JP5260118B2 - Carrier core material for electrophotographic developer and production method thereof, magnetic carrier for electrophotographic developer, and electrophotographic developer - Google Patents

Carrier core material for electrophotographic developer and production method thereof, magnetic carrier for electrophotographic developer, and electrophotographic developer Download PDF

Info

Publication number
JP5260118B2
JP5260118B2 JP2008094137A JP2008094137A JP5260118B2 JP 5260118 B2 JP5260118 B2 JP 5260118B2 JP 2008094137 A JP2008094137 A JP 2008094137A JP 2008094137 A JP2008094137 A JP 2008094137A JP 5260118 B2 JP5260118 B2 JP 5260118B2
Authority
JP
Japan
Prior art keywords
core material
electrophotographic developer
carrier core
carrier
valence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008094137A
Other languages
Japanese (ja)
Other versions
JP2009244792A (en
Inventor
智也 山田
利哉 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2008094137A priority Critical patent/JP5260118B2/en
Publication of JP2009244792A publication Critical patent/JP2009244792A/en
Application granted granted Critical
Publication of JP5260118B2 publication Critical patent/JP5260118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、二成分系電子写真用現像剤において、トナーと混合されて使用される二成分系電子写真用現像剤用キャリアに関する。   The present invention relates to a carrier for a two-component electrophotographic developer used in a two-component electrophotographic developer by mixing with a toner.

近年、電子写真方式を用いた複写機、プリンター等の装置が広く普及するに従い、その用途も多岐にわたっている。そして、市場において、当該電子写真に関しては高画質化、電子写真用現像剤に関しては長寿命化の要求が高まっている。   In recent years, devices such as copying machines and printers using an electrophotographic system have been widely used, and their uses have been diversified. In the market, there is a growing demand for higher image quality for the electrophotography and longer life for the developer for electrophotography.

従来から、二成分系電子写真用現像剤において、使用されているトナーの粒子を小粒径化することにより、電子写真の高画質化が可能であると考えられていた。しかしながら、トナー粒子の小粒径化に伴い、当該トナー粒子の帯電能力が低下することとなる。このトナー粒子の帯電能力の低下に対処する為、二成分系電子写真用現像剤において当該トナーと混合されて用いられているキャリア粒子(以下、「キャリア」と記載する場合がある。)を小粒径化し、比表面積を大きくする対策がとられた。しかし、当該小粒径化されたキャリアは、キャリア付着やキャリア飛散といった異常現象を発生し易いという問題があった。   Conventionally, in a two-component electrophotographic developer, it has been considered that the image quality of electrophotography can be improved by reducing the particle size of toner particles used. However, as the toner particles become smaller in size, the charging ability of the toner particles decreases. In order to cope with the decrease in the charging ability of the toner particles, carrier particles (hereinafter sometimes referred to as “carrier”) used in the two-component electrophotographic developer mixed with the toner are small. Measures were taken to increase particle size and specific surface area. However, the carrier having the reduced particle size has a problem that it is likely to cause abnormal phenomena such as carrier adhesion and carrier scattering.

キャリア付着、キャリア飛散の抑制手段としては、たとえば特許文献1に見られるような磁場1000Oeにおける磁化率が67emu/g〜88emu/g、および飛散物と本体との磁化率の差が10emu/g以下に規定されたキャリアを構成する電子写真現像剤用キャリア芯材(フェライトの磁性粒子である。以下、「キャリア芯材」と記載する場合がある。)を用いることにより、磁気ブラシの保持力を向上させる方法が提案されている。   As means for suppressing carrier adhesion and carrier scattering, for example, the magnetic susceptibility is 67 emu / g to 88 emu / g in a magnetic field of 1000 Oe as seen in Patent Document 1, and the difference in magnetic susceptibility between the scattered matter and the main body is 10 emu / g or less. By using the carrier core material for an electrophotographic developer (which is a magnetic particle of ferrite, which may be hereinafter referred to as “carrier core material”) constituting the carrier specified in 1), the holding power of the magnetic brush is increased. A way to improve it has been proposed.

一方で、現像機の高速化に伴い現像機内での撹拌負荷が増加し、撹拌ストレスによる磁性キャリア表面の樹脂の剥離が発生するという問題もある。その結果、キャリア芯材が露出することになり、電荷のリークが生じる。このような電荷のリークは画質劣化の原因の一つであるため、キャリア芯材自体の絶縁性を上げることで電荷のリークを起き難くするなど対策がとられている。この観点から、特許文献2に見られるような、絶縁性の高いキャリア芯材が提案されている。   On the other hand, as the speed of the developing machine increases, the stirring load in the developing machine increases, and there is a problem that the resin on the surface of the magnetic carrier is peeled off due to stirring stress. As a result, the carrier core material is exposed, and charge leakage occurs. Since such charge leakage is one of the causes of image quality degradation, measures are taken such as making charge leakage difficult by increasing the insulation of the carrier core material itself. From this point of view, a carrier core material having high insulation as seen in Patent Document 2 has been proposed.

特開2002−296846号公報Japanese Patent Laid-Open No. 2002-296846 特開平07−084414号公報Japanese Patent Application Laid-Open No. 07-084414

上記の事項より、電子写真現像法における画質異常の低減のためには、キャリア芯材の磁化率を高く、絶縁性を高くすることが求められる。尚、本発明における磁化率とは特に説明のない限り、外部磁場1000Oeにおける磁化率を指す。   From the above, it is required to increase the magnetic susceptibility and the insulation of the carrier core material in order to reduce the image quality abnormality in the electrophotographic development method. The magnetic susceptibility in the present invention refers to the magnetic susceptibility in the external magnetic field 1000 Oe unless otherwise specified.

しかしながら、一般的にキャリア芯材として用いられているフェライト磁性体の磁気特性は、合成条件のわずかな変動により変化するため、十分な特性を有するキャリアを再現性良く製造することは困難であった。   However, since the magnetic properties of ferrite magnetic materials generally used as carrier core materials change due to slight fluctuations in the synthesis conditions, it has been difficult to produce carriers with sufficient properties with good reproducibility. .

本発明は上述の状況の下で成されたものであり、磁化率が高く、絶縁性も高い電子写真
現像剤用キャリア芯材およびその製造方法を提供し、さらに当該電子写真現像剤用キャリア芯材を用いた電子写真現像剤用磁性キャリア並びに電子写真現像剤を提供することである。
The present invention has been made under the above-mentioned circumstances, and provides a carrier core material for an electrophotographic developer having a high magnetic susceptibility and a high insulating property, and a method for producing the same. Further, the carrier core for an electrophotographic developer is provided. It is to provide a magnetic carrier for an electrophotographic developer using the material and an electrophotographic developer.

本発明者らはキャリア芯材として一般式:MnFe3−xで表されるマンガンフェライトにおいて、磁気特性を制御する手法に関して検討を行い、結果上記マンガンフェライトに含まれる鉄元素の価数を、所定域に調整することにより磁気特性および電気特性を調整することが可能であることを見出した。
さらに、本発明者らは、磁化率および絶縁性に優れたキャリア芯材を得るためには、当該キャリア芯材中の鉄元素の価数を一般式:MnFe3−xのxに応じた最適範囲に調整する必要があることを知見した。そして、鉄元素の価数が最適範囲となるように制御可能なキャリア芯材の製造方法を見出し、本発明を完成した。
The present inventors have general formula as the carrier core material: Mn in x Fe manganese ferrite represented by 3-x O 4, we will show techniques for controlling the magnetic properties, the results valent iron element contained in the manganese ferrite It has been found that the magnetic characteristics and electrical characteristics can be adjusted by adjusting the number to a predetermined range.
Furthermore, in order to obtain a carrier core material excellent in magnetic susceptibility and insulating properties, the present inventors set the valence of the iron element in the carrier core material to x of the general formula: Mn x Fe 3-x O 4 It was found that it was necessary to adjust to the optimum range according to. And the manufacturing method of the carrier core material which can be controlled so that the valence of an iron element may become the optimal range was discovered, and this invention was completed.

すなわち、課題を解決するための第1の発明は、
一般式:MnFe3−x(但し0<x≦1)で表されるMnフェライトからなり、
当該Mnフェライト中の鉄元素の価数が{(8−2×x)/(3−x)+0.005}以上、{(8−2×x)/(3−x)+0.05}以下の範囲内にあることを特徴とする電子写真現像剤用キャリア芯材である。
That is, the first invention for solving the problem is:
Formula: consists Mn x Fe 3-x O 4 ( where 0 <x ≦ 1) Mn ferrite you express in,
The valence of the iron element in the Mn ferrite is {(8-2 × x) / (3-x) +0.005} or more and {(8-2 × x) / (3-x) +0.05} or less. The carrier core material for an electrophotographic developer, wherein the carrier core material is in the range of.

第2の発明は、
外部磁場1000Oe下における磁化率:σ1000が、σ1000≧60emu/gを満たすことを特徴とする第1の発明に記載の電子写真現像剤用キャリア芯材である。
The second invention is
The carrier core material for an electrophotographic developer according to the first invention, wherein the magnetic susceptibility under an external magnetic field of 1000 Oe: σ 1000 satisfies σ 1000 ≧ 60 emu / g.

第3の発明は、
平均粒子径が、10μm以上、80μm以下であることを特徴とする第1または第2の発明に記載の電子写真現像剤用キャリア芯材である。
The third invention is
The carrier core material for an electrophotographic developer according to the first or second invention, wherein the average particle size is 10 μm or more and 80 μm or less.

第4の発明は、
第1〜第3の発明のいずれか一項に記載の電子写真現像剤用キャリア芯材を、樹脂で被覆したものであることを特徴とする電子写真現像剤用磁性キャリアである。
The fourth invention is:
A magnetic carrier for an electrophotographic developer, wherein the carrier core material for an electrophotographic developer according to any one of the first to third inventions is coated with a resin.

第5の発明は、
第4の発明に記載の電子写真現像剤用キャリアと、トナーとを含むことを特徴とする電子写真現像剤である。
The fifth invention is:
An electrophotographic developer comprising the carrier for an electrophotographic developer according to the fourth invention and a toner.

本発明によれば、複写機、プリンター等の電子写真現像剤として使用した際に、キャリア付着等の異常現象を低減することの出来る電子写真現像剤用キャリアおよび電子写真現像剤を提供することが出来る。   According to the present invention, it is possible to provide a carrier for an electrophotographic developer and an electrophotographic developer that can reduce abnormal phenomena such as carrier adhesion when used as an electrophotographic developer for a copying machine, a printer, or the like. I can do it.

以下、本発明について、1.キャリア芯材、2.キャリア芯材の製造方法、3.キャリア、4.電子写真現像剤、5.各物性値の測定方法、の順で説明する。   Hereinafter, the present invention is as follows. Carrier core material, 2. 2. manufacturing method of carrier core material; Carrier, 4. 4. electrophotographic developer, The measurement method for each physical property value will be described in this order.

1.キャリア芯材
<組成>
本発明に係るキャリア芯材を構成する物質は、一般式:MnFe3−x(但し0<x≦1)で表されるMnフェライトである。
当該一般式からFeの価数(理論値)を求めると、Mnの価数が2価、Oの価数が−2価であることから、
2×x+Fe価数(理論値)×(3−x)+(−2)×4=0となり、
Fe価数(理論値)=(8−2×x)/(3−x)となる。
ところが、本発明者等が、後述する鉄元素の価数の導出方法に基づき、Feの価数を実測してみると、当該一般式から求められるFeの理論値価数と異なる場合があることを知見した。このMnFe3−xにおける、Fe価数の実測値と理論値との差異が生じるのは、芯材の製造時、特に焼成工程においてFe元素の過酸化あるいは過還元が起き、構造中のFe(II)イオンとFe(III)イオンとの比率が、本来の比率からずれるためであ
ると考えられる。
1. Carrier core material <composition>
Material constituting the carrier core material according to the present invention have the general formula is Mn ferrite represented by Mn x Fe 3-x O 4 ( where 0 <x ≦ 1).
When the valence (theoretical value) of Fe is obtained from the general formula, the valence of Mn is divalent and the valence of O is -2.
2 × x + Fe valence (theoretical value) × (3-x) + (− 2) × 4 = 0,
Fe valence (theoretical value) = (8-2 × x) / (3-x).
However, when the present inventors actually measured the valence of Fe based on a method for deriving the valence of the iron element described later, the theoretical valence of Fe obtained from the general formula may be different. I found out. The difference between the measured value and the theoretical value of the Fe valence in this Mn x Fe 3 -x O 4 is caused by the peroxidation or overreduction of the Fe element during the production of the core material, particularly in the firing step. This is probably because the ratio of Fe (II) ions to Fe (III) ions in the center deviates from the original ratio.

本発明者等は、さらに研究を進め、MnFe3−xにおける、Fe価数の実測値と理論値との差異が所定範囲内にあるとき、当該MnFe3−xで構成されたキャリア芯材が、磁気特性と絶縁性の両者を高い水準で満たすことを知見したものである。
具体的には、Fe価数の実測値と理論値との差異をA
(但し、A=Fe価数(実測値)−Fe価数(理論値)=Fe価数(実測値)−(8−2×x)/(3−x))
と表記したとき、0.005≦A≦0.05であると、キャリア芯材が、磁気特性と絶縁性の両者を高い水準で満たすことを知見したものである。
鉄元素の価数の導出方法に関しては後述する。
The present inventors have further studied, and when the difference between the measured value and the theoretical value of Fe valence in Mn x Fe 3-x O 4 is within a predetermined range, the Mn x Fe 3-x O 4 It has been found that the carrier core material constituted by the above satisfies both magnetic properties and insulation properties at a high level.
Specifically, the difference between the measured value and the theoretical value of Fe valence is A
(However, A = Fe valence (actual value) −Fe valence (theoretical value) = Fe valence (actual value) − (8-2 × x) / (3-x))
It is found that when 0.005 ≦ A ≦ 0.05, the carrier core material satisfies both the magnetic properties and the insulating properties at a high level.
A method for deriving the valence of the iron element will be described later.

<磁気特性>
本発明に係るキャリア芯材を構成する物質は、外部磁場1000Oe下における磁化率:σ1000が、σ1000≧60emu/gを満たす。キャリア芯剤の磁化率が上記の範囲を満たすとき、現像機内で磁気ブラシの保持力が強くなり、キャリア付着現象を生じにくくなるためである。
<Magnetic properties>
In the substance constituting the carrier core material according to the present invention, the magnetic susceptibility: σ 1000 under an external magnetic field of 1000 Oe satisfies σ 1000 ≧ 60 emu / g. This is because, when the magnetic susceptibility of the carrier core agent satisfies the above range, the holding force of the magnetic brush is increased in the developing machine, and the carrier adhesion phenomenon is less likely to occur.

<粒径>
本発明に係るキャリア芯材は、平均粒径10μm以上80μm以下であることが好ましい。キャリア芯材の粒径が10μm以上あればキャリア粒子ひとつひとつの磁化が大きくなるためキャリア付着現象を抑制することが出来る。また粒径が80μm以下であれば、電子写真を現像した際に所望の画質特性を得ることが出来る。
<Particle size>
The carrier core material according to the present invention preferably has an average particle size of 10 μm or more and 80 μm or less. If the particle diameter of the carrier core material is 10 μm or more, the magnetization of each carrier particle increases, so that the carrier adhesion phenomenon can be suppressed. If the particle size is 80 μm or less, desired image quality characteristics can be obtained when an electrophotographic image is developed.

2.キャリア芯材の製造方法
次に、キャリア芯材の製造方法について、キャリア芯材の原料、造粒工程、焼成工程の順に説明する。
<キャリア芯材の原料>
本発明に係る磁性キャリア芯材の組成は、金属鉄またはその化合物と、金属マンガンまたはその化合物とであればよい。尤も、常温常圧下で安定に存在し得るとの観点から、酸化物であるFe、Mn、Mnなどが一般的に用いられる。
また、本発明に関するキャリア芯材の製造においては、鉄元素の価数を調整するために、原料に還元剤となる物質を添加することが好ましい形態である。
2. Next, a carrier core material manufacturing method will be described in the order of a carrier core material, a granulation step, and a firing step.
<Raw material for carrier core>
The composition of the magnetic carrier core material according to the present invention may be metallic iron or a compound thereof and metallic manganese or a compound thereof. However, from the viewpoint that it can exist stably under normal temperature and pressure, oxides such as Fe 2 O 3 , Mn 2 O 3 , and Mn 3 O 4 are generally used.
In addition, in the production of the carrier core material according to the present invention, it is a preferable mode to add a substance that becomes a reducing agent to the raw material in order to adjust the valence of the iron element.

上記原料に配合する還元剤としては、カーボン粉末やポリカルボン酸系有機物、ポリアクリル酸系有機物、マレイン酸、酢酸、ポリビニルアルコール系有機物、または、それらの混合物が好適に用いられる。
還元剤の添加量は、焼成後の鉄元素の価数が目的の値となるよう調整する必要がある。その最適量は還元剤となる物質の種類、鉄元素とマンガン元素との比率、原料である鉄化合物・マンガン化合物の形態、および焼成の際の温度・雰囲気、により変化する。したがってそれぞれの製造条件に合わせて適切な量に設定する必要がある。当該量の決定方法は、後述する[実施例]の(実施例1〜4および比較例1〜4のまとめ)欄において説明する。概括的には、鉄系原料としてFe、マンガン原料としてMnを用いる場
合には、Feに対して0.1質量%〜1.0質量%の範囲で添加するのが好ましい。
As the reducing agent to be blended in the raw material, carbon powder, polycarboxylic acid organic material, polyacrylic acid organic material, maleic acid, acetic acid, polyvinyl alcohol organic material, or a mixture thereof is preferably used.
It is necessary to adjust the addition amount of the reducing agent so that the valence of the iron element after firing becomes a target value. The optimum amount varies depending on the kind of the substance to be the reducing agent, the ratio of the iron element and the manganese element, the form of the raw iron compound / manganese compound, and the temperature / atmosphere during firing. Therefore, it is necessary to set an appropriate amount according to each manufacturing condition. The method for determining the amount will be described in the “Examples” (summary of Examples 1 to 4 and Comparative Examples 1 to 4) column below. In general, when Fe 2 O 3 is used as the iron-based material and Mn 3 O 4 is used as the manganese material, it is added in the range of 0.1% by mass to 1.0% by mass with respect to Fe 2 O 3 . Is preferred.

<造粒工程>
上記金属鉄またはその化合物、および、還元剤を秤量した後、これらを水等の媒体液中で混合撹拌することによってスラリー化する(スラリー化工程)。当該スラリー化前に、必要に応じて、原料混合物へ乾式で粉砕処理を加えてもよい。原料粉と媒体液の混合比は、スラリーの固形分濃度が50〜90質量%になるようにすることが望ましい。媒体液は、水にバインダー、分散剤等を添加したものを用意する。混合攪拌して得られたスラリーに対し、さらに湿式粉砕を施すことが好ましい。
<Granulation process>
After weighing the metallic iron or its compound and the reducing agent, they are slurried by mixing and stirring them in a medium liquid such as water (slurry step). Prior to the slurrying, if necessary, the raw material mixture may be subjected to a dry pulverization treatment. The mixing ratio of the raw material powder and the medium liquid is preferably such that the slurry has a solid content concentration of 50 to 90% by mass. The medium liquid is prepared by adding a binder, a dispersant and the like to water. It is preferable to further wet-grind the slurry obtained by mixing and stirring.

上記スラリーを噴霧乾燥機に導入することによって、好適に造粒を実施できる。
噴霧乾燥時の雰囲気温度は100〜300℃程度とすればよい。これにより、概ね、粒子径が10〜200μmの造粒粉を得ることができる(造粒工程)。得られた造粒粉は製品最終粒径を考慮し、振動ふるい等を用いて、粗大粒子や微粉を除去することにより粒度調整することが望ましい。
By introducing the slurry into a spray dryer, granulation can be suitably performed.
The atmospheric temperature during spray drying may be about 100 to 300 ° C. Thereby, the granulated powder whose particle diameter is 10-200 micrometers can be obtained in general (granulation process). It is desirable to adjust the particle size of the resulting granulated powder by removing coarse particles and fine powder using a vibration sieve or the like in consideration of the final particle size of the product.

<焼成工程>
得られた造粒粉を加熱した炉に投入して焼成することにより、目的とするマンガンフェライトを生成させる。
ここで、鉄元素の価数を目的の範囲に調整するため、前述の<キャリア芯材の原料>で説明したように、原料にカーボン単体や有機系の還元剤を添加している。しかし、炉内の酸素濃度が高すぎると、還元反応が円滑に進行せず、さらに冷却中に生成したキャリア芯材の酸化反応が起きてしまう。このため、鉄元素の価数を所望の範囲に調整することが困難となる。このため焼成炉内の酸素濃度を好ましくは3%以下、より好ましくは1%以下となるよう導入ガスの酸素濃度を調整し、焼成を行うことが求められる。
<Baking process>
The obtained granulated powder is put into a heated furnace and fired to produce the desired manganese ferrite.
Here, in order to adjust the valence of the iron element to a target range, as described in the above-mentioned <Raw material for carrier core>, carbon alone or an organic reducing agent is added to the raw material. However, if the oxygen concentration in the furnace is too high, the reduction reaction does not proceed smoothly, and an oxidation reaction of the carrier core material generated during cooling occurs. For this reason, it becomes difficult to adjust the valence of the iron element to a desired range. For this reason, it is required to perform firing by adjusting the oxygen concentration of the introduced gas so that the oxygen concentration in the firing furnace is preferably 3% or less, more preferably 1% or less.

焼成温度に関しては、上述した還元剤の添加量の調整によりフェライト化に必要な還元雰囲気に到達できる。尤も、工業化時に十分な生産性を確保できる反応速度を得るためには、350℃以上の温度が必要である、また焼成温度が1500℃以下であれば、粒子同士の過剰焼結が起こらず、粉体の形態で焼成物を得ることが容易になる。当該観点からは、焼成温度は350℃以上、1500℃以下の範囲にあることが好ましい。より好ましくは700℃以上、1300℃以下、さらに好ましくは1000℃以上、1300℃以下であれば、焼成後の粒子が十分な強度を持つため、良好な形態である。
得られた焼成物は、この段階で粒度調整することが望ましい。例えば、焼成物をハンマーミル等で解粒し、振動篩などで分級を行うことにより、所望の粒径を持った粒子を得ることができる。
Regarding the firing temperature, the reducing atmosphere necessary for ferritization can be reached by adjusting the amount of the reducing agent added as described above. However, in order to obtain a reaction rate that can ensure sufficient productivity during industrialization, a temperature of 350 ° C. or higher is necessary, and if the firing temperature is 1500 ° C. or lower, excessive sintering of particles does not occur, It becomes easy to obtain a fired product in the form of powder. From this viewpoint, the firing temperature is preferably in the range of 350 ° C. or higher and 1500 ° C. or lower. More preferably, the temperature is 700 ° C. or higher and 1300 ° C. or lower, and more preferably 1000 ° C. or higher and 1300 ° C. or lower.
It is desirable to adjust the particle size of the obtained fired product at this stage. For example, particles having a desired particle diameter can be obtained by pulverizing the fired product with a hammer mill or the like and classifying with a vibrating sieve or the like.

3.電子写真現像剤用キャリア
本発明に係るキャリア芯材をシリコーン系樹脂等で被覆し、帯電性の付与および耐久性を向上させることで電子写真現像剤用キャリアを得ることが出来る。当該シリコーン系樹脂等の被覆方法は、公知の手法により行えば良い。
3. Carrier for electrophotographic developer The carrier core material according to the present invention is coated with a silicone-based resin or the like, and the carrier for electrophotographic developer can be obtained by imparting chargeability and improving durability. The method for coating the silicone resin or the like may be performed by a known method.

4.電子写真現像剤
本発明に係るキャリアと適宜なトナーとを混合することで、本発明に係る電子写真現像剤を得ることが出来る。
4). Electrophotographic developer The electrophotographic developer according to the present invention can be obtained by mixing the carrier according to the present invention and an appropriate toner.

5.各物性値の測定方法、
各物性値の測定方法について記述する。
<粒度分布>
キャリア芯材の粒度分布は、マイクロトラック(日機装(株)製、Model:9320−X100)を用いて測定した。得られた粒度分布より、体積率50%までの積算粒径D50を算出した。尚、本発明においてはこのD50の値を芯材の平均粒径として記述した。
5. Measuring method of each physical property value,
Describes how to measure each physical property value.
<Particle size distribution>
The particle size distribution of the carrier core material was measured using a microtrack (manufactured by Nikkiso Co., Ltd., Model: 9320-X100). From the obtained particle size distribution, an integrated particle size D50 up to a volume ratio of 50% was calculated. In the present invention, the value of D50 is described as the average particle diameter of the core material.

<磁気特性>
キャリア芯材の磁気特性は、VSM(東英工業株式会社製、VSM−P7)を用いて磁化率の測定を行い、外部磁場1000Oeにおける磁化率σ1000(emu/g)を得た。
<Magnetic properties>
The magnetic properties of the carrier core material were measured using a VSM (manufactured by Toei Industry Co., Ltd., VSM-P7) to obtain a magnetic susceptibility σ 1000 (emu / g) in an external magnetic field of 1000 Oe.

<抵抗率>
印加電圧250Vにおける電気抵抗率を本発明における抵抗率とした。
当該抵抗率は、以下のようにして測定を行った。
電極として表面を電解研磨した板厚2mmの真鍮板2枚を電極間距離が2mmとなるように配置し、2枚の電極板の間の空隙に被測定粉体200mgを装入したのち、それぞれの電極板の背後に断面積240mmの磁石を配置して電極間に被測定粉体のブリッジを形成させた状態で電極間に250Vの直流電圧を印加し、被測定粉体を流れる電流値を4端子法により測定した。その電流値と、電極間距離2mmおよび断面積240mmから、被測定粉体の抵抗率を算出した。
尚、使用する磁石は粉体がブリッジを形成できる限り、種々のものが使用できるが、本発明では表面磁束密度が1500ガウスの永久磁石(フェライト磁石)を使用している。
<Resistivity>
The electrical resistivity at an applied voltage of 250 V was defined as the resistivity in the present invention.
The resistivity was measured as follows.
Two brass plates having a thickness of 2 mm whose surfaces were electropolished as electrodes were arranged so that the distance between the electrodes was 2 mm, and 200 mg of the powder to be measured was placed in the gap between the two electrode plates, and then each electrode A magnet having a cross-sectional area of 240 mm 2 is arranged behind the plate and a bridge of the powder to be measured is formed between the electrodes, a DC voltage of 250 V is applied between the electrodes, and the current value flowing through the powder to be measured is 4 It was measured by the terminal method. The resistivity of the powder to be measured was calculated from the current value, the distance between the electrodes of 2 mm, and the cross-sectional area of 240 mm 2 .
Various magnets can be used as long as the powder can form a bridge. In the present invention, a permanent magnet (ferrite magnet) having a surface magnetic flux density of 1500 gauss is used.

<鉄元素価数>
キャリア芯材を構成するMnフェライト中の鉄元素の価数測定は以下の方法で行った。
当該分析法は酸化還元滴定の応用であり、(1)Fe2+の定量、(2)総Fe量の定量、(3)Fe価数の算出からなる。以下に具体的方法を示す。
<Iron element valence>
The valence of the iron element in the Mn ferrite constituting the carrier core material was measured by the following method.
This analysis method is an application of oxidation-reduction titration, and consists of (1) determination of Fe 2+ , (2) determination of total Fe amount, and (3) calculation of Fe valence. A specific method is shown below.

(1)Fe2+の定量
まず、キャリア芯材を炭酸ガスのバブリング中で還元性の酸である塩酸(HCl)水に溶解させる。その後、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析する。
また、この分析の際 Al,Si,Mg,Ca,Ba,Sr,Li,Na etcのように、イオン価数を1つしか有しない元素は、この分析法では検出されないので。加えて本発明に関するキャリア芯材の構成元素であるMn2+のイオンもこの滴定方法では検出されないため、結果としてキャリア芯材中のFe2+の濃度だけが選択的に定量される。
(1) Determination of Fe 2+ First, the carrier core material is dissolved in hydrochloric acid (HCl) water which is a reducing acid in bubbling of carbon dioxide gas. Thereafter, the amount of Fe 2+ ions in the solution is quantitatively analyzed by potentiometric titration with a potassium permanganate solution.
Also, in this analysis, elements having only one ionic valence such as Al, Si, Mg, Ca, Ba, Sr, Li, Na etc are not detected by this analysis method. In addition, since Mn 2+ ions, which are constituent elements of the carrier core material according to the present invention, are not detected by this titration method, only the Fe 2+ concentration in the carrier core material is selectively quantified as a result.

(2)総Fe量の定量
キャリア芯材を(1)Fe2+の定量と同量秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させたのち、硫酸水を添加して再溶解し過剰な塩酸と硝酸を揮発させる。この溶液に固体Alを添加して液中のFe3+をFe2+に還元する。続いてこの溶液を(1)Fe2+の定量で用いた方法と同一の分析手段により測定した。
(2) Quantification of total Fe amount The carrier core material was weighed in the same amount as (1) Fe 2+ quantification, and dissolved in a mixed acid water of hydrochloric acid and nitric acid. After evaporating this solution to dryness, sulfuric acid water is added and redissolved to volatilize excess hydrochloric acid and nitric acid. Solid Al is added to this solution to reduce Fe 3+ in the solution to Fe 2+ . Subsequently, this solution was measured by the same analytical means as used in (1) determination of Fe 2+ .

(3)Fe平均価数の算出
上記(1)Fe2+の定量の滴定量はFe2+量を表し、((2)滴定量−(1)滴定量)はFe3+量を表すので、以下の計算式によりFeの平均価数を算出した。
Fe価数={3×((2)滴定量−(1)滴定量)+2×(1)滴定量}/(2)滴定量
(3) Fe average valence of calculation (1) Determination of titer of Fe 2+ represents Fe 2+ quantity, ((2) titer - (1) titer) it does represent the Fe 3+ amount, the following The average valence of Fe was calculated by the calculation formula.
Fe valence = {3 × ((2) titration− (1) titration) + 2 × (1) titration} / (2) titration

上記方法以外にも、鉄元素の価数を定量する方法として、他の酸化還元滴定法が存在するが、本分析に用いる反応が単純であり得られた結果の解釈が容易なこと、一般に用いら
れる試薬および分析装置で十分な精度が出ること、分析者の熟練を要しないことなどから優れている。
また、固体スペクトル分析法のXPS(ESCA)やメスバウアー分光法でも固体中の鉄元素の価数を定量した事例が報告されているが、これら分析方法は高価な分析機器を必要とし、分光スペクトルとの相対分析であるため、上記湿式化学分析法が、分析精度・感度・再現性の面で優れているといえる。
In addition to the above methods, there are other oxidation-reduction titration methods for quantifying the valence of iron elements, but the reaction used in this analysis is simple and the interpretation of the obtained results is easy. The reagents and analyzers used in the present invention are excellent in accuracy, and the skill of the analyst is not required.
In addition, XPS (ESCA) and Mossbauer spectroscopy, which are solid spectrum analysis methods, have reported examples of quantifying the valence of iron elements in solids, but these analysis methods require expensive analytical instruments, and spectral spectra Therefore, it can be said that the wet chemical analysis method is excellent in terms of analysis accuracy, sensitivity, and reproducibility.

(実施例1)
Fe(平均粒径:0.6μm)6.8kg、Mn(平均粒径:0.9μm)3.2kgを純水3.0kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を60g添加して混合物とした。当該混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、FeとMnとの混合スラリーを得た。原料の混合比は、前述のフェライトの組成式MnFe3−xにおいて、x=1.00となるよう算出したものである。さらに、このスラリーに還元剤としてカーボンブラック(三菱化学社製 三菱カーボンブラックMA−7)を添加した。
このスラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10〜100μmの乾燥造粒粉を得た。尚、このとき、粒径が100μmを超えるような造粒粉は、篩により除去した。
この造粒粉を、電気炉に投入し3時間焼成した。このとき電気炉内の酸素濃度が一定となるよう、酸素と窒素を混合したガスを電気炉内にフローした。得られた焼成物を粉砕後に篩を用いて分級し、鉄元素の価数が2.95〜3.00の範囲に調整された、実施例1に係る電子写真現像剤用磁性キャリア芯材(a、b)を得た。本実施例における、MnFe3−xのxの仕込み値、カーボンブラック(C.B.)の添加量、カーボン成分の分析値(焼成前の造粒品の段階における分析値である。)、焼成の際の焼成温度、導入ガスの酸素濃度を表1に記載する。
Example 1
6.8 kg of Fe 2 O 3 (average particle size: 0.6 μm), 3.2 kg of Mn 3 O 4 (average particle size: 0.9 μm) are dispersed in 3.0 kg of pure water, and polycarboxylic acid is used as a dispersant. 60 g of ammonium dispersant was added to form a mixture. The mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry of Fe 2 O 3 and Mn 3 O 4 . The mixing ratio of the raw materials was calculated so that x = 1.00 in the above-described ferrite composition formula Mn x Fe 3-x O 4 . Furthermore, carbon black (Mitsubishi Chemical Corporation Mitsubishi Carbon Black MA-7) was added to the slurry as a reducing agent.
This slurry was sprayed into hot air at about 130 ° C. with a spray dryer to obtain dry granulated powder having a particle size of 10 to 100 μm. At this time, the granulated powder having a particle size exceeding 100 μm was removed by a sieve.
This granulated powder was put into an electric furnace and fired for 3 hours. At this time, a gas in which oxygen and nitrogen were mixed was flowed into the electric furnace so that the oxygen concentration in the electric furnace was constant. The obtained fired product was pulverized and classified using a sieve, and the magnetic carrier core material for an electrophotographic developer according to Example 1 in which the valence of the iron element was adjusted to the range of 2.95 to 3.00 ( a, b) were obtained. In this example, the value of x of Mn x Fe 3-x O 4 , the amount of carbon black (CB) added, the analytical value of the carbon component (analyzed value at the stage of the granulated product before firing) Table 1 shows the firing temperature during firing and the oxygen concentration of the introduced gas.

(実施例2)
Fe(平均粒径:0.6μm)7.2kg、Mn(平均粒径:0.9μm)2.8kgを純水3.0kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を60g添加して混合物とした。当該混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、FeとMnとの混合スラリーを得た。原料の混合比は、前述のフェライトの組成式MnFe3−xにおいて、x=0.86となるよう算出したものである。
このスラリーに還元剤としてカーボンブラックを添加したものを原料とし、実施例1と同様にして造粒、焼成を行い、鉄元素の価数が2.93〜2.98の範囲に調整された、実施例2に係るキャリア芯材(a〜d)を得た。本実施例における、MnFe3−xのxの仕込み値、カーボンブラック(C.B.)の添加量、カーボン成分の分析値(焼成前の造粒品の段階における分析値である。)、焼成の際の焼成温度、導入ガスの酸素濃度を表1に記載する。
(Example 2)
Fe 2 O 3 (average particle size: 0.6 μm) 7.2 kg, Mn 3 O 4 (average particle size: 0.9 μm) 2.8 kg was dispersed in 3.0 kg of pure water, and polycarboxylic acid was used as a dispersant. 60 g of ammonium dispersant was added to form a mixture. The mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry of Fe 2 O 3 and Mn 3 O 4 . The mixing ratio of the raw materials was calculated so that x = 0.86 in the above-described ferrite composition formula Mn x Fe 3-x O 4 .
Using this slurry as a raw material with carbon black added as a reducing agent, granulation and firing were performed in the same manner as in Example 1, and the valence of the iron element was adjusted to the range of 2.93 to 2.98. Carrier core materials (ad) according to Example 2 were obtained. In this example, the value of x of Mn x Fe 3-x O 4 , the amount of carbon black (CB) added, the analytical value of the carbon component (analyzed value at the stage of the granulated product before firing) Table 1 shows the firing temperature during firing and the oxygen concentration of the introduced gas.

(実施例3)
Fe(平均粒径:0.6μm)8.4kg、Mn(平均粒径:0.9μm)1.6kgを純水3.0kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を60g添加して混合物とした。当該混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、FeとMnとの混合スラリーを得た。原料の混合比は、前述のフェライトの組成式MnFe3−xにおいて、x=0.50となるよう算出したものである。
このスラリーに還元剤としてカーボンブラックを添加したものを原料とし、実施例1と同様にして造粒、焼成を行い、鉄元素の価数が2.80〜2.85の範囲に調整された、
実施例3に係るキャリア芯材(a〜d)を得た。本実施例における、MnFe3−xのxの仕込み値、カーボンブラック(C.B.)の添加量、カーボン成分の分析値(焼成前の造粒品の段階における分析値である。)、焼成の際の焼成温度、導入ガスの酸素濃度を表1に記載する。
(Example 3)
8.4 kg of Fe 2 O 3 (average particle size: 0.6 μm), 1.6 kg of Mn 3 O 4 (average particle size: 0.9 μm) are dispersed in 3.0 kg of pure water, and polycarboxylic acid is used as a dispersant. 60 g of ammonium dispersant was added to form a mixture. The mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry of Fe 2 O 3 and Mn 3 O 4 . The mixing ratio of the raw materials was calculated so that x = 0.50 in the above-described ferrite composition formula Mn x Fe 3-x O 4 .
Using this slurry as a raw material with carbon black added as a reducing agent, granulation and firing were performed in the same manner as in Example 1, and the valence of the iron element was adjusted to the range of 2.80 to 2.85.
Carrier core materials (ad) according to Example 3 were obtained. In this example, the value of x of Mn x Fe 3-x O 4 , the amount of carbon black (CB) added, the analytical value of the carbon component (analyzed value at the stage of the granulated product before firing) Table 1 shows the firing temperature during firing and the oxygen concentration of the introduced gas.

(実施例4)
Fe(平均粒径:0.6μm)9.7kg、Mn(平均粒径:0.9μm)0.3kgを純水3.0kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を60g添加して混合物とした。当該混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、FeとMnとの混合スラリーを得た。原料の混合比は、前述のフェライトの組成式MnFe3−xにおいて、x=0.1となるよう算出したものである。
このスラリーに還元剤としてカーボンブラックを添加したものを原料とし、実施例1と同様にして造粒、焼成を行い、鉄元素の価数が2.69〜2.74の範囲に調整された、実施例4に係るキャリア芯材(a〜d)を得た。本実施例における、MnFe3−xのxの仕込み値、カーボンブラック(C.B.)の添加量、カーボン成分の分析値(焼成前の造粒品の段階における分析値である。)、焼成の際の焼成温度、導入ガスの酸素濃度を表1に記載する。
Example 4
9.7 kg of Fe 2 O 3 (average particle size: 0.6 μm), 0.3 kg of Mn 3 O 4 (average particle size: 0.9 μm) are dispersed in 3.0 kg of pure water, and polycarboxylic acid is used as a dispersant. 60 g of ammonium dispersant was added to form a mixture. The mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry of Fe 2 O 3 and Mn 3 O 4 . The mixing ratio of the raw materials is calculated so that x = 0.1 in the above-described ferrite composition formula Mn x Fe 3-x O 4 .
Using this slurry as a raw material with carbon black added as a reducing agent, granulation and firing were performed in the same manner as in Example 1, and the valence of the iron element was adjusted to the range of 2.69 to 2.74. Carrier core materials (ad) according to Example 4 were obtained. In this example, the value of x of Mn x Fe 3-x O 4 , the amount of carbon black (CB) added, the analytical value of the carbon component (analyzed value at the stage of the granulated product before firing) Table 1 shows the firing temperature during firing and the oxygen concentration of the introduced gas.

(比較例1)
実施例1において、還元剤としてのカーボンブラックの添加量及び導入ガスの酸素濃度を変更する以外は実施例1と同様にして処理し、鉄元素の価数を調整したキャリア芯材(a)を得た。本比較例における、MnFe3−xのxの仕込み値、カーボンブラック(C.B.)の添加量、カーボン成分の分析値(焼成前の造粒品の段階における分析値である。)、焼成の際の焼成温度、導入ガスの酸素濃度を表1に記載する。
(Comparative Example 1)
In Example 1, except that the amount of carbon black added as a reducing agent and the oxygen concentration of the introduced gas were changed, the carrier core material (a) was processed in the same manner as in Example 1 and the valence of the iron element was adjusted. Obtained. In this comparative example, the charged value of x of Mn x Fe 3-x O 4 , the added amount of carbon black (CB), the analytical value of the carbon component (the analytical value at the stage of the granulated product before firing) Table 1 shows the firing temperature during firing and the oxygen concentration of the introduced gas.

(比較例2)
実施例2において、還元剤としてのカーボンブラックの添加量及び導入ガスの酸素濃度を変更する以外は実施例2と同様にして処理し、鉄元素の価数を調整したキャリア芯材(a〜d)を得た。本比較例における、MnFe3−xのxの仕込み値、カーボンブラック(C.B.)の添加量、カーボン成分の分析値(焼成前の造粒品の段階における分析値である。)、焼成の際の焼成温度、導入ガスの酸素濃度を表1に記載する。
(Comparative Example 2)
In Example 2, except that the amount of carbon black added as a reducing agent and the oxygen concentration of the introduced gas were changed, the same processing as in Example 2 was carried out to adjust the valence of the iron element (ad) ) In this comparative example, the charged value of x of Mn x Fe 3-x O 4 , the added amount of carbon black (CB), the analytical value of the carbon component (the analytical value at the stage of the granulated product before firing) Table 1 shows the firing temperature during firing and the oxygen concentration of the introduced gas.

(比較例3)
実施例3において、還元剤としてのカーボンブラックの添加量及び導入ガスの酸素濃度を変更する以外は実施例3と同様にして処理し、鉄元素の価数を調整したキャリア芯材(a〜d)を得た。本比較例における、MnFe3−xのxの仕込み値、カーボンブラック(C.B.)の添加量、カーボン成分の分析値(焼成前の造粒品の段階における分析値である。)、焼成の際の焼成温度、導入ガスの酸素濃度を表1に記載する。
(Comparative Example 3)
In Example 3, the carrier core material (ad) was processed in the same manner as in Example 3 except that the amount of carbon black added as the reducing agent and the oxygen concentration of the introduced gas were changed, and the valence of the iron element was adjusted. ) In this comparative example, the charged value of x of Mn x Fe 3-x O 4 , the added amount of carbon black (CB), the analytical value of the carbon component (the analytical value at the stage of the granulated product before firing) Table 1 shows the firing temperature during firing and the oxygen concentration of the introduced gas.

(比較例4)
実施例4において、還元剤としてのカーボンブラックの添加量及び導入ガスの酸素濃度を変更する以外は実施例4と同様にして処理し、鉄元素の価数を調整したキャリア芯材(a〜d)を得た。本比較例における、MnFe3−xのxの仕込み値、カーボンブラック(C.B.)の添加量、カーボン成分の分析値(焼成前の造粒品の段階における分析値である。)、焼成の際の焼成温度、導入ガスの酸素濃度を表1に記載する。
(Comparative Example 4)
In Example 4, except that the amount of carbon black added as the reducing agent and the oxygen concentration of the introduced gas were changed, the same processing as in Example 4 was performed to adjust the valence of the iron element (ad) ) In this comparative example, the charged value of x of Mn x Fe 3-x O 4 , the added amount of carbon black (CB), the analytical value of the carbon component (the analytical value at the stage of the granulated product before firing) Table 1 shows the firing temperature during firing and the oxygen concentration of the introduced gas.

Figure 0005260118
Figure 0005260118

(実施例1〜4および比較例1〜4のまとめ)
表1に、実施例1〜4および比較例1〜4におけるキャリア芯材における、Fe価数の実測値と理論値との差異A、MnFe3−xのxの分析値、磁気特性、電気特性、粒径を示す。
(Summary of Examples 1-4 and Comparative Examples 1-4)
Table 1 shows the difference A between the measured value and the theoretical value of the Fe valence in the carrier core materials in Examples 1 to 4 and Comparative Examples 1 to 4 , the analytical value of x of Mn x Fe 3 -x O 4 , and the magnetic Properties, electrical properties, particle size are shown.

表1の結果から、各実施例、比較例において、分析結果より算出されたxの値は、原料の仕込みでのxの値とほぼ同等であることが確認された。そして、Aの値は、カーボンブラックの添加量、焼成温度および導入ガスの酸素濃度の制御により、−0.10〜+0.10の範囲で制御出来ることも判明した。   From the results in Table 1, it was confirmed that in each Example and Comparative Example, the value of x calculated from the analysis results was almost equal to the value of x in the raw material charging. It has also been found that the value of A can be controlled in the range of −0.10 to +0.10 by controlling the amount of carbon black added, the firing temperature, and the oxygen concentration of the introduced gas.

ここで、実施例1〜4および比較例1〜4に関するキャリア芯材における、上記Aと、
磁化率σ1000との関係を図1に示す。図1は、横軸にAの値をとり、縦軸に磁化率σ1000の値をとったグラフである。そして当該グラフ中に、x=1.00である実施例に係るキャリア芯材を■、比較例にかかるキャリア芯材を□、x=0.86である実施例に係るキャリア芯材を▲、比較例にかかるキャリア芯材を△、x=0.50である実施例にかかるキャリア芯材を◆、比較例にかかるキャリア芯材を◇、x=0.10である実施例にかかるキャリア芯材を●、比較例にかかるキャリア芯材を○でプロットしたものである。
Here, in the carrier core material regarding Examples 1-4 and Comparative Examples 1-4, the above A,
The relationship with the magnetic susceptibility σ1000 is shown in FIG. FIG. 1 is a graph in which the horizontal axis is A and the vertical axis is magnetic susceptibility σ1000. In the graph, the carrier core material according to the example where x = 1.00, ■, the carrier core material according to the comparative example is □, the carrier core material according to the example where x = 0.86 is ▲, The carrier core material according to the comparative example is Δ, x = 0.50 is the carrier core material according to the example ◆, the carrier core material according to the comparative example is ◇, and the carrier core according to the example is x = 0.10 The material is plotted with ●, and the carrier core material according to the comparative example is plotted with ○.

図1より、キャリア芯材の磁化率は、Aの値により変動することが判明した。さらに、いずれのxを有するキャリア芯材に対しても、0≦A≦0.05、さらに好ましくは0≦A≦0.03を満たすとき、σ1000が62〜73emu/gとなり、キャリア芯材として好ましい磁気特性を示すことが分かる。   From FIG. 1, it was found that the magnetic susceptibility of the carrier core material varies depending on the value of A. Further, for any carrier core material having x, when 0 ≦ A ≦ 0.05, more preferably 0 ≦ A ≦ 0.03, σ1000 is 62 to 73 emu / g, It can be seen that preferred magnetic properties are exhibited.

次に、実施例1〜4および比較例1〜4に関するキャリア芯材における、上記Aと、抵抗率との関係を図2に示す。図2は、横軸にAの値をとり、縦軸に抵抗率の値をとったグラフである。当該グラフ中のプロットは図1と同様である。   Next, FIG. 2 shows the relationship between A and resistivity in the carrier core materials related to Examples 1 to 4 and Comparative Examples 1 to 4. FIG. 2 is a graph in which the horizontal axis is A and the vertical axis is resistivity. The plot in the graph is the same as in FIG.

図2より、キャリア芯材の抵抗率も、Aの値により変動することが判明した。さらに、いずれのxを有するキャリア芯材に対しても、0.005≦A≦0.10、さらに好ましくは0.01≦A≦0.10を満たすとき、抵抗率が高水準を保ち好ましい電気特性を示すことが分かる。   From FIG. 2, it was found that the resistivity of the carrier core material also varies depending on the value of A. Further, for any carrier core material having x, when 0.005 ≦ A ≦ 0.10, more preferably 0.01 ≦ A ≦ 0.10, the resistivity is kept at a high level and preferable electric power is satisfied. It can be seen that it exhibits characteristics.

以上、図1、2の結果より、0.005≦A≦0.05の範囲にあるキャリア芯材は、磁気特性、電気特性の双方に優れることが判明した。従って当該構成を有するキャリア芯材を用いることで、キャリア付着等の異常現象を低減することの出来る電子写真現像剤用キャリアおよび電子写真現像剤を提供することが出来る。   As described above, the results shown in FIGS. 1 and 2 show that the carrier core material in the range of 0.005 ≦ A ≦ 0.05 is excellent in both magnetic characteristics and electrical characteristics. Therefore, by using the carrier core material having such a configuration, it is possible to provide an electrophotographic developer carrier and an electrophotographic developer that can reduce abnormal phenomena such as carrier adhesion.

尚、実施例1〜4および比較例1〜4として、Aの値を、カーボンブラックの添加量、焼成温度および導入ガスの酸素濃度の制御により、−0.10〜+0.10の範囲で制御出来ることを説明した。しかし、製造装置の規模、形式によって、所望のA値を得るためのカーボンブラックの添加量、焼成温度および導入ガスの酸素濃度の値は、一定値ではない。そこで、使用する製造装置の規模、形式に応じ、所望のA値を得るためのカーボンブラックの添加量、焼成温度および導入ガスの酸素濃度の値を定めることが求められる。このような場合は、本明細書[発明を実施するための最良の形態]の「5.各物性値の測定方法、<鉄元素価数>欄」において説明した、Mnフェライト中の鉄元素の価数測定法を用いて、最適条件を求めることが出来る。   In Examples 1 to 4 and Comparative Examples 1 to 4, the value of A is controlled in the range of −0.10 to +0.10 by controlling the amount of carbon black added, the firing temperature, and the oxygen concentration of the introduced gas. I explained what I can do. However, the amount of carbon black added, the firing temperature, and the oxygen concentration of the introduced gas to obtain a desired A value are not constant values depending on the scale and type of the manufacturing apparatus. Therefore, it is required to determine the amount of carbon black added, the firing temperature, and the oxygen concentration of the introduced gas in order to obtain a desired A value according to the scale and type of the production apparatus used. In such a case, the iron element in the Mn ferrite described in “5. Method for measuring physical properties, <iron element valence>” in this specification [Best Mode for Carrying Out the Invention] Optimal conditions can be determined using a valence measurement method.

電子写真現像剤用磁性キャリア芯材の鉄元素の価数と磁化率との関係を示すグラフである。It is a graph which shows the relationship between the valence of the iron element of the magnetic carrier core material for electrophotographic developers, and magnetic susceptibility. 電子写真現像剤用磁性キャリア芯材の鉄元素の価数と抵抗率との関係を示すグラフである。It is a graph which shows the relationship between the valence of the iron element of a magnetic carrier core material for electrophotographic developers, and resistivity.

Claims (5)

一般式:MnFe3−x(但し0<x≦1)で表されるMnフェライトからなり、
当該Mnフェライト中の鉄元素の価数が{(8−2×x)/(3−x)+0.005}以上、{(8−2×x)/(3−x)+0.05}以下の範囲内にあることを特徴とする電子写真現像剤用キャリア芯材。
Formula: consists Mn x Fe 3-x O 4 ( where 0 <x ≦ 1) Mn ferrite you express in,
The valence of the iron element in the Mn ferrite is {(8-2 × x) / (3-x) +0.005} or more and {(8-2 × x) / (3-x) +0.05} or less. A carrier core material for an electrophotographic developer, characterized by being in the range of
外部磁場1000Oe下における磁化率:σ1000が、σ1000≧60emu/gを満たすことを特徴とする請求項1に記載の電子写真現像剤用キャリア芯材。 2. The carrier core material for an electrophotographic developer according to claim 1, wherein a magnetic susceptibility under an external magnetic field of 1000 Oe: σ 1000 satisfies σ 1000 ≧ 60 emu / g. 平均粒子径が、10μm以上、80μm以下であることを特徴とする請求項1または2に記載の電子写真現像剤用キャリア芯材。   3. The carrier core material for an electrophotographic developer according to claim 1, wherein an average particle diameter is 10 μm or more and 80 μm or less. 請求項1〜3のいずれか一項に記載の電子写真現像剤用キャリア芯材を、樹脂で被覆したものであることを特徴とする電子写真現像剤用磁性キャリア。   A magnetic carrier for an electrophotographic developer, wherein the carrier core material for an electrophotographic developer according to any one of claims 1 to 3 is coated with a resin. 請求項4に記載の電子写真現像剤用キャリアと、トナーとを含むことを特徴とする電子写真現像剤。   An electrophotographic developer comprising the carrier for an electrophotographic developer according to claim 4 and a toner.
JP2008094137A 2008-03-31 2008-03-31 Carrier core material for electrophotographic developer and production method thereof, magnetic carrier for electrophotographic developer, and electrophotographic developer Active JP5260118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094137A JP5260118B2 (en) 2008-03-31 2008-03-31 Carrier core material for electrophotographic developer and production method thereof, magnetic carrier for electrophotographic developer, and electrophotographic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094137A JP5260118B2 (en) 2008-03-31 2008-03-31 Carrier core material for electrophotographic developer and production method thereof, magnetic carrier for electrophotographic developer, and electrophotographic developer

Publications (2)

Publication Number Publication Date
JP2009244792A JP2009244792A (en) 2009-10-22
JP5260118B2 true JP5260118B2 (en) 2013-08-14

Family

ID=41306712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094137A Active JP5260118B2 (en) 2008-03-31 2008-03-31 Carrier core material for electrophotographic developer and production method thereof, magnetic carrier for electrophotographic developer, and electrophotographic developer

Country Status (1)

Country Link
JP (1) JP5260118B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578842B2 (en) * 2009-12-14 2014-08-27 Dowaエレクトロニクス株式会社 Method for producing ferrite particles
JP5377386B2 (en) * 2010-03-29 2013-12-25 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer, production method thereof, carrier for electrophotographic developer, and electrophotographic developer
JP5761921B2 (en) * 2010-03-30 2015-08-12 Dowaエレクトロニクス株式会社 Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949692B2 (en) * 2005-02-28 2007-07-25 パウダーテック株式会社 Amorphous ferrite carrier and electrophotographic developer using the ferrite carrier
JP4474561B2 (en) * 2005-03-17 2010-06-09 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer, carrier powder for electrophotographic developer, and production method thereof

Also Published As

Publication number Publication date
JP2009244792A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
EP2131248B1 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
KR101411110B1 (en) Carrier core material for electrophotographic developer, production method for same, carrier for electrophotographic developer, and electrophotographic developer
KR101291909B1 (en) Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
JP2016025288A (en) Ferrite magnetic material
EP2136253B1 (en) Carrier core material for electrophotographic developing agent, process for producing the carrier core material, carrier for electrophotographic developing agent, and electrophotographic developing agent
JP5260118B2 (en) Carrier core material for electrophotographic developer and production method thereof, magnetic carrier for electrophotographic developer, and electrophotographic developer
JP6319779B1 (en) Magnetic core material for electrophotographic developer, carrier for electrophotographic developer and developer
JP2010002519A (en) Carrier core material for electrophotographic developer and method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer
JP5129079B2 (en) Carrier core material, method for producing the same, and magnetic carrier for electrophotographic developer
EP2581791B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, electrophotographic developer, and method for producing carrier core material for electrophotographic developer
JP5307391B2 (en) Magnetic carrier core material for electrophotographic developer and method for producing the same, magnetic carrier and electrophotographic developer
EP3582021B1 (en) Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
US10996579B2 (en) Magnetic core material for electrophotographic developer, carrier for electrophotographic developer, and developer
JP5307414B2 (en) Magnetic carrier core material for electrophotographic developer, magnetic carrier for electrophotographic developer, and method for producing electrophotographic developer
EP3477395B1 (en) Magnetic core material for electrophotographic developers, carrier for electrophotographic developers, developer, method for producing magnetic core material for electrophotographic developers, method for producing carrier for electrophotographic developers, and method for producing developer
JP2009086545A (en) Carrier core material for electrophotographic developer and manufacturing method therefor, and carrier for electrophotographic developer
JP2011107286A (en) Carrier core material for electrophotographic development, method for producing the same, carrier for electrophotographic development and two-component electrophotographic developer
EP4349789A1 (en) Ferrite particle, carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite particle
JP2019040174A (en) Magnetic core material for electrographic developer, carrier for electrographic developer and developer
EP4349788A1 (en) Ferrite particles, carrier for electrophotographic developer, electrophotographic developer, and ferrite particle production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250