JP2022090791A - Carrier core material - Google Patents

Carrier core material Download PDF

Info

Publication number
JP2022090791A
JP2022090791A JP2020203307A JP2020203307A JP2022090791A JP 2022090791 A JP2022090791 A JP 2022090791A JP 2020203307 A JP2020203307 A JP 2020203307A JP 2020203307 A JP2020203307 A JP 2020203307A JP 2022090791 A JP2022090791 A JP 2022090791A
Authority
JP
Japan
Prior art keywords
core material
carrier core
less
carrier
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020203307A
Other languages
Japanese (ja)
Inventor
信也 佐々木
Shinya Sasaki
勇人 鎌井
Yuto Kamai
優樹 金城
Masaki Kaneshiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2020203307A priority Critical patent/JP2022090791A/en
Publication of JP2022090791A publication Critical patent/JP2022090791A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

To provide a carrier core material which can simultaneously suppress background part carrier adhesion and a void in an image.SOLUTION: A carrier core material consists of ferrite particles. The static breakdown voltage Vs and the dynamic breakdown voltage Vd satisfy the following formula (1). The internal porosity of the ferrite particle calculated from the following formula (2) is equal to or less than 3.0%. (1): 0(V)≤Vs-Vd≤1000(V). (2): internal porosity(%)=(particle area A-particle area B)/particle area A×100. In the formula, the particle area A is the particle cross-sectional area including the internal gap, and the particle area B is the particle cross-sectional area not including the internal gap.SELECTED DRAWING: Figure 1

Description

本発明はキャリア芯材などに関するものである。 The present invention relates to a carrier core material and the like.

例えば、電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、感光体の表面に形成された静電潜像にトナーを付着させて可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。 For example, in an image forming apparatus such as a facsimile, a printer, or a copier using an electrophotographic method, toner is attached to an electrostatic latent image formed on the surface of a photoconductor to make a visible image, and this visible image is printed on paper. After transferring to, etc., it is fixed by heating and pressurizing. From the viewpoint of high image quality and colorization, a so-called two-component developer containing a carrier and a toner is widely used as a developer.

二成分現像剤を用いた現像方式では、キャリアとトナーとを現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像ローラに現像剤を供給し、現像ローラ上で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。トナー移動後のキャリアは現像ローラ上に残留し、現像装置内で再びトナーと混合される。このため、キャリアの特性として、磁気ブラシを形成する磁気特性と、所望の電荷をトナーに付与する帯電特性および繰り返し使用における耐久性が要求される。 In a developing method using a two-component developer, the carrier and toner are stirred and mixed in a developing device, and the toner is charged to a predetermined amount by friction. Then, a developer is supplied to the rotating developing roller, a magnetic brush is formed on the developing roller, and toner is electrically transferred to the photoconductor via the magnetic brush to obtain an electrostatic latent image on the photoconductor. Visualize. After the toner is transferred, the carrier remains on the developing roller and is mixed with the toner again in the developing apparatus. Therefore, as the characteristics of the carrier, the magnetic characteristics for forming the magnetic brush, the charging characteristics for imparting a desired charge to the toner, and the durability in repeated use are required.

このようなキャリアとして、マグネタイトや各種フェライト等の磁性粒子の表面を樹脂で被覆したものが一般に用いられている。キャリア芯材としての磁性粒子には、良好な磁気的特性と共に、トナーに対する良好な摩擦帯電特性が要求される。 As such a carrier, a carrier in which the surface of magnetic particles such as magnetite and various ferrites is coated with a resin is generally used. Magnetic particles as a carrier core material are required to have good triboelectric properties with respect to toner as well as good magnetic properties.

ところが、トナーに対する摩擦帯電特性を向上させるためにキャリアの電気抵抗を高く設計すると、感光体にトナーが移動した後(現像後)に現像ローラ上に残っているキャリアにカウンターチャージが蓄積して、キャリアの一部が感光体の非画像部(背景部)に付着する不具合(背景部キャリア付着)が生じることがあった。 However, if the electric resistance of the carrier is designed to be high in order to improve the triboelectric property with respect to the toner, the countercharge is accumulated in the carrier remaining on the developing roller after the toner is transferred to the photoconductor (after development). There may be a problem that a part of the carrier adheres to the non-image portion (background portion) of the photoconductor (background portion carrier adhesion).

そこで例えば特許文献1では、キャリア芯材の凹凸化を図って、キャリア芯材の表面を樹脂で被覆した後にキャリア芯材の一部が被覆樹脂の表面から露出するようにしてカウンターチャージの蓄積を抑制する手段が提案されている。 Therefore, for example, in Patent Document 1, the carrier core material is made uneven, and after the surface of the carrier core material is coated with resin, a part of the carrier core material is exposed from the surface of the coating resin to accumulate countercharge. Means to suppress it have been proposed.

特開2017-156737号公報JP-A-2017-156737A

近年の高画質化及び画像形成速度の高速化に伴って現像バイアスは高く設定される傾向にある。現像バイアスが従来よりも高く設定された場合、キャリアの絶縁破壊が発生し易くなる。そして絶縁破壊したキャリアに電荷が注入されてトナーと同一極性に帯電し感光体の画像部に付着する。感光体の画像部に付着したキャリアはスペーサー効果を奏してキャリア周辺のトナーが感光体から用紙に移動するのを阻害する。その結果、用紙転写画像中が白く抜ける不具合(画像中白抜け)が生じるおそれある。 The development bias tends to be set high with the recent improvement in image quality and the increase in image formation speed. When the development bias is set higher than before, dielectric breakdown of the carrier is likely to occur. Then, an electric charge is injected into the carrier whose dielectric breakdown is broken, and the electric charge has the same polarity as the toner and adheres to the image portion of the photoconductor. The carrier adhering to the image portion of the photoconductor exerts a spacer effect and hinders the transfer of toner around the carrier from the photoconductor to the paper. As a result, there is a possibility that a problem (white spot in the image) may occur in the paper transfer image.

また画像形成速度の高速化等に伴って現像装置での現像剤の撹拌速度も速まり、キャリアに継続的にかかるストレスが大きくなってキャリアに割れや欠けが生じやすくなっている。キャリアに割れや欠けが生じると、露出した絶縁性の低いキャリアの断面から絶縁破壊が生じて前述と同様の機構によって画像中白抜けが生じるおそれある。 Further, as the image forming speed is increased, the stirring speed of the developer in the developing apparatus is also increased, and the stress continuously applied to the carrier is increased, so that the carrier is liable to be cracked or chipped. If the carrier is cracked or chipped, dielectric breakdown may occur from the cross section of the exposed carrier having low insulating property, and white spots may occur in the image by the same mechanism as described above.

本発明はこのような従来の問題に鑑みてなされたものであり、トレードオフの関係にある不具合、すなわち背景部キャリア付着と画像中白抜けとを同時に抑制可能なキャリア芯材の提供をその目的とするものである。 The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a carrier core material capable of simultaneously suppressing defects in a trade-off relationship, that is, background carrier adhesion and white spots in an image. Is to be.

前記目的を達成する本発明に係るキャリア芯材は、静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとが下記式(1)を満足し、下記式(2)から算出されるフェライト粒子の内部空隙率が3.0%以下であることを特徴とする。
0(V)≦Vs-Vd≦1000(V) ・・・・・・・・・・・・・・・・(1)
内部空隙率(%)=(粒子面積A-粒子面積B)/粒子面積A×100 ・・・(2)
式中、粒子面積A:内部空隙を含む粒子断面積
粒子面積B:内部空隙を含まない粒子断面積
In the carrier core material according to the present invention that achieves the above object, the static dielectric breakdown voltage Vs and the dynamic dielectric breakdown voltage Vd satisfy the following formula (1), and the ferrite particles calculated from the following formula (2). It is characterized in that the internal void ratio is 3.0% or less.
0 (V) ≤ Vs-Vd ≤ 1000 (V) ... (1)
Internal porosity (%) = (particle area A-particle area B) / particle area A × 100 ... (2)
In the formula, particle area A: particle cross-sectional area including internal voids Particle area B: particle cross-sectional area not including internal voids

なお、本明細書における静的絶縁破壊電圧Vs、動的絶縁破壊電圧Vd、粒子面積A、粒子面積Bは後述の実施例における測定方法及び測定条件で測定した値である。また、本明細書において「フェライト粒子」、「キャリア芯材」、「電子写真現像用キャリア」、「電子写真用現像剤」は、それぞれ個々の粒子の集合体(粉体)を意味するものである。 The static insulation breakdown voltage Vs, the dynamic breakdown voltage Vd, the particle area A, and the particle area B in the present specification are values measured by the measurement method and measurement conditions in the examples described later. Further, in the present specification, "ferrite particles", "carrier core material", "carrier for electrophotographic development", and "developer for electrophotographic development" each mean an aggregate (powder) of individual particles. be.

前記キャリア芯材において、前記フェライト粒子の組成が、MnO:35mol%以上55mol%以下、Fe:45mol%以上65mol%以下を含有し、その一部をSrO:0.1mol%以上5.0mol%以下、SnO:0.1mol%以上5.0mol%以下で置換したものであってもよい。 In the carrier core material, the composition of the ferrite particles contains MnO: 35 mol% or more and 55 mol% or less, Fe 2 O 3 : 45 mol% or more and 65 mol% or less, and a part thereof is SrO: 0.1 mol% or more. It may be substituted with 0 mol% or less, SnO: 0.1 mol% or more and 5.0 mol% or less.

また前記キャリア芯材において、最大山谷深さRzが1.9μm以上2.6μm以下であるのが好ましい。具体的な測定方法及び測定条件は後述の実施例で示す。 Further, in the carrier core material, the maximum mountain valley depth Rz is preferably 1.9 μm or more and 2.6 μm or less. Specific measurement methods and measurement conditions will be shown in Examples described later.

また前記キャリア芯材において、磁場79.58×10A/m(1000エルステッド)を印加した際の磁化σ1kが63Am/kg以上73Am/kg以下であるのが好ましい。具体的な測定方法及び測定条件は後述の実施例で示す。 Further, in the carrier core material, it is preferable that the magnetization σ 1 k when a magnetic field of 79.58 × 10 3 A / m (1000 oersted) is applied is 63 Am 2 / kg or more and 73 Am 2 / kg or less. Specific measurement methods and measurement conditions will be shown in Examples described later.

また前記キャリア芯材において、細孔容積が0.001cm/g以上0.015cm/g以下であるのが好ましい。具体的な測定方法及び測定条件は後述の実施例で示す。 Further, in the carrier core material, the pore volume is preferably 0.001 cm 3 / g or more and 0.015 cm 3 / g or less. Specific measurement methods and measurement conditions will be shown in Examples described later.

また前記キャリア芯材において、レーザー回折式粒度分布測定装置で測定された個数基準の粒度分布における粒径26μm以下の割合が25%以下であるのが好ましい。具体的な測定方法及び測定条件は後述の実施例で示す。 Further, in the carrier core material, the ratio of the particle size of 26 μm or less in the number-based particle size distribution measured by the laser diffraction type particle size distribution measuring device is preferably 25% or less. Specific measurement methods and measurement conditions will be shown in Examples described later.

また本発明によれば、前記のいずれかに記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリアが提供される。 Further, according to the present invention, there is provided a carrier for electrophotographic development, wherein the surface of the carrier core material according to any one of the above is coated with a resin.

さらに本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。 Further, according to the present invention, there is provided an electrophotographic developer containing the above-mentioned electrophotographic developing carrier and toner.

本発明のキャリア芯材によれば、トナーに対する良好な摩擦帯電特性が得られる共に背景部キャリア付着が抑制され、また高速の画像形成装置に用いた場合であっても画像中白抜けの発生が抑制される。 According to the carrier core material of the present invention, good triboelectric characteristics for toner can be obtained, carrier adhesion to the background portion is suppressed, and white spots occur in the image even when used in a high-speed image forming apparatus. It is suppressed.

また本発明の電子写真現像用キャリア及び電子写真用現像剤によれば、現像速度や現像バイアスなどが異なる複数種類の画像形成装置に対して広く使用可能である。 Further, according to the electrophotographic developing carrier and the electrophotographic developer of the present invention, it can be widely used for a plurality of types of image forming apparatus having different development speeds, development biases and the like.

キャリア芯材の粒子断面の模式図である。It is a schematic diagram of the particle cross section of a carrier core material. 動的絶縁破壊電圧Vdの測定装置の概説図である。It is a schematic diagram of the measuring apparatus of dynamic dielectric breakdown voltage Vd. 現像装置の一例を示す概説図である。It is a schematic diagram which shows an example of a developing apparatus.

本発明者らは、トナーに対する良好な摩擦帯電特性が得られる共に背景部キャリア付着が抑制され、現像バイアスの高い画像形成装置や現像剤の撹拌速度の速い画像形成装置に用いられた場合であっても前述の画像白抜けの生じないキャリア芯材を得るため鋭意検討を重ねた結果、キャリア芯材の静的絶縁破壊電圧Vsと、動的絶縁破壊電圧Vdとが所定の関係を満足すればよいことをまず見出した。すなわち、本発明に係るキャリア芯材の大きな特徴の一つは前記式(1)を満足することにある。 The present inventors have a case where they are used in an image forming apparatus having a high development bias and an image forming apparatus having a high stirring speed of a developer because good triboelectric characteristics with respect to toner can be obtained and carrier adhesion to a background portion is suppressed. However, as a result of diligent studies to obtain a carrier core material that does not cause whiteout in the image described above, if the static dielectric breakdown voltage Vs of the carrier core material and the dynamic dielectric breakdown voltage Vd satisfy a predetermined relationship. I first found a good thing. That is, one of the major features of the carrier core material according to the present invention is that it satisfies the above formula (1).

本発明者らの知見によれば、従来のキャリア芯材では静的絶縁破壊電圧Vsは動的絶縁破壊電圧Vdよりも小さい値であった。このような従来のキャリア芯材では、背景部キャリア付着と画像中白抜けとを同時に抑制することは困難であった。そこで静的絶縁破壊電圧Vsを動的絶縁破壊電圧Vdよりも高くしたところ背景部キャリア付着と画像中白抜けの抑制が図れ、本発明では静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとの差が0(V)以上1000(V)以下と定めた。静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとの差がマイナスの場合、すなわち動的絶縁破壊電圧Vdが静的絶縁破壊電圧Vsよりも大きい場合には、キャリアにカウンターチャージが蓄積しやすくキャリアが感光体の非画像部(背景部)に付着する背景部キャリア付着が生じやすい。一方、静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとの差が+1000(V)よりも大きい場合、帯電が十分に付与されていない弱帯電トナーが発生しやすく、弱帯電トナーに起因するトナー飛散やかぶりが生じやすい。静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとの差の上限値は500(V)がより好ましく。300(V)がさらに好ましい。なお、静的絶縁破壊電圧Vsを動的絶縁破壊電圧Vdよりも高くするには例えば後述のキャリア芯材の製造方法で説明するようにSn(スズ)とSr(ストロンチウム)とを所定量含有すればよい。 According to the findings of the present inventors, in the conventional carrier core material, the static breakdown voltage Vs is smaller than the dynamic breakdown voltage Vd. With such a conventional carrier core material, it is difficult to simultaneously suppress background carrier adhesion and white spots in an image. Therefore, when the static breakdown voltage Vs is set higher than the dynamic breakdown voltage Vd, the carrier adhesion in the background and the white spots in the image can be suppressed. In the present invention, the static breakdown voltage Vs and the dynamic breakdown voltage Vd are used. It was determined that the difference between 0 (V) and 1000 (V) or less. When the difference between the static breakdown voltage Vs and the dynamic breakdown voltage Vd is negative, that is, when the dynamic breakdown voltage Vd is larger than the static breakdown voltage Vs, countercharges are likely to accumulate in the carrier. Carrier adheres to the non-image portion (background portion) of the photoconductor Background portion Carrier adhesion is likely to occur. On the other hand, when the difference between the static dielectric breakdown voltage Vs and the dynamic dielectric breakdown voltage Vd is larger than +1000 (V), weakly charged toner that is not sufficiently charged is likely to be generated, which is caused by the weakly charged toner. Toner scattering and fog are likely to occur. The upper limit of the difference between the static breakdown voltage Vs and the dynamic breakdown voltage Vd is more preferably 500 (V). 300 (V) is more preferable. In order to make the static dielectric breakdown voltage Vs higher than the dynamic breakdown voltage Vd, for example, Sn (tin) and Sr (strontium) should be contained in a predetermined amount as described in the method for manufacturing a carrier core material described later. Just do it.

本発明のもう一つの大きな特徴は前記式(2)から算出されるフェライト粒子の内部空隙率が3.0%以下であることである。本発明ではキャリア芯材の粒子密度の指標として前記式(2)から算出される内部空隙率を用いることとした。 Another major feature of the present invention is that the internal porosity of the ferrite particles calculated from the above formula (2) is 3.0% or less. In the present invention, the internal porosity calculated from the above formula (2) is used as an index of the particle density of the carrier core material.

まず、キャリア芯材の内部空隙率について説明する。図1(a)はキャリア芯材の粒子断面模式図であり、図1(b)は、粒子面積A(内部空隙を含む粒子断面積)を斜線領域として示した図であり、図1(c)は粒子面積B(内部空隙を含まない粒子断面積)を斜線領域として示した図である。 First, the internal porosity of the carrier core material will be described. FIG. 1 (a) is a schematic diagram of a particle cross section of a carrier core material, and FIG. 1 (b) is a diagram showing a particle area A (particle cross section including internal voids) as a shaded area, and FIG. 1 (c). ) Is a diagram showing the particle area B (particle cross section excluding internal voids) as a shaded area.

内部空隙率は、図1(b)において斜線で示された粒子面積Aから、図1(c)において斜線で示された粒子面積Bを除いた面積、すなわち図1(c)においてグレーで色づけされた粒子内部の空隙部分の面積の粒子面積Aに対する割合を示すものである。このように各粒子において算出し、100粒子の平均値により内部空隙率を得る。測定は上記のように芯材の断面観察像を用いるが、断面観察像を取得する対象とする断面(粒子)は、断面の最大長さが当該粉体の平均粒径(μm)の50%以上の長さのものとする。空隙率および粒子評価に適正であるためである。 The internal void ratio is the area obtained by subtracting the particle area B shown by the diagonal line in FIG. 1 (c) from the particle area A shown by the diagonal line in FIG. 1 (b), that is, colored in gray in FIG. 1 (c). It shows the ratio of the area of the void portion inside the particles to the particle area A. In this way, it is calculated for each particle, and the internal porosity is obtained from the average value of 100 particles. As described above, the cross-section observation image of the core material is used for the measurement, but the maximum length of the cross-section (particle) for which the cross-section observation image is acquired is 50% of the average particle size (μm) of the powder. It shall be of the above length. This is because it is appropriate for porosity and particle evaluation.

このようにして求められるフェライト粒子の内部空隙率を本発明では3%以下と定めた。内部空隙率が3%よりも大きいと高速の画像形成装置に用いられた場合に高速撹拌などの影響でキャリア(フェライト粒子)に割れや欠けが生じて画像中白抜けが発生することがある。フェライト粒子の内部空隙率のより好ましい範囲は1%以下である。 In the present invention, the internal porosity of the ferrite particles thus obtained is determined to be 3% or less. If the internal porosity is larger than 3%, the carriers (ferrite particles) may be cracked or chipped due to the influence of high-speed stirring or the like when used in a high-speed image forming apparatus, and white spots may occur in the image. A more preferable range of the internal porosity of the ferrite particles is 1% or less.

フェライト粒子の内部空隙率を3%以下とするには、例えば、造粒工程においてスラリーの原料濃度を高め、適切な乾燥条件を選択する等、造粒物を作製する段階で空隙を生じさせない条件を選択する。また、粒度の小さい原料を選択することや、湿式粉砕後のスラリー原料の粒度を小さく管理すること、焼成工程において適切な焼成温度を選択する等、粒子内部の焼結が十分に促進されるような条件を選択すればよい。 In order to reduce the internal porosity of the ferrite particles to 3% or less, for example, the raw material concentration of the slurry is increased in the granulation step and appropriate drying conditions are selected. Select. In addition, sintering inside the particles is sufficiently promoted by selecting a raw material having a small particle size, controlling the particle size of the slurry raw material after wet grinding to be small, and selecting an appropriate firing temperature in the firing step. Conditions should be selected.

本発明のフェライト粒子の組成は、組成式MFe3-X(但し、Mは、Mg,Mn,Ca,Ti,Sr,Cu,Zn,Sn,Niからなる群より選択される少なくとも1種の金属元素、0<X<1)で表されるものが好ましい。これらの中でも、一般式(MnO)x(Fe)yで表され、x,yがそれぞれ35mol%以上55mol%以下,45mol%以上65mol%以下であり、MnOの一部をSrOで0.1mol%以上5.0mol%以下、SnOで0.1mol%以上5.0mol%以下置換したものが好ましい。また、置換したSrOとSnOの合計値の範囲は0.2mol%以上10.0mol%以下の範囲が好ましい。SrOとSnOの合計値が10.0mol%を超えると非磁性成分の増加により磁化が低下し、背景部キャリア付着の悪化が懸念される。SrOとSnOの合計値が0.2mol%より低いと静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとの差がマイナスとなり、キャリアにカウンターチャージが蓄積しやすくキャリアが感光体の非画像部(背景部)に付着する背景部キャリア付着が生じやすくなることが懸念される。置換したSrOとSnOの合計値のより好ましい範囲は0.2mol%以上4.0mol%以下である。 The composition of the ferrite particles of the present invention is at least selected from the group consisting of the composition formula MX Fe 3-X O 4 (where M is Mg, Mn, Ca, Ti, Sr, Cu, Zn, Sn, Ni). One kind of metal element, which is represented by 0 <X <1), is preferable. Among these, it is represented by the general formula (MnO) x (Fe 2 O 3 ) y, and x and y are 35 mol% or more and 55 mol% or less, 45 mol% or more and 65 mol% or less, respectively, and a part of MnO is 0 in SrO. .1 mol% or more and 5.0 mol% or less, and SnO 0.1 mol% or more and 5.0 mol% or less are preferable. Further, the range of the total value of the substituted SrO and SnO is preferably in the range of 0.2 mol% or more and 10.0 mol% or less. If the total value of SrO and SnO exceeds 10.0 mol%, the magnetization decreases due to the increase in the non-magnetic component, and there is a concern that the background carrier adhesion deteriorates. If the total value of SrO and SnO is lower than 0.2 mol%, the difference between the static breakdown voltage Vs and the dynamic breakdown voltage Vd becomes negative, and countercharges tend to accumulate in the carrier, and the carrier is the non-image area of the photoconductor. There is a concern that the background carrier adhering to the (background) is likely to occur. A more preferable range of the total value of the substituted SrO and SnO is 0.2 mol% or more and 4.0 mol% or less.

本発明のキャリア芯材における最大山谷深さRzは1.9μm以上2.6μm以下の範囲が好ましい。キャリア芯材表面の最大山谷深さRzが前記範囲であると、キャリア芯材同士の間に形成される空間が大きくなり、より多くのトナーがこの空間に取り込まれて現像領域へのトナー供給量が増え、画像形成速度の高速化等に対応できる。最大山谷深さRzのより好ましい範囲は2.1μm以上2.5μm以下の範囲である。フェライト粒子表面の最大山谷深さRzの制御は、原料における塩素の添加量及び製造工程における焼成条件などによって行うことができる。 The maximum mountain valley depth Rz in the carrier core material of the present invention is preferably in the range of 1.9 μm or more and 2.6 μm or less. When the maximum mountain valley depth Rz on the surface of the carrier core material is within the above range, the space formed between the carrier core materials becomes large, and more toner is taken into this space and the amount of toner supplied to the developing region. Can be increased, and the image formation speed can be increased. A more preferable range of the maximum mountain valley depth Rz is a range of 2.1 μm or more and 2.5 μm or less. The maximum valley depth Rz on the surface of the ferrite particles can be controlled by the amount of chlorine added to the raw material, the firing conditions in the manufacturing process, and the like.

また、本発明のキャリア芯材における磁場79.58×10A/m(1000エルステッド)を印加した際の磁化σ1kは63Am/kg以上73Am/kg以下であるのが好ましい。磁化σ1kが63Am/kg未満であると背景部キャリア付着が生じるおそれがある。 Further, it is preferable that the magnetization σ 1 k in the carrier core material of the present invention when a magnetic field of 79.58 × 10 3 A / m (1000 oersted) is applied is 63 Am 2 / kg or more and 73 Am 2 / kg or less. If the magnetization σ 1k is less than 63 Am 2 / kg, background carrier adhesion may occur.

本発明のキャリア芯材における細孔容積は0.001cm/g以上0.015cm/g以下の範囲が好ましい。細孔容積が0.001cm/g以上の範囲にあることでキャリア一粒子あたりの重量が軽くなり、キャリア摩擦が緩和されトナースペントが軽減される。一方、細孔容積が0.015cm/gを超えると内部空隙が大きくなり過ぎてキャリア一粒子あたりの磁化が小さくなる為に、背景部キャリア付着、画像中白抜けを起こしやすくなる。細孔容積のより好ましい範囲は0.003cm/g以上0.010cm/g以下の範囲である。 The pore volume in the carrier core material of the present invention is preferably in the range of 0.001 cm 3 / g or more and 0.015 cm 3 / g or less. When the pore volume is in the range of 0.001 cm 3 / g or more, the weight per carrier particle is lightened, the carrier friction is alleviated, and the toner spend is reduced. On the other hand, when the pore volume exceeds 0.015 cm 3 / g, the internal voids become too large and the magnetization per carrier particle becomes small, so that background carrier adhesion and white spots in the image are likely to occur. A more preferable range of the pore volume is 0.003 cm 3 / g or more and 0.010 cm 3 / g or less.

本発明のキャリア芯材のレーザー回折式粒度分布測定装置で測定される体積平均粒径(以下、「平均粒径」と記すことがある。)は30μm以上50μm未満の範囲が好ましく、より好ましくは30μm以上40μm以下の範囲である。また個数基準の粒度分布における粒径26μm以下の割合は25%以下であるのが好ましい。粒径26μm以下の割合が25%を超えると背景部キャリア付着が生じるおそれがある。 The volume average particle size (hereinafter, may be referred to as “average particle size”) measured by the laser diffraction type particle size distribution measuring device of the carrier core material of the present invention is preferably in the range of 30 μm or more and less than 50 μm, more preferably. The range is 30 μm or more and 40 μm or less. Further, the ratio of the particle size of 26 μm or less in the particle size distribution based on the number is preferably 25% or less. If the ratio of the particle size of 26 μm or less exceeds 25%, background carrier adhesion may occur.

本発明のキャリア芯材の製造方法に特に限定はないが、以下に説明する製造方法が好適である。 The method for producing the carrier core material of the present invention is not particularly limited, but the production method described below is suitable.

前記式(1)を満足し内部空隙率が3%以下のキャリア芯材を製造するためには、所定組成のフェライト粒子からなるキャリア芯材にSn(スズ)とSr(ストロンチウム)とを所定量含有させるのが好ましい。SnとSrとを所定量含有させることにより、動的絶縁破壊電圧Vdが静的絶縁破壊電圧Vsよりも小さくなりやすい。この機構は未だ明らかにはなっていないが、本発明者らは次のような機構からではないかと推測している。すなわちSnとSrとを所定量含有させると、Sn,Sr,Fe,Oなどから構成される導電性の高い化合物(例えばSrSnO又はSrSnFe1119等)が生成する。そして、現像ローラ表面でキャリア芯材が搬送・撹拌されるとキャリア芯材の粒子表面に局在する導電性の高い化合物が他のキャリア芯材粒子と接触する頻度が高まって動的絶縁破壊電圧Vdが低下し、その結果従来と異なって動的絶縁破壊電圧Vdが静的絶縁破壊電圧Vsよりも小さくなる。つまりキャリア芯材の本体そのものの静的絶縁破壊電圧Vsは高く維持されながら動的絶縁破壊電圧Vdが低下するのである。 In order to produce a carrier core material satisfying the above formula (1) and having an internal porosity of 3% or less, a predetermined amount of Sn (tin) and Sr (strontium) is added to the carrier core material composed of ferrite particles having a predetermined composition. It is preferable to contain it. By containing Sn and Sr in predetermined amounts, the dynamic breakdown voltage Vd tends to be smaller than the static breakdown voltage Vs. This mechanism has not been clarified yet, but the present inventors speculate that it may be from the following mechanism. That is, when Sn and Sr are contained in a predetermined amount, a highly conductive compound composed of Sn, Sr, Fe, O and the like (for example, SrSnO 3 or SrSnFe 11 O 19 or the like) is produced. When the carrier core material is conveyed and stirred on the surface of the developing roller, the frequency with which the highly conductive compound localized on the particle surface of the carrier core material comes into contact with other carrier core material particles increases, and the dynamic breakdown voltage increases. Vd decreases, and as a result, the dynamic breakdown voltage Vd becomes smaller than the static breakdown voltage Vs unlike the conventional case. That is, the dynamic breakdown voltage Vd decreases while the static breakdown voltage Vs of the main body of the carrier core material itself is maintained high.

そこでまず、Fe成分原料、M成分原料、Sn成分原料、Sr成分などの添加剤を秤量する。Fe成分原料としては、Fe等が好適に使用される。M成分原料としては、MgであればMgO、Mg(OH)、MgCOが好適に使用でき、MnであればMnCO、Mn等が使用でき、Ca成分原料としては、CaO、Ca(OH)、CaCO等が使用でき、TiであればTiO等が使用でき、ZrであればZrO等が使用できる。また、Sn成分原料としてはSnO、SnOが使用でき、Sr成分原料としては、SrCO、Sr(NOなどが好適に使用される。 Therefore, first, additives such as Fe component raw material, M component raw material, Sn component raw material, and Sr component are weighed. Fe 2 O 3 or the like is preferably used as the raw material for the Fe component. As the M component raw material, MgO, Mg (OH) 2 , MgCO 3 and the like can be preferably used for Mg, MnCO 3 , Mn 3 O 4 and the like can be used for Mn, and CaO, CaO, can be used as the Ca component raw material. Ca (OH) 2 , CaCO 3 , etc. can be used, TiO 2 or the like can be used for Ti, and ZrO 2 or the like can be used for Zr. Further, SnO 2 and SnO can be used as the Sn component raw material, and SrCO 3 and Sr (NO 3 ) 2 and the like are preferably used as the Sr component raw material.

次いで、原料を分散媒中に投入しスラリーを作製する。本発明で使用する分散媒としては水が好適である。分散媒には、前記仮焼成原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.1質量%~2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.1質量%~2質量%程度とするのが好ましい。その他、カーボンブラックなどの還元剤、アンモニアなどのpH調整剤、潤滑剤、焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%~90質量%の範囲が望ましい。より好ましくは60質量%~80質量%である。60質量%以上であれば、造粒物中に粒子内細孔が少なく、焼成時の焼結不足を防ぐことができる。 Next, the raw material is put into a dispersion medium to prepare a slurry. Water is suitable as the dispersion medium used in the present invention. In addition to the temporary firing raw material, a binder, a dispersant, or the like may be added to the dispersion medium, if necessary. As the binder, for example, polyvinyl alcohol can be preferably used. The amount of the binder to be blended is preferably such that the concentration in the slurry is about 0.1% by mass to 2% by mass. Further, as the dispersant, for example, ammonium polycarboxylate or the like can be preferably used. The amount of the dispersant to be blended is preferably such that the concentration in the slurry is about 0.1% by mass to 2% by mass. In addition, a reducing agent such as carbon black, a pH adjuster such as ammonia, a lubricant, a sintering accelerator and the like may be blended. The solid content concentration of the slurry is preferably in the range of 50% by mass to 90% by mass. More preferably, it is 60% by mass to 80% by mass. When it is 60% by mass or more, the pores in the particles are small in the granulated product, and it is possible to prevent insufficient sintering during firing.

なお、秤量した原料を混合し仮焼成し解粒した後、分散媒に投入しスラリーを作製してもよい。仮焼成の温度としては750℃~1000℃の範囲が好ましい。750℃以上であれば、仮焼成により一部フェライト化が進み、焼成時のガス発生量が少なく、固体間反応が十分に進むため好ましい。一方、1000℃以下であれば、仮焼成による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。 The weighed raw materials may be mixed, calcined and pulverized, and then charged into a dispersion medium to prepare a slurry. The temperature of the tentative firing is preferably in the range of 750 ° C to 1000 ° C. When the temperature is 750 ° C. or higher, partial ferrite formation proceeds by calcination, the amount of gas generated during calcination is small, and the reaction between solids proceeds sufficiently, which is preferable. On the other hand, when the temperature is 1000 ° C. or lower, sintering by calcination is weak and the raw material can be sufficiently pulverized in the subsequent slurry pulverization step, which is preferable. Further, the atmosphere at the time of temporary firing is preferably an atmospheric atmosphere.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は5μm以下が好ましく、より好ましくは1μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。 Next, the slurry produced as described above is wet-ground and pulverized. For example, wet pulverization is performed for a predetermined time using a ball mill or a vibration mill. The average particle size of the raw material after pulverization is preferably 5 μm or less, more preferably 1 μm or less. It is preferable that the vibration mill or the ball mill contains a medium having a predetermined particle size. Examples of the material of the media include iron-based chromium steel, oxide-based zirconia, titania, and alumina. The form of the crushing step may be either a continuous type or a batch type. The particle size of the crushed material is adjusted by the crushing time, rotation speed, material and particle size of the media used.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球形に造粒する。噴霧乾燥時の雰囲気温度は100℃~300℃の範囲が好ましい。これにより、粒径10μm~200μmの球形の造粒物が得られる。次いで、必要により、得られた造粒物を振動篩を用いて分級し所定の粒径範囲の造粒物を作製する。 Then, the crushed slurry is spray-dried to be granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer and sprayed into the atmosphere to granulate into a spherical shape. The atmospheric temperature during spray drying is preferably in the range of 100 ° C to 300 ° C. As a result, a spherical granule having a particle size of 10 μm to 200 μm can be obtained. Then, if necessary, the obtained granulated product is classified using a vibrating sieve to prepare a granulated product having a predetermined particle size range.

次に、前記の造粒物を所定温度に加熱した炉に投入して、フェライト粒子を合成するための一般的な手法で焼成することにより、フェライト粒子を生成させる。焼成温度としては1100℃~1350℃の範囲が好ましい。焼成温度が1100℃未満であると、相変態が起こりにくくなるとともに焼結も進みにくくなる。また、焼成温度が1350℃を超えると、過剰焼結による過大グレインの発生がするおそれがある。前記焼成温度に至るまでの昇温速度としては250℃/h~500℃/hの範囲が好ましい。焼成温度での保持時間は2時間以上が好ましい。フェライト粒子表面の凹凸は焼成工程における酸素濃度によっても調整可能である。具体的には酸素濃度を0.05%~10%とする。また、冷却時の酸素濃度を焼成時の酸素濃度よりも低くすることによって、フェライト相の酸化状態の調整を図ってもよい。具体的には酸素濃度を0.05%~1.5%の範囲とする。昇温・焼結・冷却における酸素濃度は0.05%~10%の範囲に制御するのが好ましい。 Next, the granulated product is put into a furnace heated to a predetermined temperature and fired by a general method for synthesizing ferrite particles to generate ferrite particles. The firing temperature is preferably in the range of 1100 ° C to 1350 ° C. If the firing temperature is less than 1100 ° C., phase transformation is less likely to occur and sintering is less likely to proceed. Further, if the firing temperature exceeds 1350 ° C., excessive grain may be generated due to excessive sintering. The rate of temperature rise up to the firing temperature is preferably in the range of 250 ° C./h to 500 ° C./h. The holding time at the firing temperature is preferably 2 hours or more. The unevenness of the ferrite particle surface can also be adjusted by the oxygen concentration in the firing process. Specifically, the oxygen concentration is set to 0.05% to 10%. Further, the oxidation state of the ferrite phase may be adjusted by lowering the oxygen concentration at the time of cooling to the oxygen concentration at the time of firing. Specifically, the oxygen concentration is set in the range of 0.05% to 1.5%. The oxygen concentration in raising, sintering, and cooling is preferably controlled in the range of 0.05% to 10%.

このようにして得られた焼成物を必要により解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。また解粒処理後、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の平均粒径としては30μm以上50μm未満が好ましい。 The fired product thus obtained is pulverized as necessary. Specifically, for example, the fired product is pulverized by a hammer mill or the like. The form of the pulverization step may be either a continuous type or a batch type. Further, after the pulverization treatment, if necessary, classification may be performed in order to make the particle size within a predetermined range. As the classification method, conventionally known methods such as wind power classification and sieve classification can be used. Further, after the primary classification with a wind power classifier, the particle size may be adjusted to a predetermined range with a vibration sieve or an ultrasonic sieve. Further, after the classification step, the non-magnetic particles may be removed by a magnetic field beneficiation machine. The average particle size of the ferrite particles is preferably 30 μm or more and less than 50 μm.

その後、必要に応じて、分級後のフェライト粒子を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は200℃以上800℃以下の範囲が好ましく、360℃以上550℃以下の範囲がさらに好ましい。加熱時間は0.5時間以上5時間以下の範囲が好ましい。なお、フェライト粒子の表面と内部とを均質化する観点からは加熱温度は低温であるのが望ましい。 Then, if necessary, the classified ferrite particles may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to increase the resistance of the ferrite particles (high resistance treatment). The oxidizing atmosphere may be either an atmospheric atmosphere or a mixed atmosphere of oxygen and nitrogen. The heating temperature is preferably in the range of 200 ° C. or higher and 800 ° C. or lower, and more preferably in the range of 360 ° C. or higher and 550 ° C. or lower. The heating time is preferably in the range of 0.5 hours or more and 5 hours or less. From the viewpoint of homogenizing the surface and the inside of the ferrite particles, it is desirable that the heating temperature is low.

以上のようにして作製したフェライト粒子を本発明のキャリア芯材として用いる。そして、所望の帯電性等を得るために、キャリア芯材の外周を樹脂で被覆して電子写真現像用キャリアとする。 The ferrite particles produced as described above are used as the carrier core material of the present invention. Then, in order to obtain the desired chargeability and the like, the outer periphery of the carrier core material is coated with a resin to form a carrier for electrophotographic development.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ-4-メチルペンテン-1、ポリ塩化ビニリデン、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。 Conventionally known resins can be used as the resin for coating the surface of the carrier core material, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). ) Resins, polystyrenes, (meth) acrylic resins, polyvinyl alcohol-based resins, polyvinyl chloride-based, polyurethane-based, polyester-based, polyamide-based, polybutadiene-based thermoplastic estramers, fluorosilicone-based resins, and the like.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%以上30質量%以下、特に0.001質量%以上2質量%以下の範囲内にあるのがよい。 To coat the surface of the carrier core material with resin, a resin solution or dispersion may be applied to the carrier core material. As the solvent for the coating solution, aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol and butanol Alcohol-based solvents such as; cellosolve-based solvents such as ethyl cellosolve and butyl cellosolve; ester-based solvents such as ethyl acetate and butyl acetate; amide-based solvents such as dimethylformamide and dimethylacetamide can be used alone or in combination of two or more. .. The concentration of the resin component in the coating solution is generally preferably in the range of 0.001% by mass or more and 30% by mass or less, particularly 0.001% by mass or more and 2% by mass or less.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。 As a method for coating the carrier core material with the resin, for example, a spray-drying method, a fluidized bed method, a spray-drying method using a fluidized bed, a dipping method, or the like can be used. Among these, the fluidized bed method is particularly preferable because it can be applied efficiently with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of the resin solution to be sprayed and the spraying time.

キャリアの粒子径は、一般に、体積平均粒径で30μm以上50μm未満の範囲、特に30μm以上40μm以下の範囲が好ましい。 The particle size of the carrier is generally preferably in the range of 30 μm or more and less than 50 μm in volume average particle size, particularly preferably in the range of 30 μm or more and 40 μm or less.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%以上15質量%以下の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%以上10質量%以下の範囲である。 The developer for electrophotographic processing according to the present invention is made by mixing the carrier and toner produced as described above. The mixing ratio of the carrier and the toner is not particularly limited, and may be appropriately determined from the development conditions of the developing apparatus to be used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass or more and 15% by mass or less. If the toner concentration is less than 1% by mass, the image density becomes too thin, while if the toner concentration exceeds 15% by mass, toner is scattered in the developing device and the toner adheres to the background part such as stains in the machine or transfer paper. This is because there is a possibility that a problem may occur. A more preferable toner concentration is in the range of 3% by mass or more and 10% by mass or less.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。 As the toner, those manufactured by conventionally known methods such as a polymerization method, a pulverization classification method, a melt granulation method, and a spray granulation method can be used. Specifically, a binder resin containing a thermoplastic resin as a main component containing a colorant, a mold release agent, a charge control agent, or the like can be preferably used.

トナーの粒径は、一般に、コールターカウンターによる体積平均粒径で5μm以上15μm以下の範囲が好ましく、7μm以上12μm以下の範囲がより好ましい。 Generally, the particle size of the toner is preferably in the range of 5 μm or more and 15 μm or less, and more preferably in the range of 7 μm or more and 12 μm or less in terms of the volume average particle size of the Coulter counter.

トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。 If necessary, a modifier may be added to the surface of the toner. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethylmethacrylate and the like. One of these or a combination of two or more thereof can be used.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。 A conventionally known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer and the like can be used.

本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図3に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図3に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。 The developing method using the developer of the present invention is not particularly limited, but the magnetic brush developing method is suitable. FIG. 3 shows an outline diagram showing an example of a developing device that performs magnetic brush development. The developing apparatus shown in FIG. 3 is arranged in parallel in the horizontal direction with a rotatable developing roller 3 having a plurality of magnetic poles and a regulating blade 6 for regulating the amount of developer on the developing roller 3 conveyed to the developing unit. It is formed between two screws 1 and 2 and two screws 1 and 2 that stir and convey the developer in opposite directions, and develops from one screw to the other at both ends of both screws. It is provided with a partition plate 4 that allows the agent to move and prevents the developer from moving except at both ends.

2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。 The two screws 1 and 2 have spiral blades 13 and 23 formed on the shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to charge a developer. Transport in opposite directions. Then, the developer moves from one screw to the other screw at both ends of the screws 1 and 2. As a result, the developer composed of toner and carrier is constantly circulated and stirred in the apparatus.

一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N、搬送磁極S、剥離磁極N、汲み上げ磁極N、ブレード磁極Sの5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3の筒状体が矢印方向に回転すると、汲み上げ磁極Nの磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。 On the other hand, the developing roller 3 has a developing magnetic pole N 1 , a transport magnetic pole S 1 , a peeling magnetic pole N 2 , and a pumping magnetic pole N 3 as means for generating magnetic poles inside a metal cylindrical body having irregularities of several μm on the surface. It has a fixed magnet in which the five magnetic poles of the blade magnetic pole S2 are arranged in order. When the tubular body of the developing roller 3 rotates in the direction of the arrow, the developer is pumped from the screw 1 to the developing roller 3 by the magnetic force of the pumping magnetic pole N3. The developer supported on the surface of the developing roller 3 is layer-regulated by the regulating blade 6 and then conveyed to the developing region.

現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が転写電圧電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5kV~5kVの範囲が好ましく、周波数は1kHz~10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。 In the developing region, a bias voltage obtained by superimposing an AC voltage on a DC voltage is applied from the transfer voltage power supply 8 to the developing roller 3. The DC voltage component of the bias voltage is a potential between the background potential and the image potential on the surface of the photoconductor drum 5. Further, the background potential and the image potential are potentials between the maximum and minimum values of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 kV to 5 kV, and the frequency is preferably in the range of 1 kHz to 10 kHz. The waveform of the bias voltage may be a rectangular wave, a sine wave, a triangular wave, or the like. As a result, the toner and the carrier vibrate in the developing region, and the toner adheres to the electrostatic latent image on the photoconductor drum 5 to develop.

その後現像ローラ3上の現像剤は、搬送磁極Sによって装置内部に搬送され、剥離電極Nによって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。そして汲み上げ極Nによって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。 After that, the developer on the developing roller 3 is conveyed to the inside of the apparatus by the transport magnetic pole S1, is detached from the developing roller 3 by the peeling electrode N 2 , is circulated and conveyed again in the apparatus by the screws 1 and 2, and is used for development. Mix and stir with undeveloped developer. Then, the developing agent is newly supplied from the screw 1 to the developing roller 3 by the pumping electrode N3.

なお、図3に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させるために、磁極を8極や10極、12極と増やしてももちろん構わない。 In the embodiment shown in FIG. 3, the number of magnetic poles built in the developing roller 3 is five, but in order to further increase the amount of movement of the developing agent in the developing region and further improve the pumping property and the like. Of course, the number of magnetic poles may be increased to 8 poles, 10 poles, or 12 poles.

(実施例1)
原料として、Fe(平均粒径:0.6μm)20.3kg、Mn(平均粒径:3.4μm)7.6kg、SrCO(平均粒径:0.6μm)0.156kg、SnO(平均粒径:4.4μm)0.128kgを純水9.4kg中に分散し、還元剤としてカーボンブラックを69g、分散剤としてポリカルボン酸アンモニウム系分散剤を203g、アンモニア水(25wt%水溶液)を20g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1265℃まで4.5時間かけて昇温した。その後1265℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は昇温の段階では10000ppm、冷却の段階では4000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒径34.7μmの焼成物を得た。
次いで、得られた焼成物を大気雰囲気下390℃で1.5時間保持することにより酸化処理(高抵抗化処理)を行い、キャリア芯材を得た。
(Example 1)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 20.3 kg, Mn 3 O 4 (average particle size: 3.4 μm) 7.6 kg, SrCO 3 (average particle size: 0.6 μm) 0. Disperse 156 kg, SnO 2 (average particle size: 4.4 μm) 0.128 kg in 9.4 kg of pure water, 69 g of carbon black as a reducing agent, 203 g of an ammonium polycarboxylate dispersant as a dispersant, and aqueous ammonia. (25 wt% aqueous solution) was added in an amount of 20 g to prepare a mixture. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1265 ° C. over 4.5 hours. After that, firing was performed by holding at 1265 ° C. for 3 hours. The oxygen concentration in the electric furnace was adjusted so that it would be 10,000 ppm in the heating stage and 4000 ppm in the cooling stage.
The obtained calcined product was pulverized with a hammer mill and then classified using a vibrating sieve to obtain a calcined product having an average particle size of 34.7 μm.
Next, the obtained fired product was held at 390 ° C. for 1.5 hours in an air atmosphere to perform an oxidation treatment (high resistance treatment) to obtain a carrier core material.

得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。 The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

次に、このようにして得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450質量部と、(2-アミノエチル)アミノプロピルトリメトキシシラン9質量部とを、溶媒としてのトルエン450質量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000質量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下の実施例及び比較例についても同様にしてキャリアを得た。 Next, the surface of the carrier core material thus obtained was coated with a resin to prepare a carrier. Specifically, 450 parts by mass of a silicone resin and 9 parts by mass of (2-aminoethyl) aminopropyltrimethoxysilane were dissolved in 450 parts by mass of toluene as a solvent to prepare a coated solution. This coating solution was applied to 50,000 parts by mass of a carrier core material using a fluidized bed coating device, and heated in an electric furnace at a temperature of 300 ° C. to obtain carriers. Carriers were obtained in the same manner for the following examples and comparative examples.

得られたキャリアと平均粒径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの質量/(トナーおよびキャリアの質量)=5/100となるように調整した。以下、全ての実施例、比較例についても同様にして現像剤を得た。得られた現像剤について後述の実機評価を行った。評価結果を表1及び表2に示す。 The obtained carrier and toner having an average particle size of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the mass of the toner / (mass of the toner and the carrier) = 5/100. Hereinafter, developing agents were obtained in the same manner for all Examples and Comparative Examples. The obtained developer was evaluated on an actual machine as described later. The evaluation results are shown in Tables 1 and 2.

(実施例2)
焼成工程における電気炉温度を1300℃に変更した以外は実施例1と同様にして平均粒径34.8μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 2)
A carrier core material having an average particle size of 34.8 μm was obtained in the same manner as in Example 1 except that the electric furnace temperature in the firing step was changed to 1300 ° C.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(実施例3)
造粒物から粒径30μm以下の微小な粒子を篩を用いて除去した以外は実施例1と同様にして平均粒径35.0μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 3)
A carrier core material having an average particle size of 35.0 μm was obtained in the same manner as in Example 1 except that fine particles having a particle size of 30 μm or less were removed from the granulated product using a sieve.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(実施例4)
造粒物から粒径33μm以下の微小な粒子を篩を用いて除去した以外は実施例1と同様にして平均粒径36.5μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 4)
A carrier core material having an average particle size of 36.5 μm was obtained in the same manner as in Example 1 except that fine particles having a particle size of 33 μm or less were removed from the granulated product using a sieve.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(実施例5)
造粒物から粒径35μm以下の微小な粒子を篩を用いて除去した以外は実施例1と同様にして平均粒径37.7μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 5)
A carrier core material having an average particle size of 37.7 μm was obtained in the same manner as in Example 1 except that fine particles having a particle size of 35 μm or less were removed from the granulated product using a sieve.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(実施例6)
焼成工程における昇温の段階の電気炉内の酸素濃度を50000ppmに変更した以外は実施例4と同様にして平均粒径36.6μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 6)
A carrier core material having an average particle size of 36.6 μm was obtained in the same manner as in Example 4 except that the oxygen concentration in the electric furnace at the stage of raising the temperature in the firing step was changed to 50,000 ppm.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(実施例7)
酸化処理工程における電気炉温度を480℃に変更した以外は実施例2と同様にして平均粒径34.4μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 7)
A carrier core material having an average particle size of 34.4 μm was obtained in the same manner as in Example 2 except that the electric furnace temperature in the oxidation treatment step was changed to 480 ° C.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(実施例8)
焼成工程における冷却の段階の電気炉内の酸素濃度を1000ppmに変更した以外は実施例4と同様にして平均粒径36.5μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 8)
A carrier core material having an average particle size of 36.5 μm was obtained in the same manner as in Example 4 except that the oxygen concentration in the electric furnace at the cooling stage in the firing step was changed to 1000 ppm.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(実施例9)
酸化処理工程における電気炉温度を500℃に変更した以外は実施例2と同様にして平均粒径35.6μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 9)
A carrier core material having an average particle size of 35.6 μm was obtained in the same manner as in Example 2 except that the electric furnace temperature in the oxidation treatment step was changed to 500 ° C.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(実施例10)
原料として、平均粒径および比表面積の異なるMn(平均粒径:2.0μm、比表面積:2.7m/g)3.8kg、Mn(平均粒径:3.4μm、比表面積:9.9m/g)3.8kgを用いた以外は実施例9と同様にして平均粒径36.1μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 10)
As raw materials, Mn 3 O 4 (average particle size: 2.0 μm, specific surface area: 2.7 m 2 / g) 3.8 kg, Mn 3 O 4 (average particle size: 3.4 μm) having different average particle size and specific surface area. , Specific surface area: 9.9 m 2 / g) A carrier core material having an average particle size of 36.1 μm was obtained in the same manner as in Example 9 except that 3.8 kg was used.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(実施例11)
焼成工程における電気炉内の温度を1315℃に変更した以外は実施例4と同様にして平均粒径36.4μmのキャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Example 11)
A carrier core material having an average particle size of 36.4 μm was obtained in the same manner as in Example 4 except that the temperature in the electric furnace in the firing step was changed to 1315 ° C.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(比較例1)
Fe(平均粒径:0.8μm)を50.0mol%、Mn(平均粒径:2.0μm)をMnO換算で50.0mol%となるように秤量し、ローラーコンパクターでペレット化した。得られたペレットを大気雰囲気の条件下、850℃にてロータリー式の焼成炉で仮焼成をおこなった。乾式ビーズミルで6時間粉砕し、仮焼成原料(平均粒径:2.2μm)を得た。この仮焼成原料20.0kgとSrFe1219(平均粒径:1.2μm)3.0kgを純水7.6kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を139g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径30μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1120℃まで5時間かけて昇温した。その後1120℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は昇温の段階では100000ppm、冷却の段階では2000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒径36.5μmの焼成物を得た。
次いで、得られた焼成物を大気雰囲気下390℃で1.5時間保持することにより酸化処理(高抵抗化処理)を行い、キャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative Example 1)
Weigh Fe 2 O 3 (average particle size: 0.8 μm) to 50.0 mol% and Mn 3 O 4 (average particle size: 2.0 μm) to 50.0 mol% in terms of MnO, and use a roller compactor. It was pelletized. The obtained pellets were tentatively calcined in a rotary calcining furnace at 850 ° C. under atmospheric air conditions. The mixture was pulverized with a dry bead mill for 6 hours to obtain a temporary calcining raw material (average particle size: 2.2 μm). 20.0 kg of this temporary firing raw material and 3.0 kg of SrFe 12 O 19 (average particle size: 1.2 μm) were dispersed in 7.6 kg of pure water, and 139 g of an ammonium polycarboxylate-based dispersant was added as a dispersant. It was made into a mixture. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 30 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1120 ° C. over 5 hours. After that, firing was performed by holding at 1120 ° C. for 3 hours. The oxygen concentration in the electric furnace was adjusted so that it would be 100,000 ppm in the heating stage and 2000 ppm in the cooling stage.
The obtained calcined product was pulverized with a hammer mill and then classified using a vibrating sieve to obtain a calcined product having an average particle size of 36.5 μm.
Next, the obtained fired product was held at 390 ° C. for 1.5 hours in an air atmosphere to perform an oxidation treatment (high resistance treatment) to obtain a carrier core material.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(比較例2)
Fe(平均粒径:0.8μm)を50.0mol%、平均粒径、比表面積の異なるMn(平均粒径:2.0μm、比表面積:2.7m/g)をMnO換算で25.0mol%、Mn(平均粒径:3.4μm、比表面積:9.9m/g)をMnO換算で25.0mol%となるように秤量し、ローラーコンパクターでペレット化した。得られたペレットを大気雰囲気の条件下、850℃にてロータリー式の焼成炉で仮焼成を行った。乾式ビーズミルで6時間粉砕し、仮焼成原料(平均粒径:2.2μm)を得た。この仮焼成原料20.0kgとSrFe1219(平均粒径:1.2μm)3.0kgを純水7.6kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を139g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径30μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1240℃まで4.5時間かけて昇温した。その後1240℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は昇温の段階では100000ppm、冷却の段階では2000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒径36.4μmの焼成物を得た。
次いで、得られた焼成物を大気雰囲気下370℃で1.5時間保持することにより酸化処理(高抵抗化処理)を行い、キャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative Example 2)
Fe 2 O 3 (average particle size: 0.8 μm) 50.0 mol%, Mn 3 O 4 with different average particle size and specific surface area (average particle size: 2.0 μm, specific surface area: 2.7 m 2 / g) Weighed to 25.0 mol% in terms of MnO and Mn 3 O 4 (average particle size: 3.4 μm, specific surface area: 9.9 m 2 / g) to 25.0 mol% in terms of MnO, and with a roller compactor. It was pelletized. The obtained pellets were tentatively calcined in a rotary calcining furnace at 850 ° C. under atmospheric air conditions. The mixture was pulverized with a dry bead mill for 6 hours to obtain a temporary calcining raw material (average particle size: 2.2 μm). 20.0 kg of this temporary firing raw material and 3.0 kg of SrFe 12 O 19 (average particle size: 1.2 μm) were dispersed in 7.6 kg of pure water, and 139 g of an ammonium polycarboxylate-based dispersant was added as a dispersant. It was made into a mixture. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 30 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1240 ° C. over 4.5 hours. After that, firing was performed by holding at 1240 ° C. for 3 hours. The oxygen concentration in the electric furnace was adjusted so that it would be 100,000 ppm in the heating stage and 2000 ppm in the cooling stage.
The obtained calcined product was pulverized with a hammer mill and then classified using a vibrating sieve to obtain a calcined product having an average particle size of 36.4 μm.
Next, the obtained fired product was held at 370 ° C. for 1.5 hours in an air atmosphere to perform an oxidation treatment (high resistance treatment) to obtain a carrier core material.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(比較例3)
酸化処理工程における電気炉温度を400℃に変更した以外は比較例2と同様にして平均粒径36.1μmの焼成物を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative Example 3)
A fired product having an average particle size of 36.1 μm was obtained in the same manner as in Comparative Example 2 except that the electric furnace temperature in the oxidation treatment step was changed to 400 ° C.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(比較例4)
原料として、Fe(平均粒径:0.6μm)20.3kg、Mn(平均粒径:2.0μm)7.6kgを純水9.4kg中に分散し、還元剤としてカーボンブラックを69g、分散剤としてポリカルボン酸アンモニウム系分散剤を203g、アンモニア水(25wt%水溶液)を20g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1200℃まで4.5時間かけて昇温した。その後1200℃で3時間保持することにより焼成を行った。電気炉内の雰囲気は7000ppmとなるよう炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒径34.4μmの焼成物を得た。
次いで、得られた焼成物を大気雰囲気下390℃で1.5時間保持することにより酸化処理(高抵抗化処理)を行い、キャリア芯材を得た。
得られたキャリア芯材の粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1及び表2に示す。
(Comparative Example 4)
As a raw material, 20.3 kg of Fe 2 O 3 (average particle size: 0.6 μm) and 7.6 kg of Mn 3 O 4 (average particle size: 2.0 μm) were dispersed in 9.4 kg of pure water and used as a reducing agent. A mixture was prepared by adding 69 g of carbon black, 203 g of an ammonium polycarboxylate dispersant as a dispersant, and 20 g of aqueous ammonia (25 wt% aqueous solution). This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1200 ° C. over 4.5 hours. After that, firing was performed by holding at 1200 ° C. for 3 hours. The oxygen concentration in the furnace was adjusted so that the atmosphere in the electric furnace was 7,000 ppm.
The obtained calcined product was pulverized with a hammer mill and then classified using a vibrating sieve to obtain a calcined product having an average particle size of 34.4 μm.
Next, the obtained fired product was held at 390 ° C. for 1.5 hours in an air atmosphere to perform an oxidation treatment (high resistance treatment) to obtain a carrier core material.
The powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the method described later. The measurement results are shown in Tables 1 and 2.

(組成分析)
(Feの分析)
鉄元素を含むキャリア芯材を秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させた後、硫酸水を添加して再溶解し過剰な塩酸と硝酸とを揮発させる。この溶液に固体Alを添加して液中のFe3+を全てFe2+に還元する。続いて、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、Fe(Fe2+)の滴定量を求めた。
(Mnの分析)
キャリア芯材のMn含有量は、JIS G1311-1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行った。本明細書に記載したキャリア芯材のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
(Srの分析)
キャリア芯材のSr含有量は、以下の方法で分析を行った。キャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行った。本明細書に記載したキャリア芯材のSr含有量は、このICPによる定量分析で得られたSr量である。
(Snの分析)
キャリア芯材のSn含有量は、Srの分析同様にICPによる定量分析で行った。
(Composition analysis)
(Analysis of Fe)
The carrier core material containing the iron element was weighed and dissolved in a mixed acid water of hydrochloric acid and nitric acid. After evaporating and drying this solution, sulfuric acid water is added and redissolved to volatilize excess hydrochloric acid and nitric acid. Solid Al is added to this solution to reduce all Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ions in this solution was quantitatively analyzed by potentiometric titration with a potassium permanganate solution to determine the titration amount of Fe (Fe 2+ ).
(Analysis of Mn)
The Mn content of the carrier core material was quantitatively analyzed according to the ferromanganese analysis method (potentiometric titration method) described in JIS G1311-1987. The Mn content of the carrier core material described in the present specification is the amount of Mn obtained by quantitative analysis by this ferromanganese analysis method (potential difference drip method).
(Analysis of Sr)
The Sr content of the carrier core material was analyzed by the following method. The carrier core material was dissolved in an acid solution and quantitative analysis was performed by ICP. The Sr content of the carrier core material described in the present specification is the Sr content obtained by the quantitative analysis by this ICP.
(Analysis of Sn)
The Sn content of the carrier core material was quantitatively analyzed by ICP as in the analysis of Sr.

(見掛け密度AD)
キャリア芯材の見掛け密度はJIS Z 2504に準拠して測定した。
(Apparent density AD)
The apparent density of the carrier core material was measured according to JIS Z 2504.

(流動度FR)
キャリア芯材の流動度はJIS Z 2502に準拠して測定した。
(Fluidity FR)
The fluidity of the carrier core material was measured according to JIS Z 2502.

(平均粒径D50、粒径22μm以下の割合および粒径26μm以下の割合)
キャリア芯材の平均粒径D50と粒径22μm以下の体積割合、および粒径26μm以下の個数割合は、レーザー回折式粒度分布測定装置(日機装社製「マイクロトラックModel9320-X100」)を用いて測定した。
(Average particle size D 50 , ratio of particle size 22 μm or less and ratio of particle size 26 μm or less)
The average particle size D50 of the carrier core material, the volume ratio of the particle size of 22 μm or less, and the number ratio of the particle size of 26 μm or less are determined by using a laser diffraction type particle size distribution measuring device (“Microtrack Model 9320-X100” manufactured by Nikkiso Co., Ltd.). It was measured.

(細孔容積)
細孔容積の測定については、以下の通り行った。評価装置は、Quantachrome社製のPOREMASTER-60GTを使用した。具体的には、測定条件としては、Cell Stem Volume:0.5ml、Headpressure:20PSIA、水銀の表面張力:485.00erg/cm、水銀の接触角:130.00degrees、高圧測定モード:Fixed Rate、Moter Speed:1、高圧測定レンジ:20.00~10000.00PSIとし、サンプル1.200gを秤量して0.5ml(cm)のセルに充填して測定を行った。また、10000.00PSI時の容積B(ml/g)から100PSI時の容積A(ml/g)を差し引いた値を、細孔容積とした。
(Pore volume)
The measurement of the pore volume was performed as follows. As the evaluation device, POREMASTER-60GT manufactured by Quantachrome was used. Specifically, as the measurement conditions, Cell Stem Volume: 0.5 ml, Headpressure: 20PSIA, surface tension of mercury: 485.00 erg / cm 2 , mercury contact angle: 130.00 degrees, high-pressure measurement mode: Fixed Rate, Moter Speed: 1, high pressure measurement range: 20.00 to 10000.00 PSI, 1.200 g of sample was weighed and filled in a 0.5 ml (cm 3 ) cell for measurement. Further, the value obtained by subtracting the volume A (ml / g) at 100 PSI from the volume B (ml / g) at 10000.00 PSI was defined as the pore volume.

(BET比表面積)
BET一点法比表面積測定装置(株式会社マウンテック製、型式:Macsorb HM model-1208)を用いて評価を行った。具体的には、サンプルは、10.000gを秤量して直径15mmのセルに充填し、200℃で、30分間脱気して測定を行った。
(BET specific surface area)
Evaluation was performed using a BET one-point method specific surface area measuring device (manufactured by Mountech Co., Ltd., model: Macsorb HM model-1208). Specifically, the sample was weighed at 10.000 g, filled in a cell having a diameter of 15 mm, degassed at 200 ° C. for 30 minutes, and measured.

(内部空隙率)
キャリア芯材を樹脂中に分散させ、真空脱泡処理を施すことでキャリア芯材内に樹脂を充填させた後、補助板に塗布し、温度200℃で20分間熱処理を行って樹脂を硬化させた。その後クロスセッションポリッシャー(SM-09010 日本電子株式会社製)を用いてキャリア芯材をカットした。そしてキャリア芯材の断面を走査型電子顕微鏡(JSM-6510LA型 日本電子株式会社製)で撮影した。撮影した画像から画像解析ソフト(Image-Pro Plus、Media Cybernetics社製)を用いて、粒子面積A〈空隙を含む,μm〉、粒子面積B〈空隙を含まない,μm〉を測定した。断面観察像においては、視野中にキャリア芯材の端部をカットしたものも存在することから、測定には20μm以上の粒子を選択した。各面積は1粒子毎に算出し、100粒子の平均値をそのキャリア芯材の粒子面積A(μm)、粒子面積B(μm)とした。そして、下記式(2)から内部空隙率を算出した。
内部空隙率(%)=(粒子面積A-粒子面積B)/粒子面積A×100・・・(2)
(Internal porosity)
The carrier core material is dispersed in the resin and vacuum defoamed to fill the carrier core material with the resin, which is then applied to an auxiliary plate and heat-treated at a temperature of 200 ° C. for 20 minutes to cure the resin. rice field. After that, the carrier core material was cut using a cross session polisher (SM-09010, manufactured by JEOL Ltd.). Then, the cross section of the carrier core material was photographed with a scanning electron microscope (JSM-6510LA type manufactured by JEOL Ltd.). The particle area A <including voids, μm 2 > and the particle area B <without voids, μm 2 > were measured from the captured images using image analysis software (Image-Pro Plus, manufactured by Media Cybernetics). In the cross-sectional observation image, since some of the carrier core materials were cut off in the field of view, particles having a size of 20 μm or more were selected for the measurement. Each area was calculated for each particle, and the average value of 100 particles was taken as the particle area A (μm 2 ) and the particle area B (μm 2 ) of the carrier core material. Then, the internal porosity was calculated from the following formula (2).
Internal porosity (%) = (particle area A-particle area B) / particle area A × 100 ... (2)

(最大山谷深さRzの測定方法)
超深度カラー3D形状測定顕微鏡(「VK-X100」株式会社キーエンス製)を用い、100倍対物レンズで表面を観察して求めた。具体的には、まず、表面の平坦な粘着テープにキャリア芯材を固定し、100倍対物レンズで測定視野を決定した後、オートフォーカス機能を用いて焦点を粘着テープ面に調整した。キャリア芯材を固定した平坦な粘着テープ面に対し、垂直方向(Z方向)からレーザー光線を照射し、面のX方向Y方向に走査した。また、表面からの反射光の強度が最大となった時のレンズの高さ位置をつなぎ合わせることでZ方向のデータを取得した。これらX、YおよびZ方向の位置データをつなぎ合わせキャリア芯材表面の3次元形状を得た。なお、キャリア芯材表面の3次元形状の取り込みにはオート撮影機能を用いた。
各パラメータの測定には、粒子粗さ検査ソフトウェア(三谷商事製)を用いて行った。まず、前処理として、得られたキャリア芯材表面の3次元形状の粒子認識と形状選別を行った。粒子認識は以下の方法で行った。撮影によって得られた3次元形状のうち、Z方向の最大値を100%、最小値を0%として最大値から最小値までの間を100等分する。この100~35%にあたる領域を抽出し、独立した領域の輪郭を粒子輪郭として認識した。次に形状選別で粗大、微小、会合などの粒子を除外した。この形状選別を行うことで以降に行う極率補正時の誤差を小さくすることができる。具体的には面積相当径28μm以下、38μm以上、針状比1.15以上に該当する粒子を除外した。ここで針状比とは粒子の最大長/対角幅の比から算出したパラメータであり、対角幅とは最大長に平行な2本の直線で粒子を挟んだときの2直線の最短距離を表す。
つぎに表面の3次元形状から解析に用いる部分の取り出しを行った。まず上記の方法で認識した粒子輪郭から求められる重心を中心として一辺の長さが15.0μmの正方形を描く。描いた正方形の中に21本の平行線を引き、その線分上にあたる粗さ曲線を21本分取り出した。
(Measurement method of maximum mountain valley depth Rz)
The surface was observed with a 100x objective lens using an ultra-deep color 3D shape measuring microscope (“VK-X100” manufactured by KEYENCE CORPORATION). Specifically, first, the carrier core material was fixed to the adhesive tape having a flat surface, the measurement field of view was determined by the 100x objective lens, and then the focus was adjusted to the adhesive tape surface by using the autofocus function. The flat adhesive tape surface on which the carrier core material was fixed was irradiated with a laser beam from the vertical direction (Z direction) and scanned in the X direction and Y direction of the surface. In addition, data in the Z direction was acquired by connecting the height positions of the lenses when the intensity of the reflected light from the surface was maximized. These position data in the X, Y and Z directions were joined to obtain a three-dimensional shape of the surface of the carrier core material. An automatic photographing function was used to capture the three-dimensional shape of the surface of the carrier core material.
Each parameter was measured using particle roughness inspection software (manufactured by Mitani Corporation). First, as a pretreatment, particle recognition and shape selection of the three-dimensional shape of the surface of the obtained carrier core material were performed. Particle recognition was performed by the following method. Of the three-dimensional shapes obtained by photographing, the maximum value in the Z direction is set to 100%, the minimum value is set to 0%, and the range from the maximum value to the minimum value is divided into 100 equal parts. The region corresponding to 100 to 35% of this was extracted, and the contour of the independent region was recognized as the particle contour. Next, the shape selection excluded particles such as coarse, micro, and association. By performing this shape selection, it is possible to reduce the error during the subsequent pole factor correction. Specifically, particles having an area equivalent diameter of 28 μm or less, 38 μm or more, and a needle-like ratio of 1.15 or more were excluded. Here, the needle-like ratio is a parameter calculated from the ratio of the maximum length / diagonal width of the particles, and the diagonal width is the shortest distance between the two straight lines when the particles are sandwiched between two straight lines parallel to the maximum length. Represents.
Next, the part used for the analysis was taken out from the three-dimensional shape of the surface. First, a square having a side length of 15.0 μm is drawn around the center of gravity obtained from the particle contour recognized by the above method. Twenty-one parallel lines were drawn in the drawn square, and 21 roughness curves on the line segments were taken out.

キャリア芯材は略球形状であるため、取り出した粗さ曲線は、バックグラウンドとして一定の曲率を持っている。このため、バックグラウンドの補正として、最適な二次曲線をフィッティングし、粗さ曲線から差し引く補正を行った。この場合、ローパスフィルタを1.5μmの強度で適用し、カットオフ値λを80μmとした。 Since the carrier core material has a substantially spherical shape, the extracted roughness curve has a constant curvature as a background. Therefore, as a background correction, an optimum quadratic curve was fitted and a correction was performed by subtracting it from the roughness curve. In this case, a low-pass filter was applied with an intensity of 1.5 μm, and the cutoff value λ was set to 80 μm.

最大山谷深さRzは、粗さ曲線の中で最も高い山の高さと最も深い谷の深さの和として求めた。以上説明した最大高さRzの測定は、JIS B0601(2001年度版)に準拠して行われるものである。最大高さRzの算出には、各パラメータの平均値として、50粒子の平均値を用いることとした。 The maximum valley depth Rz was calculated as the sum of the height of the highest mountain and the depth of the deepest valley in the roughness curve. The measurement of the maximum height Rz described above is performed in accordance with JIS B0601 (2001 version). For the calculation of the maximum height Rz, the average value of 50 particles was used as the average value of each parameter.

(磁気特性)
室温専用振動試料型磁力計(VSM)(東英工業社製「VSM-P7」)を用いて、外部磁場を0~79.58×10A/m(10000エルステッド)の範囲で1サイクル連続的に印加して、磁場79.58×10A/m(1,000エルステッド)を印加した際の磁化σ1k、飽和磁化σ、残留磁化σ、保持力Hを測定した。
(Magnetic characteristics)
Using a vibrating sample magnetometer (VSM) for room temperature (“VSM-P7” manufactured by Toei Kogyo Co., Ltd.), the external magnetic field is continuously applied for one cycle in the range of 0 to 79.58 × 10 4 A / m (10000 oersted). When a magnetic field of 79.58 × 10 3 A / m (1,000 oersted) was applied, the magnetization σ 1 k , saturation magnetization σ s , residual magnetization σ r , and holding force H c were measured.

(電気抵抗)
電極として表面を電解研磨した板厚2mmの真鍮板2枚を電極間距離が2mmとなるように配置し、2枚の電極板の間の空隙にキャリア芯材200mgを装入したのち、それぞれの電極板の背後に断面積240mmの磁石を配置して電極間に被測定粉体のブリッジを形成させた状態で電極間に500V直流電圧を印加し、キャリア芯材を流れる電流値を4端子法により測定した。その電流値と、電極間距離2mmおよび断面積240mmからキャリア芯材の電気抵抗を算出した。
(Electrical resistance)
Two brass plates with a thickness of 2 mm whose surfaces are electrolytically polished as electrodes are arranged so that the distance between the electrodes is 2 mm, and 200 mg of a carrier core material is charged in the gap between the two electrode plates, and then each electrode plate is used. A magnet with a cross-sectional area of 240 mm 2 is placed behind the electrode, and a 500 V DC voltage is applied between the electrodes with a bridge of the powder to be measured formed between the electrodes, and the current value flowing through the carrier core material is measured by the 4-terminal method. It was measured. The electric resistance of the carrier core material was calculated from the current value, the distance between the electrodes of 2 mm, and the cross-sectional area of 240 mm 2 .

(静的絶縁破壊電圧Vs)
静的絶縁破壊電圧Vsは、電極として表面を電解研磨した板厚2mmの真鍮板2枚を電極間距離が2mmとなるように配置し、2枚の電極板の間の空隙にキャリア芯材200mgを装入したのち、それぞれの電極板の背後に断面積240mmの磁石を配置して電極間に被測定粉体のブリッジを形成させた状態で電極間に、直流電圧を印加し、キャリア芯材を流れる電流値を4端子法により測定した。直流電圧は、100Vを開始電圧とし、100V-100秒を1ステップとし印加電圧を増加した。印加電圧を増加させていく過程において電極間を流れる電流値が100mA以上となる電圧をブリッジ式測定器における静的絶縁破壊電圧Vsとした。
(Static breakdown voltage Vs)
For the static insulation breakdown voltage Vs, two brass plates with a thickness of 2 mm whose surfaces are electrolytically polished as electrodes are arranged so that the distance between the electrodes is 2 mm, and a carrier core material of 200 mg is placed in the gap between the two electrode plates. After inserting, a magnet with a cross-sectional area of 240 mm 2 is placed behind each electrode plate to form a bridge of the powder to be measured between the electrodes, and a DC voltage is applied between the electrodes to form a carrier core material. The flowing current value was measured by the 4-terminal method. As for the DC voltage, the applied voltage was increased with 100 V as the starting voltage and 100 V-100 seconds as one step. The voltage at which the current value flowing between the electrodes becomes 100 mA or more in the process of increasing the applied voltage was defined as the static dielectric breakdown voltage Vs in the bridge type measuring instrument.

(動的絶縁破壊電圧Vd)
動的絶縁破壊電圧Vdは、図2に示すように、キャリア撹拌部、現像ローラとアルミ電極からなる装置を用いて測定を行った。キャリア芯材120gを図2に示す装置に充填し、現像ローラをアルミ電極に対してギャップd=0.07cmの間隔をあけて対向させ、対向部において、現像ローラを40rpm、アルミ電極を25rpmの回転数で同一方向に回転させた。この状態で、現像ローラとアルミ電極間に直流電圧Vを印加したときの電流Iを計測した。直流電圧は、100Vを開始電圧とし、100V-10秒を1ステップとし印加電圧を増加した。印加電圧を増加させていく過程において電極間を流れる電流値が3mA以上となる電圧を動的抵抗測定器における動的絶縁破壊電圧Vdとした。
なお、本測定においては、現像ローラとして直径30mm、長さ100mmのビーズブラスト処理を施したアルミ円筒体、アルミ電極として直径30mm、長さ100mmのアルミ円筒体を用い、現像ローラと規制板の距離を0.7mmとなるように調整し測定を行った。
(Dynamic breakdown voltage Vd)
As shown in FIG. 2, the dynamic breakdown voltage Vd was measured using a device consisting of a carrier stirring unit, a developing roller, and an aluminum electrode. 120 g of the carrier core material is filled in the apparatus shown in FIG. 2, and the developing rollers are opposed to the aluminum electrodes at a gap d = 0.07 cm. It was rotated in the same direction at the number of rotations. In this state, the current I when the DC voltage V was applied between the developing roller and the aluminum electrode was measured. As for the DC voltage, the applied voltage was increased with 100 V as the starting voltage and 100 V-10 seconds as one step. The voltage at which the current value flowing between the electrodes becomes 3 mA or more in the process of increasing the applied voltage is defined as the dynamic breakdown voltage Vd in the dynamic resistance measuring instrument.
In this measurement, an aluminum cylinder with a diameter of 30 mm and a length of 100 mm that has been subjected to bead blasting is used as the developing roller, and an aluminum cylinder with a diameter of 30 mm and a length of 100 mm is used as the aluminum electrode, and the distance between the developing roller and the regulation plate is used. Was adjusted to 0.7 mm and measured.

(背景部キャリア付着の評価)
図3に示した構造の現像装置(現像ローラの周速度v:406mm/sec,感光体ドラムの周速度v:205mm/sec,感光体ドラム-現像ローラ間距離:0.3mm)に作製した二成分現像剤を投入し、白紙原稿を10枚現像し、その感光体表面に付着しているキャリア個数をルーペ観察により5視野カウントし、その平均の100cm当たりのキャリア付着個数をもってキャリア付着とした。この評価を初期およびA4タテ用紙100k枚の印刷に要する時間に相当する時間(100k枚印刷相当時間)現像装置を駆動させた後に行った。
「◎」:10個未満
「○」:10個以上30個未満
「△」:30個以上50個未満
「×」:50個以上
(Evaluation of background carrier adhesion)
Manufactured in a developing device having the structure shown in FIG. 3 (developing roller peripheral speed v 1 : 406 mm / sec, photoconductor drum peripheral speed v 2 : 205 mm / sec, photoconductor drum-developing roller distance: 0.3 mm). The above-mentioned two-component developer is added, 10 blank sheets are developed, the number of carriers adhering to the surface of the photoconductor is counted in 5 fields by loupe observation, and the average number of carriers adhering to 100 cm 2 is used as the carrier adhering. And said. This evaluation was performed at the initial stage and after the developing apparatus was driven for a time corresponding to the time required for printing 100 k sheets of A4 vertical paper (time equivalent to printing 100 k sheets).
"◎": Less than 10 pieces "○": 10 pieces or more and less than 30 pieces "△": 30 pieces or more and less than 50 pieces "×": 50 pieces or more

(画像中白抜けの評価)
図3に示した構造の現像装置(現像ローラの周速度v:406mm/sec,感光体ドラムの周速度v:205mm/sec,感光体ドラム-現像ローラ間距離:0.3mm)に作製した二成分現像剤を投入し、初期および100k枚印刷相当時間現像装置を駆動させた後に黒ベタ画像を印刷し、黒ベタ部における白抜けの度合を目視により下記基準で評価した。
「◎」:白抜けが確認できず、画像として良好なもの。
「○」:白抜けが5個未満
「△」:白抜けが5~10個
「×」:明確に白抜けが10個を超えて存在する。
(Evaluation of white spots in the image)
Manufactured in a developing device having the structure shown in FIG. 3 (developing roller peripheral speed v 1 : 406 mm / sec, photoconductor drum peripheral speed v 2 : 205 mm / sec, photoconductor drum-development roller distance: 0.3 mm). A solid black image was printed after the above-mentioned two-component developer was added and the developing apparatus was driven for an initial period and equivalent to 100k sheet printing, and the degree of white spots in the solid black portion was visually evaluated according to the following criteria.
"◎": No white spots can be confirmed, which is a good image.
"○": Less than 5 white spots "Δ": 5 to 10 white spots "×": Clearly more than 10 white spots.

Figure 2022090791000002
Figure 2022090791000002

Figure 2022090791000003
Figure 2022090791000003

表1及び表2から明らかなように、静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとの差が100V又は200Vで、内部空隙率が2.9%以下である実施例1~11のキャリア芯材では、初期と100k枚印刷相当時間駆動後とにおいて背景部キャリア付着は10個未満あるいは30個未満と実使用上問題のないものであり、画像中白抜けは確認できないか5個未満と実使用上問題のないものであった。 As is clear from Tables 1 and 2, the difference between the static dielectric breakdown voltage Vs and the dynamic breakdown voltage Vd is 100V or 200V, and the internal void ratio is 2.9% or less in Examples 1 to 11. With the carrier core material, there is no problem in actual use with less than 10 or less than 30 background carrier adhesions at the initial stage and after driving for a time equivalent to 100k sheet printing, and white spots in the image cannot be confirmed or less than 5 pieces. There was no problem in actual use.

これに対して、静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとの差が(-100V)で、内部空隙率が9.1%と大きい比較例1のキャリア芯材では、初期と100k枚印刷相当時間駆動後とにおいて背景部キャリア付着が30個以上50個未満と実使用上問題のあるレベルで発生した。また100k枚印刷相当時間駆動後において画像中白抜けが10個を超えて発生した。 On the other hand, the carrier core material of Comparative Example 1 in which the difference between the static dielectric breakdown voltage Vs and the dynamic breakdown voltage Vd is (-100V) and the internal void ratio is as large as 9.1% is 100k from the initial stage. After driving for a time equivalent to sheet printing, background carrier adhesion occurred at a level of 30 or more and less than 50, which was a problem in actual use. Further, after driving for a time equivalent to 100k sheet printing, more than 10 white spots occurred in the image.

静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとの差が(-100V)である比較例2のキャリア芯材では、画像中白抜けは確認されなかったが、初期において背景部キャリア付着が30個以上50個未満と実使用上問題のあるレベルで発生した。 In the carrier core material of Comparative Example 2 in which the difference between the static dielectric breakdown voltage Vs and the dynamic dielectric breakdown voltage Vd was (-100V), no white spots were confirmed in the image, but background carrier adhesion was initially observed. It occurred at a level where there was a problem in actual use, with 30 or more and less than 50.

静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとの差が(-600V)で、内部空隙率が3.6%と大きい比較例3のキャリア芯材では、背景部キャリア付着が初期において50個以上と激しく発生し、100k枚印刷相当時間駆動後においても30個以上50個未満と実使用上問題のあるレベルで発生した。また100k枚印刷相当時間駆動後において画像中白抜けが5~10個と実使用上問題のあるレベルで発生した。 In the carrier core material of Comparative Example 3 in which the difference between the static dielectric breakdown voltage Vs and the dynamic dielectric breakdown voltage Vd is (-600V) and the internal void ratio is as large as 3.6%, the background carrier adhesion is 50 at the initial stage. It occurred violently with more than 30 pieces, and even after driving for a time equivalent to 100k sheet printing, it occurred at a level of 30 or more and less than 50 pieces, which is a problem in actual use. In addition, after driving for a time equivalent to 100k sheet printing, white spots in the image were 5 to 10 at a level that was problematic in actual use.

静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとの差が(-200V)である比較例4のキャリア芯材では、初期において背景部キャリア付着が30個以上50個未満と実使用上問題のあるレベルで発生した。 In the carrier core material of Comparative Example 4 in which the difference between the static dielectric breakdown voltage Vs and the dynamic dielectric breakdown voltage Vd is (-200V), the background carrier adhesion is 30 or more and less than 50 at the initial stage, which is a problem in actual use. Occurred at a certain level.

本発明のキャリア芯材によれば、トナーに対する良好な摩擦帯電特性が得られる共に背景部キャリア付着が抑制され、また高速の画像形成装置に用いた場合であっても画像中白抜けの発生が抑制され有用である。 According to the carrier core material of the present invention, good triboelectric characteristics for toner can be obtained, carrier adhesion to the background portion is suppressed, and white spots occur in the image even when used in a high-speed image forming apparatus. It is suppressed and useful.

3 現像ローラ
5 感光体ドラム
3 Develop roller 5 Photoreceptor drum

Claims (8)

フェライト粒子から構成されるキャリア芯材であって、
静的絶縁破壊電圧Vsと動的絶縁破壊電圧Vdとが下記式(1)を満足し、
下記式(2)から算出されるフェライト粒子の内部空隙率が3.0%以下である
ことを特徴とするキャリア芯材。
0(V)≦Vs-Vd≦1000(V)・・・・・・・・・・・・・・・・(1)
内部空隙率(%)=(粒子面積A-粒子面積B)/粒子面積A×100・・・(2)
式中、粒子面積A:内部空隙を含む粒子断面積
粒子面積B:内部空隙を含まない粒子断面積
A carrier core material composed of ferrite particles.
The static dielectric breakdown voltage Vs and the dynamic breakdown voltage Vd satisfy the following equation (1).
A carrier core material having an internal porosity of ferrite particles calculated from the following formula (2) of 3.0% or less.
0 (V) ≤ Vs-Vd ≤ 1000 (V) ... (1)
Internal porosity (%) = (particle area A-particle area B) / particle area A × 100 ... (2)
In the formula, particle area A: particle cross-sectional area including internal voids Particle area B: particle cross-sectional area not including internal voids
前記フェライト粒子の組成が、MnO:35mol%以上55mol%以下、Fe:45mol%以上65mol%以下を含有し、その一部をSrO:0.1mol%以上5.0mol%以下、SnO:0.1mol%以上5.0mol%以下で置換したものである請求項1に記載のキャリア芯材。 The composition of the ferrite particles contains MnO: 35 mol% or more and 55 mol% or less, Fe 2 O 3 : 45 mol% or more and 65 mol% or less, and a part thereof is SrO: 0.1 mol% or more and 5.0 mol% or less, SnO :. The carrier core material according to claim 1, wherein the carrier core material is substituted with 0.1 mol% or more and 5.0 mol% or less. 最大山谷深さRzが1.9μm以上2.6μm以下である請求項1又は2記載のキャリア芯材。 The carrier core material according to claim 1 or 2, wherein the maximum mountain valley depth Rz is 1.9 μm or more and 2.6 μm or less. 磁場79.58×10A/m(1000エルステッド)を印加した際の磁化σ1kが63Am/kg以上73Am/kg以下である請求項1~3のいずれかに記載のキャリア芯材。 The carrier core material according to any one of claims 1 to 3, wherein the magnetization σ 1 k when a magnetic field of 79.58 × 10 3 A / m (1000 oersted) is applied is 63 Am 2 / kg or more and 73 Am 2 / kg or less. 細孔容積が0.001cm/g以上0.015cm/g以下である請求項1~4のいずれかに記載のキャリア芯材。 The carrier core material according to any one of claims 1 to 4, wherein the pore volume is 0.001 cm 3 / g or more and 0.015 cm 3 / g or less. レーザー回折式粒度分布測定装置で測定される個数基準の粒度分布における粒径26μm以下の割合が25%以下である請求項1~5のいずれかに記載のキャリア芯材。 The carrier core material according to any one of claims 1 to 5, wherein the ratio of the particle size of 26 μm or less in the number-based particle size distribution measured by the laser diffraction type particle size distribution measuring device is 25% or less. 請求項1~6のいずれかに記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。 A carrier for electrophotographic development, wherein the surface of the carrier core material according to any one of claims 1 to 6 is coated with a resin. 請求項7記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。 An electrophotographic developer comprising the electrophotographic developing carrier and toner according to claim 7.
JP2020203307A 2020-12-08 2020-12-08 Carrier core material Pending JP2022090791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020203307A JP2022090791A (en) 2020-12-08 2020-12-08 Carrier core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020203307A JP2022090791A (en) 2020-12-08 2020-12-08 Carrier core material

Publications (1)

Publication Number Publication Date
JP2022090791A true JP2022090791A (en) 2022-06-20

Family

ID=82060711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020203307A Pending JP2022090791A (en) 2020-12-08 2020-12-08 Carrier core material

Country Status (1)

Country Link
JP (1) JP2022090791A (en)

Similar Documents

Publication Publication Date Title
JP5751688B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6929086B2 (en) Carrier core material
WO2016158548A1 (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography both including same
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5957623B1 (en) Carrier core
JP5726360B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP7275361B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP2018025702A (en) Carrier core material
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP7075913B2 (en) Carrier core material
JP2021117281A (en) Ferrite carrier core material, electrophotographic development carrier using the same, and electrophotographic developer
JP2022090791A (en) Carrier core material
JP6924885B1 (en) Carrier core material
JP6864054B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic development
JP7085507B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic
JP7433090B2 (en) Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP6916727B2 (en) Carrier core material
JP2021182073A (en) Ferrite carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography
JP2021124618A (en) Ferrite carrier core material, and carrier for electrophotography development and developer for electrophotography using the same
JP2023062747A (en) Carrier core material, electrophotographic development carrier using the same, and electrophotographic developer
JP2021173911A (en) Ferrite carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography
JP2023020082A (en) Carrier core
JP2022143658A (en) Carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231010