JP2017161808A - Carrier core material - Google Patents

Carrier core material Download PDF

Info

Publication number
JP2017161808A
JP2017161808A JP2016047937A JP2016047937A JP2017161808A JP 2017161808 A JP2017161808 A JP 2017161808A JP 2016047937 A JP2016047937 A JP 2016047937A JP 2016047937 A JP2016047937 A JP 2016047937A JP 2017161808 A JP2017161808 A JP 2017161808A
Authority
JP
Japan
Prior art keywords
core material
carrier core
carrier
average particle
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016047937A
Other languages
Japanese (ja)
Other versions
JP6650300B2 (en
Inventor
心 濱田
Shin Hamada
心 濱田
龍也 堀江
Tatsuya Horie
龍也 堀江
佐々木 信也
Shinya Sasaki
信也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2016047937A priority Critical patent/JP6650300B2/en
Publication of JP2017161808A publication Critical patent/JP2017161808A/en
Application granted granted Critical
Publication of JP6650300B2 publication Critical patent/JP6650300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carrier core material having a high resistance and a high magnetic force.SOLUTION: In a carrier core material constituted from ferrite particles containing Ti, Hc/σr that is a ratio of a holding force Hc (10/4π A/m) to a residual magnetization σr (Am/kg) is 11.0 or more and 13.0 or less. Here, the content of Ti is preferably in a range of 0.6 mass% or more and 1.2 mass% or less.SELECTED DRAWING: None

Description

本発明はキャリア芯材並びにそれを用いた電子写真現像用キャリア及び電子写真用現像剤に関するものである。   The present invention relates to a carrier core material, an electrophotographic developer carrier and an electrophotographic developer using the same.

電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、フェライト粒子から構成されるキャリア芯材の表面を絶縁性樹脂で被覆したいわゆるコーティングキャリアとトナーとを混合した二成分系現像剤によって、感光体表面に形成された静電潜像を可視像化している。   In image forming apparatuses such as facsimiles, printers, and copiers that use electrophotography, two-component development in which a so-called coating carrier in which the surface of a carrier core composed of ferrite particles is coated with an insulating resin and toner is mixed. The electrostatic latent image formed on the surface of the photoreceptor is visualized by the agent.

ここで使用されるキャリア芯材には電気的特性と磁気的特性とが要求される。具体的には、高抵抗且つ高磁力であることが要求される。キャリア芯材の抵抗が低いと、トナーに対する帯電付与性が低下し、非画像部にトナーが付着するいわゆるカブリが発生しやすくなる。また、キャリア芯材の磁力が低いと、現像ローラへの吸着が弱くなりキャリア飛散が生じやすくなる。   The carrier core material used here is required to have electrical characteristics and magnetic characteristics. Specifically, high resistance and high magnetic force are required. When the resistance of the carrier core material is low, the charge imparting property with respect to the toner is lowered, and so-called fogging in which the toner adheres to the non-image portion is likely to occur. Further, when the magnetic force of the carrier core material is low, the adsorption to the developing roller becomes weak and carrier scattering is likely to occur.

そこで、例えば特許文献1では、磁化、BET比表面積及び平均粒径が一定範囲にあり、かつ周囲長/包絡長の個数分布が特定範囲にあるフェライトキャリア芯材が提案されている。また、先行文献2では、Mg、Ti及びFeを一定量含有し、細孔容積、ピーク細孔径及び磁気特性が特定範囲にある多孔質フェライト芯材が提案されている。   Therefore, for example, Patent Document 1 proposes a ferrite carrier core material in which the magnetization, the BET specific surface area, and the average particle diameter are in a certain range, and the number distribution of the perimeter length / envelope length is in a specific range. Prior Document 2 proposes a porous ferrite core material containing a certain amount of Mg, Ti, and Fe and having a pore volume, a peak pore diameter, and a magnetic property within a specific range.

特開2012−181398号公報JP 2012-181398 A 特開2011−112960号公報JP 2011-112960 A

しかしながら、いずれの提案技術でもキャリア芯材の抵抗と磁力は未だ十分とは言えず、更なる向上が望まれている。   However, the resistance and magnetic force of the carrier core material are still not sufficient with any of the proposed technologies, and further improvement is desired.

そこで本発明の目的は、一層の高抵抗且つ高磁力を有するキャリア芯材を提供することにある。   Therefore, an object of the present invention is to provide a carrier core material having a higher resistance and a higher magnetic force.

また本発明の他の目的は、キャリア飛散やカブリといった不具合を招くことなく、安定して良好な画質の画像を形成することができる電子写真現像剤用キャリア及び電子写真現像剤を提供することにある。   Another object of the present invention is to provide an electrophotographic developer carrier and an electrophotographic developer that can stably form an image of good image quality without causing problems such as carrier scattering and fogging. is there.

前記目的を達成する本発明に係るキャリア芯材は、Tiを含有するフェライト粒子から構成されるキャリア芯材であって、残留磁化σr(Am/kg)に対する保持力Hc(10/4π・A/m)の比率Hc/σrが11.0以上13.0以下であることを特徴とする。 The carrier core material according to the present invention that achieves the above object is a carrier core material composed of ferrite particles containing Ti, and has a holding force Hc (10 3 / 4π ··) against residual magnetization σr (Am 2 / kg). A / m) ratio Hc / σr is 11.0 or more and 13.0 or less.

ここで、Tiの含有量としては0.6質量%以上1.2質量%以下の範囲であるのが好ましい。   Here, as content of Ti, it is preferable that it is the range of 0.6 mass% or more and 1.2 mass% or less.

また、前記フェライト粒子はMn及びMgの少なくとも一方の元素をさらに含有しているのが好ましい。   The ferrite particles preferably further contain at least one element of Mn and Mg.

そしてまた、前記フェライト粒子はCa、Sr、Baの少なくとも1つの元素をさらに含有しているのが好ましい。   The ferrite particles preferably further contain at least one element of Ca, Sr, and Ba.

また本発明によれば、前記のいずれかに記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリアが提供される。   According to the present invention, there is also provided an electrophotographic developing carrier characterized in that the surface of the carrier core material described above is coated with a resin.

さらに本発明によれば、前記の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。   Furthermore, according to the present invention, there is provided an electrophotographic developer comprising the above-mentioned electrophotographic developing carrier and a toner.

本発明のキャリア芯材によれば所望の抵抗と磁力とが得られ、キャリア飛散及びカブリといった不具合が抑制される。   According to the carrier core material of the present invention, desired resistance and magnetic force are obtained, and problems such as carrier scattering and fogging are suppressed.

また本発明の電子写真現像用キャリア及び電子写真用現像剤によれば、長期間の使用においてもキャリア飛散やカブリといった不具合を招くことなく、安定して良好な画質の画像を形成することができる。   Further, according to the electrophotographic developer carrier and the electrophotographic developer of the present invention, it is possible to stably form an image with good image quality without causing problems such as carrier scattering and fogging even after long-term use. .

本発明に係る電子写真用現像剤を用いた現像装置の一例を示す概説図である。1 is a schematic diagram illustrating an example of a developing device using an electrophotographic developer according to the present invention.

本発明者等は、フェライト粒子からなるキャリア芯材が所望の磁力を有し且つ高い帯電性を有することができないか鋭意検討を重ねたところ、フェライト粒子中の磁壁面積を適切な範囲に制御することで磁力の低下を抑えながら抵抗を高められることを見出した。   The inventors of the present invention have intensively studied whether the carrier core material made of ferrite particles has a desired magnetic force and high chargeability, and controls the domain wall area in the ferrite particles within an appropriate range. It was found that the resistance can be increased while suppressing the decrease in magnetic force.

また、フェライト粒子中の磁壁は、結晶構造がペロブスカイト構造であるTi成分原料を添加すること及び高温・高酸化雰囲気下で焼成を行うことにより効果的に形成させることができ、磁壁面積の制御は前記Ti成分原料の添加量及び焼成工程における焼成温度と酸素濃度などによって行うことができることを突き止め本発明に成すに至った。   Moreover, the domain wall in the ferrite particles can be effectively formed by adding a Ti component raw material whose crystal structure is a perovskite structure and by firing in a high-temperature, high-oxidation atmosphere. The present invention has been found out that it can be carried out depending on the amount of the Ti component material added and the firing temperature and oxygen concentration in the firing step.

すなわち、本発明の大きな特徴の一つは、キャリア芯材を構成するフェライト粒子がTiを含有することにある。前述のように、ペロブスカイト構造のTi成分原料を添加することによって、その機構は未だ明確ではないがフェライト粒子中に磁壁が形成されやすくなる。   That is, one of the great features of the present invention is that the ferrite particles constituting the carrier core material contain Ti. As described above, by adding a Ti component raw material having a perovskite structure, the mechanism is not yet clear, but domain walls are easily formed in ferrite particles.

本発明で使用できるペロブスカイト構造のTi成分原料としては、CaTiO、SrTiO、BaTiO、MgTiOなどのチタン酸アルカリ土類金属が挙げられる。また、これらのTi成分原料の添加量は、キャリア芯材におけるTi含有量が0.6質量%以上1.2質量%以下となる範囲とするのが望ましい。キャリア芯材のTi含有量が0.6質量%未満であると、磁壁面積が小さくキャリア芯材の高抵抗化が図れないおそれがある。一方、キャリア芯材のTi含有量が1.2質量%を超えると、磁壁面積が広くなる反面、磁壁内のフェライト成分の総量が少なくなり、トナーへの電荷供給量が低下するおそれがある。 Examples of the Ti component raw material having a perovskite structure that can be used in the present invention include alkaline earth metal titanates such as CaTiO 3 , SrTiO 3 , BaTiO 3 , and MgTiO 3 . Further, the addition amount of these Ti component raw materials is desirably set in a range in which the Ti content in the carrier core material is 0.6 mass% or more and 1.2 mass% or less. If the Ti content of the carrier core material is less than 0.6% by mass, the domain wall area may be small and the carrier core material may not have a high resistance. On the other hand, if the Ti content of the carrier core material exceeds 1.2% by mass, the domain wall area increases, but the total amount of ferrite components in the domain wall decreases, and the charge supply amount to the toner may decrease.

また本発明では、フェライト粒子内の磁壁面積量の指標として、残留磁化σr(Am/kg)に対する保持力Hc(10/4π・A/m)の比率Hc/σrを用いることとし、比率Hc/σrを11.0以上13.0以下としたことが本発明のもう一つの大きな特徴である。比率Hc/σrが11.0未満であると、フェライト粒子中の磁壁面積が十分でなく、キャリア芯材の高抵抗化が図れずトナーに対する帯電付与性を高められない。一方、比率Hc/σrが13.0を超えると磁壁が多くなりすぎ、磁壁内のフェライト成分が少なくなるためトナーへの電荷供給量が低下し、トナー帯電性が低下する。 In the present invention, the ratio Hc / σr of the coercive force Hc (10 3 / 4π · A / m) to the residual magnetization σr (Am 2 / kg) is used as an index of the domain wall area in the ferrite particles. Another major feature of the present invention is that Hc / σr is 11.0 or more and 13.0 or less. When the ratio Hc / σr is less than 11.0, the domain wall area in the ferrite particles is not sufficient, the resistance of the carrier core cannot be increased, and the charge imparting property to the toner cannot be improved. On the other hand, if the ratio Hc / σr exceeds 13.0, the number of domain walls increases too much, and the amount of ferrite components in the domain walls decreases, so that the amount of charge supplied to the toner decreases and the toner chargeability decreases.

残留磁化σrは0.4〜0.6(Am/kg)の範囲が好ましい。また保持力Hcは5.0〜7.0(10/4π・A/m)の範囲が好ましい。 The residual magnetization σr is preferably in the range of 0.4 to 0.6 (Am 2 / kg). The holding force Hc is preferably in the range of 5.0 to 7.0 (10 3 / 4π · A / m).

本発明におけるフェライト粒子の組成に特に限定はなく、例えば、一般式MFe3−X(但し、MはMg,Mn,Cu,Zn,Niなどの金属,0<X<1)で表される組成の粒子が挙げられる。また、Ca、Sr、Baの少なくとも1種の元素を含有しているのが好ましい。これらの組成の中でもTiを含有するMnフェライト粒子、Tiを含有するMgフェライト粒子及びTiを含有するMnMgフェライト粒子が好適に使用される。 There are no particular limitations on the composition of the ferrite particles in the present invention. For example, the general formula M X Fe 3 -X O 4 (where M is a metal such as Mg, Mn, Cu, Zn, Ni, 0 <X <1) The particle | grains of the composition represented are mentioned. In addition, it preferably contains at least one element of Ca, Sr, and Ba. Among these compositions, Mn ferrite particles containing Ti, Mg ferrite particles containing Ti, and MnMg ferrite particles containing Ti are preferably used.

本発明のキャリア芯材の粒径に特に限定はないが、体積平均粒子径で20μm〜50μmの範囲が好ましく、粒度分布はシャープであるのが好ましい。   The particle diameter of the carrier core material of the present invention is not particularly limited, but the volume average particle diameter is preferably in the range of 20 μm to 50 μm, and the particle size distribution is preferably sharp.

次に、本発明のキャリア芯材を構成するフェライト粒子の製造方法について説明する。フェライト粒子の製造方法に特に限定はないが、以下に説明する製造方法が好適である。   Next, the manufacturing method of the ferrite particle which comprises the carrier core material of this invention is demonstrated. Although there is no limitation in particular in the manufacturing method of a ferrite particle, the manufacturing method demonstrated below is suitable.

まず、Fe成分原料、M成分原料、Ti成分原料を秤量し、原料混合粉を作製する。なお、MはMg,Mn,Cu,Zn,Ni等の2価の金属元素から選ばれる少なくとも1種の金属元素である。また、必要によりCa成分原料、Sr成分原料、Ba成分原料を添加する。Fe成分原料としては、Fe等が好適に使用される。M成分原料としては、MnであればMnCO、Mn等が使用でき、MgであればMgO、Mg(OH)、MgCOが好適に使用できる。また、CaであればCaO、Ca(OH)、CaCO等が好適に使用される。また、SrであればSrCO、Sr(NOなどが好適に使用される。また前述のように、Ti成分原料としては、結晶構造がペロブスカイト構造のものが使用され、CaTiO、SrTiO、BaTiO、MgTiOなどのチタン酸アルカリ土類金属が好適に使用される。 First, an Fe component raw material, an M component raw material, and a Ti component raw material are weighed to produce a raw material mixed powder. M is at least one metal element selected from divalent metal elements such as Mg, Mn, Cu, Zn, and Ni. Further, if necessary, a Ca component raw material, an Sr component raw material, and a Ba component raw material are added. As the Fe component material, Fe 2 O 3 or the like is preferably used. As the M component raw material, MnCO 3 , Mn 3 O 4 and the like can be used for Mn, and MgO, Mg (OH) 2 and MgCO 3 can be suitably used for Mg. For Ca, CaO, Ca (OH) 2 , CaCO 3 and the like are preferably used. For Sr, SrCO 3 , Sr (NO 3 ) 2 and the like are preferably used. As described above, the Ti component material has a perovskite crystal structure, and an alkaline earth metal titanate such as CaTiO 3 , SrTiO 3 , BaTiO 3 , or MgTiO 3 is preferably used.

次いで、作製した原料混合粉を仮焼成する。仮焼成の温度としては750℃〜900℃の範囲が好ましい。750℃以上であれば、仮焼による一部フェライト化が進み、焼成時のガス発生量が少なく、固体間反応が十分に進むため好ましい。一方、900℃以下であれば、仮焼による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。   Next, the prepared raw material mixed powder is temporarily fired. The pre-baking temperature is preferably in the range of 750 ° C to 900 ° C. If it is 750 degreeC or more, since part ferrite-ization by calcination advances, there is little gas generation amount at the time of baking, and reaction between solids fully progresses, and it is preferable. On the other hand, if it is 900 degrees C or less, since sintering by calcination is weak and a raw material can fully be grind | pulverized at a later slurry grinding | pulverization process, it is preferable. Moreover, an air atmosphere is preferable as the atmosphere at the time of temporary firing.

そして、仮焼成した原料を解粒して分散媒中に投入しスラリーを作製する。なお、仮焼成することなく原料混合粉を分散媒中に投入しスラリーを作製してもよい。本発明で使用する分散媒としては水が好適である。分散媒には、前記仮焼成原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%〜90質量%の範囲が望ましい。より好ましくは60質量%〜80質量%である。60質量%以上であれば、造粒品中に粒子内細孔が少なく、焼成時の焼結不足を防ぐことができる。一方、80質量%以下であれば、結合粒子が少なく、粒子形状による流動性悪化を防ぐことができる。   Then, the calcined raw material is pulverized and charged into a dispersion medium to prepare a slurry. Note that the raw material mixed powder may be charged into the dispersion medium without pre-baking to produce a slurry. Water is preferred as the dispersion medium used in the present invention. In addition to the calcined raw material, a binder, a dispersant and the like may be blended in the dispersion medium as necessary. For example, polyvinyl alcohol can be suitably used as the binder. As a compounding quantity of a binder, it is preferable that the density | concentration in a slurry shall be about 0.5 mass%-2 mass%. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. The blending amount of the dispersing agent is preferably about 0.5% by mass to 2% by mass in the slurry. In addition, you may mix | blend a lubricant, a sintering accelerator, etc. The solid content concentration of the slurry is desirably in the range of 50 mass% to 90 mass%. More preferably, it is 60 mass%-80 mass%. If it is 60 mass% or more, there are few intraparticle pores in a granulated product, and it can prevent the sintering shortage at the time of baking. On the other hand, if it is 80 mass% or less, there are few coupling | bonding particles and it can prevent the fluid deterioration by particle shape.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の体積平均粒径は10μm以下が好ましく、より好ましくは5μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry produced as described above is wet pulverized. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The volume average particle size of the raw material after pulverization is preferably 10 μm or less, more preferably 5 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100℃〜300℃の範囲が好ましい。これにより、粒径10μm〜200μmの球状の造粒物が得られる。なお、得られた造粒物は、振動ふるい等を用いて、粗大粒子や微粉を除去し粒度分布をシャープなものとするのが望ましい。   Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 ° C to 300 ° C. Thereby, a spherical granulated product having a particle diameter of 10 μm to 200 μm is obtained. In addition, it is desirable that the obtained granulated product has a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like.

次に、造粒物を所定温度に加熱した炉に投入して焼成することによりフェライト粒子を生成させる。焼成温度としては通常よりも高い1100℃以上1300℃以下の範囲が好ましい。焼成温度が1100℃より低い温度であると、相変態が起こりにくくなるとともに焼結も進みにくくなる。また、磁壁の出現が促進しないおそれがある。一方、焼成温度が1300℃を超えると、過剰焼結による過大グレインが発生するおそれがある。前記焼成温度に至るまでの昇温速度としては200℃/h〜500℃/hの範囲が好ましい。   Next, the granulated material is put into a furnace heated to a predetermined temperature and fired to generate ferrite particles. The firing temperature is preferably in the range of 1100 ° C. to 1300 ° C., which is higher than usual. When the firing temperature is lower than 1100 ° C., the phase transformation is less likely to occur and the sintering is less likely to proceed. In addition, the appearance of the domain wall may not be promoted. On the other hand, when the firing temperature exceeds 1300 ° C., excessive grain may be generated due to excessive sintering. The rate of temperature increase up to the firing temperature is preferably in the range of 200 ° C / h to 500 ° C / h.

加えて、焼成工程における酸素濃度を通常よりも高くする。焼成工程における酸素濃度を高くすることによって、磁壁の出現が促進されて粒子の高抵抗化が図られる。具体的には、酸素濃度を6%〜15%の範囲とするのが好ましい。これにより、前記のペロブスカイト構造のTi成分原料の配合と相まって、粒子中の磁壁の出現が促進される。   In addition, the oxygen concentration in the firing step is made higher than usual. By increasing the oxygen concentration in the firing step, the appearance of the domain wall is promoted and the resistance of the particles is increased. Specifically, the oxygen concentration is preferably in the range of 6% to 15%. This promotes the appearance of the domain wall in the particles in combination with the blending of the Ti component raw material having the perovskite structure.

このようにして得られたフェライト粒子を必要により解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。そして、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の体積平均粒子径としては20μm〜50μmの範囲が好ましい。   The ferrite particles thus obtained are pulverized as necessary. Specifically, for example, the fired product is pulverized by a hammer mill or the like. The form of the granulation step may be either a continuous type or a batch type. And if necessary, classification may be performed in order to make the particle size in a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process. The volume average particle diameter of the ferrite particles is preferably in the range of 20 μm to 50 μm.

その後、必要に応じて、分級後のフェライト粒子を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子のさらなる高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は、200℃〜800℃の範囲が好ましく、250℃〜600℃の範囲がさらに好ましい。加熱時間は0.5時間〜5時間の範囲が好ましい。   Thereafter, if necessary, the ferrite particles after classification may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to further increase the resistance of the ferrite particles (high resistance treatment). The oxidizing atmosphere may be either an air atmosphere or a mixed atmosphere of oxygen and nitrogen. The heating temperature is preferably in the range of 200 ° C to 800 ° C, and more preferably in the range of 250 ° C to 600 ° C. The heating time is preferably in the range of 0.5 hours to 5 hours.

以上のようにして作製したフェライト粒子を本発明のキャリア芯材として用いる。そして、所望の帯電性等を得るために、キャリア芯材の外周を樹脂で被覆して電子写真現像用キャリアとする。   The ferrite particles produced as described above are used as the carrier core material of the present invention. Then, in order to obtain desired chargeability and the like, the outer periphery of the carrier core material is coated with a resin to obtain an electrophotographic developing carrier.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   As the resin for coating the surface of the carrier core material, conventionally known resins can be used, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). ) Resin, polystyrene, (meth) acrylic resin, polyvinyl alcohol resin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, and other thermoplastic elastomers, and fluorosilicone resins.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%〜30質量%、特に0.001質量%〜2質量%の範囲内にあるのがよい。   In order to coat the surface of the carrier core material with the resin, a resin solution or dispersion may be applied to the carrier core material. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The resin component concentration in the coating solution should generally be in the range of 0.001% to 30% by weight, particularly 0.001% to 2% by weight.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method of coating the resin on the carrier core material, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

キャリアの体積平均粒子径は10μm〜200μmの範囲、特に20μm〜50μmの範囲が好ましい。   The volume average particle diameter of the carrier is preferably in the range of 10 μm to 200 μm, particularly in the range of 20 μm to 50 μm.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%〜15質量%の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%〜10質量%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the carrier prepared as described above and a toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass to 15% by mass. When the toner density is less than 1% by mass, the image density becomes too low, while when the toner density exceeds 15% by mass, toner scattering occurs in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of malfunction. A more preferable toner concentration is in the range of 3% by mass to 10% by mass.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。   As the toner, toner produced by a conventionally known method such as a polymerization method, a pulverization classification method, a melt granulation method, or a spray granulation method can be used. Specifically, a binder resin containing a thermoplastic resin as a main component and containing a colorant, a release agent, a charge control agent and the like can be suitably used.

トナーの粒径は、一般に、コールターカウンターによる体積平均粒径で5μm〜15μmの範囲が好ましく、7μm〜12μmの範囲がより好ましい。   In general, the particle diameter of the toner is preferably in the range of 5 μm to 15 μm, more preferably in the range of 7 μm to 12 μm, as a volume average particle diameter measured by a Coulter counter.

トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。   If necessary, a modifier may be added to the toner surface. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethyl methacrylate and the like. These 1 type (s) or 2 or more types can be used in combination.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   A known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図1に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図1に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。   The developing method using the developer of the present invention is not particularly limited, but a magnetic brush developing method is preferable. FIG. 1 is a schematic diagram showing an example of a developing device that performs magnetic brush development. The developing device shown in FIG. 1 is arranged in parallel to a horizontal direction, and a rotatable developing roller 3 incorporating a plurality of magnetic poles, a regulating blade 6 for regulating the amount of developer on the developing roller 3 conveyed to the developing unit. Formed between the two screws 1 and 2 that stir and convey the developer in opposite directions and the two screws 1 and 2, and develops from one screw to the other at both ends of both screws. And a partition plate 4 that allows the developer to move and prevents the developer from moving except at both ends.

2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。   The two screws 1 and 2 have spiral blades 13 and 23 formed on the shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to remove the developer. Transport in opposite directions. The developer moves from one screw to the other screw at both ends of the screws 1 and 2. As a result, the developer composed of toner and carrier is constantly circulated and stirred in the apparatus.

一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N、搬送磁極S、剥離磁極N、汲み上げ磁極N、ブレード磁極Sの5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3が矢印方向に回転すると、汲み上げ磁極Nの磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。 On the other hand, the developing roller 3 has, as a magnetic pole generating means, a developing magnetic pole N 1 , a transporting magnetic pole S 1 , a peeling magnetic pole N 2 , and a pumping magnetic pole N 3 inside a metal cylindrical body having a surface with a few μm unevenness. , comprising a fixed magnet disposed five pole blade pole S 2 in order. When the development roller 3 is rotated in the arrow direction, by the magnetic force of the magnetic pole N 3, the developer is pumped from the screw 1 to the developing roller 3. The developer carried on the surface of the developing roller 3 is regulated by the regulating blade 6 and then conveyed to the developing area.

現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が転写電圧電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5〜5kVの範囲が好ましく、周波数は1〜10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。   In the developing region, a bias voltage obtained by superimposing an AC voltage on a DC voltage is applied from the transfer voltage power supply 8 to the developing roller 3. The DC voltage component of the bias voltage is a potential between the background portion potential on the surface of the photosensitive drum 5 and the image portion potential. Further, the background portion potential and the image portion potential are set to a potential between the maximum value and the minimum value of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 to 5 kV, and the frequency is preferably in the range of 1 to 10 kHz. The waveform of the bias voltage may be any of a rectangular wave, a sine wave, a triangular wave, and the like. As a result, the toner and the carrier vibrate in the development area, and the toner adheres to the electrostatic latent image on the photosensitive drum 5 and development is performed.

その後現像ローラ3上の現像剤は、搬送磁極Sによって装置内部に搬送され、剥離電極Nによって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。本発明のキャリア芯材を用いた現像剤では、剥離電極Nによる現像ローラ3からの剥離が円滑に行われる。そして汲み上げ極Nによって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。これにより、画像濃度ムラが防止される。また、搬送磁極Sや現像磁極Nによって現像剤は現像ローラ3にしっかりと吸着しキャリア飛散が抑制される。 Thereafter, the developer on the developing roller 3 is conveyed to the inside of the apparatus by the conveying magnetic pole S 1 , peeled off from the developing roller 3 by the peeling electrode N 2 , and circulated and conveyed again inside the apparatus by the screws 1 and 2 for development. Mix and stir with undeveloped developer. In the developer using the carrier core material of the present invention, peeling from the developing roller 3 by peeling the electrode N 2 it can be smoothly performed. Then, the developer is newly supplied from the screw 1 to the developing roller 3 by the pumping pole N 3 . Thereby, image density unevenness is prevented. Further, the developer by the conveyance pole S 1 and the developing magnetic pole N 1 is firmly adsorbed to carrier scattering to the developing roller 3 can be suppressed.

なお、図1に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させるために、磁極を8極や10極、12極と増やしてももちろん構わない。   In the embodiment shown in FIG. 1, the number of magnetic poles built in the developing roller 3 is five. However, in order to further increase the moving amount of the developer in the developing region and to further improve the pumping property and the like. Of course, the number of magnetic poles may be increased to 8 poles, 10 poles or 12 poles.

実施例1
キャリア芯材を次のようにして作製した。原料としてのFe(平均粒径:0.3μm)17.04kg、Mn(平均粒径:0.5μm)6.51kg、MgO(平均粒径:0.6μm)0.86kg、MgTiO(ペロブスカイト構造,平均粒径:1.5μm)0.39kgを純水6.2kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を0.6wt%添加して混合物とした。この混合物の固形分濃度は80wt%であった。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
Example 1
A carrier core material was produced as follows. Fe 2 O 3 (average particle size: 0.3 μm) 17.04 kg as raw materials, Mn 3 O 4 (average particle size: 0.5 μm) 6.51 kg, MgO (average particle size: 0.6 μm) 0.86 kg MgTiO 3 (perovskite structure, average particle size: 1.5 μm) is dispersed in 6.2 kg of pure water, and 0.6 wt% of an ammonium polycarboxylate dispersant is added to form a mixture. . The solid content concentration of this mixture was 80 wt%. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.

この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10〜75μmの乾燥造粒物を得た。この造粒物から、網目54μmの篩網を用いて粗粒を分離し、網目33μmの篩網を用いて微粒を分離した。   This mixed slurry was sprayed into hot air at about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 to 75 μm. From this granulated product, coarse particles were separated using a sieve mesh having a mesh size of 54 μm, and fine particles were separated using a sieve mesh having a mesh size of 33 μm.

この造粒物を、電気炉に投入し1200℃まで5時間かけて昇温した。その後1200℃で4.5時間保持することにより焼成を行った。その後冷却速度2℃/分で500℃まで冷却した。電気炉内の酸素濃度は10%となるよう酸素と窒素とを混合したガスを炉内に供給した。   This granulated product was put into an electric furnace and heated to 1200 ° C. over 5 hours. Thereafter, firing was carried out by holding at 1200 ° C. for 4.5 hours. Thereafter, it was cooled to 500 ° C. at a cooling rate of 2 ° C./min. A gas in which oxygen and nitrogen were mixed was supplied into the furnace so that the oxygen concentration in the electric furnace was 10%.

得られた焼成物をハンマーミルで解粒した後に振動ふるいを用いて分級し、体積平均粒径(平均粒径)35.5μmの焼成物を得た。   The obtained fired product was pulverized with a hammer mill and then classified using a vibration sieve to obtain a fired product having a volume average particle size (average particle size) of 35.5 μm.

次いで、得られた焼成物を大気雰囲気下450℃で1.5時間保持することにより酸化処理(高抵抗化処理)を行い、キャリア芯材を得た。   Next, the obtained fired product was subjected to an oxidation treatment (high resistance treatment) by holding at 450 ° C. for 1.5 hours in an air atmosphere to obtain a carrier core material.

得られたキャリア芯材の組成、磁気特性、帯電特性などを後述の方法で測定した。測定結果を表2に示す。   The composition, magnetic characteristics, charging characteristics and the like of the obtained carrier core material were measured by the methods described later. The measurement results are shown in Table 2.

次に、このようにして得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450重量部と、(2−アミノエチル)アミノプロピルトリメトキシシラン9重量部とを、溶媒としてのトルエン450重量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000重量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下、比較例についても同様にしてキャリアを得た。   Next, the surface of the carrier core material thus obtained was coated with a resin to prepare a carrier. Specifically, 450 parts by weight of a silicone resin and 9 parts by weight of (2-aminoethyl) aminopropyltrimethoxysilane were dissolved in 450 parts by weight of toluene as a solvent to prepare a coating solution. This coating solution was applied to 50000 parts by weight of a carrier core material using a fluid bed type coating apparatus and heated in an electric furnace at a temperature of 300 ° C. to obtain a carrier. Hereinafter, carriers were obtained in the same manner for the comparative examples.

得られたキャリアと体積平均粒径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの重量/(トナーおよびキャリアの重量)=5/100となるように調整した。以下、全ての比較例についても同様にして現像剤を得た。得られた現像剤について後述の実機評価を行った。評価結果を表2に示す。   The obtained carrier and a toner having a volume average particle size of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the weight of toner / (weight of toner and carrier) = 5/100. Hereinafter, the developer was obtained in the same manner for all the comparative examples. The obtained developer was evaluated on the actual machine described later. The evaluation results are shown in Table 2.

(実施例2)
原料としてFe(平均粒径:0.3μm)16.92kg、Mn(平均粒径:0.4μm)6.47kg、MgO(平均粒径:0.6μm)0.85kg、CaTiO(ペロブスカイト構造,平均粒径:1.5μm)0.55kgを用いた以外は実施例1同様にして平均粒径35.2μmのキャリア芯材を作成した。
(Example 2)
As raw materials Fe 2 O 3 (average particle size: 0.3 μm) 16.92 kg, Mn 3 O 4 (average particle size: 0.4 μm) 6.47 kg, MgO (average particle size: 0.6 μm) 0.85 kg, A carrier core material having an average particle diameter of 35.2 μm was prepared in the same manner as in Example 1 except that 0.55 kg of CaTiO 3 (perovskite structure, average particle diameter: 1.5 μm) was used.

(実施例3)
原料としてFe(平均粒径:0.3μm)16.76kg、Mn(平均粒径:0.4μm)6.40kg、MgO(平均粒径:0.6μm)0.85kg、SrTiO(ペロブスカイト構造,平均粒径:1.5μm)0.79kgを用いた以外は実施例1同様にして平均粒径35.1μmのキャリア芯材を作成した。
(Example 3)
As raw materials, Fe 2 O 3 (average particle size: 0.3 μm) 16.76 kg, Mn 3 O 4 (average particle size: 0.4 μm) 6.40 kg, MgO (average particle size: 0.6 μm) 0.85 kg, A carrier core material having an average particle diameter of 35.1 μm was prepared in the same manner as in Example 1 except that 0.79 kg of SrTiO 3 (perovskite structure, average particle diameter: 1.5 μm) was used.

(実施例4)
原料としてFe(平均粒径:0.3μm)16.34kg、Mn(平均粒径:0.4μm)6.24kg、MgO(平均粒径:0.6μm)0.82kg、BaTiO(ペロブスカイト構造,平均粒径:1.8μm)1.39kgを用いた以外は実施例1同様にして平均粒径33.4μmのキャリア芯材を作成した。
Example 4
As raw materials Fe 2 O 3 (average particle size: 0.3 μm) 16.34 kg, Mn 3 O 4 (average particle size: 0.4 μm) 6.24 kg, MgO (average particle size: 0.6 μm) 0.82 kg, A carrier core material having an average particle size of 33.4 μm was prepared in the same manner as in Example 1 except that 1.39 kg of BaTiO 3 (perovskite structure, average particle size: 1.8 μm) was used.

(比較例1)
MgTiOを配合しなかった以外は実施例1同様にして平均粒径34.4μmのキャリア芯材を作成した。
(Comparative Example 1)
A carrier core material having an average particle diameter of 34.4 μm was prepared in the same manner as in Example 1 except that MgTiO 3 was not blended.

(比較例2)
原料としてFe(平均粒径:0.3μm)15.32kg、Mn(平均粒径:0.4μm)5.85kg、MgO(平均粒径:0.6μm)0.77kg、SrTiO(ペロブスカイト構造,平均粒径:1.5μm)2.85kgを用い、焼成温度を900℃とした以外は実施例1同様にして平均粒径35.7μmのキャリア芯材を作成した。
(Comparative Example 2)
As raw materials, Fe 2 O 3 (average particle size: 0.3 μm) 15.32 kg, Mn 3 O 4 (average particle size: 0.4 μm) 5.85 kg, MgO (average particle size: 0.6 μm) 0.77 kg, A carrier core material having an average particle diameter of 35.7 μm was prepared in the same manner as in Example 1 except that 2.85 kg of SrTiO 3 (perovskite structure, average particle diameter: 1.5 μm) was used and the firing temperature was 900 ° C.

(比較例3)
原料としてFe(平均粒径:0.3μm)17.14kg、Mn(平均粒径:0.4μm)6.55kg、MgO(平均粒径:0.6μm)0.87kg、TiO(ルチル構造,平均粒径:0.4μm)0.25kgを用いた以外は実施例1同様にして平均粒径33.7μmのキャリア芯材を作成した。
(Comparative Example 3)
As raw materials, Fe 2 O 3 (average particle size: 0.3 μm) 17.14 kg, Mn 3 O 4 (average particle size: 0.4 μm) 6.55 kg, MgO (average particle size: 0.6 μm) 0.87 kg, A carrier core material having an average particle diameter of 33.7 μm was prepared in the same manner as in Example 1 except that 0.25 kg of TiO 2 (rutile structure, average particle diameter: 0.4 μm) was used.

(比較例4)
原料としてFe(平均粒径:0.3μm)17.08kg、Mn(平均粒径:0.4μm)6.53kg、MgO(平均粒径:0.6μm)0.86kg、TiO(ルチル構造,平均粒径:0.4μm)0.33kgを用いた以外は実施例1同様にして平均粒径34.3μmのキャリア芯材を作成した。
(Comparative Example 4)
As raw materials, Fe 2 O 3 (average particle size: 0.3 μm) 17.08 kg, Mn 3 O 4 (average particle size: 0.4 μm) 6.53 kg, MgO (average particle size: 0.6 μm) 0.86 kg, A carrier core material having an average particle diameter of 34.3 μm was prepared in the same manner as in Example 1 except that 0.33 kg of TiO 2 (rutile structure, average particle diameter: 0.4 μm) was used.

(比較例5)
原料としてFe(平均粒径:0.3μm)16.96kg、Mn(平均粒径:0.4μm)6.48kg、MgO(平均粒径:0.6μm)0.86kg、TiO(ルチル構造,平均粒径:0.4μm)0.50kgを用いた以外は実施例1同様にして平均粒径35.2μmのキャリア芯材を作成した。
(Comparative Example 5)
As raw materials, Fe 2 O 3 (average particle size: 0.3 μm) 16.96 kg, Mn 3 O 4 (average particle size: 0.4 μm) 6.48 kg, MgO (average particle size: 0.6 μm) 0.86 kg, A carrier core material having an average particle diameter of 35.2 μm was prepared in the same manner as in Example 1 except that 0.50 kg of TiO 2 (rutile structure, average particle diameter: 0.4 μm) was used.

(比較例6)
焼成工程における焼成温度を1200℃とし、電気炉内の酸素濃度を0.1%とした以外は比較例2と同様にして平均粒径35.1μmのキャリア芯材を作成した。
(Comparative Example 6)
A carrier core material having an average particle diameter of 35.1 μm was prepared in the same manner as in Comparative Example 2 except that the firing temperature in the firing step was 1200 ° C. and the oxygen concentration in the electric furnace was 0.1%.

(組成分析)
実施例及び比較例のキャリア芯材の組成(質量%)を下記の方法で算出した。
(Feの分析)
鉄元素を含むキャリア芯材を秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させた後、硫酸水を添加して再溶解し過剰な塩酸と硝酸とを揮発させる。この溶液に固体Alを添加して液中のFe3+を全てFe2+に還元する。続いて、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、Fe(Fe2+)の滴定量を求めた。
(Mnの分析)
キャリア芯材のMn含有量は、JIS G1311−1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行った。本願発明に記載したキャリア芯材のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
(Mgの分析)
キャリア芯材のMg含有量は、以下の方法で分析を行った。本願発明に係るキャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行った。本願発明に記載したキャリア芯材のMg含有量は、このICPによる定量分析で得られたMg量である。
(Caの分析)
キャリア芯材のCa含有量は、Mgの分析同様にICPによる定量分析で行った。
(Srの分析)
キャリア芯材のSr含有量は、Mgの分析同様にICPによる定量分析で行った。
(Baの分析)
キャリア芯材のBa含有量は、Mgの分析同様にICPによる定量分析で行った。
(Tiの分析)
キャリア芯材のTi含有量は、Mgの分析同様にICPによる定量分析で行った。
(Composition analysis)
The composition (mass%) of the carrier core materials of Examples and Comparative Examples was calculated by the following method.
(Analysis of Fe)
The carrier core material containing iron element was weighed and dissolved in a mixed acid water of hydrochloric acid and nitric acid. After evaporating this solution to dryness, sulfuric acid water is added and redissolved to volatilize excess hydrochloric acid and nitric acid. Solid Al is added to this solution to reduce all Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ions in the solution was quantitatively analyzed by potentiometric titration with a potassium permanganate solution to obtain a titer of Fe (Fe 2+ ).
(Analysis of Mn)
The Mn content of the carrier core material was quantitatively analyzed according to the ferromanganese analysis method (potentiometric titration method) described in JIS G1311-1987. The Mn content of the carrier core material described in the present invention is the amount of Mn obtained by quantitative analysis by this ferromanganese analysis method (potentiometric titration method).
(Analysis of Mg)
The Mg content of the carrier core material was analyzed by the following method. The carrier core material according to the present invention was dissolved in an acid solution, and quantitative analysis was performed by ICP. The Mg content of the carrier core material described in the present invention is the amount of Mg obtained by this quantitative analysis by ICP.
(Ca analysis)
The Ca content of the carrier core material was determined by ICP quantitative analysis as in the case of Mg analysis.
(Sr analysis)
The Sr content of the carrier core material was determined by ICP quantitative analysis as in the case of Mg analysis.
(Analysis of Ba)
The Ba content of the carrier core material was determined by ICP quantitative analysis as in the case of Mg analysis.
(Analysis of Ti)
The Ti content of the carrier core material was measured by ICP quantitative analysis as in the case of Mg analysis.

(磁力の測定)
室温専用振動試料型磁力計(VSM)(東英工業社製「VSM−P7」)を用いて、外部磁場を0〜79.58×10A/m(10000エルステッド)の範囲で1サイクル連続的に印加して、残留磁化σr、保磁力Hc及び79.58×10A/m(1000エルステッド)の磁場における磁化σ1k(Am/kg)をそれぞれ測定した。
(Measurement of magnetic force)
Using a vibration sample type magnetometer (VSM) dedicated to room temperature (“VSM-P7” manufactured by Toei Kogyo Co., Ltd.), the external magnetic field ranges from 0 to 79.58 × 10 4 A / m (10000 Oersted) for one cycle. The residual magnetization σr, the coercive force Hc, and the magnetization σ 1k (Am 2 / kg) in a magnetic field of 79.58 × 10 3 A / m (1000 oersted) were measured.

(帯電量)
キャリア芯材9.5g、市販のフルカラー機のトナー0.5gを100mlの栓付きガラス瓶に入れ、25℃、相対湿度50%の環境下で12時間放置して調湿する。調湿したキャリア芯材とトナーを振とう器で15分間振とうさせ混合する。ここで、振とう器については、株式会社ヤヨイ製のNEW−YS型を用い、126回/分、角度60°で行った。撹拌15分後の電子写真現像剤を300mg採取し、ユーテック社製のEA02と自動吸引装置を用い、吸引圧力High、分離用メッシュをSUS製の795mesh、トナーの捕集器具をフィルターカプセル(ユーテック社製EA010C)として90秒吸引後の帯電量を測定した。同一サンプルについて2回の測定を行い、これらの平均値をキャリア芯材の帯電量とした。キャリア芯材の帯電量は下記式から算出した。なお、測定環境は、温度25℃、相対湿度50%とした。
帯電量(μC/g)=実測電荷(μC)÷トナー重量
(式中、トナー重量=フィルターカプセル吸引後重量(g)−フィルターカプセル吸引前重量(g))
(Charge amount)
9.5 g of carrier core material and 0.5 g of commercially available full-color toner are put into a 100 ml stoppered glass bottle and left to stand for 12 hours in an environment of 25 ° C. and 50% relative humidity to adjust the humidity. The conditioned carrier core material and toner are shaken for 15 minutes with a shaker and mixed. Here, about the shaker, it carried out at 126 times / minute and the angle of 60 degrees using the NEW-YS type | mold made from Yayoi Co., Ltd. Collect 300 mg of electrophotographic developer after 15 minutes of stirring, use EA02 made by U-Tech and automatic suction device, suction pressure High, mesh for separation is 795 mesh made by SUS, and toner collection device is filter capsule (U-Tech) As EA010C), the charge amount after suction for 90 seconds was measured. The same sample was measured twice, and the average value of these was taken as the charge amount of the carrier core material. The charge amount of the carrier core material was calculated from the following formula. The measurement environment was a temperature of 25 ° C. and a relative humidity of 50%.
Charge amount (μC / g) = Measured charge (μC) ÷ Toner weight (where toner weight = weight after filter capsule suction (g) −weight before filter capsule suction (g))

(実機評価)
図1に示した構造の現像装置(現像ローラの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム−現像ローラ間距離:0.3mm)に、作製した二成分現像剤を投入し、画像形成(印字率5%)を1000枚行った後、キャリア飛散及びカブリを下記の手順及び基準で評価した。
(Actual machine evaluation)
A developing device having the structure shown in FIG. 1 (developing roller peripheral speed Vs: 406 mm / sec, photosensitive drum peripheral speed Vp: 205 mm / sec, photosensitive drum-developing roller distance: 0.3 mm) was produced. The two-component developer was charged and image formation (printing rate 5%) was performed 1000 sheets, and then carrier scattering and fogging were evaluated according to the following procedures and standards.

キャリア飛散
白紙を1000枚印刷し、1000枚目の用紙における黒点の数を目視で判断した。評価基準は下記の通りである。
「○」:発見された黒点の数が1〜5個の場合
「×」:発見された黒点の数が11個以上の場合
Carrier scattering 1000 blank sheets were printed, and the number of black spots on the 1000th sheet was visually determined. The evaluation criteria are as follows.
“◯”: When the number of discovered black spots is 1 to 5 “×”: When the number of discovered black spots is 11 or more

カブリ
上記1,000枚目の用紙における非画像形成部の画像濃度を10か所測定し、この平均値から未使用の白紙について測定した濃度を差し引き、この値を用いて下記基準で評価した。なお、画像濃度は反射濃度計「TC−6D」(東京電色社製)を用いて測定した。
「○」:濃度差が0.006未満
「×」:濃度差が0.006以上
Fog The image density of the non-image forming portion on the 1,000th sheet was measured at 10 locations, and the density measured for unused white paper was subtracted from this average value, and this value was used for evaluation according to the following criteria. The image density was measured using a reflection densitometer “TC-6D” (manufactured by Tokyo Denshoku).
“◯”: density difference is less than 0.006 “×”: density difference is 0.006 or more

ペロブスカイト構造のTi成分原料を用いると共に、焼成温度を1200℃と高くし、また電気炉内の酸素濃度を10%と高くした実施例1〜4のキャリア芯材では、磁壁面積の指標としてのHc/σrが11.2〜12.1と所望の磁壁面積を有していると考えられ、帯電量は38〜42μC/gと高く、画像のカブリは生じなかった。また、磁化σ1kについても56Am/kg以上を有しており、キャリア飛散は生じなかった。 In the carrier core materials of Examples 1 to 4 in which a Ti component raw material having a perovskite structure was used, the firing temperature was increased to 1200 ° C., and the oxygen concentration in the electric furnace was increased to 10%, Hc as an index of the domain wall area It is considered that / σr has a desired domain wall area of 11.2 to 12.1, the charge amount is as high as 38 to 42 μC / g, and image fogging did not occur. Also, the magnetization σ 1k was 56 Am 2 / kg or more, and carrier scattering did not occur.

これに対して、Ti成分原料を配合しなかった比較例1のキャリア芯材では、Hc/σrが10.8と低く所望の磁壁面積を有していないと考えられ、帯電量は35μC/gと低く画像のカブリが生じた。   On the other hand, in the carrier core material of Comparative Example 1 in which no Ti component raw material was blended, Hc / σr was considered to be as low as 10.8 and the desired domain wall area was not obtained, and the charge amount was 35 μC / g. As a result, fogging of the image occurred.

また、比較例2では、ペロブスカイト構造のTi成分原料(SrTiO)を多く配合すると共に、焼成温度を900℃と低くしたため、得られたキャリア芯材のHc/σrが13.7と過度に高くなり、磁化σ1kが37Am/kgと低くキャリア飛散が生じた。また、帯電量も25μC/gと低く画像のカブリが生じた。 In Comparative Example 2, a large amount of Ti component raw material (SrTiO 3 ) having a perovskite structure was blended and the firing temperature was lowered to 900 ° C., so the carrier core material obtained had an excessively high Hc / σr of 13.7. As a result, the magnetization σ 1k was as low as 37 Am 2 / kg, and carrier scattering occurred. Also, the charge amount was as low as 25 μC / g, and image fogging occurred.

比較例3,4,5は、ルチル構造のTi成分原料(TiO)の配合量を変えたものであって、得られたキャリア芯材はいずれもHc/σrは10.8以下と低く、帯電量も35μC/g以下と低く画像のカブリが生じた。また、比較例5のキャリア芯材では、磁化σ1kが54Am/kgと低くキャリア飛散も生じた。 Comparative Examples 3, 4, and 5 were obtained by changing the blending amount of the Ti component raw material (TiO 2 ) having a rutile structure, and all of the obtained carrier cores had a low Hc / σr of 10.8 or less, The charge amount was as low as 35 μC / g or less, and image fogging occurred. Further, in the carrier core material of Comparative Example 5, the magnetization σ 1k was as low as 54 Am 2 / kg, and carrier scattering occurred.

比較例6では、ペロブスカイト構造のTi成分原料(SrTiO)を多く配合すると共に、焼成工程における電気炉内の酸素濃度を0.1%と低くしたため、得られたキャリア芯材のHc/σrが9.1と過度に低くなり、帯電量は21μC/gと低く画像のカブリが生じた。 In Comparative Example 6, a large amount of Ti component raw material (SrTiO 3 ) having a perovskite structure was blended, and the oxygen concentration in the electric furnace in the firing process was lowered to 0.1%, so that the carrier core material obtained had an Hc / σr of The image was too low at 9.1, the charge amount was as low as 21 μC / g, and image fogging occurred.

本発明のキャリア芯材によれば所望の抵抗と磁力とが得られ、キャリア飛散及びカブリといった不具合が抑制され有用である。   According to the carrier core material of the present invention, desired resistance and magnetic force can be obtained, and problems such as carrier scattering and fogging are suppressed and useful.

3 現像ローラ
5 感光体ドラム
3 Developing roller 5 Photosensitive drum

Claims (6)

Tiを含有するフェライト粒子から構成されるキャリア芯材であって、
残留磁化σr(Am/kg)に対する保持力Hc(10/4π・A/m)の比率Hc/σrが11.0以上13.0以下であることを特徴とするキャリア芯材。
A carrier core material composed of ferrite particles containing Ti,
A carrier core material, wherein a ratio Hc / σr of a holding force Hc (10 3 / 4π · A / m) to a residual magnetization σr (Am 2 / kg) is 11.0 or more and 13.0 or less.
Tiの含有量が0.6質量%以上1.2質量%以下の範囲である請求項1記載のキャリア芯材。   The carrier core material according to claim 1, wherein the Ti content is in the range of 0.6 mass% to 1.2 mass%. 前記フェライト粒子がMn及びMgの少なくとも一方の元素をさらに含有する請求項1又は2記載のキャリア芯材。   The carrier core material according to claim 1 or 2, wherein the ferrite particles further contain at least one element of Mn and Mg. 前記フェライト粒子がCa、Sr、Baの少なくとも1つの元素をさらに含有する請求項1〜3のいずれかに記載のキャリア芯材。   The carrier core material according to any one of claims 1 to 3, wherein the ferrite particles further contain at least one element of Ca, Sr, and Ba. 請求項1〜4のいずれかに記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリア。   A carrier for electrophotographic development, wherein the surface of the carrier core material according to any one of claims 1 to 4 is coated with a resin. 請求項5記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。   An electrophotographic developer comprising the carrier for electrophotographic development according to claim 5 and a toner.
JP2016047937A 2016-03-11 2016-03-11 Carrier core material Active JP6650300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016047937A JP6650300B2 (en) 2016-03-11 2016-03-11 Carrier core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016047937A JP6650300B2 (en) 2016-03-11 2016-03-11 Carrier core material

Publications (2)

Publication Number Publication Date
JP2017161808A true JP2017161808A (en) 2017-09-14
JP6650300B2 JP6650300B2 (en) 2020-02-19

Family

ID=59854119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016047937A Active JP6650300B2 (en) 2016-03-11 2016-03-11 Carrier core material

Country Status (1)

Country Link
JP (1) JP6650300B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181524A (en) * 2009-02-04 2010-08-19 Powdertech Co Ltd Carrier core material and carrier for electrophotographic developer and process for producing the same, and electrophotographic developer using the carrier
JP2011112960A (en) * 2009-11-27 2011-06-09 Powdertech Co Ltd Porous ferrite core material for electrophotographic developer, resin-filled ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2011164224A (en) * 2010-02-05 2011-08-25 Powdertech Co Ltd Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the manufacturing method
JP2012013865A (en) * 2010-06-30 2012-01-19 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2013182064A (en) * 2012-02-29 2013-09-12 Powdertech Co Ltd Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP2013205614A (en) * 2012-03-28 2013-10-07 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer, ferrite carrier and method for producing the same, and electrophotographic developer using ferrite carrier
JP2016025288A (en) * 2014-07-24 2016-02-08 Dowaホールディングス株式会社 Ferrite magnetic material
JP2016033655A (en) * 2014-07-29 2016-03-10 Dowaエレクトロニクス株式会社 Carrier core material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181524A (en) * 2009-02-04 2010-08-19 Powdertech Co Ltd Carrier core material and carrier for electrophotographic developer and process for producing the same, and electrophotographic developer using the carrier
JP2011112960A (en) * 2009-11-27 2011-06-09 Powdertech Co Ltd Porous ferrite core material for electrophotographic developer, resin-filled ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2011164224A (en) * 2010-02-05 2011-08-25 Powdertech Co Ltd Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the manufacturing method
JP2012013865A (en) * 2010-06-30 2012-01-19 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2013182064A (en) * 2012-02-29 2013-09-12 Powdertech Co Ltd Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP2013205614A (en) * 2012-03-28 2013-10-07 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer, ferrite carrier and method for producing the same, and electrophotographic developer using ferrite carrier
JP2016025288A (en) * 2014-07-24 2016-02-08 Dowaホールディングス株式会社 Ferrite magnetic material
JP2016033655A (en) * 2014-07-29 2016-03-10 Dowaエレクトロニクス株式会社 Carrier core material

Also Published As

Publication number Publication date
JP6650300B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP5751688B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6450621B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5957623B1 (en) Carrier core
JP5726360B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5839639B1 (en) Carrier core
JP5828569B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
WO2018180543A1 (en) Carrier core material, and electrophotographic carrier and electrophotographic developer that use carrier core material
JP7275361B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP2018106015A (en) Carrier core material and carrier for electrophotographic development, and electrophotographic developer
JP6650300B2 (en) Carrier core material
JP6637330B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP7075913B2 (en) Carrier core material
JP6924885B1 (en) Carrier core material
JP7085507B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic
JP2018155827A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP5839640B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
WO2021060035A1 (en) Carrier core material, and electrophotography development carrier and electrophotography developer in which said material is used
JP5854541B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP2018128619A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP2022090791A (en) Carrier core material
JP2022143658A (en) Carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6650300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250