based on the ferrite particles as the first fired product. If the mixing amount is less than 5% by weight, a sufficient amount of metal compound powder may not adhere to the surface of the ferrite particles, and a favorable uneven shape may not be obtained. On the other hand, if the mixing amount of the metal compound powder is more than 50% by weight, the metal compound powders which do not adhere to the surface of the ferrite particles are sintered to form irregular shape particles, which may deteriorate the fluidity.

混合装置としては従来公知のものを用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   A well-known thing can be used as a mixing apparatus. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, etc. can be used.

次に、得られた混合物を所定温度に加熱した炉に投入して、フェライトを合成するための一般的な手法で第2焼成を行う。これにより表面に凹凸が形成された第2焼成物が生成される。焼成温度としては800℃〜1300℃の範囲が好ましい。焼成温度が800℃未満であると、フェライト粒子と金属化合物粉との結着強度が十分に得られず金属化合物粉がフェライト粒子から剥離する不具合が生じる。また、焼成温度が1300℃を超えると、過剰焼結により以降の解粒工程において第2焼成物の割れ欠けが発生し粒子形状が悪化してしまう不具合が生じる。   Next, the obtained mixture is put into a furnace heated to a predetermined temperature, and second baking is performed by a general method for synthesizing ferrite. As a result, a second baked product having irregularities formed on the surface is generated. As a calcination temperature, the range of 800 degreeC-1300 degreeC is preferable. If the firing temperature is less than 800 ° C., the binding strength between the ferrite particles and the metal compound powder can not be sufficiently obtained, which causes a problem that the metal compound powder peels off from the ferrite particles. In addition, if the firing temperature exceeds 1300 ° C., excessive sintering will cause cracking and chipping of the second fired product in the subsequent granulation step, resulting in a problem that the particle shape is deteriorated.

このようにして得られた第2焼成物を必要により解粒する。具体的には、ハンマーミル等によって第2焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。   The second fired product obtained in this manner is granulated if necessary. Specifically, the second fired product is granulated by a hammer mill or the like. The form of the particle size separation step may be either a continuous type or a batch type.

解粒処理後、必要により、粒径を所定範囲に揃えるため分級を行う。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。第2焼成物の粒径としては25μm以上40μm以下の範囲が好ましい。   After the particle breaking treatment, if necessary, classification is performed in order to make the particle diameter in a predetermined range. As the classification method, conventionally known methods such as air classification and sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be made to be in a predetermined range with a vibrating sieve or an ultrasonic sieve. Furthermore, after the classification step, nonmagnetic particles may be removed by a magnetic field separator. As a particle size of a 2nd baked product, the range of 25 micrometers or more and 40 micrometers or less is preferable.

その後、必要に応じて、分級後の第2焼成物を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成して第2焼成物の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は、200℃〜800℃の範囲が好ましく、250℃〜600℃の範囲がさらに好ましい。加熱時間は0.5時間〜5時間の範囲が好ましい。   After that, if necessary, the second fired product after classification may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to achieve high resistance of the second fired product (increased resistance) processing). The oxidizing atmosphere may be either an air atmosphere or a mixed atmosphere of oxygen and nitrogen. Moreover, the range of 200 degreeC-800 degreeC is preferable, and, as for heating temperature, the range of 250 degreeC-600 degreeC is further more preferable. The heating time is preferably in the range of 0.5 hours to 5 hours.

以上のようにして作製した第2焼成物を本発明のキャリア芯材として用いる。そして、所望の帯電性等を得るために、キャリア芯材の外周を樹脂で被覆して電子写真現像用キャリアとする。   The second baked product produced as described above is used as the carrier core material of the present invention. Then, in order to obtain desired chargeability and the like, the outer periphery of the carrier core material is coated with a resin to form a carrier for electrophotographic development.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   As the resin for coating the surface of the carrier core, conventionally known resins can be used. For example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene) And the like) resins, polystyrene, (meth) acrylic resins, polyvinyl alcohol resins, and thermoplastic elastomers such as polyvinyl chlorides, polyurethanes, polyesters, polyamides, and polybutadienes, fluorosilicone resins, and the like.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%〜30質量%、特に0.001質量%〜2質量%の範囲内にあるのがよい。   In order to coat the surface of the carrier core with resin, a solution or dispersion of resin may be applied to the carrier core. As a solvent for the coating solution, aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; cyclic ethers such as tetrahydrofuran and dioxane; solvents such as ethanol, propanol and butanol Alcohol solvents such as: cellosolv solvents such as ethyl cellosolve and butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; and amide solvents such as dimethylformamide and dimethylacetamide. One or more of them can be used. . In general, the resin component concentration in the coating solution should be in the range of 0.001% by mass to 30% by mass, and particularly 0.001% by mass to 2% by mass.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method of coating the resin on the carrier core material, for example, a spray dry method, a fluidized bed method, a spray dry method using a fluidized bed, an immersion method or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be applied efficiently with a small amount of resin. For example, in the case of a fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

キャリアの粒子径は、一般に、体積平均粒子径で25μm以上40μm以下の範囲、特に30μm以上40μm以下の範囲が好ましい。   In general, the particle diameter of the carrier is preferably in the range of 25 μm to 40 μm, particularly preferably in the range of 30 μm to 40 μm, in terms of volume average particle diameter.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%〜15質量%の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%〜10質量%の範囲である。   The electrophotographic developer according to the present invention is formed by mixing the carrier and the toner produced as described above. The mixing ratio of the carrier and the toner is not particularly limited, and may be appropriately determined based on the development conditions of the developing device to be used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass to 15% by mass. When the toner concentration is less than 1% by mass, the image density is too thin, and when the toner concentration is more than 15% by mass, the toner scattering occurs in the developing device and the toner adheres to the inside of the machine or a background portion such as transfer paper. It is because there is a possibility that the following problems occur. A more preferable toner concentration is in the range of 3% by mass to 10% by mass.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。   As the toner, those manufactured by conventionally known methods such as polymerization method, pulverization classification method, melt granulation method, spray granulation method can be used. Specifically, those in which a coloring agent, a release agent, a charge control agent and the like are contained in a binder resin containing a thermoplastic resin as a main component can be suitably used.

トナーの粒径は、一般に、コールターカウンターによる体積平均粒径で5μm〜15μmの範囲が好ましく、7μm〜12μmの範囲がより好ましい。   Generally, the particle size of the toner is preferably in the range of 5 μm to 15 μm, and more preferably in the range of 7 μm to 12 μm, in terms of volume average particle size by Coulter Counter.

トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。   If necessary, a modifier may be added to the toner surface. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethyl methacrylate and the like. One or more of these may be used in combination.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   For mixing of the carrier and the toner, a known mixing device can be used. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, etc. can be used.

本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図6に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図6に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。   The developing method using the developer of the present invention is not particularly limited, but a magnetic brush developing method is preferable. FIG. 6 is a schematic view showing an example of a developing device that performs magnetic brush development. The developing device shown in FIG. 6 is disposed horizontally parallel to a rotatable developing roller 3 incorporating a plurality of magnetic poles and a regulating blade 6 for regulating the amount of developer on the developing roller 3 conveyed to the developing portion. Formed between two screws 1 and 2 and two screws 1 and 2 for stirring and conveying the developer in opposite directions to each other, and developing from one screw to the other at both ends of both screws The partition plate 4 is provided to enable the movement of the agent and to prevent the movement of the developer other than at both ends.

2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。   The two screws 1 and 2 have spiral blades 13 and 23 formed on the shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to Transport in opposite directions. Then, the developer moves from one screw to the other at both ends of the screws 1 and 2. As a result, the developer consisting of toner and carrier is constantly circulated and stirred in the apparatus.

一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N1、搬送磁極S1、剥離磁極N2、汲み上げ磁極N3、ブレード磁極S2の5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3が矢印方向に回転すると、汲み上げ磁極N3の磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。   On the other hand, the developing roller 3 is a metal cylindrical member having a surface with several μm irregularities on its surface, and as a magnetic pole generating means, a developing magnetic pole N1, a transport magnetic pole S1, a peeling magnetic pole N2, a pick up magnetic pole N3, a blade magnetic pole S2 It has a fixed magnet which arranged five magnetic poles of in order. When the developing roller 3 rotates in the direction of the arrow, the developer is pumped up from the screw 1 to the developing roller 3 by the magnetic force of the scooping magnetic pole N3. The developer carried on the surface of the developing roller 3 is subjected to layer regulation by the regulating blade 6 and then conveyed to the developing area.

現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が転写電圧電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5〜5kVの範囲が好ましく、周波数は1〜10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。   In the development region, a bias voltage in which an AC voltage is superimposed on a DC voltage is applied from the transfer voltage power supply 8 to the developing roller 3. The DC voltage component of the bias voltage is a potential between the background portion potential of the surface of the photosensitive drum 5 and the image portion potential. Further, the background portion potential and the image portion potential are potentials between the maximum value and the minimum value of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 to 5 kV, and the frequency is preferably in the range of 1 to 10 kHz. Further, the waveform of the bias voltage may be any of a rectangular wave, a sine wave, a triangular wave and the like. As a result, the toner and the carrier vibrate in the development area, and the toner adheres to the electrostatic latent image on the photosensitive drum 5 to develop it.

その後現像ローラ3上の現像剤は、搬送磁極S1によって装置内部に搬送され、剥離電極N2によって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。そして汲み上げ極N3によって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。   Thereafter, the developer on the developing roller 3 is conveyed into the inside of the apparatus by the conveying magnetic pole S1, peeled off from the developing roller 3 by the peeling electrode N2, circulated in the apparatus again by the screws 1 and 2, and not used for development. The developer is mixed and stirred. Then, the developer is newly supplied from the screw 1 to the developing roller 3 by the pick-up pole N3.

なお、図6に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させるために、磁極を8極や10極、12極と増やしてももちろん構わない。   In the embodiment shown in FIG. 6, five magnetic poles are incorporated in the developing roller 3. However, in order to further increase the moving amount of the developer in the developing region, and to further improve the scooping property and the like. Of course, the number of magnetic poles may be increased to eight, ten or twelve.

実施例1
原料として、Fe(平均粒径:0.6μm)21.5kg、Mn(平均粒径:0.9μm)10.0kg、SrCO(平均粒径:0.6μm)0.28kgを純水10.43kg中に分散し、還元剤としてカーボンブラックを126g、分散剤としてポリカルボン酸アンモニウム系分散剤を190g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10μm〜75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1175℃まで4.5時間かけて昇温した。その後1175℃で3時間保持することにより第一の焼成を行った。その後10時間かけて室温まで冷却した。昇温及び保持時、冷却時の電気炉内の雰囲気は大気下で焼成を行った。
得られた焼成物をハンマーミルで解粒した後に振動ふるいを用いて分級することにより平均粒径35.0μmの第1焼成物を得た。また、ふるい分けより得られた粗粒粉と微粒粉を振動ボールミル(メディア径5mm)を用いて300分間粉砕処理を行い、平均粒径3μmの混合用金属化合物粉を得た。
その後、第1焼成物10kgと混合用金属化合物粉2kgをV型混合機を用いて300分間混合処理を行った。得られた混合物を、電気炉に投入し1200℃まで4.5時間かけて昇温した。その後1200℃で3時間保持することにより第2焼成を行った。その後10時間かけて室温まで冷却した。昇温及び保持時、冷却時の電気炉内の雰囲気は酸素濃度1.5%雰囲気下で第2焼成を行った。得られた第2焼成物をハンマーミルで解粒した後に振動ふるいを用いて分級することにより平均粒径34.6μmの第2焼成物であるキャリア芯材を得た。
得られたキャリア芯材の組成、物性、磁気特性などを後述の方法で測定した。測定結果を表2に示す。また、図2に、実施例1のキャリア芯材のSEM写真を示す。
Example 1
As raw materials, 21.5 kg of Fe 2 O 3 (average particle size: 0.6 μm), 10.0 kg of Mn 3 O 4 (average particle size: 0.9 μm), SrCO 3 (average particle size: 0.6 μm) 0. 28 kg was dispersed in 10.43 kg of pure water, 126 g of carbon black as a reducing agent, and 190 g of an ammonium polycarboxylate dispersing agent as a dispersing agent were added to obtain a mixture. The mixture was pulverized by a wet ball mill (media diameter: 2 mm) to obtain a mixed slurry.
The mixed slurry was sprayed into hot air at about 130 ° C. by a spray dryer to obtain a dried granulated material having a particle diameter of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from the granulated product using a sieve.
The granulated product was charged into an electric furnace and heated to 1175 ° C. over 4.5 hours. Thereafter, the first baking was performed by holding at 1175 ° C. for 3 hours. It cooled to room temperature over 10 hours after that. At the time of temperature rising and holding, the atmosphere in the electric furnace at the time of cooling was fired under the atmosphere.
The obtained fired product was pulverized with a hammer mill and then classified using a vibrating sieve to obtain a first fired product with an average particle diameter of 35.0 μm. Further, coarse particles and fine particles obtained by sieving were ground for 300 minutes using a vibrating ball mill (media diameter: 5 mm) to obtain a metal compound powder for mixing having an average particle diameter of 3 μm.
Thereafter, 10 kg of the first baked product and 2 kg of the metal compound powder for mixing were mixed for 300 minutes using a V-type mixer. The resulting mixture was charged into an electric furnace and heated to 1200 ° C. over 4.5 hours. Then, the second baking was performed by holding at 1200 ° C. for 3 hours. It cooled to room temperature over 10 hours after that. At the time of temperature rising and holding, the atmosphere in the electric furnace at the time of cooling performed the second baking in an oxygen concentration of 1.5% atmosphere. The obtained second fired product was pulverized using a hammer mill and then classified using a vibrating sieve to obtain a carrier core material which is a second fired product having an average particle diameter of 34.6 μm.
The composition, physical properties, magnetic properties and the like of the obtained carrier core material were measured by the method described later. The measurement results are shown in Table 2. Moreover, the SEM photograph of the carrier core material of Example 1 is shown in FIG.

実施例2
混合用金属化合物粉の作製時の粉砕時間を50分、混合用金属化合物粉の平均粒径を9μmとした以外は、実施例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表2に合わせて示す。また、図3に、実施例2のキャリア芯材のSEM写真を示す。
Example 2
A carrier core material, a carrier and a developer are produced in the same manner as in Example 1 except that the pulverizing time at the time of preparation of the metal compound powder for mixing is 50 minutes and the average particle diameter of the metal compound powder for mixing is 9 μm. The characterization and the actual machine evaluation were performed. The evaluation results are shown in Table 2. Moreover, the SEM photograph of the carrier core material of Example 2 is shown in FIG.

実施例3
第1焼成物10kgと混合用金属化合物粉3kgをV型混合機を用いて300分間混合処理を行い、第2焼成工程後に解粒、分級した焼成物を大気雰囲気下で温度370℃で1時間酸化処理した以外は、実施例2と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表2に合わせて示す。
Example 3
A mixture of 10 kg of the first fired product and 3 kg of the metal compound powder for mixing is mixed for 300 minutes using a V-type mixer, and the fired product obtained after the second firing step is granulated and classified in an air atmosphere at a temperature of 370 ° C. for 1 hour. A carrier core, a carrier and a developer were produced in the same manner as in Example 2 except that the oxidation treatment was carried out, and the characteristics and the evaluations were carried out. The evaluation results are shown in Table 2.

実施例4
第2焼成工程の焼成温度を1230℃とし、第2焼成工程後に解粒、分級した焼成物を大気雰囲気下で温度370℃で1時間酸化処理した以外は、実施例2と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表2に合わせて示す。
Example 4
The carrier core is the same as in Example 2 except that the baking temperature in the second baking step is 1230 ° C., and the crushed and classified sintered product after the second baking step is oxidized at 370 ° C. for 1 hour in the atmosphere. Materials, carriers, and developers were prepared, and their characteristic evaluations and actual machine evaluations were performed. The evaluation results are shown in Table 2.

実施例5
混合用金属化合物粉の作製時の粉砕時間を30分、混合用金属化合物粉の平均粒径を14μmとした以外は、実施例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表2に合わせて示す。
Example 5
A carrier core material, a carrier and a developer are produced in the same manner as in Example 1 except that the pulverizing time at the time of preparation of the metal compound powder for mixing is 30 minutes and the average particle diameter of the metal compound powder for mixing is 14 μm. The characterization and the actual machine evaluation were performed. The evaluation results are shown in Table 2.

実施例6
原料として、SrCO(平均粒径:0.6μm)0.18kgを使用、純水8.96kg中に分散し、第1焼成物10kgと混合用金属化合物粉1kgをV型混合機を用いて300分間混合処理を行った以外は、実施例2と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表2に合わせて示す。
Example 6
0.18 kg of SrCO 3 (average particle size: 0.6 μm) is used as a raw material, dispersed in 8.96 kg of pure water, 10 kg of the first fired product and 1 kg of the metal compound powder for mixing using a V-type mixer A carrier core, a carrier and a developer were produced in the same manner as in Example 2 except that the mixing treatment was carried out for 300 minutes, and the characteristic evaluation and the actual machine evaluation were performed. The evaluation results are shown in Table 2.

実施例7
原料として、Fe(平均粒径:0.6μm)21.5kg、Mn(平均粒径:0.9μm)8.45kg、MgO(平均粒径:0.8μm)0.35kg、SrCO(平均粒径:0.6μm)0.07kgを純水10.43kg中に分散し、還元剤としてカーボンブラックを126g、分散剤としてポリカルボン酸アンモニウム系分散剤を190g添加して混合物とし、第1焼成物10kgと混合用金属化合物粉0.5kgをV型混合機を用いて300分間混合処理を行い、第2焼成工程の焼成温度を1300℃とし、第2焼成工程後に解粒、分級した焼成物を大気雰囲気下で温度370℃で1時間酸化処理した以外は、実施例6と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表2に合わせて示す。
Example 7
As raw materials, 21.5 kg of Fe 2 O 3 (average particle size: 0.6 μm), 8.45 kg of Mn 3 O 4 (average particle size: 0.9 μm), 0.35 kg of MgO (average particle size: 0.8 μm) A mixture of 0.07 kg of SrCO 3 (average particle diameter: 0.6 μm) dispersed in 10.43 kg of pure water, 126 g of carbon black as a reducing agent, and 190 g of an ammonium polycarboxylate dispersing agent as a dispersing agent 10 kg of the first fired product and 0.5 kg of the metal compound powder for mixing are mixed for 300 minutes using a V-type mixer, and the firing temperature of the second firing step is 1300 ° C. A carrier core, a carrier and a developer were prepared in the same manner as in Example 6 except that the classified baked product was oxidized at 370 ° C. for 1 hour in the air atmosphere, and the characteristics and the evaluations were carried out. The evaluation results are shown in Table 2.

比較例1
原料として、Fe(平均粒径:0.6μm)21.5kg、Mn(平均粒径:0.9μm)10.0kg、SrCO(平均粒径:0.6μm)0.28kgを純水10.43kg中に分散し、還元剤としてカーボンブラックを126g、分散剤としてポリカルボン酸アンモニウム系分散剤を190g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10μm〜75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1200℃まで4.5時間かけて昇温した。その後1200℃で3時間保持することにより第1焼成を行った。その後10時間かけて室温まで冷却した。昇温及び保持時、冷却時の電気炉内の雰囲気は酸素濃度1.5%雰囲気下で焼成を行った。得られた焼成物をハンマーミルで解粒した後に振動ふるいを用いて分級することにより平均粒径33.5μmのキャリア芯材を得た。
得られたキャリア芯材の組成、物性、磁気特性などを後述の方法で測定した。測定結果を表2に示す。また、図4に、比較例1のキャリア芯材のSEM写真を示す。
Comparative Example 1
As raw materials, 21.5 kg of Fe 2 O 3 (average particle size: 0.6 μm), 10.0 kg of Mn 3 O 4 (average particle size: 0.9 μm), SrCO 3 (average particle size: 0.6 μm) 0. 28 kg was dispersed in 10.43 kg of pure water, 126 g of carbon black as a reducing agent, and 190 g of an ammonium polycarboxylate dispersing agent as a dispersing agent were added to obtain a mixture. The mixture was pulverized by a wet ball mill (media diameter: 2 mm) to obtain a mixed slurry.
The mixed slurry was sprayed into hot air at about 130 ° C. by a spray dryer to obtain a dried granulated material having a particle diameter of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from the granulated product using a sieve.
The granulated product was charged into an electric furnace and heated to 1200 ° C. over 4.5 hours. Thereafter, the first baking was performed by holding at 1200 ° C. for 3 hours. It cooled to room temperature over 10 hours after that. At the time of temperature rising and holding, the atmosphere in the electric furnace at the time of cooling was fired in an atmosphere with an oxygen concentration of 1.5%. The obtained fired product was granulated with a hammer mill and then classified using a vibrating sieve to obtain a carrier core material having an average particle diameter of 33.5 μm.
The composition, physical properties, magnetic properties and the like of the obtained carrier core material were measured by the method described later. The measurement results are shown in Table 2. Moreover, the SEM photograph of the carrier core material of the comparative example 1 is shown in FIG.

比較例2
焼成温度を1230℃とした以外は、比較例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表2に合わせて示す。また、図5に、比較例2のキャリア芯材のSEM写真を示す。
Comparative example 2
A carrier core, a carrier and a developer were produced in the same manner as in Comparative Example 1 except that the baking temperature was changed to 1230 ° C., and the characteristic evaluation and the actual machine evaluation were performed. The evaluation results are shown in Table 2. Moreover, the SEM photograph of the carrier core material of the comparative example 2 is shown in FIG.

比較例3
第1焼成物10kgと混合用金属化合物粉7kgをV型混合機を用いて300分間混合処理を行った以外は、実施例3と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表2に合わせて示す。
Comparative example 3
A carrier core material, a carrier and a developer are prepared in the same manner as in Example 3 except that 10 kg of the first baked product and 7 kg of the metal compound powder for mixing are mixed using a V-type mixer for 300 minutes. Evaluation and actual equipment evaluation were performed. The evaluation results are shown in Table 2.

比較例4
混合用金属化合物粉を混合することなしに第2焼成を行った以外は、実施例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表2に合わせて示す。
Comparative example 4
A carrier core material, a carrier and a developer were prepared in the same manner as in Example 1 except that the second baking was performed without mixing the metal compound powder for mixing, and the characteristic evaluation and the actual machine evaluation were performed. The evaluation results are shown in Table 2.

比較例5
混合用金属化合物粉作製時の粉砕時間を30分、混合用金属化合物粉の平均粒径を18μmとし、第2焼成後に解粒、分級した焼成物を大気雰囲気下で温度370℃で1時間酸化処理した以外は、実施例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表1に合わせて示す。
Comparative example 5
The grinding time for preparing the metal compound powder for mixing is 30 minutes, the average particle diameter of the metal compound powder for mixing is 18 μm, and the sintered product obtained after the second baking and granulated and classified is oxidized at a temperature of 370 ° C. for 1 hour. A carrier core material, a carrier and a developer were produced in the same manner as in Example 1 except that the treatment was carried out, and the characteristic evaluation and the actual machine evaluation were performed. The evaluation results are shown in Table 1 together.

(組成分析)
(Feの分析)
鉄元素を含むキャリア芯材を秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させた後、硫酸水を添加して再溶解し過剰な塩酸と硝酸とを揮発させる。この溶液に固体Alを添加して液中のFe3+を全てFe2+に還元する。続いて、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、Fe(Fe2+)の滴定量を求めた。
(Mnの分析)
キャリア芯材のMn含有量は、JIS G1311−1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行った。本願発明に記載したキャリア芯材のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
(Mgの分析)
キャリア芯材のMg含有量は、以下の方法で分析を行った。本願発明に係るキャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行った。本願発明に記載したキャリア芯材のMg含有量は、このICPによる定量分析で得られたMg量である。
(Srの分析)
キャリア芯材のSr含有量は、Mgの分析同様にICPによる定量分析で行った。
(Composition analysis)
(Fe analysis)
The carrier core material containing iron element was weighed and dissolved in a mixed acid water of hydrochloric acid and nitric acid. After this solution is evaporated to dryness, sulfuric acid water is added to re-dissolve and volatilize excess hydrochloric acid and nitric acid. Solid Al is added to this solution to reduce all Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ion in this solution was quantitatively analyzed by potentiometric titration with a potassium permanganate solution to determine the titration amount of Fe (Fe 2+ ).
(Analysis of Mn)
The Mn content of the carrier core material was quantitatively analyzed according to the ferromanganese analysis method (potentiometric titration method) described in JIS G1311-1987. The Mn content of the carrier core material described in the present invention is the amount of Mn obtained by quantitative analysis by this ferromanganese analysis method (potentiometric titration method).
(Analysis of Mg)
The Mg content of the carrier core material was analyzed by the following method. The carrier core material according to the present invention was dissolved in an acid solution, and quantitative analysis was performed by ICP. The Mg content of the carrier core material described in the present invention is the amount of Mg obtained by this ICP quantitative analysis.
(Analysis of Sr)
The Sr content of the carrier core material was determined by ICP quantitative analysis as in the analysis of Mg.

(見掛密度)
キャリア芯材の見掛け密度はJIS Z 2504に準拠して測定した。
(Apparent density)
The apparent density of the carrier core material was measured in accordance with JIS Z 2504.

(流動度)
キャリア芯材の流動度はJIS Z 2502に準拠して測定した。
(Flow rate)
The flow rate of the carrier core material was measured in accordance with JIS Z 2502.

(平均粒径)
キャリア芯材の平均粒径は、レーザー回折式粒度分布測定装置(日機装社製「マイクロトラックModel9320−X100」)を用いて測定した。
(Average particle size)
The average particle diameter of the carrier core material was measured using a laser diffraction type particle size distribution measuring apparatus ("Microtrac Model 9320-X100" manufactured by Nikkiso Co., Ltd.).

(磁気特性)
室温専用振動試料型磁力計(VSM)(東英工業社製「VSM−P7」)を用いて、外部磁場を0〜79.58×10A/m(10000エルステッド)の範囲で1サイクル連続的に印加して、飽和磁化、残留磁化、保磁力及び79.58×10A/m(1000エルステッド)の磁場における磁化σ1k(Am/kg)をそれぞれ測定した。
(Magnetic characteristics)
Using an oscillating sample magnetometer (VSM) dedicated to room temperature (“VSM-P7” manufactured by Toei Kogyo Co., Ltd.), one cycle continuous external magnetic field in the range of 0 to 79.58 × 10 4 A / m (10000 oersted) Saturation magnetization, residual magnetization, coercivity and magnetization σ 1k (Am 2 / kg) in a magnetic field of 79.58 × 10 3 A / m (1000 oersteds), respectively.

(電気抵抗)
電極として表面を電解研磨した板厚2mmの真鍮板2枚を電極間距離が2mmとなるように配置し、2枚の電極板の間の空隙にキャリア芯材200mgを装入したのち、それぞれの電極板の背後に断面積240mmの磁石を配置して電極間に被測定粉体のブリッジを形成させた状態で電極間に100V、250V、500V、1000Vの直流電圧を印加し、キャリア芯材を流れる電流値を4端子法により測定した。その電流値と、電極間距離2mmおよび断面積240mmからキャリア芯材の電気抵抗を算出した。
(Electric resistance)
Two brass plates with a thickness of 2 mm, electropolished on the surface as electrodes, are disposed so that the distance between the electrodes is 2 mm, and after 200 mg of carrier core material is charged in the gap between the two electrode plates, each electrode plate A magnet with a cross-sectional area of 240 mm 2 is placed behind the electrode to form a bridge of the powder to be measured between the electrodes, and a DC voltage of 100 V, 250 V, 500 V, 1000 V is applied between the electrodes to flow through the carrier core The current value was measured by the four-terminal method. The electrical resistance of the carrier core was calculated from the current value, the distance between electrodes of 2 mm, and the cross-sectional area of 240 mm 2 .

(包絡係数)
走査型電子顕微鏡(日本電子製「JSM−6510LA」)を用いて、加速電圧は5kV、スポットサイズは45,倍率は450倍として、粒子が重ならないように撮影した。その画像情報を、インターフェースを介してメディアサイバネティクス社製画像解析ソフト(Image−Pro PLUS)に導入して解析を行い、粒子の周囲長及び粒子の包絡線の長を求め、前記式(1)より包絡係数Eを算出した。また、包絡係数Eは、1粒子毎に算出し、250粒子の平均値を算出した。また、各粒子の包絡係数が7.0以上の粒子割合を算出した。
(Envelope coefficient)
Using a scanning electron microscope ("JSM-6510LA" manufactured by JEOL Ltd.), images were taken so that the particles did not overlap, with an acceleration voltage of 5 kV, a spot size of 45, and a magnification of 450 times. The image information is introduced into an image analysis software (Image-Pro PLUS) manufactured by Media Cybernetics via an interface and analyzed to obtain the particle peripheral length and the particle envelope length, and from the above equation (1) The envelope coefficient E was calculated. The envelope coefficient E was calculated for each particle, and the average value of 250 particles was calculated. In addition, the proportion of particles in which the envelope coefficient of each particle is 7.0 or more was calculated.

(現像剤の作製)
得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450重量部と、(2−アミノエチル)アミノプロピルトリメトキシシラン9重量部とを、溶媒としてのトルエン450重量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000重量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下、全ての実施例、比較例についても同様にしてキャリアを得た。
(Preparation of developer)
The surface of the obtained carrier core was coated with a resin to produce a carrier. Specifically, 450 parts by weight of silicone resin and 9 parts by weight of (2-aminoethyl) aminopropyltrimethoxysilane were dissolved in 450 parts by weight of toluene as a solvent to prepare a coating solution. The coating solution was applied to 50000 parts by weight of a carrier core material using a fluidized bed type coating apparatus, and heated in an electric furnace at a temperature of 300 ° C. to obtain a carrier. Hereinafter, carriers were obtained in the same manner for all the examples and comparative examples.

得られたキャリアと平均粒径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの重量/(トナーおよびキャリアの重量)=5/100となるように調整した。以下、全ての実施例、比較例についても同様にして現像剤を得た。得られた現像剤を、図6に示す構造の現像装置(現像スリーブの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム−現像スリーブ間距離:0.3mm)に投入した。   The obtained carrier and a toner having an average particle diameter of about 5.0 μm were mixed by using a pot mill for a predetermined time to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the weight of the toner / (the weight of the toner and the carrier) = 5/100. The developer was similarly obtained for all the examples and comparative examples below. The developer obtained is shown in FIG. 6 as a developing device (the peripheral velocity Vs of the developing sleeve: 406 mm / sec, the peripheral velocity Vp of the photosensitive drum: 205 mm / sec, the distance between the photosensitive drum and the developing sleeve: 0. 3 mm).

(現像メモリーの評価)
感光体ドラムの長手方向にベタ画像部と非画像部とが隣り合い、その後は広い面積の中間調が続く画像を初期と20万枚画像形成後に取得し、現像ローラ2周目の現像ローラ1周目のベタ画像が現像された領域とそうでない領域との画像濃度を反射濃度計(東京電色社製の型番TC−6D)を用いて測定し、その差を求め下記基準で評価した。結果を表2に合わせて示す。
「◎」:0.003未満
「○」:0.003以上0.006未満
「△」:0.006以上0.020未満
「×」:0.020以上
(Evaluation of developing memory)
A solid image portion and a non-image portion are adjacent to each other in the longitudinal direction of the photosensitive drum, and thereafter, an image having a large area and a continuous half tone is acquired after the image formation of 200,000 sheets at the initial stage. The image density of the area | region where the solid image of the circumference was developed, and the area | region which was not so was measured using the reflection densitometer (model number TC-6D by Tokyo Denshoku Co., Ltd. make), the difference was calculated | required, and the following reference evaluated. The results are shown in Table 2.
"◎": less than 0.003 "○": 0.003 or more and less than 0.006 "△": 0.006 or more and less than 0.020 "×": 0.020 or more

表1及び表2から明らかなように、実施例1は、第1焼成工程、金属化合物粉混合工程、第2焼成工程を行った例であり、芯材表面に適度な凹凸が形成されており、包絡係数が5.6と高い芯材が得られ、現像メモリーにおいても良好な結果を示した。   As is clear from Tables 1 and 2, Example 1 is an example in which the first baking step, the metal compound powder mixing step, and the second baking step were performed, and appropriate unevenness was formed on the surface of the core material. A core material with a high envelope coefficient of 5.6 was obtained, and the development memory also showed good results.

実施例2は、実施例1に対し、混合する金属化合物粉の粒子径を3μmから9μmに大きくした例であり、芯材表面に付着する金属化合物粉により形成される凸部が大きくなると考えられる。包絡係数は6.2と高い芯材が得られ、現像メモリーにおいても良好な結果を示した。   Example 2 is an example in which the particle diameter of the metal compound powder to be mixed is increased from 3 μm to 9 μm as compared with Example 1, and it is considered that the convex portion formed by the metal compound powder adhering to the core material surface becomes large. . The envelope coefficient was as high as 6.2, and the core material was obtained, and the development memory showed good results.

実施例3は、実施例2に対し、混合する金属化合物粉量を増やした例であり、芯材表面に付着す金属化合物粉が増加することにより凸部が多く形成されると考えられる。包絡係数は6.8と高い芯材が得られ、現像メモリーにおいても良好な結果を示した。   Example 3 is an example in which the amount of metal compound powder to be mixed is increased as compared with Example 2, and it is considered that many convex portions are formed by increasing the amount of metal compound powder adhering to the surface of the core material. The core coefficient as high as 6.8 was obtained, and the development memory also showed good results.

実施例4は、実施例2に対し第2焼成工程の焼成温度を高めた例であり、焼成温度を高めることにより混合された金属化合物粉がより強く芯材表面に付着し凸部が多く形成されると考えられる。包絡係数は6.7と高い芯材が得られ、現像メモリーにおいても良好な結果を示した。   Example 4 is an example which raised the calcination temperature of the 2nd calcination process to Example 2, and metal compound powder mixed by raising calcination temperature adheres more strongly to the core material surface, and many convex parts are formed. It is considered to be The envelope coefficient was as high as 6.7, and the core material was obtained, and the development memory also showed good results.

比較例1は、第1焼成のみを行った例であり、包絡係数が4.6と小さく、コーティング後の樹脂被覆層の薄い部分の形成が不十分であると考えられ、現像メモリーにおいて劣るものとなった。   Comparative Example 1 is an example in which only the first baking was performed, and the envelope coefficient was as small as 4.6, and it was considered that the formation of the thin portion of the resin coating layer after coating was insufficient, and was inferior in developing memory It became.

比較例2は、第1焼成工程の焼成温度を高めた例であり、包絡係数が4.6と小さく、コーティング後の樹脂被覆層の薄い部分の形成が不十分であると考えられ、現像メモリーにおいて劣るものとなった。   Comparative Example 2 is an example in which the firing temperature in the first firing step is raised, and the envelope coefficient is as small as 4.6, and it is considered that the formation of the thin portion of the resin coating layer after coating is insufficient. It is inferior in

比較例3は、金属化合物粉の混合量を高めた例であり、9.5と高い包絡係数を有する芯材が得られたが、現像メモリーにおいて劣る結果となった。これは、凹凸度が高すぎるために逆に流動性が51.3secと良好でなくトナーとの混合性が悪化し、帯電付与が不十分なトナーが現像スリーブに付着したためと考えられる。   Comparative Example 3 is an example in which the mixing amount of the metal compound powder was increased, and a core material having a high envelope coefficient of 9.5 was obtained, but the result was inferior in development memory. This is considered to be due to the fact that the fluidity is not good as 51.3 sec because the degree of unevenness is too high, the mixing property with the toner is deteriorated, and the toner to which charging is insufficient is adhered to the developing sleeve.

比較例4は、金属化合物粉の混合を行わなかった例であり、包絡係数4.5と小さく、コーティング後の樹脂被覆層の薄い部分の形成が不十分であると考えられ、現像メモリーにおいて劣るものとなった。   Comparative Example 4 is an example in which the mixing of the metal compound powder was not performed, and it was considered that the envelope coefficient was as small as 4.5, the formation of the thin portion of the resin coating layer after coating was insufficient, and the development memory was inferior. It became a thing.

比較例5は、金属化合物粉の粒子径を18μmに高めた例であり、得られた芯材の包絡係数は4.5と小さく、コーティング後の樹脂被覆層の薄い部分の形成が不十分であると考えられ、現像メモリーにおいても劣るものとなった。これは、第2焼成工程で芯材表面に付着した金属化合物粉が大きすぎるために、続く解粒工程において芯材表面からはがれてしまい狙いの凹凸形状が得られなかったためと考えられる。   Comparative Example 5 is an example in which the particle diameter of the metal compound powder is increased to 18 μm, the envelope coefficient of the obtained core is as small as 4.5, and the formation of the thin portion of the resin coating layer after coating is insufficient. It is considered that there is a problem, and the development memory is also inferior. It is considered that this is because the metal compound powder attached to the core surface in the second firing step is too large, so that the core particle surface peels off in the subsequent granulation step and the intended uneven shape is not obtained.

3 現像ローラ
5 感光体ドラム
3 Developer roller 5 Photosensitive drum

Claims (12)

組成式MFe3−X(但し、MはMg,Mn,Ca,Ti,Sr,Cu,Zn,Niからなる群より選ばれる少なくとも1種の金属,0<X<1)で表される材料を主成分とするキャリア芯材であって、
下記式から算出される包絡係数Eの平均値が5.0〜7.0の範囲であり、
見かけ密度が2.20g/cm 〜2.25g/cm の範囲である
ことを特徴とするキャリア芯材。
E=(L−L)/L×100 ・・・・・・(1)
(式中、L:キャリア芯材投影像の周囲長,L:キャリア芯材投影像の包絡線の長さ)
Compositional formula M X Fe 3-X O 4 (where M is at least one metal selected from the group consisting of Mg, Mn, Ca, Ti, Sr, Cu, Zn, Ni, 0 <X <1) Carrier core material mainly composed of
Mean value of envelope coefficients E calculated from the following formula Ri range der of 5.0 to 7.0,
A carrier core material having an apparent density in the range of 2.20 g / cm 3 to 2.25 g / cm 3 .
E = (L 1- L 2 ) / L 2 × 100 ... (1)
(Wherein, L 1 : perimeter of carrier core material projected image, L 2 : length of envelope of carrier core material projected image)
前記包絡係数Eが7.0以上である粒子が20個数%以上含まれる請求項1記載のキャリア芯材。   The carrier core material according to claim 1, wherein 20 number% or more of particles having the envelope coefficient E of 7.0 or more are contained. 流動度が30sec/50g〜50sec/50gの範囲である請求項1又は2記載のキャリア芯材。   The carrier core material according to claim 1 or 2, wherein the flow rate is in the range of 30 sec / 50 g to 50 sec / 50 g. 体積平均粒径が25μm〜40μmである請求項1〜3のいずれかに記載のキャリア芯材。   The carrier core material according to any one of claims 1 to 3, which has a volume average particle size of 25 m to 40 m. 前記組成式のMがMn又はMnMgである請求項1〜4のいずれかに記載のキャリア芯材。   The carrier core material according to any one of claims 1 to 4, wherein M in the composition formula is Mn or MnMg. 請求項1〜5のいずれかに記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。   A carrier for electrophotographic development, wherein the surface of the carrier core material according to any one of claims 1 to 5 is coated with a resin. 請求項6記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。   An electrophotographic developer comprising the carrier for electrophotographic development according to claim 6 and a toner. M成分原料(但し、MはMg,Mn,Ca,Ti,Sr,Cu,Zn,Niからなる群より選ばれる少なくとも1種の金属)、Fe成分を含み、焼成してなる第1焼成物を用い、
前記第1焼成物と、体積平均粒径が前記第1焼成物の体積平均粒径よりも小さく、1μm〜15μmの範囲である金属化合物粉とを混合して混合物を得る工程と、
前記混合物を窒素雰囲気下でさらに焼成して第2焼成物を得る第2焼成工程とを有する
ことを特徴とするキャリア芯材の製造方法。
M component raw material (wherein M is at least one metal selected from the group consisting of Mg, Mn, Ca, Ti, Sr, Cu, Zn, Ni), and an Fe component, and a first fired product formed by firing Use
Said first calcined product, rather smaller than the volume average particle diameter of volume average particle diameter of the first fired product, obtaining a mixture by mixing the metal compound powder is in the range of 1Myuemu~15myuemu,
And b) firing the mixture further in a nitrogen atmosphere to obtain a second fired product.
前記金属化合物粉の混合量が、前記第1焼成物に対して5wt%〜50wt%の範囲である請求項記載の製造方法。 The manufacturing method according to claim 8 , wherein the mixing amount of the metal compound powder is in the range of 5 wt% to 50 wt% with respect to the first baked product. 前記金属化合物粉の組成が、前記第1焼成物の組成と同一である請求項8又は9に記載の製造方法。 The method according to claim 8 or 9 , wherein the composition of the metal compound powder is the same as the composition of the first baked product. 第1焼成工程における焼成温度が700℃〜1300℃の範囲である請求項8〜10のいずれかに記載の製造方法。 The production method according to any one of claims 8 to 10 , wherein the firing temperature in the first firing step is in the range of 700 ° C to 1300 ° C. 第2焼成工程における焼成温度が1050℃〜1300℃の範囲である請求項8〜11のいずれかに記載の製造方法。 The production method according to any one of claims 8 to 11 , wherein the firing temperature in the second firing step is in the range of 1050 ° C to 1300 ° C.
JP2015079354A 2015-04-08 2015-04-08 Carrier core material and method for manufacturing the same Active JP6511320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015079354A JP6511320B2 (en) 2015-04-08 2015-04-08 Carrier core material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079354A JP6511320B2 (en) 2015-04-08 2015-04-08 Carrier core material and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016200669A JP2016200669A (en) 2016-12-01
JP6511320B2 true JP6511320B2 (en) 2019-05-15

Family

ID=57424048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079354A Active JP6511320B2 (en) 2015-04-08 2015-04-08 Carrier core material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6511320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220066338A1 (en) * 2020-08-26 2022-03-03 Sharp Kabushiki Kaisha Two-component developer, developing device, and image forming device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116530B2 (en) * 2017-03-16 2022-08-10 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic development carrier and electrophotographic developer using the same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973188A (en) * 1995-06-26 1997-03-18 Ricoh Co Ltd Electrostatic charge image developing toner
JP2003173046A (en) * 2000-12-15 2003-06-20 Canon Inc Toner production process
JP3953906B2 (en) * 2002-07-19 2007-08-08 株式会社リコー Electrophotographic developer, carrier for electrophotographic development and method for producing the same
JP3960606B2 (en) * 2003-09-29 2007-08-15 株式会社リコー Electrostatic latent image developer carrier, manufacturing method thereof, electrostatic latent image developer and process cartridge using the carrier
JP4205124B2 (en) * 2006-09-14 2009-01-07 シャープ株式会社 Electrophotographic developer and image forming apparatus
JP4948191B2 (en) * 2007-02-02 2012-06-06 Dowaエレクトロニクス株式会社 Two-component electrophotographic developer carrier and two-component electrophotographic developer
JP5288759B2 (en) * 2007-09-28 2013-09-11 Dowaエレクトロニクス株式会社 Method for producing carrier core material for electrophotographic developer
US20090142688A1 (en) * 2007-11-30 2009-06-04 Xerox Corporation Composition for coating carrier particles
JP2009244788A (en) * 2008-03-31 2009-10-22 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5334251B2 (en) * 2009-02-04 2013-11-06 パウダーテック株式会社 Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP5464645B2 (en) * 2009-06-29 2014-04-09 パウダーテック株式会社 Carrier for electrophotographic developer and electrophotographic developer using the carrier
JP2011158742A (en) * 2010-02-02 2011-08-18 Canon Inc Two-component developer
JP5843378B2 (en) * 2010-07-27 2016-01-13 Dowaエレクトロニクス株式会社 Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5541598B2 (en) * 2010-10-21 2014-07-09 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier for electrophotographic developer
JP5640684B2 (en) * 2010-11-12 2014-12-17 富士ゼロックス株式会社 Electrostatic photographic developer, process cartridge, image forming apparatus and image forming method
JP5708038B2 (en) * 2011-03-02 2015-04-30 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP5698057B2 (en) * 2011-03-31 2015-04-08 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5650773B2 (en) * 2013-02-25 2015-01-07 Dowaエレクトロニクス株式会社 Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP6156626B2 (en) * 2013-03-19 2017-07-05 パウダーテック株式会社 Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP5692766B1 (en) * 2014-01-20 2015-04-01 パウダーテック株式会社 Ferrite carrier core material and ferrite carrier for electrophotographic developer using ferrite particles having outer shell structure, and electrophotographic developer using the ferrite carrier
JP5769350B1 (en) * 2014-02-24 2015-08-26 Dowaエレクトロニクス株式会社 Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP6277813B2 (en) * 2014-03-24 2018-02-14 富士ゼロックス株式会社 Electrostatic image developing carrier, electrostatic image developer, developer cartridge, process cartridge, and image forming apparatus
JP5839639B1 (en) * 2014-07-29 2016-01-06 Dowaエレクトロニクス株式会社 Carrier core
JP6633898B2 (en) * 2015-11-27 2020-01-22 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5957623B1 (en) * 2016-02-18 2016-07-27 Dowaエレクトロニクス株式会社 Carrier core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220066338A1 (en) * 2020-08-26 2022-03-03 Sharp Kabushiki Kaisha Two-component developer, developing device, and image forming device
US11619889B2 (en) * 2020-08-26 2023-04-04 Sharp Kabushiki Kaisha Two-component developer, developing device, and image forming device

Also Published As

Publication number Publication date
JP2016200669A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5751688B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6450621B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5957623B1 (en) Carrier core
JP5726360B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5839639B1 (en) Carrier core
JP5828569B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5735877B2 (en) Method for producing ferrite particles
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP7275361B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP7257732B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP7075913B2 (en) Carrier core material
JP6924885B1 (en) Carrier core material
JP2019061188A (en) Carrier core material, carrier for developing electrophotography using the same, and developer for electrophotography
JP6864054B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic development
JP2018155827A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP7085507B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic
JP6916727B2 (en) Carrier core material
JP5839640B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6650300B2 (en) Carrier core material
JP2021173911A (en) Ferrite carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography
JP2021144067A (en) Ferrite carrier core material, electrophotographic development carrier using the same, and electrophotographic developer
JP2023020082A (en) Carrier core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6511320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250