JP2011164224A - Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the manufacturing method - Google Patents

Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the manufacturing method Download PDF

Info

Publication number
JP2011164224A
JP2011164224A JP2010024809A JP2010024809A JP2011164224A JP 2011164224 A JP2011164224 A JP 2011164224A JP 2010024809 A JP2010024809 A JP 2010024809A JP 2010024809 A JP2010024809 A JP 2010024809A JP 2011164224 A JP2011164224 A JP 2011164224A
Authority
JP
Japan
Prior art keywords
core material
carrier core
electrophotographic developer
firing
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010024809A
Other languages
Japanese (ja)
Inventor
Koji Yasuga
康二 安賀
Susumu Iwata
享 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powdertech Co Ltd
Original Assignee
Powdertech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powdertech Co Ltd filed Critical Powdertech Co Ltd
Priority to JP2010024809A priority Critical patent/JP2011164224A/en
Publication of JP2011164224A publication Critical patent/JP2011164224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a carrier core material for electrophotographic developers which contains no heavy metal, reduces a Mn content, gains prescribed resistance such as intermediate resistance or high resistance while being high in magnetization, is highly electrically charged, has a good apparent density, has surface properties having adequate concavities and convexities, and is uniform in shape. <P>SOLUTION: This is a method for manufacturing a carrier core material for electrophotographic developers which includes ferrite particles which contain at least Fe, Mg, Ti and Sr and have at least spinel structure and Ti-compound structure. In addition, the method has: (1) a first burning process in which at least a Mg compound, a Sr compound and Fe<SB>2</SB>O<SB>3</SB>are added together, mixed and then burned in a prescribed atmosphere to gain a mixture including Fe<SP>2+</SP>; (2) a granulation process in which the mixture thus gained is made to be slurry, and the slurry particles are granulated; (3) a second burning process in which the granules are burned in a prescribed atmosphere to convert them into ferrite; (4) a third burning process in which the burning is made again in the prescribed atmosphere to adjust magnetization and surface properties; and (5) an oxide film processing process in which oxide films are formed on the surfaces of the particles. In this case, the amount of the remaining Fe<SB>2</SB>O<SB>3</SB>posterior to the first burning process is 0-60 wt.%, and a Ti compound is added in the granulation process. Then, the method for manufacturing the carrier core material for electrophotographic developers is adopted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複写機、プリンター等に用いられる二成分系電子写真現像剤に使用される電子写真現像剤用キャリア芯材の製造方法及び該製造方法により得られるキャリア芯材に関する。   The present invention relates to a method for producing a carrier core material for an electrophotographic developer used for a two-component electrophotographic developer used in a copying machine, a printer, and the like, and a carrier core material obtained by the production method.

電子写真現像方法は、現像剤中のトナー粒子を感光体上に形成された静電潜像に付着させて現像する方法であり、この方法で使用される現像剤は、トナー粒子とキャリア粒子からなる二成分系現像剤及びトナー粒子のみを用いる一成分系現像剤に分けられる。   The electrophotographic development method is a method in which toner particles in a developer are attached to an electrostatic latent image formed on a photoreceptor and developed, and the developer used in this method is composed of toner particles and carrier particles. The two-component developer and the one-component developer using only toner particles.

こうした現像剤のうち、トナー粒子とキャリア粒子からなる二成分系現像剤を用いた現像方法としては、古くはカスケード法等が採用されていたが、現在では、マグネットロールを用いる磁気ブラシ法が主流である。   Among these developers, as a developing method using a two-component developer composed of toner particles and carrier particles, the cascade method has been used in the past, but at present, the magnetic brush method using a magnet roll is the mainstream. It is.

二成分系現像剤において、キャリア粒子は、現像剤が充填されている現像ボックス内において、トナー粒子と共に攪拌されることによって、トナー粒子に所望の電荷を付与し、さらにこのように電荷を帯びたトナー粒子を感光体の表面に搬送して感光体上にトナー像を形成するための担体物質である。マグネットを保持する現像ロール上に残ったキャリア粒子は、この現像ロールから再び現像ボックス内に戻り、新たなトナー粒子と混合・攪拌され、一定期間繰り返して使用される。   In the two-component developer, the carrier particles are agitated together with the toner particles in the developing box filled with the developer, thereby imparting a desired charge to the toner particles, and thus being charged. A carrier material for transporting toner particles to the surface of the photoreceptor to form a toner image on the photoreceptor. The carrier particles remaining on the developing roll holding the magnet are returned to the developing box from the developing roll, mixed and stirred with new toner particles, and used repeatedly for a certain period.

二成分系現像剤は、一成分系現像剤とは異なり、キャリア粒子はトナー粒子と混合・攪拌され、トナー粒子を帯電させ、さらに搬送する機能を有しており、現像剤を設計する際の制御性が良い。従って、二成分系現像剤は高画質が要求されるフルカラー現像装置及び画像維持の信頼性、耐久性が要求される高速印刷を行う装置等に適している。   Unlike the one-component developer, the two-component developer has the function of mixing and stirring the carrier particles with the toner particles, charging the toner particles, and further transporting the toner particles. Good controllability. Therefore, the two-component developer is suitable for a full-color developing device that requires high image quality and a device that performs high-speed printing that requires image maintenance reliability and durability.

このようにして用いられる二成分系現像剤においては、画像濃度、カブリ、白斑、階調性、解像力等の画像特性が、初期の段階から所定の値を示し、しかもこれらの特性が耐刷期間中に変動せず、安定に維持されることが必要である。これらの特性を安定に維持するためには、二成分系現像剤中に含有されるキャリア粒子の特性が安定していることが必要になる。   In the two-component developer used in this manner, image characteristics such as image density, fog, vitiligo, gradation, and resolving power show predetermined values from the initial stage, and these characteristics are in the printing life period. It needs to be kept stable without fluctuating inside. In order to maintain these characteristics stably, it is necessary that the characteristics of the carrier particles contained in the two-component developer are stable.

二成分系現像剤を形成するキャリア粒子として、従来は、表面を酸化皮膜で覆った鉄粉あるいは表面を樹脂で被覆した鉄粉等の鉄粉キャリアが使用されていた。このような鉄粉キャリアは、磁化が高く、導電性も高いことから、ベタ部の再現性のよい画像が得られやすいという利点がある。   Conventionally, iron powder carriers such as iron powder whose surface is covered with an oxide film or iron powder whose surface is coated with a resin have been used as carrier particles for forming a two-component developer. Since such an iron powder carrier has high magnetization and high conductivity, there is an advantage that an image with a good reproducibility of the solid portion can be easily obtained.

しかしながら、このような鉄粉キャリアは真比重が約7.8と重く、また磁化が高すぎることから、現像ボックス中におけるトナー粒子との攪拌・混合により、鉄粉キャリア表面へのトナー構成成分の融着、いわゆるトナースペントが発生しやすくなる。このようなトナースペントの発生により有効なキャリア表面積が減少し、トナー粒子との摩擦帯電能力が低下しやすくなる。   However, such an iron powder carrier has a heavy true specific gravity of about 7.8 and is too high in magnetization, so that the toner constituent components on the surface of the iron powder carrier are mixed by stirring and mixing with toner particles in the developing box. Fusing, so-called toner spent, is likely to occur. The generation of such toner spent reduces the effective carrier surface area and tends to reduce the triboelectric charging ability with the toner particles.

また、樹脂被覆鉄粉キャリアでは、耐久時のストレスにより表面の樹脂が剥離し、高導電性で絶縁破壊電圧が低い芯材(鉄粉)が露出することにより、電荷のリークが生ずることがある。このような電荷のリークにより、感光体上に形成された静電潜像が破壊され、ベタ部にハケスジ等が発生し、均一な画像が得られにくい。これらの理由から、酸化皮膜鉄粉及び樹脂被覆鉄粉等の鉄粉キャリアは、現在では使用されなくなってきている。   Moreover, in the resin-coated iron powder carrier, the resin on the surface peels off due to stress during durability, and the core material (iron powder) with high conductivity and low dielectric breakdown voltage is exposed, which may cause charge leakage. . Due to such charge leakage, the electrostatic latent image formed on the photoconductor is destroyed, and a crack or the like is generated in the solid portion, so that it is difficult to obtain a uniform image. For these reasons, iron powder carriers such as oxide film iron powder and resin-coated iron powder are no longer used.

近年は、鉄粉キャリアに代わって真比重約5.0程度と軽く、また磁化も低いフェライトをキャリアとして用いたり、さらに表面に樹脂を被覆した樹脂コートフェライトキャリアが多く使用されており、現像剤寿命は飛躍的に伸びてきた。   In recent years, instead of iron powder carriers, ferrite with a true specific gravity of about 5.0, which is light and has a low magnetization, or a resin-coated ferrite carrier whose surface is coated with a resin has been widely used. Lifespan has increased dramatically.

このようなフェライトキャリアの製造方法としては、フェライトキャリア原料を所定量混合した後、仮焼、粉砕し、造粒後に焼成を行うのが一般的であり、条件によっては仮焼を省略できる場合もある。   As a method for producing such a ferrite carrier, a predetermined amount of ferrite carrier raw material is mixed, calcined, pulverized, and then fired after granulation. Depending on conditions, calcining may be omitted. is there.

ところで、最近、環境規制が厳しくなり、Ni、Cu、Zn等の金属の使用は避けられるようになってきており、環境規制に適応した金属の使用が求められており、キャリア芯材として用いられるフェライト組成はCu−Znフェライト、Ni−ZnフェライトからMnを用いたMnフェライト、Mn−Mg−Srフェライト等に移行している。   Recently, environmental regulations have become stricter, and the use of metals such as Ni, Cu, and Zn has been avoided, and the use of metals suitable for environmental regulations has been demanded, and it is used as a carrier core material. The ferrite composition has shifted from Cu—Zn ferrite, Ni—Zn ferrite to Mn ferrite using Mn, Mn—Mg—Sr ferrite and the like.

特許文献1(特開2006−337828号公報)には、表面が溝又は筋で10μm四方あたり2〜50の領域に分割されており、マンガンフェライトを主成分とする電子写真用フェライトキャリア芯材が記載されている。このフェライトキャリア芯材は、組成が均一で、一定の表面性、良好な流動性を有し、かつ高磁化、低抵抗であり、このフェライトキャリア芯材に樹脂を被覆したフェライトキャリアを用いた電子写真用現像剤は、帯電の立ち上がりが速く、経時における安定した帯電量を有するとされている。   Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-337828) discloses a ferrite carrier core material for electrophotography in which the surface is divided into regions of 2 to 50 per 10 μm square by grooves or streaks, and the main component is manganese ferrite. Are listed. This ferrite carrier core material has a uniform composition, constant surface properties, good fluidity, high magnetization, low resistance, and an electron using a ferrite carrier in which this ferrite carrier core material is coated with a resin. Photographic developers are said to have a fast charge rise and a stable charge over time.

この特許文献1では、上記のようなフェライトキャリア芯材を製造するために、FeとMnのモル比(Fe/Mn)が4〜16のFeとMnを主成分とする複合酸化物を粉砕、混合後、造粒、焼成し、さらに解砕、分級する製造方法において、焼成を酸素濃度が5体積%以下の雰囲気で行うことが示されている。   In Patent Document 1, in order to produce the ferrite carrier core material as described above, a composite oxide mainly composed of Fe and Mn having a molar ratio of Fe to Mn (Fe / Mn) of 4 to 16 is crushed. It has been shown that in a production method in which granulation, firing, and further pulverization and classification are performed after mixing, firing is performed in an atmosphere having an oxygen concentration of 5% by volume or less.

しかし、このフェライトキャリア芯材は、低抵抗であるという問題がある。しかも、Mnも各種法規制の対象になりつつあり、上記各種重金属はもとよりMnを使用しない、あるいはMn含有量を大幅に減じた新たなキャリア芯材が求められている。   However, this ferrite carrier core material has a problem of low resistance. In addition, Mn is also subject to various laws and regulations, and there is a need for a new carrier core material that does not use Mn as well as the above-mentioned various heavy metals, or that significantly reduces the Mn content.

フェライト成分としてMnを用いたキャリア芯材に代わるものとして、Mg等を用いたキャリア芯材が提案されている。例えば、特許文献2(特開2000−172017号公報)には、マグネタイト又はMgOあるいはCaO等の有害重金属でない酸化物を含むマグネタイトを主成分とする複合酸化物を出発原料とし、粉砕後、球形に造粒し、球形造粒粉を、850〜1000℃、不活性ガス雰囲気下で焼成する電子写真現像剤用フェライトコアの製造方法が記載されている。   As an alternative to a carrier core material using Mn as a ferrite component, a carrier core material using Mg or the like has been proposed. For example, in Patent Document 2 (Japanese Patent Laid-Open No. 2000-172017), a starting material is a composite oxide mainly composed of magnetite including a magnetite or an oxide that is not a harmful heavy metal such as MgO or CaO. A method for producing a ferrite core for an electrophotographic developer is described in which granulated and spherical granulated powder is fired at 850 to 1000 ° C. in an inert gas atmosphere.

また、特許文献3(特表2006−524627号公報)には、式MgFeCaで示されるMg系フェライト材料(キャリア芯材)が示され、飽和磁化が30〜80emu/g、絶縁破壊電圧が1.5〜5.0kVであるとされ、環境規制に対応したクリーンな材料で構成され、鮮明で階調性に富みカブリのない高画質像が得られるとされている。 Patent Document 3 (Japanese Patent Publication No. 2006-524627) discloses an Mg-based ferrite material (carrier core material) represented by the formula Mg a Fe b Ca c O d and has a saturation magnetization of 30 to 80 emu / g. It is said that the dielectric breakdown voltage is 1.5 to 5.0 kV, and is composed of a clean material that complies with environmental regulations, and a high-quality image that is clear, rich in gradation, and free from fog is obtained.

このようにフェライト成分としてMgを用いたキャリア芯材は提案されているが、一般に磁化と抵抗はトレードオフの関係にあるため、高磁化と中抵抗〜高抵抗といった特性を両立することは難しい。そのため、Mnを添加することで磁化と抵抗のトレードオフの関係を緩和し高磁化かつ中抵抗〜高抵抗を実現し、現在は電子写真現像剤用キャリア芯材として利用されている。しかしながら、上述したように、各種重金属規制の強化に伴い、Mnを使用しない、あるいはMn含有量を大幅に減じることが要請される状況となっている。   Thus, although the carrier core material using Mg as a ferrite component has been proposed, since magnetization and resistance are generally in a trade-off relationship, it is difficult to achieve both high magnetization and characteristics such as medium resistance to high resistance. Therefore, by adding Mn, the trade-off relationship between magnetization and resistance is relaxed to realize high magnetization, medium resistance to high resistance, and it is currently used as a carrier core material for electrophotographic developer. However, as described above, with the strengthening of various heavy metal regulations, there is a demand for not using Mn or significantly reducing the Mn content.

また、フェライト成分としてMgを用いて従来の焼成方法でも高磁化、かつ中抵抗〜高抵抗を実現する方法としては、本焼成後、表面酸化することで抵抗を所望のレベルに合わせ込む取り組みがなされてきた。   In addition, as a method of realizing high magnetization and medium resistance to high resistance even with a conventional firing method using Mg as a ferrite component, efforts are made to adjust the resistance to a desired level by surface oxidation after the main firing. I came.

特許文献4(特開2004−240322号公報)には、マンガン−マグネシウムフェライトに固溶されていないZrOを含有するフェライト粒子からなる電子写真現像剤用キャリア芯材を開示し、その製造においては、本焼成後、大気雰囲気下、既存のロータリー式電気炉、バッチ式電気炉等を用いて、300〜700℃で酸化皮膜処理することが記載されている。さらに、特許文献5(特開2008−65106号公報)には、MO・Fe、M成分は2価の金属元素、特にMn、Mg、Feの1種以上で表される磁性部とSiOを含んでなる非磁性部を有する粉体からなる電子写真現像剤用キャリア芯材を開示し、その製造においては、焼成後、大気又は酸素と窒素の混合雰囲気下で200〜800℃に加熱して高抵抗化処理することが記載されている。 Patent Document 4 (Japanese Patent Application Laid-Open No. 2004-240322) discloses a carrier core material for an electrophotographic developer composed of ferrite particles containing ZrO 2 not dissolved in manganese-magnesium ferrite. In addition, it is described that after the main baking, an oxide film treatment is performed at 300 to 700 ° C. using an existing rotary electric furnace, batch electric furnace, or the like in an air atmosphere. Further, Patent Document 5 (Japanese Patent Laid-Open No. 2008-65106) discloses that MO · Fe 2 O 3 , where the M component is a magnetic part represented by one or more of divalent metal elements, particularly Mn, Mg, and Fe. Disclosed is a carrier core material for an electrophotographic developer comprising a powder having a nonmagnetic part containing SiO 2 , and in the production thereof, after firing, it is heated to 200 to 800 ° C. in air or a mixed atmosphere of oxygen and nitrogen. It describes that the resistance is increased by heating.

しかし、特許文献4及び5に記載のように、酸化皮膜処理(高抵抗化処理)を行っても、低抵抗であったり、低磁化である。また、フェライト成分としてMnを一定量以上使用する場合には、上記した環境規制の問題も生じる。   However, as described in Patent Documents 4 and 5, even when an oxide film treatment (high resistance treatment) is performed, the resistance is low or the magnetization is low. Further, when Mn is used as a ferrite component in a certain amount or more, the above-mentioned environmental regulation problem also arises.

従来よりMg系フェライトはFe過剰で製造することで磁化を高くすることが出来ることが知られている。しかし、抵抗はFe過剰であるため極めて低いものとなってしまっている。また、Fe過剰のMg系フェライトは、本焼成時の酸素濃度が高い場合や表面酸化によって磁化が急激に低くなると言う特徴を持っており、この現象はマグネタイト中に含まれるFe2+の酸化によるものと考えられている。 Conventionally, it has been known that Mg-based ferrite can be increased in magnetization by being produced with an excess of Fe. However, the resistance is extremely low due to the excess of Fe. In addition, Fe-excess Mg-based ferrite is characterized by a sharp decrease in magnetization due to high oxygen concentration during surface firing or surface oxidation. This phenomenon is due to oxidation of Fe 2+ contained in magnetite. It is believed that.

一方、Fe以外の遷移金属を含有しないMg系フェライトの焼成温度は1250〜1350℃程度ときわめて高温であり、キャリア芯材に求められる表面性はほとんど凹凸のないものしか得られないだけでなく、焼成時にキャリア芯材粒子同士が凝集しやすく球形ではない粒子が多く含まれることとなる。そのため、意図的に重金属を含有せず、高磁化、中抵抗〜高抵抗で、かつ適度な凹凸を有する表面性と揃った形状を実現した電子写真現像剤用キャリア芯材及びその製造方法は得られていないのが現状である。   On the other hand, the firing temperature of Mg-based ferrite that does not contain a transition metal other than Fe is as high as about 1250 to 1350 ° C., and not only the surface properties required for the carrier core material can be obtained with almost no unevenness, The carrier core particles are likely to aggregate during firing and contain many particles that are not spherical. Therefore, a carrier core material for an electrophotographic developer that does not intentionally contain a heavy metal, has a high magnetization, a medium resistance to a high resistance, and has a surface shape with appropriate irregularities, and a method for producing the same are obtained. The current situation is not.

特許文献6(特許2860356号公報)は、ヘマタイト、ヘマタイト+マグネタイト、あるいはマグネタイトにMgと必要に応じてMnを混合して焼成した所定の飽和磁化を持つ酸化物磁性材料およびその製造方法に関するものである。特許文献7(特許3151457号公報)は、マグネタイト、マグネタイト+ヘマタイト、ヘマタイトにTi化合物あるいはSn化合物を混合・焼成して所定の値の飽和磁化を持つ酸化物磁性材料およびその製造方法に関するものである。いずれの文献中においても、球形顆粒化後の焼成は1回しか行っておらず電子写真用キャリア芯材として求められる粒子の形状や表面性を得ることが難しく、不十分である。また、上記特許文献6には非磁性相としてヘマタイト、ウスタイト、Mg(化合物)が例示されている。一方、本発明に係る製造方法により製造された電子写真用キャリア芯材中に存在するMg化合物は磁化を持ったMgフェライトであり、かつ非磁性相としてはTi化合物が存在すること、及びキャリア芯材中にフェライト成分の他にMg、Ti及びOで構成される誘電体成分を生成させるため上記特許文献6と明確に区別される。   Patent Document 6 (Japanese Patent No. 2860356) relates to an oxide magnetic material having a predetermined saturation magnetization obtained by firing hematite, hematite + magnetite, or magnetite and Mg and optionally Mn, and a method for producing the same. is there. Patent Document 7 (Japanese Patent No. 3151457) relates to an oxide magnetic material having saturation magnetization of a predetermined value by mixing and firing magnetite, magnetite + hematite, hematite with a Ti compound or Sn compound, and a method for producing the same. . In any of the documents, firing after spherical granulation is performed only once, and it is difficult and insufficient to obtain the particle shape and surface properties required as a carrier core material for electrophotography. Moreover, the said patent document 6 has illustrated hematite, wustite, and Mg (compound) as a nonmagnetic phase. On the other hand, the Mg compound present in the electrophotographic carrier core produced by the production method according to the present invention is a magnetized Mg ferrite, and the presence of a Ti compound as the nonmagnetic phase, and the carrier core In order to generate a dielectric component composed of Mg, Ti and O in addition to the ferrite component in the material, it is clearly distinguished from the above-mentioned Patent Document 6.

特開2006−337828号公報JP 2006-337828 A 特開2000−172017号公報JP 2000-172017 A 特表2006−524627号公報JP 2006-524627 A 特開2004−240322号公報JP 2004-240322 A 特開2008−65106号公報JP 2008-65106 A 特許2860356号公報Japanese Patent No. 2860356 特許3151457号公報Japanese Patent No. 3151457

従って、本発明の目的は、各重金属を含有しないのみならず、Mn含有量を低減し、高磁化でありながら中抵抗又は高抵抗といった所望の抵抗が得られるだけでなく高帯電で、良好な見掛け密度を有し、かつ適度な凹凸を有する表面性と揃った形状とを兼ね備える電子写真現像剤用キャリア芯材の製造方法、及び該製造方法により得られるキャリア芯材を提供することにある。   Therefore, the object of the present invention is not only to contain each heavy metal, but also to reduce the Mn content and not only obtain a desired resistance such as medium resistance or high resistance while being highly magnetized, but also high charge and good An object of the present invention is to provide a method for producing a carrier core material for an electrophotographic developer having an apparent density and having an appropriate unevenness and a uniform shape, and a carrier core material obtained by the production method.

本発明者らは、上記のような課題を解決すべく鋭意検討した結果、Fe、Mg、Ti及びSrを含有し、少なくともスピネル構造及びTi化合物の構造を有する電子写真現像剤用キャリア芯材の製造方法において、造粒工程でTi化合物を特定量添加すると共に、一定の条件下で本焼成を含む3回の焼成工程を経て得られたキャリア芯材が上記目的を達成することを知見し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the carrier core material for an electrophotographic developer contains Fe, Mg, Ti and Sr, and has at least a spinel structure and a Ti compound structure. In the manufacturing method, while adding a specific amount of Ti compound in the granulation step, the carrier core material obtained through three firing steps including the main firing under a certain condition finds that the above-mentioned purpose is achieved, The present invention has been reached.

すなわち、本発明は、Fe、Mg、Ti及びSrを少なくとも含有し、少なくともスピネル構造及びTi化合物の構造を有するフェライト粒子からなる電子写真現像剤用キャリア芯材の製造方法であって、
(1)少なくともMg化合物、Sr化合物及びFeを非酸化性雰囲気又は弱還元性雰囲気下、添加、混合、焼成してFe2+を含む混合物を得る第1焼成工程と、
(2)得られた混合物をスラリー化した後、スラリー粒子を造粒する造粒工程と、
(3)造粒物を非酸化性雰囲気又は弱還元性雰囲気下で焼成し、フェライト化させる第2焼成工程と、
(4)再度、非酸化性雰囲気又は弱還元性雰囲気下で焼成し、磁化及び表面性を調整する第3焼成工程と、
(5)粒子表面に酸化皮膜を形成する酸化皮膜処理工程と、
を有し、上記第1焼成工程後のFe残留量が0〜60重量%であり、かつ上記造粒工程においてTi化合物を添加することを特徴とする電子写真現像剤用キャリア芯材の製造方法を提供するものである。
That is, the present invention is a method for producing a carrier core material for an electrophotographic developer comprising at least Fe, Mg, Ti and Sr, and comprising ferrite particles having at least a spinel structure and a Ti compound structure,
(1) a first firing step of adding, mixing, and firing at least a Mg compound, a Sr compound, and Fe 2 O 3 in a non-oxidizing atmosphere or a weak reducing atmosphere to obtain a mixture containing Fe 2+ ;
(2) A granulation step of granulating slurry particles after slurrying the obtained mixture;
(3) a second firing step in which the granulated material is fired in a non-oxidizing atmosphere or a weakly reducing atmosphere to be ferritized;
(4) a third firing step of firing again in a non-oxidizing atmosphere or a weak reducing atmosphere to adjust magnetization and surface properties;
(5) an oxide film treatment step for forming an oxide film on the particle surface;
A carrier core material for an electrophotographic developer, wherein the residual amount of Fe 2 O 3 after the first baking step is 0 to 60% by weight, and a Ti compound is added in the granulation step The manufacturing method of this is provided.

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記第1焼成工程にTi化合物及び/又はMn化合物を添加することが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, it is desirable to add a Ti compound and / or a Mn compound to the first firing step.

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記Ti化合物がMgTiO、MgTiO、MgTi、SrTiOから選ばれる1種類以上の誘電体成分を生成させることが望ましい。 In the method for producing a carrier core material for an electrophotographic developer according to the present invention, the Ti compound generates one or more kinds of dielectric components selected from Mg 2 TiO 4 , MgTiO 3 , MgTi 2 O 4 , and SrTiO 3 . It is desirable.

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記造粒工程において添加するTi化合物の粒径が5〜120nmであることが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, it is desirable that the particle size of the Ti compound added in the granulation step is 5 to 120 nm.

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記造粒工程において、上記フェライト粒子が含有する全Ti量の10〜100重量%となるようTi化合物を添加することが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, it is desirable to add a Ti compound so that the amount of Ti contained in the ferrite particles is 10 to 100% by weight in the granulation step. .

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記第1焼成工程、上記造粒工程及び上記第2焼成工程から選ばれる少なくとも1つの工程において、カーボンブラック(CB)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)及び木炭から選ばれる少なくとも1種の添加物質を添加することが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, in at least one step selected from the first firing step, the granulation step, and the second firing step, carbon black (CB), polyvinyl It is desirable to add at least one additive selected from alcohol (PVA), polyvinylpyrrolidone (PVP) and charcoal.

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記第1焼成工程の焼成が800〜1200℃で行われることが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, it is desirable that the firing in the first firing step is performed at 800 to 1200 ° C.

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記第2焼成工程の焼成が650〜1200℃で行われることが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, it is desirable that the second firing step is performed at 650 to 1200 ° C.

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記第3焼成工程の焼成が1100〜1400℃で行われることが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, it is preferable that the third baking step is performed at 1100 to 1400 ° C.

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記酸化皮膜処理工程が400〜800℃で行われることが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, the oxide film treatment step is preferably performed at 400 to 800 ° C.

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記酸化皮膜処理工程において、ロータリーキルンが用いられることが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, it is desirable that a rotary kiln is used in the oxide film treatment step.

本発明に係る上記電子写真現像剤用キャリア芯材の製造方法では、上記造粒工程に用いられるスラリー粒子の粒径が1.0〜3.0μmであることが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, it is desirable that the particle size of the slurry particles used in the granulation step is 1.0 to 3.0 μm.

本発明は、上記製造方法により得られた電子写真現像剤用キャリア芯材を提供するものである。   The present invention provides a carrier core material for an electrophotographic developer obtained by the above production method.

本発明に係る上記電子写真現像剤用キャリア芯材では、少なくともFeを48.0〜70.0重量%、Mgを1〜5重量%、Tiを0.1〜3.5重量%及びSrを0.1〜5.0重量%を含有することが望ましい。   In the carrier core material for an electrophotographic developer according to the present invention, at least 48.0 to 70.0% by weight of Fe, 1 to 5% by weight of Mg, 0.1 to 3.5% by weight of Ti, and Sr It is desirable to contain 0.1 to 5.0 weight%.

本発明に係る上記電子写真現像剤用キャリア芯材では、Mnを0.1〜20重量%を含有することが望ましい。   The carrier core material for an electrophotographic developer according to the present invention preferably contains 0.1 to 20% by weight of Mn.

本発明に係る上記電子写真現像剤用キャリア芯材では、酸化皮膜の厚さが0.0001〜10.0μmであることが望ましい。   In the carrier core material for an electrophotographic developer according to the present invention, the thickness of the oxide film is preferably 0.0001 to 10.0 μm.

本発明に係る製造方法によって、各重金属を含有しないのみならず、Mn含有量を低減でき、高磁化でありながら中抵抗又は高抵抗といった所望の抵抗が得られるだけでなく高帯電で、良好な見掛け密度を有し、かつ適度な凹凸を有する表面性と揃った形状とを兼ね備えた電子写真現像剤用キャリア芯材が工業的規模をもって安定的に製造できる。   By the production method according to the present invention, not only each heavy metal is not contained, but also the Mn content can be reduced, and not only a desired resistance such as medium resistance or high resistance can be obtained while being highly magnetized, but also high charge and good A carrier core material for an electrophotographic developer having an apparent density, an appropriate surface irregularity, and a uniform shape can be stably produced on an industrial scale.

以下、本発明を実施するための形態について説明する。
<本発明に係る電子写真現像剤用キャリア芯材の製造方法>
次に、本発明に係る電子写真現像剤用キャリア芯材の製造方法について説明する。
本発明に係る電子写真現像剤用キャリア芯材の製造方法は、下記の通りである。
Hereinafter, modes for carrying out the present invention will be described.
<Method for producing carrier core material for electrophotographic developer according to the present invention>
Next, a method for producing a carrier core material for an electrophotographic developer according to the present invention will be described.
The manufacturing method of the carrier core material for an electrophotographic developer according to the present invention is as follows.

(第1焼成工程)
キャリア芯材原料として、Mg化合物、Sr化合物及びFeと必要に応じてTi化合物及び/又はMn化合物を用いる。これらキャリア芯材原料と必要に応じてカーボンブラック(CB)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)及び木炭から選ばれる1種の添加物質を添加し、非酸化性雰囲気又は弱還元性雰囲気下、添加、混合、焼成してFe2+を含む混合物を得る。この焼成において、少なくとも2価のFeを含有するスピネル相及びFeとMg、Ti等を含有する複合酸化物相が存在するフェライト前駆体の状態を生成し、Fe残留量は0〜60重量%となるように調整する。
(First firing step)
As the carrier core material, Mg compound, Sr compound and Fe 2 O 3 and, if necessary, Ti compound and / or Mn compound are used. A non-oxidizing atmosphere or a weak reducing atmosphere is added by adding one kind of additive material selected from carbon black (CB), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and charcoal as required. Below, addition, mixing, and baking are performed to obtain a mixture containing Fe 2+ . In this firing, a state of a ferrite precursor in which a spinel phase containing at least divalent Fe and a composite oxide phase containing Fe, Mg, Ti and the like are present is generated, and the Fe 2 O 3 residual amount is 0 to 60 Adjust so that it becomes weight%.

上記のように焼成を行うことによって、ばらつきの少ない格子定数を持った結晶構造、すなわち結晶性の良い構造となり、表面酸化処理後の磁化の低下が少ない粒子を得ることができる。焼成温度は、上記雰囲気下、800〜1200℃で行われることが望ましい。焼成温度が800℃未満では、格子定数のばらつきが大きく酸化されやすいため、酸化皮膜処理での磁化の低下が著しい。また、焼成温度が1200℃を超えると、熱がかかり過ぎており、形状及び表面性の制御が難しくなる。   By firing as described above, a crystal structure having a lattice constant with little variation, that is, a structure with good crystallinity, and particles with a small decrease in magnetization after the surface oxidation treatment can be obtained. The firing temperature is desirably performed at 800 to 1200 ° C. in the above atmosphere. When the firing temperature is less than 800 ° C., the lattice constant varies greatly and is easily oxidized, so that the magnetization is significantly reduced during the oxide film treatment. On the other hand, if the firing temperature exceeds 1200 ° C., too much heat is applied, making it difficult to control the shape and surface properties.

従来の製造方法では本焼成時にFeからスピネル相を生成させるため結晶構造の変化にかなりのエネルギーが必要となるが、Mg化合物、Sr化合物及びFe、必要に応じてTi化合物及び/又はMn化合物を添加し、さらに必要に応じてカーボンブラック(CB)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)及び木炭から選ばれる1種の添加物質を添加し、これらを混合、焼成を行った場合には、後述の本焼成(第2焼成)において、添加物の燃焼熱が発生し、焼成温度以上の実効温度となるため、低温焼成が可能となり、結晶性の良好なキャリア芯材を得ることができる。さらに、酸化皮膜処理による磁化の低下が少なく、高磁化、高抵抗を達成することができる。 In the conventional manufacturing method, since a spinel phase is generated from Fe 2 O 3 during the main firing, a considerable amount of energy is required to change the crystal structure, but Mg compound, Sr compound and Fe 2 O 3 , and Ti compound as necessary And / or an Mn compound, and if necessary, one additional material selected from carbon black (CB), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and charcoal, and mixing and firing. In the main firing (second firing), which will be described later, the combustion heat of the additive is generated and the effective temperature is equal to or higher than the firing temperature, so that low temperature firing is possible and the carrier core has good crystallinity. A material can be obtained. Furthermore, there is little decrease in magnetization due to the oxide film treatment, and high magnetization and high resistance can be achieved.

ここで用いられる非酸化性雰囲気又は弱還元性雰囲気とは、酸素濃度が2体積%以下を意味することとし、好ましくは1体積%以下、より好ましくは0.2体積%以下である。雰囲気としては窒素ガス、アルゴンガス、ヘリウムガス、炭酸ガス等が使用できるが工業用途としては窒素ガスを用いることが好ましい。さらに0.2体積%以下を容易に達成し焼成を行う場合には液体窒素を気化して使うことが望ましい。   The non-oxidizing atmosphere or weakly reducing atmosphere used here means that the oxygen concentration is 2% by volume or less, preferably 1% by volume or less, more preferably 0.2% by volume or less. Nitrogen gas, argon gas, helium gas, carbon dioxide gas or the like can be used as the atmosphere, but nitrogen gas is preferably used for industrial purposes. Furthermore, when performing 0.2% volume% or less easily and baking, it is desirable to vaporize and use liquid nitrogen.

(造粒工程)
次に、得られた混合物をスラリー化した後、スラリー粒子をスプレードライヤー等で造粒する。スラリー粒子の粒径は1.0〜3.0μmであることが望ましい。スラリー粒子の粒径が1.0μm未満では、粘度が高くなり、ノズル詰まりが発生しやすく、また粉砕に時間がかかるため、経済的に不利である。スラリー粒子の粒径が3.0μmを超えると、各原料の混合が不均一で、磁力、抵抗の分布が広くなり、現像剤としたときにキャリア付着が発生する。また、形状も悪化する。
(Granulation process)
Next, after slurrying the obtained mixture, the slurry particles are granulated with a spray dryer or the like. The particle size of the slurry particles is desirably 1.0 to 3.0 μm. If the particle size of the slurry particles is less than 1.0 μm, the viscosity becomes high, nozzle clogging is likely to occur, and it takes time to grind, which is economically disadvantageous. When the particle size of the slurry particles exceeds 3.0 μm, the raw materials are not uniformly mixed, the distribution of magnetic force and resistance becomes wide, and carrier adhesion occurs when the developer is used. In addition, the shape deteriorates.

上記造粒工程において、Ti化合物を添加する。Tiの存在によって、酸化皮膜処理による磁化の低下が少なく、抵抗性及び表面性の調整ができる。この造粒工程において、最終的に得られるフェライト粒子が含有する全Ti量の10〜100重量%となるようにTi化合物を添加することが望ましい。Ti化合物の添加量が上記全Ti量の10重量%未満となる場合には、Ti化合物の添加効果が十分ではないため表面性の制御が難しくなり所望の形状の粒子が得られなくなる可能性がある。   In the granulation step, a Ti compound is added. Due to the presence of Ti, there is little decrease in magnetization due to the oxide film treatment, and the resistance and surface properties can be adjusted. In this granulation step, it is desirable to add a Ti compound so that it becomes 10 to 100% by weight of the total amount of Ti contained in the finally obtained ferrite particles. When the addition amount of the Ti compound is less than 10% by weight of the total Ti amount, the effect of adding the Ti compound is not sufficient, so that it is difficult to control the surface property and particles having a desired shape may not be obtained. is there.

ここで添加するTi化合物の粒径は、5〜120nmであることが望ましい。この粒径範囲においては製造工程において添加及び分散が容易であり、芯材の表面性を制御が容易に行なうことができる。Ti化合物の粒径が5nm未満では、添加量が少量であっても見かけかさ密度が大きくなりすぎ、添加及び分散に時間がかかり生産性が劣る可能性がある。あらかじめTi化合物の分散液を準備することで生産性の向上は図ることができるが、大量の分散媒と分散剤が必要となり、造粒時の固形分調整及び粘度調整が難しくなる可能性がある。粒径が120nmを超えると添加したTi化合物が粒子中で局在しやすくなるため、適度な凹凸を持った表面性を均一に形成できなくなる恐れがある。   The particle size of the Ti compound added here is desirably 5 to 120 nm. In this particle size range, addition and dispersion are easy in the production process, and the surface properties of the core material can be easily controlled. When the particle size of the Ti compound is less than 5 nm, the apparent bulk density becomes too large even if the addition amount is small, and the addition and dispersion may take a long time, resulting in poor productivity. Productivity can be improved by preparing a dispersion of Ti compound in advance, but a large amount of dispersion medium and dispersant are required, and solid content adjustment and viscosity adjustment during granulation may be difficult. . If the particle size exceeds 120 nm, the added Ti compound is likely to be localized in the particles, so that it may not be possible to uniformly form surface properties with appropriate irregularities.

また、原料仕込み時や造粒工程で添加されるTi化合物としては、MgTiO、MgTiO、MgTi、SrTiOから選ばれる1種類以上の誘電体成分を生成させるTiO等が望ましい。 Further, as the Ti compound added at the time of raw material charging or in the granulation step, TiO 2 that generates one or more kinds of dielectric components selected from Mg 2 TiO 4 , MgTiO 3 , MgTi 2 O 4 , SrTiO 3 , etc. desirable.

(第2焼成工程)
次いで、造粒物を非酸化性雰囲気又は弱還元性雰囲気下で焼成し、フェライト化させる。この焼成によりばらつきの少ない格子定数を持った結晶構造となり、表面酸化処理後の磁化の低下が少ない粒子を得ることができる。
(Second firing step)
Next, the granulated material is fired in a non-oxidizing atmosphere or a weakly reducing atmosphere to be ferritized. By this baking, a crystal structure having a lattice constant with little variation is obtained, and particles with a small decrease in magnetization after the surface oxidation treatment can be obtained.

上記造粒工程又はこの第2焼成工程において、カーボンブラック(CB)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)及び木炭から選ばれる1種以上の添加物質を添加してもよい。上記造粒工程時にポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)を添加するだけでも所望の磁気特性が得られるが、さらにこの工程(第2焼成工程)においてカーボンブラック、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)及び木炭から選ばれる少なくとも1種の添加物質を添加することで過剰にウスタイト(FeO)を生成させ、表面酸化処理時にウスタイトを優先的に酸化することにより鉄過剰のMgフェライト成分の酸化による磁化の低下を抑制することが出来るのでより好ましい。Fe2+及びFeの存在量は粉末X線回折による結晶構造解析、もしくはFe2+に関してはMnの含有量が少なく、酸化還元滴定が可能な場合には過マンガン酸カリウムや重クロム酸カリウムによる酸化還元滴定で把握することが出来る。 In the granulation step or the second baking step, one or more additive substances selected from carbon black (CB), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and charcoal may be added. The desired magnetic properties can be obtained simply by adding polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) during the granulation step, but in this step (second baking step), carbon black, polyvinyl alcohol (PVA), polyvinyl By adding at least one additive selected from pyrrolidone (PVP) and charcoal, wustite (FeO) is generated excessively, and wustite is preferentially oxidized during the surface oxidation treatment, thereby increasing the iron-excess Mg ferrite component. It is more preferable because a decrease in magnetization due to oxidation can be suppressed. Fe 2+ and Fe 2 O 3 are present in a crystal structure analysis by powder X-ray diffraction, or when Fe 2+ has a low Mn content and redox titration is possible, potassium permanganate or potassium dichromate. It can be grasped by oxidation-reduction titration.

焼成温度は650〜1200℃で行われることが望ましい。焼成温度が650℃未満では、結晶構造が強固ではないため、酸化皮膜処理工程での磁化の低下が著しい。また、焼成温度が1200℃を超えると、熱がかかり過ぎており、形状が悪化し、表面性の制御が難しくなる。   The firing temperature is preferably 650 to 1200 ° C. When the firing temperature is less than 650 ° C., the crystal structure is not strong, and thus the magnetization is significantly reduced in the oxide film treatment step. On the other hand, if the firing temperature exceeds 1200 ° C., too much heat is applied, the shape deteriorates, and the surface property becomes difficult to control.

(第3焼成工程)
次に、フェライト化した粒子は、再度、非酸化性雰囲気又は弱還元性雰囲気下で焼成し、磁化及び表面性を調整する。この焼成により、ばらつきの少ない格子定数を持った結晶構造となり、表面酸化処理後の磁化の低下がさらに少なくなる。また、表面における細孔の生成を抑制することが出来る。
(Third firing step)
Next, the ferrite particles are fired again in a non-oxidizing atmosphere or a weak reducing atmosphere to adjust the magnetization and surface properties. By this firing, a crystal structure having a lattice constant with little variation is obtained, and the decrease in magnetization after the surface oxidation treatment is further reduced. Moreover, the formation of pores on the surface can be suppressed.

温度は1100〜1400℃で行われることが望ましい。焼成温度が1100℃未満では、結晶構造が強固ではないため、酸化皮膜処理工程での磁化の低下が著しい。また、焼成温度が1400℃を超えると、熱がかかり過ぎており、形状及び表面性の制御が容易でなくなるだけではなく、硬く、割れ欠けが発生し易く、また経済的にも不利である。   The temperature is desirably 1100 to 1400 ° C. When the firing temperature is less than 1100 ° C., the crystal structure is not strong, and thus the magnetization is significantly reduced in the oxide film treatment step. Further, if the firing temperature exceeds 1400 ° C., too much heat is applied, and not only the shape and surface properties cannot be easily controlled, but also it is hard and easily cracked, which is disadvantageous economically.

その後、回収し、乾燥、分級を行う。分級方法としては、既存の風力分級、メッシュ濾過法、沈降法など用いて所望の粒径に粒度調整する。乾式回収を行う場合は、サイクロン等で回収することも可能である。   Then, collect, dry and classify. As a classification method, the particle size is adjusted to a desired particle size using an existing air classification, mesh filtration method, sedimentation method, or the like. When dry collection is performed, it can also be collected with a cyclone or the like.

(酸化皮膜処理工程)
このようにして得られた粒子の表面に酸化皮膜を形成する。この酸化皮膜の形成によって電気抵抗調整を行うことができる。酸化皮膜処理は、一般的なロータリー式電気炉、バッチ式電気炉等を用いる。酸化皮膜を均一に芯材粒子に形成させるためにはロータリー式電気炉、すなわち、ロータリーキルンを用いることが好ましい。ロータリーキルンを用いることにより、熱のかかりが均一となり、磁力及び抵抗の分布幅が狭く、現像剤としたときのキャリア付着の発生を防ぐことができる。
(Oxide film treatment process)
An oxide film is formed on the surface of the particles thus obtained. The electrical resistance can be adjusted by forming this oxide film. For the oxide film treatment, a general rotary electric furnace, batch electric furnace or the like is used. In order to uniformly form the oxide film on the core particles, it is preferable to use a rotary electric furnace, that is, a rotary kiln. By using the rotary kiln, the heat application becomes uniform, the distribution range of the magnetic force and the resistance is narrow, and it is possible to prevent the carrier adhesion when the developer is used.

酸化皮膜処理の温度は400〜800℃で行うことが望ましい。酸化皮膜処理の温度が400℃未満では、抵抗を十分に上げることができず、800℃を超えると、磁化が大きく低下する。   The temperature of the oxide film treatment is preferably 400 to 800 ° C. When the temperature of the oxide film treatment is less than 400 ° C., the resistance cannot be increased sufficiently, and when it exceeds 800 ° C., the magnetization is greatly reduced.

<本発明の製造方法により得られる電子現像剤用キャリア芯材>
上述した製造方法によって電子現像剤用キャリア芯材が得られる。
<Carrier core material for electronic developer obtained by the production method of the present invention>
A carrier core material for an electronic developer can be obtained by the manufacturing method described above.

この電子現像剤用キャリア芯材は、その組成が少なくともFeを48.0〜70.0重量%、Mgを1〜5重量%、Tiを0.1〜3.5重量%及びSrを0.1〜5.0重量%を含有する。また、Mnを0.1〜20重量%を含有することが望ましく、0.1〜10重量%がより望ましく、0.1〜5重量%がさらに望ましく、0.1〜2.0重量%が最も望ましい。このような組成を有することによって、高磁化でありながら中抵抗又は高抵抗といった所望の抵抗が得られる。なお、Mnは、上記範囲で良好な効果を奏するが、環境規制の観点からは、可能な限り低減されることが望ましい。   The carrier core material for an electronic developer has a composition of at least 48.0 to 70.0% by weight of Fe, 1 to 5% by weight of Mg, 0.1 to 3.5% by weight of Ti, and Sr of 0.0. 1 to 5.0% by weight is contained. Further, it is desirable to contain 0.1 to 20% by weight of Mn, more desirably 0.1 to 10% by weight, still more desirably 0.1 to 5% by weight, and 0.1 to 2.0% by weight. Most desirable. By having such a composition, a desired resistance such as medium resistance or high resistance can be obtained while being highly magnetized. In addition, although Mn has a favorable effect in the said range, it is desirable to reduce as much as possible from a viewpoint of environmental regulation.

また、この電子写真現像剤用キャリア芯材の酸化皮膜の厚さは、0.0001〜10μmであることが望ましい。このような酸化皮膜を有することにより高磁化でありながら中抵抗又は高抵抗といった所望の抵抗が得られる。酸化皮膜の厚さは酸化皮膜が形成されていることが確認できる程度の高倍率のSEM写真から測定することが出来る。なお、酸化皮膜は芯材表面に均一で形成されていても良いし、部分的に酸化皮膜形成されていても良い。   The thickness of the oxide film of the carrier core material for electrophotographic developer is preferably 0.0001 to 10 μm. By having such an oxide film, a desired resistance such as medium resistance or high resistance can be obtained while being highly magnetized. The thickness of the oxide film can be measured from a high-magnification SEM photograph that can confirm that the oxide film is formed. The oxide film may be formed uniformly on the surface of the core material, or may be partially formed with an oxide film.

この電子写真現像剤用フェライトキャリア芯材は、MgTiO、MgTiO、MgTiから選ばれる少なくとも1種類以上の温度補償型誘電体成分を含有することが望ましい。また、これらの物質の合計含有量は、0.2〜10重量%であることが望ましい。そして、このような物質を含有することによって、高い帯電量を得ることができ、電子写真現像剤としたときに、各環境下における帯電安定性にも優れる。 The ferrite carrier core material for an electrophotographic developer desirably contains at least one temperature-compensated dielectric component selected from Mg 2 TiO 4 , MgTiO 3 , and MgTi 2 O 4 . The total content of these substances is preferably 0.2 to 10% by weight. By containing such a substance, a high charge amount can be obtained, and when it is used as an electrophotographic developer, it is excellent in charging stability in each environment.

MgTiO、MgTiO、MgTiはいずれも温度補償型誘電体成分として代表的なものであり、MgTiOは立方晶であり、同じ立方晶のスピネル構造と相性がよく含有されやすい。MgTiは芯材の各焼成工程のいずれかの工程において還元性が強い場合に生成されやすい。MgTiOは菱面体構造をとり、芯材の各焼成工程のいずれかの工程において酸化性が強い場合に生成されやすい。 Mg 2 TiO 4 , MgTiO 3 , and MgTi 2 O 4 are all representative of temperature compensation type dielectric components, and Mg 2 TiO 4 is cubic and contains well with the same cubic spinel structure. Easy to be. MgTi 2 O 4 is likely to be produced when the reducibility is strong in any of the firing steps of the core material. MgTiO 3 has a rhombohedral structure and is likely to be produced when oxidation is strong in any of the firing steps of the core material.

この電子写真現像剤用キャリア芯材において、温度補償型誘電体成分の合計含有量が0.2重量%よりも少ない場合は高い帯電レベルを発揮できないだけでなくキャリア芯材の帯電量の環境依存性が大きいものとなってしまう。温度補償型誘電体成分の合計含有量が10重量%よりも大きい場合にも目標とする帯電レベルと帯電安定性は得られるが、帯電レベルが頭打ちになるので10重量%を超えて存在しても意味がない。フェライトキャリア芯材帯電量の環境依存性を考慮すると、温度補償型誘電体成分の含有量は0.2〜7重量%がより好ましく、0.2〜5重量%が最も好ましい。   In this carrier core material for an electrophotographic developer, when the total content of the temperature-compensated dielectric component is less than 0.2% by weight, not only a high charge level can be exhibited but also the charge amount of the carrier core material depends on the environment. It becomes a big thing. The target charge level and charge stability can be obtained even when the total content of the temperature-compensated dielectric component is larger than 10% by weight, but the charge level reaches a peak, so that it exceeds 10% by weight. Is also meaningless. Considering the environmental dependence of the ferrite carrier core material charge amount, the content of the temperature compensated dielectric component is more preferably 0.2 to 7% by weight, and most preferably 0.2 to 5% by weight.

本発明の上記電子写真現像剤用フェライトキャリア芯材において、上記温度補償型誘電体成分の含有量が下記(1)及び(2)の関係式をみたすことが望ましい。   In the ferrite carrier core material for an electrophotographic developer according to the present invention, the content of the temperature-compensated dielectric component preferably satisfies the following relational expressions (1) and (2).

Figure 2011164224
Figure 2011164224

上記温度補償型誘電体成分の含有量が上記(1)の関係式をみたさない場合には、芯材の各焼成工程のいずれかの工程において酸化性が強く、MgTiOだけでなくFeも大量に生成し、磁化が下がりすぎキャリア飛散が発生するため、キャリアとして使用できないものとなっている可能性がある。 When the content of the temperature-compensated dielectric component does not satisfy the relational expression (1), the oxidation is strong in any one of the firing steps of the core material, and not only MgTiO 3 but also Fe 2 O 3 is also generated in a large amount, and the magnetization is too low to cause carrier scattering, so that there is a possibility that it cannot be used as a carrier.

上記温度補償型誘電体成分の含有量が上記(2)の関係式をみたさない場合には、芯材の各焼成工程のいずれかの工程において還元性が強く、MgTiだけでなくFeOも大量に生成し、磁化が下がりすぎキャリア飛散が発生するため、キャリアとして使用できないものとなっている可能性がある。 When the content of the temperature-compensated dielectric component does not satisfy the relational expression (2), the reducing property is strong in any one of the firing steps of the core material, and not only MgTi 2 O 4 but also FeO May be generated in a large amount and the magnetization is too low to cause carrier scattering, so that it may not be used as a carrier.

MgTiO、MgTiO、MgTiは温度補償型の誘電体であり、比誘電率は測定条件により異なるが16〜18程度のものが知られており、組成や製造方法を制御することで誘電率の温度係数を小さくし、誘電体の温度の影響を受けないようにすることが一般的に行なわれている。一方、フェライト成分は温度の影響で誘電率が変化し、フェライトキャリア芯材の帯電レベルが変化する。したがってフェライト成分の温度による比誘電率の変化を相殺するように温度補償型誘電体成分の比誘電率の温度係数を制御すればフェライトキャリア芯材の帯電量の環境変動を最小限に抑えることが可能となる。あるいは、フェライト成分の比誘電率の温度変化に応じてMgTiO、MgTiO、MgTiから選ばれる1種類以上の物質を一定の割合で含有させることによって、フェライトキャリア芯材として温度によらず常に一定の比誘電率を保つことができる。さらにフェライト成分の比誘電率は測定条件により異なるが8〜12付近であることが多く、MgTiO、MgTiO、MgTiから選ばれる1種類以上の物質が芯材中に存在することでフェライトキャリア芯材そのものの帯電レベルを上げる方向に寄与する。 Mg 2 TiO 4 , MgTiO 3 , and MgTi 2 O 4 are temperature-compensated dielectrics whose relative permittivity varies depending on the measurement conditions, but those with a dielectric constant of about 16 to 18 are known and control the composition and manufacturing method. Thus, it is common practice to reduce the temperature coefficient of the dielectric constant so that it is not affected by the temperature of the dielectric. On the other hand, the dielectric constant of the ferrite component changes due to the temperature, and the charge level of the ferrite carrier core material changes. Therefore, if the temperature coefficient of the relative permittivity of the temperature-compensated dielectric component is controlled so as to offset the change in the relative permittivity due to the temperature of the ferrite component, environmental fluctuations in the charge amount of the ferrite carrier core material can be minimized. It becomes possible. Alternatively, the temperature of the ferrite carrier core material can be increased by containing one or more substances selected from Mg 2 TiO 4 , MgTiO 3 , and MgTi 2 O 4 at a certain ratio according to the temperature change of the relative permittivity of the ferrite component. Regardless of this, a constant dielectric constant can always be maintained. Furthermore, although the relative dielectric constant of the ferrite component varies depending on the measurement conditions, it is often around 8 to 12, and one or more substances selected from Mg 2 TiO 4 , MgTiO 3 and MgTi 2 O 4 are present in the core material. This contributes to increasing the charge level of the ferrite carrier core material itself.

また、SrTiOの温度係数は大きいものの、比誘電率が測定条件により異なるが200以上と高誘電率であり、環境依存性が悪くならない程度に含有させることでよりフェライトキャリア芯材の帯電レベルを上げることができる。その含有量は3重量%以下が望ましく、含有量が3重量%を超える場合には、フェライトキャリア芯材の誘電率の温度変化が大きくなりすぎ、帯電量の環境依存性が大きくなりすぎてしまう。 In addition, although the temperature coefficient of SrTiO 3 is large, the relative dielectric constant varies depending on the measurement conditions, but it has a high dielectric constant of 200 or more, and the charging level of the ferrite carrier core material can be further increased by adding it to an extent that does not deteriorate the environment dependency. Can be raised. The content is desirably 3% by weight or less, and when the content exceeds 3% by weight, the temperature change of the dielectric constant of the ferrite carrier core material becomes too large, and the environmental dependency of the charge amount becomes too large. .

これら、MgTiO、MgTiO、MgTi及びSrTiO等の結晶構造の存在の有無については、下記によって測定される。 The presence or absence of crystal structures such as Mg 2 TiO 4 , MgTiO 3 , MgTi 2 O 4 and SrTiO 3 is measured by the following.

(結晶構造の測定:X線回折測定)
測定装置としてパナリティカル社製「X’PertPRO MPD」を用いた。X線源としてCo管球(CoKα線)を、光学系として集中光学系及び高速検出器「X‘Celarator」を用いて、測定は0.2°/secの連続スキャンで行った。測定結果は通常の粉末の結晶構造解析と同様に解析用ソフトウエア「X’Pert HighScore」を用いてデータ処理し、結晶構造の同定を行った。なお、結晶構造を同定する際にFe、Oを必須元素としMn、Mg、Ti、Srは含有する可能性のある元素とした。また、X線源についてはCu管球でも問題なく測定できるが、Feを多く含んだサンプルの場合には測定対象となるピークと比較してバックグラウンドが大きくなるので、Co管球を用いる方が好ましい。また、光学系は平行法でも同様の結果が得られる可能性があるが、X線強度が低く測定に時間がかかるため集中光学系での測定が好ましい。さらに、連続スキャンの速度は特に制限はないが結晶構造の解析を行う際に十分なS/N比を得るためにスピネル構造の(113)面のピーク強度が約50000cpsとなるようにし、粒子の特定の優先方向への配向がないようにサンプルセルにキャリア芯材をセットし測定を行った。
(Measurement of crystal structure: X-ray diffraction measurement)
“X′PertPRO MPD” manufactured by Panalical Co., Ltd. was used as a measuring apparatus. Measurement was performed by continuous scanning at 0.2 ° / sec using a Co tube (CoKα ray) as an X-ray source and a concentrated optical system and a high-speed detector “X'Celarator” as an optical system. The measurement results were processed using data for analysis “X'Pert HighScore” in the same manner as in the crystal structure analysis of ordinary powders, and the crystal structure was identified. In identifying the crystal structure, Fe and O are essential elements, and Mn, Mg, Ti, and Sr are elements that may be contained. In addition, the X-ray source can be measured without problems even with a Cu tube, but in the case of a sample containing a large amount of Fe, the background becomes larger than the peak to be measured, so it is better to use a Co tube. preferable. In addition, the optical system may obtain the same result even when the parallel method is used, but measurement with a concentrated optical system is preferable because the X-ray intensity is low and measurement takes time. Furthermore, the speed of continuous scanning is not particularly limited, but in order to obtain a sufficient S / N ratio when analyzing the crystal structure, the peak intensity of the (113) plane of the spinel structure is set to about 50000 cps, The measurement was performed by setting the carrier core material in the sample cell so that there was no orientation in a specific preferred direction.

本発明にかかるスピネル構造としてMgFe、FeTiO及びFeが代表的なものであるが、これらの結晶構造及びその一部がMn及び/又はSrに置換されたものもすべて含まれるものとし、非酸化性雰囲気で焼成されることにより周期的にスピネル構造に格子欠陥が含まれるものも含むものとする。 Typical spinel structures according to the present invention are MgFe 2 O 4 , Fe 2 TiO 4, and Fe 3 O 4, but these crystal structures and parts thereof are substituted with Mn and / or Sr. All of them are included, and include those in which lattice defects are periodically included in the spinel structure by firing in a non-oxidizing atmosphere.

本発明にかかるスピネル構造以外のTi化合物の結晶構造としてMgTiO、MgTiO、MgTi、SrTiO等があり、非酸化性雰囲気で焼成されることにより周期的に上記結晶構造に格子欠陥が含まれるものも含むものとする。 There are Mg 2 TiO 4 , MgTiO 3 , MgTi 2 O 4 , SrTiO 3, etc. as the crystal structure of the Ti compound other than the spinel structure according to the present invention, and the above crystal structure is periodically formed by firing in a non-oxidizing atmosphere. Including those including lattice defects.

この電子写真現像剤用キャリア芯材は、形状係数SF−1(円形度)が105〜140、BET比表面積が0.09〜0.25m/g、見掛け密度が2.0〜2.45g/cmであることがそれぞれ好ましい。これらの測定方法は後述する。 The carrier core material for an electrophotographic developer has a shape factor SF-1 (circularity) of 105 to 140, a BET specific surface area of 0.09 to 0.25 m 2 / g, and an apparent density of 2.0 to 2.45 g. Each is preferably / cm 3 . These measuring methods will be described later.

この電子写真現像剤用キャリア芯材は、その表面に樹脂を被覆し、樹脂被覆キャリアとしてトナーと共に、電子写真現像剤の用途に供される。キャリアとトナーの混合比(トナー重量/(キャリア重量+トナー重量))、即ちトナー濃度は、3〜15重量%に設定することが好ましい。3重量%未満であると所望の画像濃度が得にくく、15重量%を超えると、トナー飛散やかぶりが発生しやすくなる。   This carrier core material for an electrophotographic developer is coated with a resin on the surface thereof, and used as an electrophotographic developer together with a toner as a resin-coated carrier. The mixing ratio of the carrier and the toner (toner weight / (carrier weight + toner weight)), that is, the toner concentration is preferably set to 3 to 15% by weight. If it is less than 3% by weight, it is difficult to obtain a desired image density. If it exceeds 15% by weight, toner scattering and fogging are likely to occur.

本発明に係る電子写真現像剤は、補給用現像剤として用いることもできる。この際のキャリアとトナーの混合比(トナー重量/(キャリア重量+トナー重量))、即ちトナー濃度は50重量%、100重量%未満に設定することが好ましい。   The electrophotographic developer according to the present invention can also be used as a replenishment developer. In this case, the mixing ratio of the carrier and the toner (toner weight / (carrier weight + toner weight)), that is, the toner concentration is preferably set to 50% by weight and less than 100% by weight.

以下、実施例等に基づき本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples and the like.

(第1焼成工程)
Feを7モル、Mgを0.435モル、Tiを0.075モル、Srを0.075モル、Mn0.075モルとなるようにFe、Mg(OH)、TiO、SrCO及びMnOを秤量し、固形分が50重量%となるように水を加えビーズミルで混合し、混合したスラリーをスプレードライヤーで造粒した。このとき、バインダー成分としてPVAを固形分の0.75重量%となるように、またポリカルボン酸系分散剤をスラリーの粘度が1〜2ポイズになるように添加し、得られた造粒物を1050℃にて非酸化性雰囲気にてロータリーキルンで焼成し、有機物を除去しながらフェライト化を進めると同時に酸化鉄の一部を還元した。
(First firing step)
Fe 2 O 3 , Mg (OH) 2 , TiO 2 , SrCO 3 so that Fe is 7 mol, Mg is 0.435 mol, Ti is 0.075 mol, Sr is 0.075 mol, and Mn is 0.075 mol. And MnO were weighed, water was added so that the solid content was 50% by weight, and the mixture was mixed with a bead mill, and the mixed slurry was granulated with a spray dryer. At this time, PVA is added as a binder component so that the solid content is 0.75% by weight, and a polycarboxylic acid-based dispersant is added so that the slurry has a viscosity of 1 to 2 poises, and the resulting granulated product is obtained. Was baked in a rotary kiln at 1050 ° C. in a non-oxidizing atmosphere, and ferrite was advanced while removing organic substances, and at the same time a part of iron oxide was reduced.

(造粒工程)
得られた焼成物をビーズミルにてスラリー粒径のD50が1.59μmとなるように粉砕した。このとき、バインダー成分としてPVAをスラリーの固形分の0.5重量%となるように添加し、ポリカルボン酸系分散剤をスラリーの粘度が2〜3ポイズになるように添加し、得られた粉砕スラリーをスプレードライヤーにて再度造粒した。このとき追加原料として、Tiを0.05モルとなるようにTiOを添加した。このTiOの粒径は25nmであり、添加量は全Ti量の40重量%に相当する。
(Granulation process)
The obtained baked product D 50 of the slurry particle size with a bead mill and ground to a 1.59. At this time, PVA was added as a binder component so that the solid content of the slurry was 0.5% by weight, and a polycarboxylic acid dispersant was added so that the viscosity of the slurry was 2 to 3 poises. The pulverized slurry was granulated again with a spray dryer. At this time, TiO 2 was added as an additional material so that Ti might be 0.05 mol. The particle size of this TiO 2 is 25 nm, and the amount added corresponds to 40% by weight of the total amount of Ti.

(第2焼成工程)
850℃にて非酸化性雰囲気下、ロータリーキルンで焼成を行い、有機物を除去しながらフェライト化を進めると同時に酸化鉄の一部を還元した。
(Second firing step)
Firing was performed in a rotary kiln at 850 ° C. in a non-oxidizing atmosphere, and ferrite was advanced while removing organic substances, and at the same time a part of iron oxide was reduced.

(第3焼成工程)
焼成したものを80メッシュの篩を使って粗大粒子を除去した後、非酸化性雰囲気下、1150℃で16時間焼成し焼成物を得た。得られた焼成物を解砕、分級、磁力選鉱を行い、体積平均粒径が28.41μmのキャリア芯材粒子を得た。
(Third firing step)
After the coarse particles were removed from the fired product using an 80-mesh sieve, it was fired at 1150 ° C. for 16 hours in a non-oxidizing atmosphere to obtain a fired product. The obtained fired product was crushed, classified, and magnetically separated to obtain carrier core particles having a volume average particle size of 28.41 μm.

(酸化皮膜処理工程)
さらに得られたキャリア芯材粒子を表面酸化処理温度540℃、大気雰囲気の条件の元、ロータリーキルンで表面酸化処理を行い表面酸化処理済みのキャリア芯材粒子を得た。
(Oxide film treatment process)
Further, the obtained carrier core particles were subjected to a surface oxidation treatment with a rotary kiln under the conditions of a surface oxidation treatment temperature of 540 ° C. and an atmospheric atmosphere to obtain surface oxidized carrier core particles.

第1焼成工程において、焼成温度を1100℃とし、造粒工程においてPVAの添加量を0.25重量%とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   Carrier core particles were obtained in the same manner as in Example 1 except that the firing temperature was 1100 ° C. in the first firing step and the amount of PVA added was 0.25 wt% in the granulation step.

第1焼成工程において、焼成温度を900℃とし、造粒工程においてPVAの添加量を0.75重量%とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   Carrier core particles were obtained in the same manner as in Example 1 except that the firing temperature was 900 ° C. in the first firing step and the amount of PVA added was 0.75 wt% in the granulation step.

第2焼成工程において、焼成温度を1050℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   In the second firing step, carrier core particles were obtained in the same manner as in Example 1 except that the firing temperature was 1050 ° C.

第3焼成工程において、焼成温度を1135℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   In the third firing step, carrier core particles were obtained in the same manner as in Example 1 except that the firing temperature was 1135 ° C.

第3焼成工程において、焼成温度を1215℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   In the third baking step, carrier core particles were obtained in the same manner as in Example 1 except that the baking temperature was 1215 ° C.

第1焼成工程において、PVAの添加量を1重量%とし、造粒工程においてPVAの添加量を0.25重量%とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   Carrier core particles were obtained in the same manner as in Example 1 except that the addition amount of PVA was 1 wt% in the first firing step and the addition amount of PVA was 0.25 wt% in the granulation step.

第1焼成工程において、PVAの添加量を0.3重量%とし、造粒工程においてPVAの添加量を0.75重量%とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   Carrier core particles are obtained in the same manner as in Example 1 except that the amount of PVA added is 0.3 wt% in the first firing step and the amount of PVA added is 0.75 wt% in the granulation step. It was.

第1焼成工程において、PVAに代えてPVPを用いた以外は、実施例1と同様にしてキャリア芯材粒子を得た。   In the first firing step, carrier core particles were obtained in the same manner as in Example 1 except that PVP was used instead of PVA.

第1焼成工程において、PVAに代えてPVPを用い、その添加量を1.1重量%とし、造粒工程でPVAの添加量を0.25重量%とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   In the first firing step, PVP was used instead of PVA, the addition amount was 1.1 wt%, and the addition amount of PVA was 0.25 wt% in the granulation step, as in Example 1. Thus, carrier core particles were obtained.

第1焼成工程において、PVAの添加量を0.75重量%とし、造粒工程でPVAの添加量を0.75重量%とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   Carrier core material particles are obtained in the same manner as in Example 1 except that the addition amount of PVA is 0.75 wt% in the first firing step and the addition amount of PVA is 0.75 wt% in the granulation step. It was.

第1焼成工程において、PVAに代えて木炭を用い、その添加量を1.5重量%とし、原料の混合をヘンシェルミキサーで行い、第1焼成工程の造粒をローラーコンパクターで行った以外は、実施例1と同様にしてキャリア芯材粒子を得た。   In the first firing step, charcoal is used instead of PVA, the addition amount is 1.5% by weight, the raw materials are mixed with a Henschel mixer, and granulation in the first firing step is performed with a roller compactor, Carrier core material particles were obtained in the same manner as in Example 1.

第1焼成工程において、PVAに代えてCBを用い、その添加量を1重量%とし、原料の混合をヘンシェルミキサーで行い、第1焼成工程の造粒をローラーコンパクターで行った以外は、実施例1と同様にしてキャリア芯材粒子を得た。   In the first firing step, CB was used instead of PVA, the amount added was 1% by weight, the raw materials were mixed with a Henschel mixer, and granulation in the first firing step was performed with a roller compactor. In the same manner as in Example 1, carrier core particles were obtained.

表面酸化処理を690℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   Carrier core material particles were obtained in the same manner as in Example 1 except that the surface oxidation treatment was 690 ° C.

表面酸化処理を410℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   Carrier core material particles were obtained in the same manner as in Example 1 except that the surface oxidation treatment was 410 ° C.

原料のTiの仕込み量を0.1モル、造粒工程のTiの添加量を0.025モルとなるようにTi化合物(TiO)を添加した以外は、実施例1と同様にしてキャリア芯材粒子を得た。 Carrier core in the same manner as in Example 1 except that the Ti compound (TiO 2 ) was added so that the feed amount of raw material Ti was 0.1 mol and the addition amount of Ti in the granulation step was 0.025 mol. Material particles were obtained.

原料のTiの仕込み量を0.025モル、造粒工程のTiの添加量を0.1モルとなるようにTi化合物(TiO)を添加した以外は、実施例1と同様にしてキャリア芯材粒子を得た。 Carrier core in the same manner as in Example 1 except that the Ti compound (TiO 2 ) was added so that the amount of raw material Ti charged was 0.025 mol and the amount of Ti added in the granulation step was 0.1 mol. Material particles were obtained.

原料のTiを添加せず、造粒工程のTiの添加量を0.125モルとなるようにTi化合物(TiO)を添加した以外は、実施例1と同様にしてキャリア芯材粒子を得た。 Carrier core material particles are obtained in the same manner as in Example 1 except that the raw material Ti is not added and the Ti compound (TiO 2 ) is added so that the amount of Ti added in the granulation step is 0.125 mol. It was.

原料のMnを添加せず、造粒工程のMnの添加量を0.075モルとなるようにMn化合物(Mn)を添加した以外は、実施例1と同様にしてキャリア芯材粒子を得た。 Carrier core material particles in the same manner as in Example 1 except that the raw material Mn was not added and the Mn compound (Mn 3 O 4 ) was added so that the amount of Mn added in the granulation step was 0.075 mol. Got.

造粒工程に添加するTi化合物の粒径を100nmとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   Carrier core particles were obtained in the same manner as in Example 1 except that the particle size of the Ti compound added to the granulation step was 100 nm.

比較例Comparative example

〔比較例1〕
原料のTiの仕込み量を0.125モル、第1焼成工程でのPVA添加量を0.3重量%とし、造粒工程でTi化合物を添加しない以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 1]
Carrier core in the same manner as in Example 1 except that the amount of raw material Ti was 0.125 mol, the amount of PVA added in the first firing step was 0.3% by weight, and no Ti compound was added in the granulation step. Material particles were obtained.

〔比較例2〕
(第1焼成工程)
Feを10モル、Mgを1モル、Srを0.02モル、Mn4モルとなるようにFe、Mg(OH)、SrCO及びMnを秤量後、ヘンシェルミキサーで混合し、混合物をローラーコンパクターで造粒した。このとき、添加剤(還元剤及びバインダー成分)は添加しなかった。得られた造粒物を980℃にて大気にてロータリーキルンで焼成し、有機物を除去しながらフェライト化を進めた。
[Comparative Example 2]
(First firing step)
Fe 2 O 3 , Mg (OH) 2 , SrCO 3, and Mn 3 O 4 are weighed so as to be 10 mol Fe, 1 mol Mg, 0.02 mol Sr, and 4 mol Mn, and then mixed with a Henschel mixer. The mixture was granulated with a roller compactor. At this time, additives (reducing agent and binder component) were not added. The obtained granulated material was baked in a rotary kiln in the air at 980 ° C., and ferritization was advanced while removing organic substances.

(造粒工程)
得られた焼成物をビーズミルにてスラリー粒径のD50が1.33μmとなるように粉砕した。このとき、バインダー成分としてPVAをスラリーの固形分の0.5重量%となるように添加し、ポリカルボン酸系分散剤をスラリーの粘度が2〜3ポイズになるように添加し、得られた粉砕スラリーをスプレードライヤーにて再度造粒した。
(Granulation process)
The obtained baked product D 50 of the slurry particle size with a bead mill and ground to a 1.33. At this time, PVA was added as a binder component so that the solid content of the slurry was 0.5% by weight, and a polycarboxylic acid dispersant was added so that the viscosity of the slurry was 2 to 3 poises. The pulverized slurry was granulated again with a spray dryer.

(第2焼成工程)
650℃にて大気雰囲気下、ロータリーキルンで焼成を行い、有機物を除去した。
(Second firing step)
Firing was performed in a rotary kiln at 650 ° C. in an air atmosphere to remove organic substances.

以下、第3焼成及び酸化皮膜処理は、実施例1と同様にして実施例1と同様にしてキャリア芯材粒子を得た。   Thereafter, the third baking and the oxide film treatment were carried out in the same manner as in Example 1, and in the same manner as in Example 1, carrier core material particles were obtained.

実施例1〜20及び比較例1〜2について、キャリア芯材の各工程の製造条件(仕込量、雰囲気、温度)、Ti化合物の種類、粒径、添加量及び全Tiの割合、Mn化合物の種類及び添加量、添加元素の種類及び添加量、造粒工程に用いられるスラリー粒子の粒径、各工程のX線回折、第3焼成工程後の化学分析(ICP)及び各種特性(磁化、見掛け密度、平均粒径、残留磁化、保磁力、抵抗、SF−1、BET比表面積、真密度及び帯電量(N/N環境下))を表1〜7に示す。各種特性の評価は、下記に準じて測定した。   About Examples 1-20 and Comparative Examples 1-2, the manufacturing conditions (preparation amount, atmosphere, temperature) of each step of the carrier core material, the type of Ti compound, the particle size, the added amount, and the ratio of total Ti, of the Mn compound Type and addition amount, type and addition amount of additive element, particle size of slurry particles used in granulation process, X-ray diffraction of each process, chemical analysis (ICP) after third firing process and various characteristics (magnetization, apparent Tables 1 to 7 show the density, average particle diameter, residual magnetization, coercive force, resistance, SF-1, BET specific surface area, true density and charge amount (under N / N environment). Various characteristics were evaluated according to the following.

(体積平均粒径)
装置として日機装株式会社製マイクロトラック粒度分析計(Model9320−X100)を用いた。分散媒には水を用いた。
(Volume average particle size)
As a device, a Nikkiso Co., Ltd. Microtrac particle size analyzer (Model 9320-X100) was used. Water was used as the dispersion medium.

(BET比表面積)
自動比表面積測定装置GEMINI2360」(島津製作所社製)を用いて、吸着ガスであるNを吸着させて測定したキャリア粒子のN吸着量から求めることができる。なお、ここでは、このN吸着量を測定する際に用いられる測定管は、測定前に、減圧状態にて50℃で2時間の空焼きを行った。さらに、この測定管にキャリア粒子5gを充填し、減圧状態で30℃の温度で2時間前処理を行った後に、25℃下でNガスをそれぞれ吸着させてその吸着量を測定した。それらの吸着量は、吸着等温線を描き、BET式から算出される値である。
(BET specific surface area)
Using an automatic specific surface area measuring apparatus GEMINI 2360 (manufactured by Shimadzu Corp.), it can be determined from the N 2 adsorption amount of carrier particles measured by adsorbing N 2 as an adsorption gas. Here, the measurement tube used for measuring the N 2 adsorption amount was baked for 2 hours at 50 ° C. in a reduced pressure state before the measurement. Further, 5 g of carrier particles were filled in this measuring tube, and after pretreatment at a temperature of 30 ° C. for 2 hours under reduced pressure, N 2 gas was adsorbed at 25 ° C., and the amount of adsorption was measured. These adsorption amounts are values calculated from the BET equation by drawing an adsorption isotherm.

(見掛け密度)
JIS Z 2504に準拠して測定した。詳細は下記の通りである。
1.装置
粉末見掛密度計は漏斗、コップ、漏斗支持器、支持棒及び支持台から構成されるものを用いる。天秤は、秤量200gで感量50mgのものを用いる。
2.測定方法
(1)試料は、少なくとも150g以上とする。
(2)試料は孔径2.5+0.2/−0mmのオリフィスを持つ漏斗に注ぎ流れ出た試料が、コップ一杯になってあふれ出るまで流し込む。
(3)あふれ始めたら直ちに試料の流入をやめ、振動を与えないようにコップの上に盛り上がった試料をへらでコップの上端に沿って平らにかきとる。
(4)コップの側面を軽く叩いて、試料を沈ませコップの外側に付着した試料を除去して、コップ内の試料の重量を0.05gの精度で秤量する。
3.計算
前項2−(4)で得られた測定値に0.04を乗じた数値をJIS−Z8401(数値の丸め方)によって小数点以下第2位に丸め、「g/cm」の単位の見掛け密度とする。
(Apparent density)
It measured based on JISZ2504. Details are as follows.
1. Apparatus The powder apparent density meter is composed of a funnel, a cup, a funnel support, a support bar and a support base. A balance with a weighing of 200 mg and a weighing of 50 mg is used.
2. Measuring method (1) The sample shall be at least 150 g or more.
(2) The sample is poured into a funnel having an orifice with a pore diameter of 2.5 + 0.2 / −0 mm, and poured until the sample that has flowed out fills the glass and overflows.
(3) Stop the inflow of the sample as soon as it begins to overflow, and scrape the sample raised on the cup flatly with a spatula along the top edge of the cup so as not to give vibration.
(4) Tap the side surface of the cup to sink the sample and remove the sample attached to the outside of the cup, and weigh the sample in the cup with an accuracy of 0.05 g.
3. Calculation The numerical value obtained by multiplying the measured value obtained in 2- (4) above by 0.04 is rounded to the second decimal place by JIS-Z8401 (how to round the numerical value), and the unit of “g / cm 3 ” appears. Density.

(磁気特性)
積分型B−HトレーサーBHU−60型(理研電子社製)を使用して測定した。電磁石間に磁場測定用Hコイル及び磁化測定用4πIコイルを入れる。この場合、試料は4πIコイルに入れる。電磁石の電流を変化させ磁場Hを変化させたHコイル及び4πIコイルの出力をそれぞれ積分し、H出力をX軸に、4πIコイルの出力をY軸に、ヒステリシスループを記録紙に描く。ここで測定条件としては、試料充填量:約1g、試料充填セル:内径7mmφ±0.02mm、高さ10mm±0.1mm、4πIコイル:巻数30回にて測定した。
(Magnetic properties)
It measured using the integral type BH tracer BHU-60 type (made by Riken Denshi Co., Ltd.). A magnetic field measuring H coil and a magnetization measuring 4πI coil are placed between the electromagnets. In this case, the sample is placed in a 4πI coil. The outputs of the H coil and the 4πI coil whose magnetic field H is changed by changing the current of the electromagnet are respectively integrated, and the H output is drawn on the X axis, the output of the 4πI coil is drawn on the Y axis, and a hysteresis loop is drawn on the recording paper. As measurement conditions, sample filling amount: about 1 g, sample filling cell: inner diameter 7 mmφ ± 0.02 mm, height 10 mm ± 0.1 mm, 4πI coil: measured with 30 turns.

(形状係数SF−1(円形度))
セイシン企業社製粒度・形状分布測定器PITA−1を用いて芯材粒子3000個を観察し、装置付属のソフトウエアImageAnalysisを用いてArea(投影面積)及びフェレ径(最大)を求め、下記式より算出し得られた値である。キャリアの形状が球形に近いほど100に近い値となる。形状指数SF−1は、1粒子毎に算出し、100粒子の平均値をそのキャリアの形状指数SF−1とした。
なお、サンプル液は分散媒として粘度0.5Pa・sのキサンタンガム水溶液を調製し、その中にキサンタンガム水溶液30ccに芯材粒子0.1gを分散させてものを用いた。このように分散媒の粘度を適正にあわすことで芯材粒子が分散媒中で分散したままの状態を保つことが出来、測定をスムーズに行なうことが出来る。さらに測定条件は(対物)レンズの倍率は10倍、フィルタはND4×2、キャリア液1及びキャリア液2は粘度0.5Pa・sのキサンタンガム水溶液を使用し、その流量はいずれも10μl/sec、サンプル液流量0.08μl/secとした。
(Shape factor SF-1 (circularity))
3000 core particles were observed using a particle size / shape distribution measuring instrument PITA-1 manufactured by Seishin Enterprise Co., Ltd., and Area (projected area) and ferret diameter (maximum) were obtained using the software Image Analysis included with the apparatus, and the following formula This is a value obtained by calculation. The closer the carrier shape is to a spherical shape, the closer to 100. The shape index SF-1 was calculated for each particle, and the average value of 100 particles was defined as the shape index SF-1 of the carrier.
The sample liquid was prepared by preparing a xanthan gum aqueous solution having a viscosity of 0.5 Pa · s as a dispersion medium, in which 0.1 g of core material particles were dispersed in 30 cc of the xanthan gum aqueous solution. Thus, by appropriately giving the viscosity of the dispersion medium, the core particles can be kept dispersed in the dispersion medium, and the measurement can be performed smoothly. Furthermore, the measurement conditions are (objective) lens magnification of 10 times, filter is ND4 × 2, carrier liquid 1 and carrier liquid 2 are xanthan gum aqueous solutions having a viscosity of 0.5 Pa · s, and the flow rate is 10 μl / sec. The sample liquid flow rate was 0.08 μl / sec.

Figure 2011164224
Figure 2011164224

(真密度)
キャリア芯材及び充填後のキャリア粒子の真密度は、JIS R9301−2−1に準拠して、ピクノメーターを用いて測定した。ここで、溶媒としてメタノールを用い、温度25℃にて測定を行った。
(True density)
The true density of the carrier core material and the filled carrier particles was measured using a pycnometer in accordance with JIS R9301-2-1. Here, methanol was used as a solvent, and measurement was performed at a temperature of 25 ° C.

(体積抵抗)
断面積が4cmのフッ素樹脂製のシリンダーに高さ4mmとなるように試料を充填した後、両端に電極を取り付け、さらにその上から1kgの分銅を乗せて抵抗を測定した。抵抗の測定はケースレー社製6517A型絶縁抵抗測定器にて50V及び/または1000Vで電圧印加し10sec後の電流値(10secの電流値)から抵抗を算出し体積抵抗とした。
(Volume resistance)
A sample was filled in a fluororesin cylinder having a cross-sectional area of 4 cm 2 so that the height was 4 mm, electrodes were attached to both ends, and a weight of 1 kg was further placed thereon to measure resistance. The resistance was measured by applying a voltage of 50 V and / or 1000 V with a Keithley 6517A type insulation resistance measuring instrument and calculating the resistance from the current value after 10 sec (current value of 10 sec) to obtain volume resistance.

(帯電量測定)
帯電量は、次のようにして測定される。すなわち、スチレン−アクリル系負帯電性市販トナー(体積平均粒径5.8μm)3.5gとキャリア芯材46.5gを秤量し、50mlのガラスビンに入れてボールミルでガラスビンが100回転になるように回転数を合わせて混合攪拌を行った。攪拌時間は30minとし、現像剤をN/N環境(室温25℃、湿度55%)下に1時間暴露後、Epping社製帯電量測定装置q/m−meterで帯電量を測定した。このとき帯電量は測定を開始後90sec後の値とした。
(Charge amount measurement)
The charge amount is measured as follows. That is, 3.5 g of a styrene-acrylic negatively chargeable commercially available toner (volume average particle size 5.8 μm) and 46.5 g of a carrier core material are weighed and placed in a 50 ml glass bottle so that the glass bottle is rotated 100 times with a ball mill. Mixing and stirring were performed at the same rotational speed. The stirring time was 30 min, and the developer was exposed to an N / N environment (room temperature 25 ° C., humidity 55%) for 1 hour, and then the charge amount was measured with an Epping charge amount measuring device q / m-meter. At this time, the charge amount was a value 90 seconds after the start of measurement.

Figure 2011164224
Figure 2011164224

Figure 2011164224
Figure 2011164224

Figure 2011164224
Figure 2011164224

Figure 2011164224
Figure 2011164224

Figure 2011164224
Figure 2011164224

Figure 2011164224
Figure 2011164224

Figure 2011164224
Figure 2011164224

実施例1〜20では、表1及び表2の結果から明らかなように、第1焼成工程においてスピネル相の物質と非磁性のTi化合物及びFeを含有する焼成物が得られた。表3及び表4の結果から明らかなように第1焼成工程で得られた焼成物を原料とし、さらに同様の組成の焼成を行っていないT化合物を添加し、さらに第2焼成工程において焼成が進みやすくなるように添加物質を添加したことで磁化の高い焼成物が得られた。表5の結果から明らかなように、第2焼成工程で生成した非磁性のウスタイト(FeO)は第3焼成工程においても維持された以外に、Ti化合物を含有していたにもかかわらず、第2焼成工程焼成工程と比べてさらに高い磁化を持った焼成物が得られた。表6の結果から、第3焼成工程後には、一定のフェライト組成を有することも明らかであった。このため表7の結果から明らかなように、表面酸化処理における磁化の低下を最小限に抑制しながら磁化と抵抗のバランスに優れた電子写真キャリア用芯材が得られた。 In Examples 1 to 20, as is apparent from the results of Tables 1 and 2, a fired product containing a spinel phase substance, a nonmagnetic Ti compound, and Fe 2 O 3 was obtained in the first firing step. As is apparent from the results of Tables 3 and 4, the fired product obtained in the first firing step is used as a raw material, and a T compound that has not been fired in the same composition is further added, and firing is further performed in the second firing step. A fired product with high magnetization was obtained by adding an additive material so as to facilitate the progress. As is clear from the results in Table 5, the nonmagnetic wustite (FeO) produced in the second firing step was maintained in the third firing step, and despite containing the Ti compound, 2 Firing process A fired product having a higher magnetization was obtained as compared with the firing process. From the results in Table 6, it was also clear that after the third firing step, it had a constant ferrite composition. For this reason, as is apparent from the results in Table 7, a core material for an electrophotographic carrier having an excellent balance between magnetization and resistance while minimizing the decrease in magnetization in the surface oxidation treatment was obtained.

これに対して、比較例1は、表7から明らかなように、表面の凹凸が少ないため、抵抗が大きく、SF−1が小さく、BET比表面積も小さく、見掛け密度や真密度は大きいものであり、目的とするキャリア芯材は得られなかった。また、比較例2は、表7から明らかなように、帯電量が極めて低いものとなった。   On the other hand, as is clear from Table 7, Comparative Example 1 has a high resistance, a small SF-1, a small BET specific surface area, and a large apparent density and true density because there are few surface irregularities. Yes, the intended carrier core material was not obtained. Further, as is clear from Table 7, the charge amount of Comparative Example 2 was extremely low.

本発明の製造方法により、各重金属を含有しないのみならず、Mn含有量を低減し、高磁化でありながら中抵抗又は高抵抗といった所望の抵抗が得られるだけでなく高帯電で、良好な見掛け密度を有し、かつ適度な凹凸を有する表面性と揃った形状とを兼ね備えた電子写真現像剤用キャリア芯材が工業的規模をもって安定的に得られる。   The production method of the present invention not only does not contain each heavy metal, but also reduces the Mn content and provides not only a desired resistance such as medium resistance or high resistance while having high magnetization, but also high charge and good appearance. A carrier core material for an electrophotographic developer having a density, a surface property having moderate unevenness and a uniform shape can be stably obtained on an industrial scale.

従って、本発明は、特に高画質の要求されるフルカラー機並びに画像維持の信頼性及び耐久性の要求される高速機の分野に広く使用可能である。   Therefore, the present invention can be widely used in the field of full-color machines that particularly require high image quality and high-speed machines that require image maintenance reliability and durability.

Claims (16)

Fe、Mg、Ti及びSrを少なくとも含有し、少なくともスピネル構造及びTi化合物の構造を有するフェライト粒子からなる電子写真現像剤用キャリア芯材の製造方法であって、
(1)少なくともMg化合物、Sr化合物及びFeを非酸化性雰囲気又は弱還元性雰囲気下、添加、混合、焼成してFe2+を含む混合物を得る第1焼成工程と、
(2)得られた混合物をスラリー化した後、スラリー粒子を造粒する造粒工程と、
(3)造粒物を非酸化性雰囲気又は弱還元性雰囲気下で焼成し、フェライト化させる第2焼成工程と、
(4)再度、非酸化性雰囲気又は弱還元性雰囲気下で焼成し、磁化及び表面性を調整する第3焼成工程と、
(5)粒子表面に酸化皮膜を形成する酸化皮膜処理工程と、
を有し、上記第1焼成工程後のFe残留量が0〜60重量%であり、かつ上記造粒工程においてTi化合物を添加することを特徴とする電子写真現像剤用キャリア芯材の製造方法。
A method for producing a carrier core material for an electrophotographic developer comprising at least Fe, Mg, Ti and Sr, and comprising ferrite particles having at least a spinel structure and a Ti compound structure,
(1) a first firing step of adding, mixing, and firing at least a Mg compound, a Sr compound, and Fe 2 O 3 in a non-oxidizing atmosphere or a weak reducing atmosphere to obtain a mixture containing Fe 2+ ;
(2) A granulation step of granulating slurry particles after slurrying the obtained mixture;
(3) a second firing step in which the granulated material is fired in a non-oxidizing atmosphere or a weakly reducing atmosphere to be ferritized;
(4) a third firing step of firing again in a non-oxidizing atmosphere or a weak reducing atmosphere to adjust magnetization and surface properties;
(5) an oxide film treatment step for forming an oxide film on the particle surface;
A carrier core material for an electrophotographic developer, wherein the residual amount of Fe 2 O 3 after the first baking step is 0 to 60% by weight, and a Ti compound is added in the granulation step Manufacturing method.
上記第1焼成工程にTi化合物及び/又はMn化合物を添加する請求項1に記載の電子写真現像剤用キャリア芯材の製造方法。   The method for producing a carrier core material for an electrophotographic developer according to claim 1, wherein a Ti compound and / or a Mn compound is added to the first firing step. 上記Ti化合物がMgTiO、MgTiO、MgTi、SrTiOから選ばれる1種類以上の誘電体成分を生成させる請求項1又は2に記載の電子写真現像剤用キャリア芯材の製造方法。 The carrier core material for an electrophotographic developer according to claim 1 or 2, wherein the Ti compound generates one or more kinds of dielectric components selected from Mg 2 TiO 4 , MgTiO 3 , MgTi 2 O 4 , and SrTiO 3. Method. 上記造粒工程において添加される上記Ti化合物の粒径が5〜120nm以下である請求項1〜請求項3のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。   The method for producing a carrier core material for an electrophotographic developer according to any one of claims 1 to 3, wherein a particle diameter of the Ti compound added in the granulation step is 5 to 120 nm or less. 上記造粒工程において、上記フェライト粒子が含有する全Ti量の10〜100重量%となるようTi化合物を添加する請求項1〜請求項4のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。   The carrier core material for an electrophotographic developer according to any one of claims 1 to 4, wherein in the granulation step, a Ti compound is added so as to be 10 to 100% by weight of the total Ti amount contained in the ferrite particles. Manufacturing method. 上記第1焼成工程、上記造粒工程及び上記第2焼成工程から選ばれる少なくとも1つの工程において、カーボンブラック(CB)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)及び木炭から選ばれる少なくとも1種の添加物質を添加する請求項1〜請求項5のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。   In at least one step selected from the first firing step, the granulation step and the second firing step, at least one selected from carbon black (CB), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and charcoal. The method for producing a carrier core material for an electrophotographic developer according to any one of claims 1 to 5, wherein the additive substance is added. 上記第1焼成工程の焼成が800〜1200℃で行われる請求項1〜請求項6のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。   The method for producing a carrier core material for an electrophotographic developer according to any one of claims 1 to 6, wherein the firing in the first firing step is performed at 800 to 1200 ° C. 上記第2焼成工程の焼成が650〜1200℃で行われる請求項1〜請求項7のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。   The method for producing a carrier core material for an electrophotographic developer according to any one of claims 1 to 7, wherein the firing in the second firing step is performed at 650 to 1200 ° C. 上記第3焼成工程の焼成が1100〜1400℃で行われる請求項1〜請求項8のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。   The method for producing a carrier core material for an electrophotographic developer according to any one of claims 1 to 8, wherein the firing in the third firing step is performed at 1100 to 1400 ° C. 上記酸化皮膜処理工程が400〜800℃で行われる請求項1〜請求項9のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。   The method for producing a carrier core material for an electrophotographic developer according to any one of claims 1 to 9, wherein the oxide film treatment step is performed at 400 to 800 ° C. 上記酸化皮膜処理工程において、ロータリーキルンが用いられる請求項1〜請求項10のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。   The method for producing a carrier core material for an electrophotographic developer according to any one of claims 1 to 10, wherein a rotary kiln is used in the oxide film treatment step. 上記造粒工程に用いられるスラリー粒子の粒径が1.0〜3.0μmである請求項1〜請求項11のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。   The method for producing a carrier core material for an electrophotographic developer according to any one of claims 1 to 11, wherein the particle size of the slurry particles used in the granulation step is 1.0 to 3.0 µm. 請求項1〜12のいずれかに記載の製造方法により得られた電子写真現像剤用キャリア芯材。   A carrier core material for an electrophotographic developer obtained by the production method according to claim 1. 少なくともFeを48.0〜70.0重量%、Mgを1〜5重量%、Tiを0.1〜3.5重量%及びSrを0.1〜5.0重量%を含有する請求項13に記載の電子写真現像剤用キャリア芯材。   14. At least 48.0 to 70.0% by weight of Fe, 1 to 5% by weight of Mg, 0.1 to 3.5% by weight of Ti and 0.1 to 5.0% by weight of Sr. The carrier core material for an electrophotographic developer described in 1. Mnを0.1〜20重量%を含有する請求項13又は請求項14に記載の電子写真現像剤用キャリア芯材。   The carrier core material for an electrophotographic developer according to claim 13 or 14, comprising 0.1 to 20% by weight of Mn. 酸化皮膜の厚さが0.0001〜10.0μmである請求項13〜請求項15のいずれかに記載の電子写真現像剤用キャリア芯材。   The carrier core material for an electrophotographic developer according to any one of claims 13 to 15, wherein the oxide film has a thickness of 0.0001 to 10.0 µm.
JP2010024809A 2010-02-05 2010-02-05 Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the manufacturing method Pending JP2011164224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024809A JP2011164224A (en) 2010-02-05 2010-02-05 Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024809A JP2011164224A (en) 2010-02-05 2010-02-05 Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the manufacturing method

Publications (1)

Publication Number Publication Date
JP2011164224A true JP2011164224A (en) 2011-08-25

Family

ID=44595001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024809A Pending JP2011164224A (en) 2010-02-05 2010-02-05 Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the manufacturing method

Country Status (1)

Country Link
JP (1) JP2011164224A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013865A (en) * 2010-06-30 2012-01-19 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2012076955A (en) * 2010-09-30 2012-04-19 Dowa Electronics Materials Co Ltd Ferrite particle, and electrophotographic developing carrier and electrophotographic developer using the same
JP2013137456A (en) * 2011-12-28 2013-07-11 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method of the same, and electrophotographic developer using the ferrite carrier
JP2013182064A (en) * 2012-02-29 2013-09-12 Powdertech Co Ltd Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP2013205614A (en) * 2012-03-28 2013-10-07 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer, ferrite carrier and method for producing the same, and electrophotographic developer using ferrite carrier
JP2014182304A (en) * 2013-03-19 2014-09-29 Powdertech Co Ltd Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP2016106262A (en) * 2016-02-09 2016-06-16 パウダーテック株式会社 Electrophotographic developer ferrite carrier core material, ferrite carrier and manufacturing method of electrophotographic developer ferrite carrier core material, and ferrite carrier, and electrophotographic developer ferrite carrier core material using ferrite carrier
JP2016170224A (en) * 2015-03-11 2016-09-23 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer and method for producing the same
JP2017161808A (en) * 2016-03-11 2017-09-14 Dowaエレクトロニクス株式会社 Carrier core material
WO2018180543A1 (en) 2017-03-31 2018-10-04 Dowaエレクトロニクス株式会社 Carrier core material, and electrophotographic carrier and electrophotographic developer that use carrier core material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013865A (en) * 2010-06-30 2012-01-19 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2012076955A (en) * 2010-09-30 2012-04-19 Dowa Electronics Materials Co Ltd Ferrite particle, and electrophotographic developing carrier and electrophotographic developer using the same
JP2013137456A (en) * 2011-12-28 2013-07-11 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method of the same, and electrophotographic developer using the ferrite carrier
JP2013182064A (en) * 2012-02-29 2013-09-12 Powdertech Co Ltd Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP2013205614A (en) * 2012-03-28 2013-10-07 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer, ferrite carrier and method for producing the same, and electrophotographic developer using ferrite carrier
JP2014182304A (en) * 2013-03-19 2014-09-29 Powdertech Co Ltd Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP2016170224A (en) * 2015-03-11 2016-09-23 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer and method for producing the same
JP2016106262A (en) * 2016-02-09 2016-06-16 パウダーテック株式会社 Electrophotographic developer ferrite carrier core material, ferrite carrier and manufacturing method of electrophotographic developer ferrite carrier core material, and ferrite carrier, and electrophotographic developer ferrite carrier core material using ferrite carrier
JP2017161808A (en) * 2016-03-11 2017-09-14 Dowaエレクトロニクス株式会社 Carrier core material
WO2018180543A1 (en) 2017-03-31 2018-10-04 Dowaエレクトロニクス株式会社 Carrier core material, and electrophotographic carrier and electrophotographic developer that use carrier core material
CN110494809A (en) * 2017-03-31 2019-11-22 同和电子科技有限公司 Carrier core material and electronic photo carrier and electronic photo developer using it
US10915034B2 (en) 2017-03-31 2021-02-09 Dowa Electronics Materials Co., Ltd. Carrier core material and electrophotographic carrier using same and electrophotographic developer
CN110494809B (en) * 2017-03-31 2023-08-11 同和电子科技有限公司 Carrier core material, carrier for electrophotography using same, and developer for electrophotography

Similar Documents

Publication Publication Date Title
JP2011164224A (en) Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the manufacturing method
JP5348588B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP4779141B2 (en) Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier
JP5037982B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
US20110129772A1 (en) Porous ferrite core material for electrophotographic developer, resin-filled ferrite carrier and electrophotographic developer using the ferrite carrier
JP2008241742A5 (en)
KR20120132539A (en) Carrier core material for electrophotographic developer, production method for same, carrier for electrophotographic developer, and electrophotographic developer
JP5382522B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
KR20120121412A (en) Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
JP2010181525A (en) Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the method
JP4963618B2 (en) Carrier core material for electrophotographic developer, method for producing the same, and electrophotographic developer
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP7275361B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP6742119B2 (en) Core material for carrier, carrier, developer and electrophotographic development system
WO2021200172A1 (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP2009086339A (en) Magnetic carrier core material for electrophotographic development, manufacturing method thereof, magnetic carrier, and electrophotographic developer
JP4948342B2 (en) Carrier core material for electrophotographic development and method for producing the same, magnetic carrier, and electrophotographic developer
JPS617851A (en) Production of ferrite carrier
JP5627072B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
WO2018147001A1 (en) Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
EP2891925A1 (en) Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
WO2018147002A1 (en) Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
JP7526527B2 (en) Ferrite particles, carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite particles
WO2022244573A1 (en) Carrier core material, and carrier for electrophotographic development and electrophotographic developer employing same
JP6061423B2 (en) Carrier core material, carrier for electrophotographic development using the same and developer for electrophotography