JP2016033655A - Carrier core material - Google Patents

Carrier core material Download PDF

Info

Publication number
JP2016033655A
JP2016033655A JP2015130802A JP2015130802A JP2016033655A JP 2016033655 A JP2016033655 A JP 2016033655A JP 2015130802 A JP2015130802 A JP 2015130802A JP 2015130802 A JP2015130802 A JP 2015130802A JP 2016033655 A JP2016033655 A JP 2016033655A
Authority
JP
Japan
Prior art keywords
carrier
core material
carrier core
ferrite
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015130802A
Other languages
Japanese (ja)
Other versions
JP5839639B1 (en
Inventor
佐々木 信也
Shinya Sasaki
信也 佐々木
石川 洋平
Yohei Ishikawa
洋平 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55069291&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016033655(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015130802A priority Critical patent/JP5839639B1/en
Application granted granted Critical
Publication of JP5839639B1 publication Critical patent/JP5839639B1/en
Publication of JP2016033655A publication Critical patent/JP2016033655A/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carrier core material capable of promoting circulation movement of carriers in a magnetic brush without deteriorating fluidity.SOLUTION: The carrier core material includes ferrite particles, and contains 1 to 8 percent by number of ferrite particles on the surface of which a plate crystal of Sr ferrite is precipitated. A remanent magnetization is preferably less than 1(A*m/kg), and a holding power is preferably less than 10(A/m×10/(4π)).SELECTED DRAWING: Figure 1

Description

本発明はキャリア芯材に関し、より詳細には、フェライト粒子からなるキャリア芯材などに関するものである。   The present invention relates to a carrier core material, and more particularly to a carrier core material made of ferrite particles.

例えば、電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、感光体の表面に形成された静電潜像にトナーを付着させて可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。   For example, in an image forming apparatus such as a facsimile, printer, or copier using an electrophotographic method, a toner is attached to an electrostatic latent image formed on the surface of a photosensitive member to make a visible image, and the visible image is formed on paper. After being transferred to, etc., it is fixed by heating and pressing. A so-called two-component developer including a carrier and a toner is widely used as a developer from the viewpoint of high image quality and colorization.

二成分現像剤を用いた現像方式では、キャリアとトナーとを現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像ローラに現像剤を供給し、現像ローラ上で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。トナー移動後のキャリアは現像ローラ上に残留し、現像装置内で再びトナーと混合される。このため、キャリアの特性として、磁気ブラシを形成する磁気特性及び所望の電荷をトナーに付与する帯電特性が要求される。このため、マグネタイトや各種フェライト等の磁性粒子の表面を樹脂で被覆した、いわゆるコーティングキャリアがこれまでから多く用いられている。   In the developing method using a two-component developer, the carrier and the toner are stirred and mixed in the developing device, and the toner is charged to a predetermined amount by friction. Then, a developer is supplied to the rotating developing roller, a magnetic brush is formed on the developing roller, and the toner is electrically moved to the photosensitive member via the magnetic brush, so that an electrostatic latent image on the photosensitive member can be formed. Visualize. The carrier after the toner movement remains on the developing roller and is mixed with the toner again in the developing device. For this reason, as a characteristic of the carrier, a magnetic characteristic for forming a magnetic brush and a charging characteristic for imparting a desired charge to the toner are required. For this reason, so-called coating carriers in which the surfaces of magnetic particles such as magnetite and various ferrites are coated with a resin have been widely used.

近年、画像形成装置における画像形成速度の高速化という市場要求に対応するため、現像ローラの回転速度を速めて、現像領域への現像剤の単位時間当たりの供給量を増加させる傾向にある。   In recent years, in order to meet the market demand for higher image forming speed in image forming apparatuses, the rotation speed of the developing roller tends to be increased to increase the amount of developer supplied per unit time to the developing area.

ところが、50μm以下といった小粒径のキャリアを用いた場合、現像ローラの回転速度を速めて現像領域への現像剤供給量を増加させても、十分な画像濃度が得られないことがあった。これは、現像領域において磁気ブラシ先端部のキャリアのみが循環移動して、根元部のキャリアが循環移動せず、根元部のキャリアに保持されたトナーが現像に寄与していないことが原因の一つと考えられている。   However, when a carrier having a small particle diameter of 50 μm or less is used, a sufficient image density may not be obtained even if the rotation speed of the developing roller is increased and the amount of developer supplied to the developing area is increased. One reason for this is that only the carrier at the tip of the magnetic brush circulates and moves in the developing region, the carrier at the root does not circulate and the toner held on the carrier at the root does not contribute to development. It is considered one.

そこで、現像領域において磁気ブラシ先端部のキャリアと根元部のキャリアとを大きく循環移動させるため、本出願人は、キャリアの残留磁化・保持力を高めることや、キャリアの表面を凹凸形状として、感光体表面との摩擦抵抗及びキャリア同士の摩擦抵抗を大きくすることを提案した(特許文献1,2)。   Therefore, in order to largely circulate and move the carrier at the tip of the magnetic brush and the carrier at the base in the development region, the present applicant increases the residual magnetization / holding force of the carrier, and makes the surface of the carrier uneven, It has been proposed to increase the frictional resistance with the body surface and the frictional resistance between carriers (Patent Documents 1 and 2).

特開2012−203140号公報JP 2012-203140 A 特開2013−035737号公報JP 2013-035737 A

キャリアの残留磁化・保持力を高めたり、キャリアを凹凸形状化すると、磁気ブラシ内でのキャリアの循環移動は促進されるが、キャリアの流動性が低下する。このため、キャリアの流動性を低下させることなく、磁気ブラシ内でのキャリアの循環移動を促進できる新たな技術の開発が待たれていた。   When the residual magnetization / holding force of the carrier is increased or the carrier is formed in a concavo-convex shape, the carrier is circulated and moved in the magnetic brush, but the carrier fluidity is lowered. For this reason, development of the new technique which can accelerate | stimulate the circular movement of the carrier in a magnetic brush, without reducing the fluidity | liquidity of a carrier was awaited.

本発明に係るキャリア芯材は、フェライト粒子からなり、Srフェライトの板状結晶が表面に析出しているフェライト粒子が、1個数%〜8個数%含まれることを特徴とする。上記構成による効果との関係は、明確ではないが、フェライト粒子内において、Srフェライトを偏析させることにより、粒子内の磁気バランスが微妙に偏芯されることと、キャリア芯材全体として流動性の良い球形度および粒度分布をほぼ維持した状態で、形状が板状結晶を含む異形粒子を少量であっても配量することにより、キャリア芯材全体に複数の流動状況を発生させ、流動性をさらに向上できたと推察している。なお、Srフェライトの板状結晶が表面に析出している粒子の測定方法については、後述の実施例において説明する。   The carrier core material according to the present invention is characterized by comprising ferrite particles and containing 1% to 8% by number of ferrite particles on which Sr ferrite plate crystals are precipitated. The relationship with the effect of the above configuration is not clear, but by segregating Sr ferrite in the ferrite particles, the magnetic balance in the particles is slightly decentered, and the fluidity of the entire carrier core material While maintaining good sphericity and particle size distribution, by distributing even a small amount of irregularly shaped particles containing plate-like crystals, multiple flow conditions are generated throughout the carrier core material, and fluidity is improved. It is assumed that it has been improved further. In addition, the measuring method of the particle | grains which the plate-shaped crystal | crystallization of Sr ferrite has precipitated on the surface is demonstrated in the below-mentioned Example.

ここで、残留磁化は1(A・m/kg)未満が好ましく、保持力は10(A/m×10/(4π))未満が好ましい。 Here, the residual magnetization is preferably less than 1 (A · m 2 / kg), and the coercive force is preferably less than 10 (A / m × 10 3 / (4π)).

また、本発明によれば、前記記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリアが提供される。   In addition, according to the present invention, there is provided an electrophotographic developing carrier characterized in that the surface of the carrier core material described above is coated with a resin.

さらに、本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。   Furthermore, according to the present invention, there is provided an electrophotographic developer comprising the electrophotographic developer carrier described above and a toner.

本発明に係るキャリア芯材によれば、キャリアの流動性を低下させることなく、磁気ブラシ内でのキャリアの循環移動を促進することができる。これにより、本発明に係るキャリア芯材を含む現像剤を用いれば、画像形成速度が速くなっても十分な画像濃度が得られるようになる。また、トナーとの良好な混合性が維持され、トナーの帯電が安定しトナー飛散が抑制される。   According to the carrier core material of the present invention, it is possible to promote the circulating movement of the carrier within the magnetic brush without reducing the fluidity of the carrier. As a result, when the developer including the carrier core material according to the present invention is used, a sufficient image density can be obtained even when the image forming speed is increased. In addition, good mixing with the toner is maintained, charging of the toner is stabilized, and toner scattering is suppressed.

実施例1のキャリア芯材のSEM写真である。2 is a SEM photograph of the carrier core material of Example 1. 比較例1のキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material of Comparative Example 1. 比較例2のキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material of Comparative Example 2. 比較例3のキャリア芯材のSEM写真である。4 is a SEM photograph of a carrier core material of Comparative Example 3. 比較例4のキャリア芯材のSEM写真である。6 is a SEM photograph of a carrier core material of Comparative Example 4. 板状結晶の最大長と最短長を示したSEM写真である。It is the SEM photograph which showed the maximum length and the shortest length of a plate-like crystal. 筋状結晶の析出が確認される部分を楕円で囲んだ、倍率250倍での粒子観察SEM写真である。It is the particle | grain observation SEM photograph in 250 times of magnification which surrounded the part by which the precipitation of a streaky crystal | crystallization was confirmed by the ellipse. 本発明に係るキャリアを用いた現像装置の一例を示す概説図である。It is a schematic diagram showing an example of a developing device using a carrier according to the present invention.

本発明者等は、キャリアの流動性を低下させることなく、磁気ブラシ内でのキャリアの循環移動を促進すべく鋭意検討を重ねた結果、球形度の高い、すなわち流動性の高いキャリア芯材であっても、粒子表面にSrフェライトの板状結晶が析出しているフェライト粒子が1個数%〜8個数%含有されていれば、現像領域において磁気ブラシ先端部のキャリアと根元部のキャリアとが循環移動するように大きく移動するとの知見を得、本発明を成すに至った。   As a result of intensive studies to promote the circulating movement of the carrier in the magnetic brush without reducing the fluidity of the carrier, the present inventors have obtained a carrier core material having a high sphericity, that is, a high fluidity. Even if the ferrite particles containing 1% to 8% by number of ferrite particles with Sr ferrite plate-like crystals precipitated on the surface of the particles, the carrier at the tip of the magnetic brush and the carrier at the root are formed in the development region. The present inventors have obtained the knowledge that they move so as to circulate and have come to make the present invention.

すなわち、本発明に係るキャリア粒子は、フェライト粒子からなり、Srフェライトの板状結晶が表面に析出しているフェライト粒子が、1個数%〜8個数%含まれることを特徴とする。Srフェライトの板状結晶が表面に析出しているフェライト粒子がキャリア芯材に特定量含まれることによって、磁気ブラシ内でのキャリアの移動が促進される機構について、本発明者等は、Srフェライトの板状結晶が表面に析出している部分は、他の部分よりも残留磁化及び保持力が高く、このような磁気的な偏芯のあるフェライト粒子が所定割合含まれていることによって、磁気ブラシ内でのキャリアの移動が促進されるのではないかと今のところ推測している。   That is, the carrier particles according to the present invention are composed of ferrite particles, and include 1 to 8% by number of ferrite particles on which Sr ferrite plate-like crystals are precipitated. Regarding the mechanism in which the movement of carriers in the magnetic brush is promoted by the inclusion of a specific amount of ferrite particles having Sr ferrite plate crystals precipitated on the surface of the carrier core material, the present inventors The portion where the plate-like crystal is deposited on the surface has higher remanent magnetization and coercive force than the other portions, and the ferrite particles having such magnetic eccentricity are contained in a predetermined ratio, so that the magnetic For now, I'm guessing that the movement of the carrier within the brush will be promoted.

フェライト粒子表面にSrフェライトの板状結晶を析出させるには、例えば、使用する原材料及び焼成時の酸素濃度などを調整すればよい。これらを適切に調整することによって、Srフェライトの板状結晶が表面に析出したフェライト粒子が所定割合で生成される。詳細は、後述するフェライト粒子の製造において説明する。   In order to precipitate Sr ferrite plate-like crystals on the surface of the ferrite particles, for example, the raw materials used and the oxygen concentration during firing may be adjusted. By appropriately adjusting these, ferrite particles in which plate crystals of Sr ferrite are deposited on the surface are generated at a predetermined ratio. Details will be described in the production of ferrite particles described later.

Srフェライトの板状結晶とは、図6に示されるような粒子表面に観察される最大長と最短長を有した板状の結晶のこという。板状結晶の最大長は粒子半径以上である。また、板状結晶のアスペクト比 最大長/最短長は3以上である。板状結晶の平均アスペクト比は7以上であることが好ましい。板状結晶の平均アスペクト比が7未満であると粒子の面内方向への板状結晶の面積が大きくなり、残留磁化、保磁力の高い板状結晶が他の粒子と接する面積がふえることによりキャリアの流動性、帯電付与能力が悪化してトナー飛散が生じやすくなる。   The plate crystal of Sr ferrite is a plate crystal having the maximum length and the shortest length observed on the particle surface as shown in FIG. The maximum length of the plate crystal is not less than the particle radius. Further, the aspect ratio maximum length / minimum length of the plate crystal is 3 or more. The average aspect ratio of the plate crystal is preferably 7 or more. If the average aspect ratio of the plate crystal is less than 7, the area of the plate crystal in the in-plane direction of the particle increases, and the area where the plate crystal with high remanence and coercive force comes into contact with other particles increases. Carrier fluidity and charge imparting ability are deteriorated and toner scattering is likely to occur.

Srフェライトの板状結晶が表面に析出したフェライト粒子の割合は、1個数%〜8個数%であることが重要である。前記割合を上記範囲とすることにより、複数の流動性を持つ粒子がそれぞれ異なる流動挙動を発生させ、全体として流動性が向上する。前記割合が1個数%未満であると、磁気ブラシ内でのキャリアの循環移動が十分に行われず、画像形成速度が速くなった場合に十分な画像濃度が得られない。一方、前記割合が8個数%を超えると、残留磁化、保磁力が増加し、キャリアの流動性、帯電付与能力が悪化してトナー飛散が生じやすくなる。前記割合のより好ましい範囲は2個数%〜7個数%の範囲である。なお、良好な画像濃度を得る観点だけからすると、前記割合は8個数%を超えて20%程度まで許容されるが、上記のように前記割合が8個数%を超えると磁気特性が高くなりすぎるので本発明では上記割合の上限値を8個数%とした。   It is important that the ratio of the ferrite particles having the Sr ferrite plate-like crystals precipitated on the surface is 1% to 8%. By setting the ratio within the above range, a plurality of particles having fluidity generate different flow behaviors, and the fluidity is improved as a whole. When the ratio is less than 1% by number, the carrier is not sufficiently circulated within the magnetic brush, and a sufficient image density cannot be obtained when the image forming speed is increased. On the other hand, if the ratio exceeds 8% by number, residual magnetization and coercive force increase, carrier fluidity and charge imparting ability deteriorate, and toner scattering tends to occur. A more preferable range of the ratio is in the range of 2% by number to 7% by number. From the viewpoint of obtaining a good image density, the ratio is allowed to exceed 8% by number up to about 20%. However, when the ratio exceeds 8% by number as described above, the magnetic characteristics become too high. Therefore, in the present invention, the upper limit of the ratio is set to 8% by number.

本発明のキャリア芯材の残留磁化は、1(A・m/kg)未満であるのが好ましい。キャリア芯材の残留磁化が1(A・m/kg)以上あると、キャリアの流動性、帯電付与能力が悪化し、トナー飛散が生じやすくなる。より好ましい残留磁化は、0.5(A・m/kg)〜0.8(A・m/kg)である。 The residual magnetization of the carrier core material of the present invention is preferably less than 1 (A · m 2 / kg). When the residual magnetization of the carrier core material is 1 (A · m 2 / kg) or more, the carrier fluidity and charge imparting ability are deteriorated, and toner scattering is likely to occur. More preferred residual magnetization is 0.5 (A · m 2 /kg)~0.8(A · m 2 / kg).

本発明のキャリア芯材の保持力は、10(A/m×10/(4π))未満であるのが好ましい。キャリア芯材の保持力が10(A/m×10/(4π))以上あると、キャリアの流動性、帯電付与能力が悪化し、トナー飛散が生じやすくなる。より好ましい保持力は、5(A/m×10/(4π))〜9(A/m×10/(4π))である。 The holding power of the carrier core material of the present invention is preferably less than 10 (A / m × 10 3 / (4π)). When the holding power of the carrier core material is 10 (A / m × 10 3 / (4π)) or more, the fluidity and charge imparting ability of the carrier are deteriorated, and toner scattering is likely to occur. A more preferable holding force is 5 (A / m × 10 3 / (4π)) to 9 (A / m × 10 3 / (4π)).

本発明のキャリア芯材を構成するフェライト粒子の組成に特に限定はなく、組成式MFe3−X(但し、MはSrの他、Mg,Mn,Ca,Ti,Cu,Zn,Niからなる群より選択される少なくとも1種の金属元素、0<X<1)で表されるものが例示される。これらの中でもMnMgフェライト、Mnフェライトが好ましい。 The composition of the ferrite particles constituting the carrier core of the present invention is not particularly limited, and the composition formula M X Fe 3 -X O 4 (where M is Mg, Mn, Ca, Ti, Cu, Zn, Examples thereof include at least one metal element selected from the group consisting of Ni, represented by 0 <X <1). Among these, MnMg ferrite and Mn ferrite are preferable.

本発明のキャリア芯材の粒径に特に限定はないが、平均粒径で数十μm程度が好ましく、粒度分布はシャープであるのが好ましい。   The particle diameter of the carrier core material of the present invention is not particularly limited, but the average particle diameter is preferably about several tens of μm, and the particle size distribution is preferably sharp.

本発明のキャリア芯材の製造方法に特に限定はないが、以下に説明する製造方法が好適である。   Although there is no limitation in particular in the manufacturing method of the carrier core material of this invention, the manufacturing method demonstrated below is suitable.

まず、Fe成分原料、M成分原料、Sr成分原料を秤量し、原料混合粉を作製する。なお、MはMg、Mn、Ca、Ti、Cu、Zn、Ni等の2価の金属元素から選ばれる少なくとも1種の金属元素である。Fe成分原料としては、Fe等が好適に使用される。M成分原料としては、MnであればMnCO、Mn等が使用でき、MgであればMgO、Mg(OH)、MgCOが好適に使用できる。また、Ca成分原料としては、CaO、Ca(OH)、CaCO等から選択される少なくとも1種の化合物が好適に使用される。Sr成分原料としては、SrCO、Sr(NOなどが好適に使用される。 First, the Fe component raw material, the M component raw material, and the Sr component raw material are weighed to produce a raw material mixed powder. M is at least one metal element selected from divalent metal elements such as Mg, Mn, Ca, Ti, Cu, Zn, and Ni. As the Fe component material, Fe 2 O 3 or the like is preferably used. As the M component raw material, MnCO 3 , Mn 3 O 4 and the like can be used for Mn, and MgO, Mg (OH) 2 and MgCO 3 can be suitably used for Mg. As the Ca component raw material, at least one compound selected from CaO, Ca (OH) 2 , CaCO 3 and the like is preferably used. As the Sr component raw material, SrCO 3 , Sr (NO 3 ) 2 or the like is preferably used.

ここで重要なことは、各成分原料に含まれるSiO量を、できる限り少なくすることである。SiOの含有量を少なくすることによって、Sr−Si−O系化合物の生成が抑制されて、ハードフェライト相の生成速度が変化し、Srフェライトの板状結晶が表面に析出しやすくなる。各成分原料におけるSiO含有量は、0.05wt%以下が好ましく、より好ましくは0.02wt%以下である。 What is important here is to reduce the amount of SiO 2 contained in each component raw material as much as possible. By reducing the content of SiO 2 , the formation of Sr—Si—O-based compounds is suppressed, the generation rate of the hard ferrite phase is changed, and the Sr ferrite plate-like crystals are likely to precipitate on the surface. The SiO 2 content in each component raw material is preferably 0.05 wt% or less, and more preferably 0.02 wt% or less.

また、Sr−Oと安定な化合物を形成する元素を添加した場合、Srフェライトの生成が抑制され、Srフェライトの板状結晶が得られない。そのような板状の生成を阻害する元素として具体的に例えば、Ti、Zr、Sn、Ceなどが挙げられる。   In addition, when an element that forms a stable compound with Sr—O is added, the formation of Sr ferrite is suppressed, and a plate-like crystal of Sr ferrite cannot be obtained. Specific examples of such an element that inhibits the plate-like formation include Ti, Zr, Sn, and Ce.

次いで、作製した原料混合粉を仮焼成する。仮焼成の温度としては750℃〜900℃の範囲が好ましい。750℃以上であれば、仮焼による一部フェライト化が進み、焼成時のガス発生量が少なく、固体間反応が十分に進むため、好ましい。一方、900℃以下であれば、仮焼による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。   Next, the prepared raw material mixed powder is temporarily fired. The pre-baking temperature is preferably in the range of 750 ° C to 900 ° C. If it is 750 degreeC or more, since part ferrite-ization by calcination advances, the amount of gas generation at the time of baking is small, and reaction between solids fully advances, it is preferable. On the other hand, if it is 900 degrees C or less, since sintering by calcination is weak and a raw material can fully be grind | pulverized at a later slurry grinding | pulverization process, it is preferable. Moreover, an air atmosphere is preferable as the atmosphere at the time of temporary firing.

そして、仮焼成した原料を解粒して分散媒中に投入しスラリーを作製する。本発明で使用する分散媒としては水が好適である。分散媒には、前記仮焼成原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5質量%〜2質量%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%〜90質量%の範囲が望ましい。より好ましくは60質量%〜80質量%である。60質量%以上であれば、造粒品中に粒子内細孔が少なく、焼成時の焼結不足を防ぐことができる。一方、80質量%以下であれば、会合粒子が少なく、粒子形状による流動性悪化を防ぐことができる。   Then, the calcined raw material is pulverized and charged into a dispersion medium to prepare a slurry. Water is preferred as the dispersion medium used in the present invention. In addition to the calcined raw material, a binder, a dispersant and the like may be blended in the dispersion medium as necessary. For example, polyvinyl alcohol can be suitably used as the binder. As a compounding quantity of a binder, it is preferable that the density | concentration in a slurry shall be about 0.5 mass%-2 mass%. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. The blending amount of the dispersing agent is preferably about 0.5% by mass to 2% by mass in the slurry. In addition, you may mix | blend a lubricant, a sintering accelerator, etc. The solid content concentration of the slurry is desirably in the range of 50 mass% to 90 mass%. More preferably, it is 60 mass%-80 mass%. If it is 60 mass% or more, there are few intraparticle pores in a granulated product, and it can prevent the sintering shortage at the time of baking. On the other hand, if it is 80 mass% or less, there are few associated particles and the fluidity | liquidity deterioration by particle shape can be prevented.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は10μm以下が好ましく、より好ましくは5μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry produced as described above is wet pulverized. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle diameter of the raw material after pulverization is preferably 10 μm or less, more preferably 5 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100℃〜300℃の範囲が好ましい。これにより、粒径10μm〜200μmの球状の造粒物が得られる。なお、得られた造粒物は、振動ふるい等を用いて、粗大粒子や微粉を除去し粒度分布をシャープなものとするのが望ましい。   Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 ° C to 300 ° C. Thereby, a spherical granulated product having a particle diameter of 10 μm to 200 μm is obtained. In addition, it is desirable that the obtained granulated product has a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like.

次に、造粒物を所定温度に加熱した炉に投入して、フェライト粒子を合成するための一般的な手法で焼成することにより、フェライト粒子を生成させる。焼成温度としては1230℃以上1350℃以下の範囲が好ましい。焼成温度が1230℃より低い温度であると、相変態が起こりにくくなるとともに焼結も進みにくくなり、Srフェライトの板状結晶が得られないおそれがある。また、焼成温度が1350℃を超えると、過剰焼結による過大グレインの発生がするおそれがある。前記焼成温度に至るまでの昇温速度としては250℃/h〜500℃/hの範囲が好ましい。   Next, the granulated material is put into a furnace heated to a predetermined temperature, and sintered by a general method for synthesizing ferrite particles, thereby generating ferrite particles. As a calcination temperature, the range of 1230 degreeC or more and 1350 degrees C or less is preferable. If the firing temperature is lower than 1230 ° C., it is difficult for phase transformation to occur and sintering is difficult to proceed, and there is a possibility that plate crystals of Sr ferrite cannot be obtained. On the other hand, if the firing temperature exceeds 1350 ° C., excessive grains may be generated due to excessive sintering. The rate of temperature increase up to the firing temperature is preferably in the range of 250 ° C / h to 500 ° C / h.

ここで重要なことは、焼成工程における酸素濃度を0.5%〜5%の範囲に制御することである。焼成工程における酸素濃度を調整することによって、Srフェライトの板状結晶が表面に析出している粒子の割合を調整することができる。具体的には、焼成工程における酸素濃度を高くするほど、Srフェライトの板状結晶が表面に析出した粒子の割合は多くなる。   What is important here is to control the oxygen concentration in the firing step to a range of 0.5% to 5%. By adjusting the oxygen concentration in the firing step, it is possible to adjust the ratio of the particles on which the Sr ferrite plate crystals are precipitated. Specifically, the higher the oxygen concentration in the firing step, the greater the proportion of particles with Sr ferrite plate crystals precipitated on the surface.

このようにして得られたフェライト粒子を必要により解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。そして、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の粒径としては20μm〜60μmの範囲が好ましい。   The ferrite particles thus obtained are pulverized as necessary. Specifically, for example, the fired product is pulverized by a hammer mill or the like. The form of the granulation step may be either a continuous type or a batch type. And if necessary, classification may be performed in order to make the particle size in a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process. The diameter of the ferrite particles is preferably in the range of 20 μm to 60 μm.

その後、必要に応じて、分級後のフェライト粒子を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は、200℃〜800℃の範囲が好ましく、250℃〜600℃の範囲がさらに好ましい。加熱時間は0.5時間〜5時間の範囲が好ましい。   Thereafter, if necessary, the ferrite particles after classification may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to increase the resistance of the ferrite particles (high resistance treatment). The oxidizing atmosphere may be either an air atmosphere or a mixed atmosphere of oxygen and nitrogen. The heating temperature is preferably in the range of 200 ° C to 800 ° C, and more preferably in the range of 250 ° C to 600 ° C. The heating time is preferably in the range of 0.5 hours to 5 hours.

以上のようにして作製したフェライト粒子を本発明のキャリア芯材として用いる。そして、所望の帯電性等を得るために、キャリア芯材の外周を樹脂で被覆して電子写真現像用キャリアとする。   The ferrite particles produced as described above are used as the carrier core material of the present invention. Then, in order to obtain desired chargeability and the like, the outer periphery of the carrier core material is coated with a resin to obtain an electrophotographic developing carrier.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   As the resin for coating the surface of the carrier core material, conventionally known resins can be used, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). ) Resin, polystyrene, (meth) acrylic resin, polyvinyl alcohol resin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, and other thermoplastic elastomers, and fluorosilicone resins.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%〜30質量%、特に0.001質量%〜2質量%の範囲内にあるのがよい。   In order to coat the surface of the carrier core material with the resin, a resin solution or dispersion may be applied to the carrier core material. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The resin component concentration in the coating solution should generally be in the range of 0.001% to 30% by weight, particularly 0.001% to 2% by weight.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method of coating the resin on the carrier core material, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

キャリアの粒子径は、一般に、体積平均粒子径で10μm〜200μmの範囲、特に20μm〜60μmの範囲が好ましい。   The particle diameter of the carrier is generally preferably in the range of 10 μm to 200 μm, particularly 20 μm to 60 μm in terms of volume average particle diameter.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%〜15質量%の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%〜10質量%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the carrier prepared as described above and a toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass to 15% by mass. When the toner density is less than 1% by mass, the image density becomes too low, while when the toner density exceeds 15% by mass, toner scattering occurs in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of malfunction. A more preferable toner concentration is in the range of 3% by mass to 10% by mass.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。   As the toner, toner produced by a conventionally known method such as a polymerization method, a pulverization classification method, a melt granulation method, or a spray granulation method can be used. Specifically, a binder resin containing a thermoplastic resin as a main component and containing a colorant, a release agent, a charge control agent and the like can be suitably used.

トナーの粒径は、一般に、コールターカウンターによる体積平均粒径で5μm〜15μmの範囲が好ましく、7μm〜12μmの範囲がより好ましい。   In general, the particle diameter of the toner is preferably in the range of 5 μm to 15 μm, more preferably in the range of 7 μm to 12 μm, as a volume average particle diameter measured by a Coulter counter.

トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。   If necessary, a modifier may be added to the toner surface. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethyl methacrylate and the like. These 1 type (s) or 2 or more types can be used in combination.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   A known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図8に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図8に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。   The developing method using the developer of the present invention is not particularly limited, but a magnetic brush developing method is preferable. FIG. 8 is a schematic diagram showing an example of a developing device that performs magnetic brush development. The developing device shown in FIG. 8 is arranged in parallel with a horizontal direction, and a rotatable developing roller 3 incorporating a plurality of magnetic poles, a regulating blade 6 for regulating the amount of developer on the developing roller 3 conveyed to the developing unit. Formed between the two screws 1 and 2 that stir and convey the developer in opposite directions and the two screws 1 and 2, and develops from one screw to the other at both ends of both screws. And a partition plate 4 that allows the developer to move and prevents the developer from moving except at both ends.

2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。   The two screws 1 and 2 have spiral blades 13 and 23 formed on the shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to remove the developer. Transport in opposite directions. The developer moves from one screw to the other screw at both ends of the screws 1 and 2. As a result, the developer composed of toner and carrier is constantly circulated and stirred in the apparatus.

一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N、搬送磁極S、剥離磁極N、汲み上げ磁極N、ブレード磁極Sの5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3が矢印方向に回転すると、汲み上げ磁極Nの磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。 On the other hand, the developing roller 3 has, as a magnetic pole generating means, a developing magnetic pole N 1 , a transporting magnetic pole S 1 , a peeling magnetic pole N 2 , and a pumping magnetic pole N 3 inside a metal cylindrical body having a surface with a few μm unevenness. , comprising a fixed magnet disposed five pole blade pole S 2 in order. When the development roller 3 is rotated in the arrow direction, by the magnetic force of the magnetic pole N 3, the developer is pumped from the screw 1 to the developing roller 3. The developer carried on the surface of the developing roller 3 is regulated by the regulating blade 6 and then conveyed to the developing area.

現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が転写電圧電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5〜5kVの範囲が好ましく、周波数は1〜10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。   In the developing region, a bias voltage obtained by superimposing an AC voltage on a DC voltage is applied from the transfer voltage power supply 8 to the developing roller 3. The DC voltage component of the bias voltage is a potential between the background portion potential on the surface of the photosensitive drum 5 and the image portion potential. Further, the background portion potential and the image portion potential are set to a potential between the maximum value and the minimum value of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 to 5 kV, and the frequency is preferably in the range of 1 to 10 kHz. The waveform of the bias voltage may be any of a rectangular wave, a sine wave, a triangular wave, and the like. As a result, the toner and the carrier vibrate in the development area, and the toner adheres to the electrostatic latent image on the photosensitive drum 5 and development is performed.

その後現像ローラ3上の現像剤は、搬送磁極Sによって装置内部に搬送され、剥離電極Nによって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。そして汲み上げ極Nによって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。 Thereafter, the developer on the developing roller 3 is conveyed to the inside of the apparatus by the conveying magnetic pole S 1 , peeled off from the developing roller 3 by the peeling electrode N 2 , and circulated and conveyed again inside the apparatus by the screws 1 and 2 for development. Mix and stir with undeveloped developer. Then, the developer is newly supplied from the screw 1 to the developing roller 3 by the pumping pole N 3 .

なお、図8に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させるために、磁極を8極や10極、12極と増やしてももちろん構わない。   In the embodiment shown in FIG. 8, the number of magnetic poles built in the developing roller 3 is five. However, in order to further increase the amount of movement of the developer in the developing region, and to further improve the pumping performance and the like. Of course, the number of magnetic poles may be increased to 8 poles, 10 poles or 12 poles.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples at all.

実施例1
キャリア芯材を次のようにして作製した。出発原料として、10.38kgのFe(SiO含有量0.02wt%)と、4.12kgのMn(SiO含有量0.01wt%以下)と、0.19kgのMgOと、0.034kgのSrCOと、0.033kgのCaCOを純水5.58kg中に分散し、還元剤としてカーボンブラックを59g、分散剤としてポリカルボン酸アンモニウム系分散剤を176g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
Example 1
A carrier core material was produced as follows. As starting materials, 10.38 kg Fe 2 O 3 (SiO 2 content 0.02 wt%), 4.12 kg Mn 3 O 4 (SiO 2 content 0.01 wt% or less), 0.19 kg MgO 0.034 kg of SrCO 3 and 0.033 kg of CaCO 3 were dispersed in 5.58 kg of pure water, 59 g of carbon black was added as a reducing agent, and 176 g of an ammonium polycarboxylate dispersant was added as a dispersing agent. A mixture was obtained. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.

この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10μm〜100μmの乾燥造粒物を得た。この造粒物から、粒径100μmを超える粗粒は篩網を用いて除去した。   This mixed slurry was sprayed into hot air of about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 μm to 100 μm. From this granulated product, coarse particles having a particle size exceeding 100 μm were removed using a sieve screen.

この造粒物を、電気炉に投入し1300℃まで4.5時間かけて昇温し、その後1300℃で3時間保持し焼成を行った。このとき、電気炉内の酸素濃度は3%とした。   This granulated product was put into an electric furnace, heated to 1300 ° C. over 4.5 hours, and then held at 1300 ° C. for 3 hours for firing. At this time, the oxygen concentration in the electric furnace was 3%.

得られた焼成物をハンマーミルで解粒した後に振動ふるいを用いて分級しキャリア芯材を得た。   The fired product obtained was pulverized with a hammer mill and then classified using a vibration sieve to obtain a carrier core material.

得られたキャリア芯材のSiO含有量、磁気特性、Srフェライトの板状結晶が表面に析出している粒子の割合を後述の方法でそれぞれ測定した。表1及び表2に測定結果をまとめて示す。また、図1に、得られたキャリア芯材のSEM写真を示す。 The obtained carrier core material was measured for SiO 2 content, magnetic properties, and the proportion of particles with Sr ferrite plate crystals precipitated on the surface by the methods described below. Tables 1 and 2 summarize the measurement results. FIG. 1 shows an SEM photograph of the obtained carrier core material.

次に、このようにして得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450重量部と、(2−アミノエチル)アミノプロピルトリメトキシシラン9重量部とを、溶媒としてのトルエン450重量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000重量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下、全ての実施例、比較例についても同様にしてキャリアを得た。   Next, the surface of the carrier core material thus obtained was coated with a resin to prepare a carrier. Specifically, 450 parts by weight of a silicone resin and 9 parts by weight of (2-aminoethyl) aminopropyltrimethoxysilane were dissolved in 450 parts by weight of toluene as a solvent to prepare a coating solution. This coating solution was applied to 50000 parts by weight of a carrier core material using a fluid bed type coating apparatus and heated in an electric furnace at a temperature of 300 ° C. to obtain a carrier. Hereinafter, carriers were obtained in the same manner for all of the examples and comparative examples.

得られたキャリアと平均粒径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの重量/(トナーおよびキャリアの重量)=5/100となるように調整した。以下、全ての実施例、比較例についても同様にして現像剤を得た。得られた現像剤について後述の実機評価を行った。評価結果を表1及び表2に合わせて示す。   The obtained carrier and a toner having an average particle diameter of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the weight of toner / (weight of toner and carrier) = 5/100. Hereinafter, developers were obtained in the same manner for all of the Examples and Comparative Examples. The obtained developer was evaluated on the actual machine described later. The evaluation results are shown in Table 1 and Table 2.

(実施例2)
焼成時の酸素濃度を1.5%とした以外は実施例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表1及び表2に合わせて示す。
(Example 2)
A carrier core material, a carrier, and a developer were prepared in the same manner as in Example 1 except that the oxygen concentration at the time of firing was 1.5%, and characteristic evaluation and actual machine evaluation were performed. The evaluation results are shown in Table 1 and Table 2.

(実施例3)
焼成時の酸素濃度を1.0%とした以外は実施例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表1及び表2に合わせて示す。
(Example 3)
A carrier core material, a carrier, and a developer were prepared in the same manner as in Example 1 except that the oxygen concentration during firing was 1.0%, and the characteristics evaluation and the actual machine evaluation were performed. The evaluation results are shown in Table 1 and Table 2.

(実施例4)
焼成時の酸素濃度を0.5%とした以外は実施例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表1及び表2に合わせて示す。
Example 4
A carrier core material, a carrier, and a developer were prepared in the same manner as in Example 1 except that the oxygen concentration during firing was set to 0.5%, and characteristic evaluation and actual machine evaluation were performed. The evaluation results are shown in Table 1 and Table 2.

(比較例1)
焼成時の酸素濃度を21%とした以外は実施例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表1及び表2に合わせて示す。また、図2に、得られたキャリア芯材のSEM写真を示す。
(Comparative Example 1)
A carrier core material, a carrier, and a developer were prepared in the same manner as in Example 1 except that the oxygen concentration during firing was 21%, and characteristic evaluation and actual machine evaluation were performed. The evaluation results are shown in Table 1 and Table 2. Moreover, the SEM photograph of the obtained carrier core material is shown in FIG.

(比較例2)
焼成時の酸素濃度を0.005%とした以外は実施例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表1及び表2に合わせて示す。図3に、得られたキャリア芯材のSEM写真を示す。
(Comparative Example 2)
A carrier core material, a carrier, and a developer were prepared in the same manner as in Example 1 except that the oxygen concentration during firing was 0.005%, and characteristic evaluation and actual machine evaluation were performed. The evaluation results are shown in Table 1 and Table 2. FIG. 3 shows an SEM photograph of the obtained carrier core material.

(比較例3)
出発原料として、10.38kgのFe(SiO含有量0.02wt%)と、5.19kgのMn(SiO含有量0.5wt%)と、0.187kgのSrCOを純水5.22kg中に分散し、還元剤としてカーボンブラックを46.76g、分散剤としてポリカルボン酸アンモニウム系分散剤を186.96g添加し混合物とした。電気炉で酸素濃度1.5%雰囲気下で1170℃まで4.5時間かけて昇温し、その後1170℃で36時間保持し焼成を行った以外は実施例1と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表1及び表2に合わせて示す。図4に、得られたキャリア芯材のSEM写真を示す。
(Comparative Example 3)
As starting materials, 10.38 kg Fe 2 O 3 (SiO 2 content 0.02 wt%), 5.19 kg Mn 3 O 4 (SiO 2 content 0.5 wt%), 0.187 kg SrCO 3 Was dispersed in 5.22 kg of pure water, 46.76 g of carbon black was added as a reducing agent, and 186.96 g of an ammonium polycarboxylate-based dispersant was added as a dispersing agent to obtain a mixture. In the same manner as in Example 1 except that the temperature was raised to 1170 ° C. over 4.5 hours in an electric furnace with an oxygen concentration of 1.5%, and then held at 1170 ° C. for 36 hours, followed by firing. Carriers and developers were prepared and subjected to characteristic evaluation and actual machine evaluation. The evaluation results are shown in Table 1 and Table 2. FIG. 4 shows an SEM photograph of the obtained carrier core material.

(比較例4)
焼成時の焼成温度を1230℃、保持時間を5時間とした以外は比較例3と同様にしてキャリア芯材、キャリア、現像剤を作製し、特性評価及び実機評価を行った。評価結果を表1及び表2に合わせて示す。図5に、得られたキャリア芯材のSEM写真を示す。
(Comparative Example 4)
A carrier core material, a carrier, and a developer were prepared in the same manner as in Comparative Example 3 except that the firing temperature during firing was 1230 ° C. and the holding time was 5 hours, and characteristic evaluation and actual machine evaluation were performed. The evaluation results are shown in Table 1 and Table 2. FIG. 5 shows an SEM photograph of the obtained carrier core material.

(SiO含有量、Si含有量の分析)
原料またはキャリア芯材のSiO含有量は、JIS M8214−1995記載の二酸化珪素重量法に準拠して定量分析を行なった。Si含有量は、上記分析で得られたSiO量から下記式を用いて算出した。
Si含有量(重量%)=SiO量(重量%)×28.09(mol/g)/60.09(mol/g)
(Analysis of SiO 2 content and Si content)
The SiO 2 content of the raw material or the carrier core material was quantitatively analyzed based on the silicon dioxide weight method described in JIS M8214-1995. Si content was calculated using the following equation from the amount of SiO 2 obtained above analysis.
Si content (% by weight) = SiO 2 amount (% by weight) × 28.09 (mol / g) /6.09 (mol / g)

(磁力の測定)
磁気的特性を示す磁化の測定については、VSM(東英工業株式会社製、VSM−P7)を用いて、飽和磁化σs及び磁化σ1k、残留磁化σr、保磁力Hcをそれぞれ測定した。
(Measurement of magnetic force)
About the measurement of the magnetization which shows a magnetic characteristic, saturation magnetization (sigma) s and magnetization (sigma) 1k , remanent magnetization (sigma) r, and coercive force Hc were measured using VSM (The Toei Industry Co., Ltd. make, VSM-P7).

(平均粒径)
キャリア芯材の平均粒径は、レーザー回折式粒度分布測定装置(日機装社製「マイクロトラックModel9320−X100」)を用いて測定した。
(Average particle size)
The average particle size of the carrier core material was measured using a laser diffraction type particle size distribution measuring device (“Microtrack Model 9320-X100” manufactured by Nikkiso Co., Ltd.).

(Srフェライトの板状結晶が表面に析出している粒子個数割合)
得られた粒子について走査電子顕微鏡(日本電子社製)を用いて倍率250倍にて観察した。観察された粒子1000粒子の中から粒子表面にFe−Sr−Oを主成分とした筋状の結晶の析出が確認された粒子を、Srフェライトの板状結晶が表面に析出している粒子とし、その個数割合を算出した。図7に、倍率250倍での粒子観察SEM写真を示す。このSEM写真において楕円で囲んだ部分が筋状の結晶の析出が確認された部分である。Srフェライトの板状結晶は、粒子表面であって外形が、ほぼ長方形か、楕円状であることが多い、複数の偏析が連続して形成されて外縁は、やや凹凸状である。本発明にかかる偏析は、粒子表面に形成され、その形状は球状の粒子と非相似形であり、明らかに軸比が異なる形状である。すなわち、板状結晶とは、倍率250倍での粒子観察SEM像の視野において、当該視野において最大距離の長さ(μm)である最長と最短長さである最短(μm)との比であるアスペクト比 最長/最短で3以上を有するものであり、当該最長が粒子半径以上である。また、筋状の結晶の析出が認められた部分をEDSマッピング像で確認したところ、Sr成分が多く含まれている偏析であることがわかった。
(Ratio of the number of particles on which Sr ferrite plate crystals are deposited)
The obtained particles were observed at a magnification of 250 times using a scanning electron microscope (manufactured by JEOL Ltd.). Of the 1000 observed particles, particles on which the precipitation of streak-like crystals containing Fe-Sr-O as the main component was confirmed on the particle surface were defined as particles on which Sr ferrite plate crystals were precipitated on the surface. The number ratio was calculated. FIG. 7 shows a particle observation SEM photograph at a magnification of 250 times. In this SEM photograph, the part surrounded by the ellipse is the part where the precipitation of the streak-like crystals was confirmed. The plate-like crystal of Sr ferrite is the particle surface and the outer shape is almost rectangular or elliptical in many cases. A plurality of segregations are continuously formed, and the outer edge is slightly uneven. The segregation according to the present invention is formed on the particle surface, and its shape is not similar to a spherical particle, and is clearly a shape with a different axial ratio. That is, the plate-like crystal is the ratio of the longest length (μm) to the shortest length (μm) in the field of view of the particle observation SEM image at a magnification of 250 times. Aspect ratio The longest / shortest is 3 or more, and the longest is the particle radius or more. Moreover, when the part by which the precipitation of the streaky crystal | crystallization was recognized was confirmed with the EDS mapping image, it turned out that it is a segregation which contains many Sr components.

(板状結晶の平均長さ、平均アスペクト比)
得られた粒子について走査電子顕微鏡(日本電子社製)を用いて倍率250倍にて観察した。その画像情報を、インターフェースを介してメディアサイバネティクス社製画像解析ソフト(Image−Pro PLUS)に導入して、観察された粒子1000粒子の中から粒子表面にFe−Sr−Oを主成分とした筋状の結晶の析出が確認された粒子について板状結晶の最長、最短、アスペクト比 最長/最短を算出し、最長の平均値を平均長さ、アスペクト比の平均値を平均アスペクト比とした。
(Average length of plate crystals, average aspect ratio)
The obtained particles were observed at a magnification of 250 times using a scanning electron microscope (manufactured by JEOL Ltd.). The image information is introduced into the image analysis software (Image-Pro PLUS) manufactured by Media Cybernetics through the interface, and among the 1000 particles observed, Fe-Sr-O as a main component is formed on the particle surface. The longest, shortest, and aspect ratio longest / shortest of the plate-like crystals were calculated for the particles in which precipitation of the crystal was confirmed, and the longest average value was the average length, and the average aspect ratio was the average aspect ratio.

(実機評価)
図8に示した構造の現像装置(現像ローラの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム−現像ローラ間距離:0.3mm)に、作製した二成分現像剤を投入し黒ベタ画像を形成して、反射濃度計(東京電色社製の型番TC−6D)を用いてその濃度を測定し、「○」:1.4超、「△」:1.2〜1.4、「×」:1.2未満として画像濃度を評価した。また、トナー飛散について、良好なレベルを○、問題があり使用できないレベルを×とした。結果を表1及び表2に合わせて示す。
(Actual machine evaluation)
8 was produced in the developing device having the structure shown in FIG. 8 (developing roller peripheral speed Vs: 406 mm / sec, photosensitive drum peripheral speed Vp: 205 mm / sec, photosensitive drum-developing roller distance: 0.3 mm). A two-component developer was added to form a solid black image, and the density was measured using a reflection densitometer (Model No. TC-6D, manufactured by Tokyo Denshoku Co., Ltd.). ": 1.2 to 1.4," x ": Image density was evaluated as less than 1.2. Regarding toner scattering, a good level was marked with ◯, and a level where there was a problem and could not be used was marked with x. The results are shown in Tables 1 and 2.

表1及び表2から明らかなように、実施例1〜4のキャリア芯材は残留磁化が1.0A・m/kg以下、保磁力が10A/m・10/(4π)以下、板状結晶析出粒子の割合が1.5〜7.4%の割合で確認され、画像濃度、トナー飛散ともに良好な結果を示した。これに対して、比較例1のキャリア芯材は、板状結晶析出粒子の割合が8.1%と高く、画像濃度は良好な結果を示したが、板状結晶析出粒子の割合が増加したため残留磁化及び保磁力が高く、トナー飛散が使用できないレベルであった。比較例2のキャリア芯材は、低い酸素濃度の環境下で焼成を行ったため板状結晶析出粒子が生成せず、画像濃度が悪化した。また、比較例3のキャリア芯材では、SiO含有量の高い原料を使用し、焼成温度が1170℃と低い焼成温度であったこと、比較例4のキャリア芯材では、SiO含有量の高い原料を使用したことから、板状結晶析出粒子は得られなかったものの粒子形状が凹凸形状となり画像濃度は良好な結果であったが、キャリア芯材表面の凹凸化による混合性の悪化によってトナー飛散が使用できないレベルであった。 As is clear from Tables 1 and 2, the carrier core materials of Examples 1 to 4 have a remanent magnetization of 1.0 A · m 2 / kg or less, a coercive force of 10 A / m · 10 3 / (4π) or less, a plate The ratio of the crystal-like crystal precipitated particles was confirmed to be 1.5 to 7.4%, and both the image density and the toner scattering were good. In contrast, the carrier core material of Comparative Example 1 had a high ratio of plate-like crystal precipitated particles of 8.1% and a good image density, but the ratio of plate-like crystal precipitated particles increased. The residual magnetization and coercive force were high, and the toner scattering was at a level that could not be used. Since the carrier core material of Comparative Example 2 was baked in an environment having a low oxygen concentration, plate-like crystal precipitated particles were not generated, and the image density deteriorated. Moreover, in the carrier core material of Comparative Example 3, a raw material having a high SiO 2 content was used, and the firing temperature was a low firing temperature of 1170 ° C., and in the carrier core material of Comparative Example 4, the SiO 2 content was low. Although a plate-like crystal precipitated particle was not obtained because of the use of a high raw material, the particle shape was uneven and the image density was good. However, the toner was deteriorated due to the deterioration of the mixing property due to the unevenness on the surface of the carrier core material. Spattering was at a level that could not be used.

本発明に係るキャリア芯材によれば、キャリアの流動性を低下させることなく、磁気ブラシ内でのキャリアの循環移動を促進させることができ有用である。   According to the carrier core material of the present invention, the circulation movement of the carrier in the magnetic brush can be promoted without reducing the fluidity of the carrier, which is useful.

3 現像ローラ
5 感光体ドラム
3 Developing roller 5 Photosensitive drum

Claims (5)

フェライト粒子からなり、Srフェライトの板状結晶が表面に析出しているフェライト粒子が、1個数%〜8個数%含まれることを特徴とするキャリア芯材。   A carrier core material comprising 1% by number to 8% by number of ferrite particles made of ferrite particles, on which Sr ferrite plate-like crystals are precipitated. 残留磁化が1(A・m/kg)未満である請求項1記載のキャリア芯材。 The carrier core material according to claim 1, wherein the residual magnetization is less than 1 (A · m 2 / kg). 保持力が10(A/m×10/(4π))未満である請求項1又は2記載のキャリア芯材。 The carrier core material according to claim 1, wherein the holding force is less than 10 (A / m × 10 3 / (4π)). 請求項1〜3のいずれかに記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。   A carrier for electrophotographic development, wherein the surface of the carrier core material according to claim 1 is coated with a resin. 請求項4記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。   An electrophotographic developer comprising the carrier for electrophotographic development according to claim 4 and a toner.
JP2015130802A 2014-07-29 2015-06-30 Carrier core Ceased JP5839639B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015130802A JP5839639B1 (en) 2014-07-29 2015-06-30 Carrier core

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014153860 2014-07-29
JP2014153860 2014-07-29
JP2015130802A JP5839639B1 (en) 2014-07-29 2015-06-30 Carrier core

Publications (2)

Publication Number Publication Date
JP5839639B1 JP5839639B1 (en) 2016-01-06
JP2016033655A true JP2016033655A (en) 2016-03-10

Family

ID=55069291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015130802A Ceased JP5839639B1 (en) 2014-07-29 2015-06-30 Carrier core

Country Status (1)

Country Link
JP (1) JP5839639B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161808A (en) * 2016-03-11 2017-09-14 Dowaエレクトロニクス株式会社 Carrier core material
JP2018013682A (en) * 2016-07-22 2018-01-25 Dowaエレクトロニクス株式会社 Carrier core material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511320B2 (en) * 2015-04-08 2019-05-15 Dowaエレクトロニクス株式会社 Carrier core material and method for manufacturing the same
JP5957623B1 (en) * 2016-02-18 2016-07-27 Dowaエレクトロニクス株式会社 Carrier core

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984471B2 (en) * 1992-07-28 1999-11-29 キヤノン株式会社 Electrophotographic carrier
JP2005250154A (en) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd Toner, its manufacturing method, two-component developer, and image forming apparatus
JP2010169703A (en) * 2007-08-27 2010-08-05 Panasonic Corp Toner, method for producing toner and image forming apparatus
JP5622151B2 (en) * 2011-01-31 2014-11-12 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP5915073B2 (en) * 2011-10-19 2016-05-11 株式会社リコー Electrostatic latent image developer carrier, electrostatic latent image developer comprising carrier and toner, and process cartridge using the developer
JP5751262B2 (en) * 2013-01-18 2015-07-22 コニカミノルタ株式会社 Developing device and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161808A (en) * 2016-03-11 2017-09-14 Dowaエレクトロニクス株式会社 Carrier core material
JP2018013682A (en) * 2016-07-22 2018-01-25 Dowaエレクトロニクス株式会社 Carrier core material

Also Published As

Publication number Publication date
JP5839639B1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP6450621B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5751688B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5957623B1 (en) Carrier core
JP5839639B1 (en) Carrier core
JP5726360B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5828569B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5735877B2 (en) Method for producing ferrite particles
JP2013035737A (en) Method for manufacturing ferrite particle
WO2018180543A1 (en) Carrier core material, and electrophotographic carrier and electrophotographic developer that use carrier core material
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP7275361B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP2019061188A (en) Carrier core material, carrier for developing electrophotography using the same, and developer for electrophotography
JP2018106015A (en) Carrier core material and carrier for electrophotographic development, and electrophotographic developer
JP2014149464A (en) Carrier particle
JP7075913B2 (en) Carrier core material
JP2018155827A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP5854541B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP2018128619A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP7085507B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic
JP6650300B2 (en) Carrier core material
JP5839640B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP2022143658A (en) Carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151106

R150 Certificate of patent or registration of utility model

Ref document number: 5839639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RVOP Cancellation by post-grant opposition