JP2016025288A - Ferrite magnetic material - Google Patents

Ferrite magnetic material Download PDF

Info

Publication number
JP2016025288A
JP2016025288A JP2014150307A JP2014150307A JP2016025288A JP 2016025288 A JP2016025288 A JP 2016025288A JP 2014150307 A JP2014150307 A JP 2014150307A JP 2014150307 A JP2014150307 A JP 2014150307A JP 2016025288 A JP2016025288 A JP 2016025288A
Authority
JP
Japan
Prior art keywords
mass
magnetic
magnetic carrier
magnetic material
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014150307A
Other languages
Japanese (ja)
Inventor
勇人 鎌井
Yuto Kamai
勇人 鎌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2014150307A priority Critical patent/JP2016025288A/en
Publication of JP2016025288A publication Critical patent/JP2016025288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the influence of a minor element which makes a factor obstructing the high-level stabilization of the quality of a carrier core making the core of a magnetic carrier, thereby meeting the rising demand for achievement of a higher performance of a magnetic carrier with the increase in the printing speed.SOLUTION: A ferrite magnetic material comprises, as primary components, Fe, and an additive element including at least one of Mn, Mg, Ti, Cu, Zn, Ni, Sr and Ca. The ferrite magnetic material has an average particle diameter of 1-100 μm. In the ferrite magnetic material, the total amount of impurities except Fe, the additive element and oxygen is 0.5 mass% or less. The impurities include at least two kinds of elements of Si, Al, Cr, Cu, P, Cl, Ni, Mo, Zn, Ti, sulfur, Ca, Mn and Sr.SELECTED DRAWING: None

Description

本発明は、磁性を有する粉末または粒子からなる磁性材に関する。磁性材は、磁石、磁気記録媒体に用いられているものであり、特には、電子写真現像剤に用いられる磁性キャリア芯材および磁性キャリア芯材を用いて樹脂などをコーティングした磁性キャリア、並びにトナー等を備える電子写真現像剤に関する。   The present invention relates to a magnetic material made of magnetic powder or particles. The magnetic material is used for magnets and magnetic recording media, and in particular, a magnetic carrier core material used for an electrophotographic developer, a magnetic carrier coated with a resin using the magnetic carrier core material, and toner And the like.

電子写真の乾式現像法は、電子写真現像剤から粉体のトナーを感光体上の静電潜像に付着させ、当該付着したトナーを所定の紙等の媒体へ転写して現像する方法である。この方法は、電子写真現像剤として、トナーのみを含む1成分系現像剤を用いる方法と、トナーと磁性キャリアとを含む2成分系現像剤を用いる方法とに大別される。近年では、トナーの荷電制御が容易で安定した高画質が得ることができ、かつ高速現像が可能な2成分系現像法が電子写真現像法の主流となっている。   The electrophotographic dry development method is a method in which powder toner from an electrophotographic developer is attached to an electrostatic latent image on a photoreceptor, and the attached toner is transferred to a medium such as predetermined paper for development. . This method is roughly divided into a method using a one-component developer containing only toner as an electrophotographic developer and a method using a two-component developer containing toner and a magnetic carrier. In recent years, a two-component development method that can easily control charging of toner, obtain a stable high image quality, and can perform high-speed development has become the mainstream of the electrophotographic development method.

近年、印刷速度の高速化に伴い磁性キャリアの電子写真現像機内での攪拌速度が増加する傾向にある。そして当該高速攪拌に伴う、磁性キャリア粉粒子の破砕、当該破砕による不定形の微粉発生、当該不定形微粉発生に起因する、さらなるキャリア飛散の増加など技術的課題は多い。電子写真現像の高速・高画質化、電子写真現像機の高性能、多機能化の中、磁性キャリアもその品質、性能の優劣を左右する要素として注目されている。技術の高度化に伴い、従来にはない微細な事象も着目されている。   In recent years, with the increase in printing speed, the stirring speed of magnetic carriers in an electrophotographic developing machine tends to increase. There are many technical problems such as crushing of magnetic carrier powder particles, generation of irregular fine powder due to the crushing, and further increase in carrier scattering resulting from the generation of irregular fine powder. As the speed and image quality of electrophotographic development increases, and the performance and versatility of electrophotographic developing machines, magnetic carriers are also attracting attention as factors that influence the quality and performance. With the advancement of technology, attention has also been paid to minute phenomena that have not occurred in the past.

例えば、特許文献1は、該磁性キャリアの芯材中のFeの原子価状態を制御することで、現像スリーブ上における細かい穂立ちを達成するため、磁性キャリアの粒子径の小粒径化が図られ、磁性キャリアの小粒径化を実施しても、1粒子当りの磁力は十分な高さがあり、磁性キャリアが像担持体上へ飛散を防止し、画像劣化する技術が開示されている。また、Cu(銅)、Zn(亜鉛)、Mn(マンガン)、Co(コバルト)、Cr(クロム)などの環境負荷性の大きな元素を含有しない磁性キャリア粉組成としている技術が開示されている。 For example, in Patent Document 1, by controlling the valence state of Fe in the core material of the magnetic carrier, fine graining on the developing sleeve is achieved, so that the particle diameter of the magnetic carrier is reduced. Even when the magnetic carrier is reduced in size, the magnetic force per particle is sufficiently high, and the technology is disclosed in which the magnetic carrier is prevented from scattering onto the image carrier and the image is deteriorated. . In addition, a technique is disclosed in which a magnetic carrier powder composition that does not contain elements with high environmental impact such as Cu (copper), Zn (zinc), Mn (manganese), Co (cobalt), and Cr (chromium) is disclosed.

磁性材(例えばキャリア芯材)は、原料として酸化鉄粉の他、添加元素としてMn(マンガン)、Mg(マグネシウム)など磁性に大きく影響する元素の他、C(炭素)、B(硼素)、Ca(カルシウム)、Sr(ストロンチウム)、Al(アルミニウム)など、要求性能に応じて非金属、金属元素、有機物が様々に添加されている。添加元素は、複数種で添加することが多く、それぞれの元素が単独、相互作用などを製造段階で様々に発生し、磁性キャリア芯材ならびに磁性キャリアの各特性優劣に影響している。   In addition to iron oxide powder as a raw material, the magnetic material (for example, carrier core material) includes elements that greatly affect magnetism such as Mn (manganese) and Mg (magnesium) as additive elements, as well as C (carbon), B (boron), Nonmetals, metal elements, and organic substances such as Ca (calcium), Sr (strontium), and Al (aluminum) are added in accordance with required performance. The additive elements are often added in a plurality of types, and each element alone causes various interactions and the like at the manufacturing stage, affecting the superiority of each characteristic of the magnetic carrier core material and the magnetic carrier.

磁性材は、金属元素毎に原料を用意し、所望の成分に応じて混合される。磁性材の原料は、酸化物、炭酸塩などの化合物が用いられる。当然として、磁性材の原料は、一定の品質以上のものを用いるが、金属成分の原料は鉱石からの製錬によるものであり、供給側もコントロールができない不可避な微量元素が含まれている。この不可避な微量元素は、詳細に分析しなければ分からず、また、微量元素の影響は不明である。このため、微量元素の含有量をさらに減じた原料は、高額であり、市場での供給量も十分にないため、使用することを敬遠されている。また、なんらかの微量元素が含まれていることは予測できたにせよ、不明な微量元素を分析するためには分析費用も発生し、その影響の不明瞭さから対応は図られていなかった。 The magnetic material is prepared for each metal element, and is mixed according to the desired component. Compounds such as oxides and carbonates are used as raw materials for the magnetic material. Naturally, the raw material of the magnetic material is of a certain quality or higher, but the raw material of the metal component is smelted from ore and contains inevitable trace elements that cannot be controlled by the supply side. This inevitable trace element is not known unless it is analyzed in detail, and the influence of the trace element is unknown. For this reason, since the raw material which further reduced the content of trace elements is expensive and the supply amount in the market is not sufficient, it is avoided to use it. Moreover, although it could be predicted that some trace elements were included, analysis costs were incurred to analyze unknown trace elements, and no response was made due to the ambiguity of the effects.

ところが、高度化する画質への対応をするためには、高度な品質の安定が望まれ、品質の安定への対策が高度に望まれている。しかし、品質の問題は、複数の元素からなる要因が重複すること、かつ磁性キャリア芯材は、粒径は数十μm程度の微小な粒子を集合した粉体であり、実用的に使用される量からすれば、個数は膨大であり、粒子レベルで個別に不具合を追求することは困難であり、真の原因の究明と対策は困難であった。   However, in order to cope with an advanced image quality, high quality stability is desired, and measures for quality stability are highly desired. However, the problem of quality is that factors consisting of a plurality of elements overlap, and the magnetic carrier core material is a powder in which fine particles having a particle size of about several tens of μm are aggregated, and is practically used. In terms of quantity, the number was enormous, and it was difficult to pursue individual defects at the particle level, and it was difficult to investigate the true cause and take countermeasures.

特開2009−157078号公報JP 2009-157078 A

従来の技術に係る磁性キャリアが、さらに高度化する画質等の要求に対応するためには、キャリア芯材の高度の品質の安定化のため、微量であっても阻害要因を制御するため、微量元素による阻害要因の影響を抑制することが必要であることに着目した。
近年、印刷速度の高速化に伴い磁性キャリアの電子写真現像機内での攪拌速度が増加する傾向にある。そして当該高速攪拌に伴う、磁性キャリア粉粒子の破砕、当該破砕による不定形の微粉発生、当該不定形微粉発生に起因する、さらなるキャリア飛散の増加など技術的課題は多い。
In order for magnetic carriers according to the conventional technology to meet the demands for higher image quality and the like, in order to stabilize the high quality of the carrier core material, to control the obstruction factor even if it is a minute amount, We focused on the need to suppress the influence of elemental obstruction factors.
In recent years, with the increase in printing speed, the stirring speed of magnetic carriers in an electrophotographic developing machine tends to increase. There are many technical problems such as crushing of magnetic carrier powder particles, generation of irregular fine powder due to the crushing, and further increase in carrier scattering resulting from the generation of irregular fine powder.

本発明は、このような状況の下でなされたものであり、その解決しようとする課題は、キャリア芯材の高度の品質の安定化のため、微量であっても阻害要因となる微量元素による特性劣化の影響を抑制することにある。   The present invention has been made under such circumstances, and the problem to be solved is due to a trace element that becomes an obstructive factor even if it is a trace amount in order to stabilize the high quality of the carrier core material. It is to suppress the influence of characteristic deterioration.

上述の課題を解決するため、本発明者らが鋭意研究を行った結果、磁性材の製造工程において、磁性材の原料の粉砕段階で微量元素が最も露出される機会であり、粉砕時が微量元素の影響を抑制する処理を施すのに適した時機であると捉えた。そこで、粉砕時おいて原料と水分とを接触させるスラリー状態を制御することで、微量元素が水分と反応、または溶出され、磁性材への影響を抑制できるとした知見を得て本発明の磁性材の発明に至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, in the magnetic material manufacturing process, the trace element is most exposed at the stage of pulverizing the raw material of the magnetic material. The time was considered to be suitable for processing to suppress the influence of elements. Therefore, by controlling the slurry state in which the raw material and water are brought into contact with each other at the time of pulverization, the knowledge that the trace elements are reacted with or eluted from the water and the influence on the magnetic material can be suppressed, and the magnetic properties of the present invention are obtained. Invented the material.

すなわち、上述の課題を解決するための第1の発明は、
主成分がFeと、Mn、Mg、Ti、Cu、Zn、Ni、SrおよびCaのいずれかの少なくても1種以上からなる添加元素であるフェライト磁性材において、平均粒径が1〜100μmであり、当該フェライト磁性材におけるFeと、添加元素と酸素とを除いた不純物の総量が、0.5質量%以下であり、前記不純物がSi、Al、Cr、Cu、P、Cl、Ni、Mo、Zn、Ti、硫黄、Ca,Mn、Srのいずれかの少なくとも2種以上を含むフェライト磁性材。また、飽和磁化σsが50emu/g以上である、請求項1に記載のフェライト磁性材である。この磁性材は、電子写真現像剤用の磁性キャリア芯材として利用可能であり、さらに、電子写真現像剤用磁性キャリア芯材に、樹脂が充填または被覆される電子写真現像用の磁性キャリアとなる。この電子写真現像剤用磁性キャリアと、トナーとを含むことで電子写真現像剤となる。また、前記磁性キャリア芯材としては、飽和磁化σsが50emu/g以上、95emu/g以下である。
That is, the first invention for solving the above-described problem is:
In the ferrite magnetic material which is an additive element composed of Fe and at least one of Mn, Mg, Ti, Cu, Zn, Ni, Sr and Ca, the average particle diameter is 1 to 100 μm. The total amount of impurities excluding Fe, additive elements and oxygen in the ferrite magnetic material is 0.5 mass% or less, and the impurities are Si, Al, Cr, Cu, P, Cl, Ni, Mo , A ferrite magnetic material containing at least two of any one of Zn, Ti, sulfur, Ca, Mn, and Sr. Moreover, it is a ferrite magnetic material of Claim 1 whose saturation magnetization (sigma) s is 50 emu / g or more. This magnetic material can be used as a magnetic carrier core material for an electrophotographic developer, and further becomes a magnetic carrier for electrophotographic development in which a magnetic carrier core material for an electrophotographic developer is filled or coated with a resin. . By including the magnetic carrier for electrophotographic developer and toner, an electrophotographic developer is obtained. Moreover, as said magnetic carrier core material, saturation magnetization (sigma) s is 50 emu / g or more and 95 emu / g or less.

本発明に係るフィライト磁性材は、多種産業用途において利用可能である。当該フェライト磁性材をフェライト粒子とした場合、電子写真現像剤用の磁性キャリア芯材として用いた磁性キャリアは、原料中の不純物の影響が抑制されたフェライト磁性材であり、且つ、磁力が高く、キャリア飛散が抑制される。   The phylite magnetic material according to the present invention can be used in various industrial applications. When the ferrite magnetic material is ferrite particles, the magnetic carrier used as the magnetic carrier core material for the electrophotographic developer is a ferrite magnetic material in which the influence of impurities in the raw material is suppressed, and has a high magnetic force, Carrier scattering is suppressed.

以下、本発明について詳細に説明する。
本発明者らは、フェライト磁性材の磁力調整に関して鋭意研究を行った。当該研究の結果、本発明者らは、微量元素を含む原料であっても、粉砕の際に水分と含ませ、ボールミルなどにより圧力で粉砕し、原料スラリーとすることで原料中の微量元素の影響を抑制したフェライト磁性材を得る方法およびフェライト磁性材を見出した。また、本発明にかかるフェライト磁性材は電子写真現像用の磁性キャリア芯材として好適に用いることを見出した。また、この磁性キャリア芯材を用いた電子写真現像剤であるキャリア粉を見出した。
Hereinafter, the present invention will be described in detail.
The inventors of the present invention have conducted intensive research on the magnetic force adjustment of ferrite magnetic materials. As a result of the study, the present inventors have found that even if the raw material contains a trace element, it is mixed with moisture at the time of pulverization, and is pulverized under pressure by a ball mill or the like to obtain a raw material slurry. A method for obtaining a ferrite magnetic material with suppressed influence and a ferrite magnetic material were found. Moreover, it discovered that the ferrite magnetic material concerning this invention was used suitably as a magnetic carrier core material for electrophotographic development. In addition, the present inventors have found a carrier powder that is an electrophotographic developer using the magnetic carrier core material.

以下、具体的な態様について、磁性キャリア芯材を例に、詳細に説明する。
[磁性キャリア芯材の原料]
本発明に係る磁性キャリア芯材の組成は、Feの酸化物である。従って、磁性キャリア芯材の原料は、常温常圧下で安定に存在するFeが好ましい。他、要求特性に応じて磁性材の組成を調合するために添加する主成分として、Mn、Mg、Ca、Sr、Si、B(硼素)、C(炭素)、P(リン)などが添加元素としてある。添加元素の形態は、酸化物粉、炭酸塩などである。例えば、Mn成分原料としてはMnCO、Mn等が好適に使用できる。
Hereinafter, specific embodiments will be described in detail by taking a magnetic carrier core material as an example.
[Raw material for magnetic carrier core]
The composition of the magnetic carrier core material according to the present invention is an oxide of Fe. Therefore, the raw material of the magnetic carrier core material is preferably Fe 2 O 3 that exists stably at normal temperature and pressure. In addition, Mn, Mg, Ca, Sr, Si, B (boron), C (carbon), P (phosphorus), etc. are added elements as main components added to prepare the composition of the magnetic material according to the required characteristics. It is as. The form of the additive element is oxide powder, carbonate or the like. For example, MnCO 3 , Mn 3 O 4 or the like can be suitably used as the Mn component raw material.

フェライト磁性材の原料は、鉄の酸化物であり、微量ではあるが不純物が含まれることが多い。この点は、他の添加元素も同様ではある。また、その製造元の原料および製法により不純物の種類、量は異なっている。磁性材としての不純物は主成分によって定義されるため、主成分の元素以外となる。つまり、主成分によりどの元素が不純物となるかが決定される。フェライト磁性材としては、Si、Al、Cr、Cu、P、Cl、Ni、Mo、Zn、Ti、S、Ca,Mn、Sr、バナジウムなどが不純物である微量元素として含まれている。これら微量元素は、原料の入手段階では、制御できないことが多い。なお、原料中の不純物の含有量がそれぞれ0.1質量%以下であり、これらを除くためには、原料供給側においてさらに精製の工程の追加によるコスト増が負担され、産業的に供給することは困難である。しかし、微量元素は極力、少量であることが望ましく、磁性キャリア芯材としては、合金、単体など形態を問わずに含有量として微量元素の総量が0.5質量%以下であることが望ましい。   The raw material of the ferrite magnetic material is an iron oxide and often contains a small amount of impurities. This is the same for other additive elements. Moreover, the kind and amount of impurities differ depending on the raw material and manufacturing method of the manufacturer. Since the impurities as the magnetic material are defined by the main component, they are other than the main component element. That is, which element is an impurity is determined by the main component. As a ferrite magnetic material, Si, Al, Cr, Cu, P, Cl, Ni, Mo, Zn, Ti, S, Ca, Mn, Sr, vanadium, and the like are contained as trace elements that are impurities. These trace elements are often not controllable at the raw material acquisition stage. In addition, the content of impurities in each raw material is 0.1% by mass or less, and in order to remove these, the raw material supply side must be further supplied with an additional cost for refining, and be supplied industrially. It is difficult. However, it is desirable that the amount of trace elements is as small as possible. The magnetic carrier core material preferably has a total amount of trace elements of 0.5% by mass or less, regardless of the form of alloy or simple substance.

〔スラリー化工程〕
次いで、仮焼成した原料を解粒して分散媒中に投入しスラリーを作製する。本発明で使用する分散媒としては水が好適である。または、温水を用いてもよい。微量元素が溶出されるか、反応し、特性劣化の影響を抑制できるからである。分散媒には、前記Fe成分原料、Mn等の主成分原料、他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5〜2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5〜2質量%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。スラリーの固形分濃度は50〜90質量%の範囲が望ましい。
[Slurry process]
Next, the calcined raw material is pulverized and charged into a dispersion medium to prepare a slurry. Water is preferred as the dispersion medium used in the present invention. Alternatively, warm water may be used. This is because trace elements are eluted or reacted, and the influence of characteristic deterioration can be suppressed. In the dispersion medium, the Fe component raw material, a main component raw material such as Mn, and in addition, a binder, a dispersing agent and the like may be blended if necessary. For example, polyvinyl alcohol can be suitably used as the binder. The blending amount of the binder is preferably about 0.5 to 2% by mass in the slurry. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. As the blending amount of the dispersant, the concentration in the slurry is preferably about 0.5 to 2% by mass. In addition, you may mix | blend a lubricant, a sintering accelerator, etc. The solid content concentration of the slurry is desirably in the range of 50 to 90% by mass.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒子径は10μm以下が好ましく、より好ましくは2μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry produced as described above is wet pulverized. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle size of the raw material after pulverization is preferably 10 μm or less, more preferably 2 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.

〔造粒工程〕
そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100〜300℃の範囲が好ましい。これにより、粒径10〜200μmの球状の造粒物が得られる。なお、得られた造粒物は、振動ふるい等を用いて、粗大粒子や微粉を除去し粒度分布をシャープなものとするのが望ましい。造粒物の好ましい平均粒子径は10μm〜200μmの範囲である。
[Granulation process]
Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 to 300 ° C. Thereby, a spherical granulated product having a particle size of 10 to 200 μm is obtained. In addition, it is desirable that the obtained granulated product has a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like. The preferable average particle diameter of the granulated product is in the range of 10 μm to 200 μm.

〔焼成工程〕
次に、造粒粉を950〜1200℃に加熱した炉に投入して、ソフトフェライトを合成するための焼成を行い、磁性キャリア芯材を製造する。
Feの平均原子価数を所定の値に調整するために、原料にカーボンを還元剤として添加してもよい。なお、炉内の酸素濃度が高すぎると、当該添加された還元剤をも酸化されてしまう恐れがある。当該添加された還元剤が酸化されてしまうと、本来の目的である酸化鉄の還元調整が出来なくなるため、焼成炉内の酸素濃度は1体積%以下に制御する。
[Baking process]
Next, the granulated powder is put into a furnace heated to 950 to 1200 ° C. and fired for synthesizing soft ferrite to produce a magnetic carrier core material.
In order to adjust the average valence number of Fe to a predetermined value, carbon may be added to the raw material as a reducing agent. If the oxygen concentration in the furnace is too high, the added reducing agent may be oxidized. If the added reducing agent is oxidized, the reduction of iron oxide, which is the original purpose, cannot be adjusted. Therefore, the oxygen concentration in the firing furnace is controlled to 1% by volume or less.

焼成温度に関しては、700℃以上あれば工業化時に十分な生産性を確保できる。一方、1500℃以下であれば粒子同士の過剰焼結を回避出来、粉体の形態で焼成物を得ることが出来る。さらに、作製される磁性キャリア芯材の磁気特性や破砕強度を確保する観点からは950〜1200℃で焼成することが好ましい。   Regarding the firing temperature, if it is 700 ° C. or higher, sufficient productivity can be secured at the time of industrialization. On the other hand, if it is 1500 degrees C or less, oversintering of particle | grains can be avoided and a baked product can be obtained with the form of a powder. Furthermore, it is preferable to fire at 950 to 1200 ° C. from the viewpoint of ensuring the magnetic properties and crushing strength of the produced magnetic carrier core material.

得られた焼成物は、この段階で粒度調整することが望ましい。例えば、焼成物をハンマーミル等で粗解粒し、次に気流分級機で1次分級し、さらに、振動ふるいまたは超音波ふるいで粒度を揃える処理を行うことにより、粒度調整された焼成物である磁性キャリア芯材を製造することが出来る。尚、当該粒度調整後、さらに磁力選別機による処理を行い、非磁性粒子を除去しておくことが望ましい。   It is desirable to adjust the particle size of the obtained fired product at this stage. For example, the baked product is coarsely pulverized with a hammer mill, etc., then subjected to primary classification with an airflow classifier, and further subjected to a process of aligning the particle size with a vibration sieve or an ultrasonic sieve, whereby the baked product with adjusted particle size is used. A certain magnetic carrier core material can be manufactured. In addition, after the said particle size adjustment, it is desirable to perform the process by a magnetic separator further and to remove a nonmagnetic particle.

〔磁性キャリアの製造〕
得られた磁性キャリア芯材に、樹脂被覆を施すことで磁性キャリアを得ることが出来る。被覆の方式としては、乾式法、流動床法、浸漬法等を用いることが出来る。中でも、磁性キャリア芯材内部に樹脂を充填させる観点から、浸漬法や乾式法がより好ましい。
ここでは浸漬法を例に挙げ説明する。被覆樹脂としては、シリコーン系樹脂やアクリル樹脂が好ましい。被覆樹脂を溶剤(トルエン等)に20〜40質量%程度溶解させ、樹脂溶液を調製する。被覆操作は、磁性キャリア芯材に対して固形分で0.7〜10%の範囲となるように容器中で混合した後、150〜250℃にて加熱撹拌することにより実施できる。上記の樹脂溶液の濃度、および、樹脂溶液と磁性キャリア芯材との混合比によって、樹脂の被覆量をコントロールすることができる。当該樹脂被覆後、さらに加熱処理を施して樹脂被覆層を硬化させることによって、磁性キャリア(粉状)が得られる。
[Manufacture of magnetic carrier]
A magnetic carrier can be obtained by applying a resin coating to the obtained magnetic carrier core material. As a coating method, a dry method, a fluidized bed method, a dipping method, or the like can be used. Among these, from the viewpoint of filling the resin inside the magnetic carrier core material, an immersion method and a dry method are more preferable.
Here, the dipping method will be described as an example. As the coating resin, a silicone resin or an acrylic resin is preferable. About 20 to 40% by mass of the coating resin is dissolved in a solvent (toluene or the like) to prepare a resin solution. The coating operation can be performed by heating and stirring at 150 to 250 ° C. after mixing in a container so that the solid content is 0.7 to 10% of the magnetic carrier core material. The coating amount of the resin can be controlled by the concentration of the resin solution and the mixing ratio of the resin solution and the magnetic carrier core material. After the resin coating, a heat treatment is further performed to cure the resin coating layer, whereby a magnetic carrier (powder) is obtained.

〔磁気特性測定〕
本発明に係る磁性キャリア芯材の磁気特性測定は、VSM(東英工業株式会社製、VSM−P7)を用いて行った。磁性キャリア芯材に対して、外部磁場を0〜10000(Oe)まで連続的に印加し、磁化の測定を行って、磁化σ500(emu/g),σ1000(emu/g),σs(emu/g)を得た。また、飽和磁化σsは印加磁場10000Oeの時の磁化で表記している。
(Magnetic property measurement)
The magnetic properties of the magnetic carrier core material according to the present invention were measured using VSM (manufactured by Toei Kogyo Co., Ltd., VSM-P7). An external magnetic field is continuously applied to the magnetic carrier core material from 0 to 10000 (Oe), and the magnetization is measured to obtain magnetizations σ500 (emu / g), σ1000 (emu / g), σs (emu / g) was obtained. Further, the saturation magnetization σs is expressed by magnetization when the applied magnetic field is 10000 Oe.

[破砕強度試験]
本発明に係る磁性キャリア芯材の破砕強度試験は、本発明に係る磁性キャリア芯材100gをサンプルミル(協立理工株式会社 SK―M10型)に投入し、回転数16000rpm、120秒間の破砕試験により行った。そして、当該破砕試験後における粒径が22μm以下の微粉発生量を、レーザー回折式粒度分布測定装置(日機装株式会社製マイクロトラック、Model 9320−X100)により測定した。そして、当該粉砕試験前の磁性キャリア芯材重量に対する、当該粒径が22μm以下の微粉発生率を算出して、当該破砕試験前と破砕試験後とにおける粒径22μm以下である粉体の発生率(以下、−22μm発生率と記載する場合がある。)とした。
本発明者らの検討によれば、後述する実施例の結果から 、当該22μm発生率が6%以下の場合、キャリア飛散量が10ppm以下になる。
[Crush strength test]
In the crushing strength test of the magnetic carrier core material according to the present invention, 100 g of the magnetic carrier core material according to the present invention was put into a sample mill (SK-M10 type, Kyoritsu Riko Co., Ltd.), and the crushing test was performed at a rotational speed of 16000 rpm for 120 seconds It went by. And the generation amount of fine powder having a particle size of 22 μm or less after the crushing test was measured by a laser diffraction type particle size distribution measuring device (Microtrack, Model 9320-X100 manufactured by Nikkiso Co., Ltd.). Then, the generation rate of fine powder having a particle size of 22 μm or less relative to the weight of the magnetic carrier core material before the crushing test is calculated, and the generation rate of powder having a particle size of 22 μm or less before and after the crushing test is calculated. (Hereinafter, it may be described as an occurrence rate of −22 μm).
According to the study by the present inventors, from the results of Examples described later, when the 22 μm generation rate is 6% or less, the carrier scattering amount is 10 ppm or less.

[キャリア飛散の評価]
本発明に係る磁性キャリア芯材が、キャリア飛散を起こし難いことを確認するための評価試験を行った。
具体的には、直径50mm、表面磁力1000Gaussの磁気ドラムにキャリア芯材を充填し、当該磁気ドラムを270rpmで30分間回転させた。そして、当該磁気ドラムから飛散した粒子を回収して重量を測定し、当初充填したキャリア芯材から飛散した粒子の割合をキャリア飛散量として算定した。
もちろん、キャリア飛散量が0ppmであることが最も好ましい。しかし、本発明者らの検討によれば、キャリア飛散量が10ppm以下であれば、実際の電子写真現像においても特に問題が起きないことを確認している。
[Evaluation of carrier scattering]
An evaluation test was performed to confirm that the magnetic carrier core material according to the present invention hardly causes carrier scattering.
Specifically, a carrier core material was filled in a magnetic drum having a diameter of 50 mm and a surface magnetic force of 1000 Gauss, and the magnetic drum was rotated at 270 rpm for 30 minutes. And the particle | grains which scattered from the said magnetic drum were collect | recovered, the weight was measured, and the ratio of the particle | grains which scattered from the carrier core material with which it initially filled was calculated as carrier scattering amount.
Of course, the carrier scattering amount is most preferably 0 ppm. However, according to the study by the present inventors, it has been confirmed that when the carrier scattering amount is 10 ppm or less, no particular problem occurs in actual electrophotographic development.

実施例では、3種類の鉄の原料を用意した。すなわち、鉱石や工程が異なる2社の原料を用意し、実施例1または2とし、さらに1社については、実施例2と同社であるが、製造日が異なる製造ロット違いの原料を実施例3として用意した。製造ロットが異なる原料は、その元となる素原料成分等により微量成分が異なる。
(実施例1)
MnMgフェライト粒子を下記方法で作製した。出発原料として、Fe(平均粒径:0.6μm)を10.05kgと、Mn(平均粒径:2μm)を4.72kg、水3.8kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を90g、Mg源としてMgCOを、Sr原料としてSrCOを、Ca原料としてCaCOを、添加して混合物とした。この混合物の固形分濃度は80重量%であった。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。しばらく攪拌した後、スプレードライヤーにて190℃の熱風中に噴霧し、粒径10〜200μmの乾燥造粒物を得た。
In the examples, three types of iron raw materials were prepared. That is, raw materials of two companies with different ores and processes are prepared, and it is referred to as Example 1 or 2, and about one company is Example 2 and the same company, but raw materials of different production lots with different manufacturing dates are described in Example 3. Prepared as. The raw materials in different production lots have different trace components depending on the raw material components that are the sources of the raw materials.
Example 1
MnMg ferrite particles were produced by the following method. As starting materials, Fe 2 O 3 (average particle size: 0.6 μm) is dispersed in 10.05 kg, Mn 3 O 4 (average particle size: 2 μm) is dispersed in 4.72 kg, and water 3.8 kg. As a mixture, 90 g of an ammonium polycarboxylate-based dispersant, MgCO 3 as an Mg source, SrCO 3 as an Sr raw material, and CaCO 3 as a Ca raw material were added. The solid content concentration of this mixture was 80% by weight. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry. After stirring for a while, it was sprayed into hot air at 190 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 to 200 μm.

得られた乾燥造粒物から、網目80μmと25μmとの篩網を用いて、粗粒、微粒を分離した。この粗粒、微粒分離後の造粒物を、1000℃、窒素雰囲気下(ジルコニア式酸素センサーによる酸素濃度の測定値が、450ppmである窒素雰囲気を用いた。)で5hr焼成し焼成物を得た。この焼成物をハンマーミルで解粒し、風力分級機を用いて微粉を除去し、網目45μmの振動ふるいで粒度調整し、平均粒径35μmの実施例1に係る磁性キャリア芯材を得た。また、主成分の組成を表1に示す。   Coarse particles and fine particles were separated from the obtained dried granulated product using a sieve mesh having a mesh size of 80 μm and 25 μm. The granulated product after separation of the coarse particles and fine particles is fired for 5 hours at 1000 ° C. in a nitrogen atmosphere (a nitrogen atmosphere in which the measured value of the oxygen concentration by a zirconia oxygen sensor is 450 ppm) to obtain a fired product. It was. The fired product was pulverized with a hammer mill, fine powder was removed using an air classifier, and the particle size was adjusted with a vibrating screen having a mesh size of 45 μm to obtain a magnetic carrier core material according to Example 1 having an average particle size of 35 μm. The composition of the main components is shown in Table 1.

(組成)
(Feの分析)
鉄元素を含むフェライト粒子を秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させた後、硫酸水を添加して再溶解し過剰な塩酸と硝酸とを揮発させる。この溶液に固体Alを添加して液中のFe3+を全てFe2+に還元する。続いて、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、Fe(Fe2+)の滴定量を求めた。
(Mnの分析)
フェライト粒子のMn含有量は、JIS G1311−1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行った。本願発明に記載したフェライト粒子のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
(Caの分析)
フェライト粒子のCa含有量は、以下の方法で分析を行った。本願発明に係るフェライト粒子を酸溶液中で溶解し、ICPにて定量分析を行った。本願発明に記載したフェライト粒子のCa含有量は、このICPによる定量分析で得られたCa量である。Mg含有量も同様にICPによる定量分析で得られる。
(微量成分の分析)
得られた実施例1に係る磁性キャリア芯材において、主成分の鉄 51.1質量%、添加元素のMn 18.6質量%、Mg 2.16質量%、Sr 0.50質量%、Ca 0.062質量%であった。他の微量元素は、ICP−MSにより分析を行った。微量元素はSi 0.016質量%、Al 0.024質量%、Cr 0.035質量%、Cu 0.013質量%、P 0.012質量%、Cl 0.002質量%未満、Ni 0.007質量%、Mo 0.002質量%、Zn 0.003質量%、Ti 0.004質量%、硫黄 未検出であった。微量元素の含有量の総計は、0.117質量%以下であった。塩素が未満とあるのは、検出限界以下であったことを示す。なお、上記の主成分の鉄、添加元素、微量元素以外は、主には酸素としてあり、Li(リチウム)、B(硼素)、K(カリウム)、Na(ナトリウム)も各20〜100ppm程度に含まれていた。
(composition)
(Analysis of Fe)
Ferrite particles containing iron element were weighed and dissolved in a mixed acid water of hydrochloric acid and nitric acid. After evaporating this solution to dryness, sulfuric acid water is added and redissolved to volatilize excess hydrochloric acid and nitric acid. Solid Al is added to this solution to reduce all Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ions in the solution was quantitatively analyzed by potentiometric titration with a potassium permanganate solution to obtain a titer of Fe (Fe 2+ ).
(Analysis of Mn)
The Mn content of the ferrite particles was quantitatively analyzed according to the ferromanganese analysis method (potentiometric titration method) described in JIS G1311-1987. The Mn content of the ferrite particles described in the present invention is the amount of Mn obtained by quantitative analysis by this ferromanganese analysis method (potentiometric titration method).
(Ca analysis)
The Ca content of the ferrite particles was analyzed by the following method. The ferrite particles according to the present invention were dissolved in an acid solution, and quantitative analysis was performed by ICP. The Ca content of the ferrite particles described in the present invention is the amount of Ca obtained by this quantitative analysis by ICP. Similarly, the Mg content can be obtained by quantitative analysis by ICP.
(Analysis of trace components)
In the obtained magnetic carrier core material according to Example 1, 51.1% by mass of iron as a main component, 18.6% by mass of Mn as an additive element, 2.16% by mass of Mg, 0.50% by mass of Sr, Ca 0 0.062% by mass. Other trace elements were analyzed by ICP-MS. Trace elements are 0.016 mass% Si, 0.024 mass% Al, 0.035 mass% Cr, 0.013 mass% Cu, 0.012 mass% P, less than 0.002 mass% Cl, and Ni 0.007. % By mass, 0.002% by mass of Mo, 0.003% by mass of Zn, 0.004% by mass of Ti, and sulfur were not detected. The total content of trace elements was 0.117% by mass or less. Less than chlorine indicates that it was below the detection limit. Except for the main components of iron, additive elements, and trace elements, oxygen is mainly used. Li (lithium), B (boron), K (potassium), and Na (sodium) are also about 20 to 100 ppm each. It was included.

ここで、実施例1に係る磁性キャリア芯材の磁気特性を測定した結果は、σs:69.1(emu/g)、σ1k:58.8(emu/g)、σ500:37.8(emu/g)であった。キャリア飛散量を測定したところ10ppm以下であり、いずれも実用上問題ない水準であることが判明した。ここに記載以外の微量元素も想定できるが、結果として、影響を受けていないことから、0.001質量%以下の微量元素は、存在しないか、微量残存の影響は抑制できているといえる。なお、NiおよびMoなどの影響を抑制できたことがわかった。   Here, the results of measuring the magnetic properties of the magnetic carrier core material according to Example 1 are as follows: σs: 69.1 (emu / g), σ1k: 58.8 (emu / g), σ500: 37.8 (emu) / G). When the carrier scattering amount was measured, it was 10 ppm or less, and it was found that all of them were practically satisfactory. Trace elements other than those described here can be assumed, but as a result, since they are not affected, it can be said that the trace elements of 0.001% by mass or less are not present or the influence of the trace remaining can be suppressed. In addition, it turned out that the influence of Ni, Mo, etc. was able to be suppressed.

(実施例2)
実施例1と鉄の原料を変えた以外(製造会社が異なる。)は、同様に磁性キャリア芯材を作成した。同様の分析により各元素の含有量を測定した。全Fe量は51.3質量%であった。主成分の鉄 51.3質量%、添加元素のMn 18.7質量%、Mg 1.39質量%、Sr 0.14質量%、Ca 0.12質量%であった。微量元素がSi 0.04質量%、Al 0.039質量%、Cr 0.022質量%、Cu 0.006質量%、P 0.016質量%、Cl 0.002質量%未満、Ni 0.01質量%、Mo 0.002質量%、Zn 0.006質量%、Ti 0.008質量%、硫黄 未検出であった。微量元素の含有量の総計は、0.148質量%以下であった。塩素が未満とあるのは、検出限界以下であったことを示す。なお、上記の主成分の鉄、添加元素、微量元素以外は、主には酸素としてあり、B(硼素)、K(カリウム)、Na(ナトリウム)も各20〜100ppm程度に含まれていた。
ここで、実施例2に係る磁性キャリア芯材の磁気特性を測定した結果は、σs:68(emu/g)であった。キャリア飛散量を測定したところ10ppm以下であり、いずれも実用上問題ない水準であることが判明した。ここに記載以外の微量元素も想定できるが、結果として、影響を受けていないことから、0.001質量%以下の微量元素は、存在しないか、または微量残存の影響を抑制できているといえる。
(Example 2)
A magnetic carrier core material was prepared in the same manner as in Example 1 except that the raw material of iron was changed (the manufacturing company was different). The content of each element was measured by the same analysis. The total Fe amount was 51.3% by mass. The main component was 51.3 mass% iron, the additive element Mn was 18.7 mass%, Mg was 1.39 mass%, Sr was 0.14 mass%, and Ca was 0.12 mass%. Trace elements are 0.04 mass% Si, 0.039 mass% Al, 0.022 mass% Cr, 0.006 mass% Cu, 0.016 mass% P, less than 0.002 mass% Cl, 0.01 Ni % By mass, 0.002% by mass of Mo, 0.006% by mass of Zn, 0.008% by mass of Ti, and sulfur were not detected. The total content of trace elements was 0.148% by mass or less. Less than chlorine indicates that it was below the detection limit. Except for the main components of iron, additive elements, and trace elements, oxygen is mainly used, and B (boron), K (potassium), and Na (sodium) are also contained in about 20 to 100 ppm each.
Here, the result of measuring the magnetic properties of the magnetic carrier core material according to Example 2 was σs: 68 (emu / g). When the carrier scattering amount was measured, it was 10 ppm or less, and it was found that all of them were practically satisfactory. Trace elements other than those described here can be assumed, but as a result, since they are not affected, trace elements of 0.001% by mass or less do not exist, or it can be said that the effects of trace residuals can be suppressed. .

(実施例3)
実施例2と鉄の原料を製造会社は同一であるが、入荷ロットNoが異なるものに換えた以外は、同様に磁性キャリア芯材を作成した。実施例1と同様の分析により各元素の含有量を測定した。全Fe量は51.4質量%であった。添加元素のMn 18.4質量%、Mg 1.39質量%、Sr 0.14質量%、Ca 0.10質量%であった。微量元素がSi 0.020質量%、Al 0.033質量%、Cr 0.018質量%、Cu 0.005質量%、P 0.014質量%、Cl 0.002質量%以下、Ni 0.006質量%、Mo 0.002質量%、Zn 0.001質量%、Ti 0.004質量%、硫黄 未検出であった。微量元素の含有量の総計は、0.251質量%以下であった。塩素が未満とあるのは、検出限界以下であったことを示す。なお、上記の主成分の鉄、添加元素、微量元素以外は、主には酸素としてあり、B(硼素)、K(カリウム)、Na(ナトリウム)も各20〜100ppm程度に含まれていた。
ここで、実施例3に係る磁性キャリア芯材の磁気特性を測定した結果は、σs:68(emu/g)であった。キャリア飛散量を測定したところ10ppm以下であり、いずれも実用上問題ない水準であることが判明した。ここに記載以外の微量元素も想定できるが、結果として、影響を受けていないことから、0.001質量%以下の微量元素は、存在しないか、または微量残存の影響を抑制できているといえる。微量元素は、原料の種類、入手時期により、含有量にばらつきが生じていることが分かる。





(Example 3)
A magnetic carrier core material was prepared in the same manner as in Example 2 except that the raw material for iron was the same as that of Example 2 except that the lot number was changed. The content of each element was measured by the same analysis as in Example 1. The total amount of Fe was 51.4% by mass. The additive elements were Mn 18.4 mass%, Mg 1.39 mass%, Sr 0.14 mass%, and Ca 0.10 mass%. Trace elements are 0.020 mass% of Si, 0.033 mass% of Al, 0.018 mass% of Cr, 0.005 mass% of Cu, 0.014 mass% of P, 0.002 mass% of Cl or less, Ni 0.006 % By mass, 0.002% by mass of Mo, 0.001% by mass of Zn, 0.004% by mass of Ti, and sulfur were not detected. The total content of trace elements was 0.251% by mass or less. Less than chlorine indicates that it was below the detection limit. Except for the main components of iron, additive elements, and trace elements, oxygen is mainly used, and B (boron), K (potassium), and Na (sodium) are also contained in about 20 to 100 ppm each.
Here, the result of measuring the magnetic properties of the magnetic carrier core material according to Example 3 was σs: 68 (emu / g). When the carrier scattering amount was measured, it was 10 ppm or less, and it was found that all of them were practically satisfactory. Trace elements other than those described here can be assumed, but as a result, since they are not affected, trace elements of 0.001% by mass or less do not exist, or it can be said that the effects of trace residuals can be suppressed. . It can be seen that the content of trace elements varies depending on the type of raw material and the date of acquisition.





Claims (2)

主成分がFeと、Mn、Mg、Ti、Cu、Zn、Ni、SrおよびCaのいずれかの少なくても1種以上からなる添加元素であるフェライト磁性材において、平均粒径が1〜100μmであり、当該フェライト磁性材におけるFeと、添加元素と酸素とを除いた不純物の総量が、0.5質量%以下であり、前記不純物がSi、Al、Cr、Cu、P、Cl、Ni、Mo、Zn、Ti、硫黄、Ca,Mn、Srのいずれかの少なくとも2種以上を含むフェライト磁性材。   In the ferrite magnetic material which is an additive element composed of Fe and at least one of Mn, Mg, Ti, Cu, Zn, Ni, Sr and Ca, the average particle diameter is 1 to 100 μm. The total amount of impurities excluding Fe, additive elements and oxygen in the ferrite magnetic material is 0.5 mass% or less, and the impurities are Si, Al, Cr, Cu, P, Cl, Ni, Mo , A ferrite magnetic material containing at least two of any one of Zn, Ti, sulfur, Ca, Mn, and Sr. 飽和磁化σsが50emu/g以上である、請求項1に記載のフェライト磁性材。 The ferrite magnetic material according to claim 1, wherein the saturation magnetization σs is 50 emu / g or more.
JP2014150307A 2014-07-24 2014-07-24 Ferrite magnetic material Pending JP2016025288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014150307A JP2016025288A (en) 2014-07-24 2014-07-24 Ferrite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150307A JP2016025288A (en) 2014-07-24 2014-07-24 Ferrite magnetic material

Publications (1)

Publication Number Publication Date
JP2016025288A true JP2016025288A (en) 2016-02-08

Family

ID=55271784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150307A Pending JP2016025288A (en) 2014-07-24 2014-07-24 Ferrite magnetic material

Country Status (1)

Country Link
JP (1) JP2016025288A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161808A (en) * 2016-03-11 2017-09-14 Dowaエレクトロニクス株式会社 Carrier core material
JP6302123B1 (en) * 2017-08-25 2018-03-28 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer and developer
JP6319779B1 (en) * 2017-08-25 2018-05-09 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer and developer
JP2018109704A (en) * 2017-01-04 2018-07-12 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
JP2018109703A (en) * 2017-01-04 2018-07-12 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
WO2018147001A1 (en) 2017-02-10 2018-08-16 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
WO2018147002A1 (en) 2017-02-10 2018-08-16 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
EP3453681A4 (en) * 2016-05-06 2019-12-04 Powdertech Co., Ltd. Ferrite powder, resin composition, and molded article

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161808A (en) * 2016-03-11 2017-09-14 Dowaエレクトロニクス株式会社 Carrier core material
EP3453681A4 (en) * 2016-05-06 2019-12-04 Powdertech Co., Ltd. Ferrite powder, resin composition, and molded article
US11072537B2 (en) 2016-05-06 2021-07-27 Powdertech Co., Ltd. Ferrite powder, resin composition, and molded article
EP3567430A4 (en) * 2017-01-04 2020-07-22 Powdertech Co., Ltd. Magnetic core material for electrographic developer, carrier for electrographic developer, and developer
JP2018109704A (en) * 2017-01-04 2018-07-12 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
WO2018128113A1 (en) 2017-01-04 2018-07-12 パウダーテック株式会社 Magnetic core material for electrographic developer, carrier for electrographic developer, and developer
WO2018128112A1 (en) 2017-01-04 2018-07-12 パウダーテック株式会社 Magnetic core material for electrographic developer, carrier for electrographic developer, and developer
JP2018109703A (en) * 2017-01-04 2018-07-12 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
CN110114729B (en) * 2017-01-04 2023-07-28 保德科技股份有限公司 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
US10996576B2 (en) 2017-01-04 2021-05-04 Powdertech Co., Ltd. Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
US10754271B2 (en) 2017-01-04 2020-08-25 Powdertech Co., Ltd. Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
CN110114729A (en) * 2017-01-04 2019-08-09 保德科技股份有限公司 Electrophotographic developing magnetic core material, electrophotographic developing carrier and developer
WO2018147001A1 (en) 2017-02-10 2018-08-16 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
WO2018147002A1 (en) 2017-02-10 2018-08-16 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
US10996579B2 (en) 2017-02-10 2021-05-04 Powdertech Co., Ltd. Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
US10969706B2 (en) 2017-02-10 2021-04-06 Powdertech Co., Ltd. Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
WO2019038962A1 (en) 2017-08-25 2019-02-28 パウダーテック株式会社 Magnetic core material for electrophotographic developers, carrier for electrophotographic developers, developer, method for producing magnetic core material for electrophotographic developers, method for producing carrier for electrophotographic developers, and method for producing developer
CN111051998A (en) * 2017-08-25 2020-04-21 保德科技股份有限公司 Magnetic core material for electrophotographic developer, method for producing magnetic core material, carrier, method for producing carrier, developer, and method for producing developer
JP6319779B1 (en) * 2017-08-25 2018-05-09 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer and developer
US20190204761A1 (en) * 2017-08-25 2019-07-04 Powdertech Co., Ltd. Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, developer, method for producing magnetic core material for electrophotographic developer, method for producing carrier for electrophotographic developer, and method for producing developer
EP3477395A4 (en) * 2017-08-25 2019-05-01 Powdertech Co., Ltd. Magnetic core material for electrophotographic developers, carrier for electrophotographic developers, developer, method for producing magnetic core material for electrophotographic developers, method for producing carrier for electrophotographic developers, and method for producing developer
JP2019040098A (en) * 2017-08-25 2019-03-14 パウダーテック株式会社 Magnetic core material for electrographic developer, carrier for electrographic developer and developer
JP2019040097A (en) * 2017-08-25 2019-03-14 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
JP6302123B1 (en) * 2017-08-25 2018-03-28 パウダーテック株式会社 Magnetic core material for electrophotographic developer, carrier for electrophotographic developer and developer
US11099495B2 (en) 2017-08-25 2021-08-24 Powdertech Co., Ltd. Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, developer, method for producing magnetic core material for electrophotographic developer, method for producing carrier for electrophotographic developer, and method for producing developer
WO2019038963A1 (en) 2017-08-25 2019-02-28 パウダーテック株式会社 Magnetic core material for electrophotographic developers, carrier for electrophotographic developers, developer, method for producing magnetic core material for electrophotographic developers, method for producing carrier for electrophotographic developers, and method for producing developer
CN111051998B (en) * 2017-08-25 2023-11-24 保德科技股份有限公司 Magnetic core material for electrophotographic developer and method for producing same, carrier and method for producing same, developer and method for producing same

Similar Documents

Publication Publication Date Title
JP2016025288A (en) Ferrite magnetic material
CN101641651B (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
US8865386B2 (en) Carrier core particle for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
US9195157B2 (en) Carrier core particles for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
CN102667631A (en) Carrier core material for electrophotographic developer, production method for the same, carrier for electrophotographic developer, and electrophotographic developer
CN102859447B (en) Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
KR101468247B1 (en) Carrier core material for electrophotographic developing agent, process for producing the carrier core material, carrier for electrophotographic developing agent, and electrophotographic developing agent
US9164411B2 (en) Carrier core material for electrophotographic developer, method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer
US10915034B2 (en) Carrier core material and electrophotographic carrier using same and electrophotographic developer
JP5736078B1 (en) Ferrite particles, electrophotographic carrier and electrophotographic developer using the same
JP5858591B2 (en) Carrier core material, electrophotographic carrier and electrophotographic developer using the same
JP6650324B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
CN113474294A (en) Ferrite particle, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5307391B2 (en) Magnetic carrier core material for electrophotographic developer and method for producing the same, magnetic carrier and electrophotographic developer
JP5260118B2 (en) Carrier core material for electrophotographic developer and production method thereof, magnetic carrier for electrophotographic developer, and electrophotographic developer
JP2010002519A (en) Carrier core material for electrophotographic developer and method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer
JP5307414B2 (en) Magnetic carrier core material for electrophotographic developer, magnetic carrier for electrophotographic developer, and method for producing electrophotographic developer
JP5627072B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
EP4349789A1 (en) Ferrite particle, carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite particle