JP5858591B2 - Carrier core material, electrophotographic carrier and electrophotographic developer using the same - Google Patents

Carrier core material, electrophotographic carrier and electrophotographic developer using the same Download PDF

Info

Publication number
JP5858591B2
JP5858591B2 JP2015029121A JP2015029121A JP5858591B2 JP 5858591 B2 JP5858591 B2 JP 5858591B2 JP 2015029121 A JP2015029121 A JP 2015029121A JP 2015029121 A JP2015029121 A JP 2015029121A JP 5858591 B2 JP5858591 B2 JP 5858591B2
Authority
JP
Japan
Prior art keywords
carrier
core material
carrier core
electrophotographic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015029121A
Other languages
Japanese (ja)
Other versions
JP2015200872A (en
Inventor
龍也 堀江
龍也 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2015029121A priority Critical patent/JP5858591B2/en
Publication of JP2015200872A publication Critical patent/JP2015200872A/en
Application granted granted Critical
Publication of JP5858591B2 publication Critical patent/JP5858591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)

Description

本発明はキャリア芯材並びにそれを用いた電子写真用キャリア及び電子写真用現像剤に関するものである。 The present invention relates to a carrier core material , an electrophotographic carrier using the same, and an electrophotographic developer.

例えば、電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、静電潜像担持体(以下、「感光体」と記すことがある)の表面に形成された静電潜像を現像剤で可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。   For example, in image forming apparatuses such as facsimiles, printers, and copiers using an electrophotographic system, an electrostatic latent image formed on the surface of an electrostatic latent image carrier (hereinafter sometimes referred to as “photosensitive member”). Is visualized with a developer, and the visible image is transferred onto paper or the like, and then fixed by heating and pressing. A so-called two-component developer including a carrier and a toner is widely used as a developer from the viewpoint of high image quality and colorization.

この二成分現像剤を用いた現像は、複数の磁極を内蔵し、現像剤を表面に担持する現像剤担持体(以下、「現像スリーブ」と記すことがある)と、感光体とを所定間隔を隔てて略平行に対向配置し、感光体と現像スリーブとが対向する領域(以下、「現像領域」と記すことがある)において、キャリアが集合して穂立ちした磁気ブラシを現像スリーブ上に形成させると共に、感光体と現像スリーブとの間に現像バイアス電圧を印加し、感光体表面の静電潜像にトナーを付着させることにより行われる。   In the development using the two-component developer, a plurality of magnetic poles are built in, and a developer carrier (hereinafter sometimes referred to as a “development sleeve”) that carries the developer on the surface and a photosensitive member are spaced at a predetermined interval. In a region where the photosensitive member and the developing sleeve face each other (hereinafter referred to as a “developing region”), a magnetic brush that gathers and stands up is placed on the developing sleeve. In addition to the formation, a developing bias voltage is applied between the photosensitive member and the developing sleeve, and toner is attached to the electrostatic latent image on the surface of the photosensitive member.

このようなキャリアとして、高磁化で高帯電性などの特性を有するものが望まれている。例えば、特許文献1では、Mn含有量が少なく、高磁化で高帯電性などの特性を有するフェライト粒子からなるキャリア芯材の製造方法が提案されている。   As such a carrier, one having characteristics such as high magnetization and high chargeability is desired. For example, Patent Document 1 proposes a method for manufacturing a carrier core material made of ferrite particles having a low Mn content, high magnetization, and high chargeability.

特開2011−164224号公報JP 2011-164224 A

しかしながら、従来のフェライト粒子の磁気特性および帯電性は、未だ十分に満足できるものではなかった。   However, the magnetic properties and chargeability of conventional ferrite particles have not been fully satisfactory.

そこで、本発明は、このような従来の問題に鑑みてなされたものであり、その目的は、高磁化及び高帯電性を有するキャリア芯材を提供することにある。 Therefore, the present invention has been made in view of such conventional problems, and an object thereof is to provide a carrier core material having high magnetization and high chargeability.

前記目的を達成する本発明に係るキャリア芯材は、組成式SrMnFe19(但し、0<x<3,0.7≦y≦3.5,9.0≦z≦11.3,x+y+z=13である。)で表される化合物が粒子表面に存在するフェライト粒子からなることを特徴とする。なお、本明細書における粒子表面の分析は、エネルギー分散型X線分析(EDS:Energy Dispersive x-ray Spectroscopy)によるものであり、具体的分析方法は、後述の実施例において詳述する。なお、EDSの表面の分析深度としては1μm程度である。 The carrier core material according to the present invention that achieves the above object has a composition formula Sr x Mn y Fe z O 19 (where 0 <x <3, 0.7 ≦ y ≦ 3.5, 9.0 ≦ z ≦ 11). .3, a compound represented by a x + y + z = 13. ) is characterized by comprising the ferrite particles present on the particle surfaces. Note that the analysis of the particle surface in this specification is based on energy dispersive x-ray spectroscopy (EDS), and a specific analysis method will be described in detail in Examples described later. The analysis depth of the EDS surface is about 1 μm.

また本発明によれば、前記のいずれかに記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリアが提供される。 According to the present invention, there is also provided an electrophotographic developing carrier characterized in that the surface of the carrier core material described above is coated with a resin.

さらに本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。   Furthermore, according to the present invention, there is provided an electrophotographic developer comprising the electrophotographic developer carrier described above and a toner.

本発明に係るキャリア芯材によれば、高磁化を維持しながら高帯電性を実現でき、長期間にわたって優れた画質が得られる。 According to the carrier core material of the present invention, high chargeability can be realized while maintaining high magnetization, and excellent image quality can be obtained over a long period of time.

酸素濃度と焼結温度とによるSrフェライトの組成変化を示す図である。It is a figure which shows the composition change of Sr ferrite by oxygen concentration and sintering temperature. 実施例1のフェライト粒子からなるキャリア芯材のSEM写真である。2 is an SEM photograph of a carrier core material made of ferrite particles of Example 1. 実施例1のフェライト粒子からなるキャリア芯材のSrについてのEDSマッピング写真である。2 is an EDS mapping photograph of Sr of a carrier core material made of ferrite particles of Example 1. 実施例9のフェライト粒子からなるキャリア芯材についてXRD分析結果である。It is a XRD analysis result about the carrier core material which consists of a ferrite particle of Example 9. 実施例及び比較例におけるσ1kと帯電量比との関係を示す図である。It is a figure which shows the relationship between (sigma) 1k and charge amount ratio in an Example and a comparative example.

本発明に係るキャリア芯材は、組成式SrMnFe19(但し、0<x<3,0.7≦y≦3.5,9.0≦z≦11.3,x+y+z=13である。)で表される化合物が粒子表面に存在するフェライト粒子からなることが大きな特徴である。 The carrier core material according to the present invention has a composition formula Sr x Mn y Fe z O 19 (where 0 <x <3, 0.7 ≦ y ≦ 3.5, 9.0 ≦ z ≦ 11.3, x + y + z = 13)) is characterized by being composed of ferrite particles present on the surface of the particles .

組成式SrMnFe19で示される化合物を生成させるためには、Sr成分原料としてはSrFe13を用いること及び製造工程おける焼成を所定条件下で行うこと等が重要である。これまでSr成分原料としては、通常、SrCOが使用されていたが、この場合には、組成式SrMnFe19で示される化合物は生成しない。詳細は後述する。 In order to produce a compound represented by the composition formula Sr x Mn y Fe z O 19 , it is important to use Sr 4 Fe 6 O 13 as a raw material of Sr component and to perform firing in a manufacturing process under predetermined conditions. It is. Until now, SrCO 3 has been generally used as the Sr component raw material, but in this case, the compound represented by the composition formula Sr x Mn y Fe z O 19 is not generated. Details will be described later.

本発明のキャリア芯材の粒径に特に限定はないが、体積平均粒子径が数十μm〜数百μmの範囲のものが好ましく、数十μm程度がより好ましく、その粒度分布はシャープであるのが好ましい。 The particle diameter of the carrier core material of the present invention is not particularly limited, but the volume average particle diameter is preferably in the range of several tens μm to several hundreds μm, more preferably about several tens μm, and the particle size distribution is sharp. Is preferred.

本発明のキャリア芯材の製造方法に特に限定はないが、以下に説明する製造方法が好適である。なお、本明細書において示す「〜」は、特に断りのない限り、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Although there is no limitation in particular in the manufacturing method of the carrier core material of this invention, the manufacturing method demonstrated below is suitable. In addition, "-" shown in this specification is used in the meaning which includes the numerical value described before and behind that as a lower limit and an upper limit unless there is particular notice.

まず、Fe成分原料及びMn成分原料を秤量して仮焼成する。仮焼成の温度としては750℃〜900℃の範囲が好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。Fe成分原料としては、Fe等が好適に使用される。Mn成分原料としてはMnCO、Mn等が好適に使用できる。 First, the Fe component raw material and the Mn component raw material are weighed and temporarily fired. The pre-baking temperature is preferably in the range of 750 ° C to 900 ° C. Moreover, an air atmosphere is preferable as the atmosphere at the time of temporary firing. As the Fe component material, Fe 2 O 3 or the like is preferably used. As the Mn component raw material, MnCO 3 , Mn 3 O 4 or the like can be suitably used.

次いで、仮焼成した原料を解粒し、Sr成分原料を秤量して分散媒中に投入し、スラリーを作製する。Sr成分原料としては、SrFe13を用いることが、後述の焼成工程においてSrMnFe19で示される化合物を生成させる上で重要である。理由は後述する。本発明で使用する分散媒としては水が好適である。分散媒には、前記Fe成分原料、Mn成分原料、Sr成分原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5〜2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5〜2質量%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。スラリーの固形分濃度は50〜90質量%の範囲が望ましい。 Next, the calcined raw material is pulverized, and the Sr component raw material is weighed and put into a dispersion medium to prepare a slurry. The use of Sr 4 Fe 6 O 13 as the Sr component raw material is important in producing a compound represented by Sr x Mn y Fe z O 19 in the firing step described later. The reason will be described later. Water is preferred as the dispersion medium used in the present invention. In addition to the Fe component raw material, Mn component raw material, and Sr component raw material, a binder, a dispersant, and the like may be blended in the dispersion medium as necessary. For example, polyvinyl alcohol can be suitably used as the binder. The blending amount of the binder is preferably about 0.5 to 2% by mass in the slurry. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. As the blending amount of the dispersant, the concentration in the slurry is preferably about 0.5 to 2% by mass. In addition, you may mix | blend a lubricant, a sintering accelerator, etc. The solid content concentration of the slurry is desirably in the range of 50 to 90% by mass.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒子径は10μm以下が好ましい。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry produced as described above is wet pulverized. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle size of the raw material after pulverization is preferably 10 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100〜300℃の範囲が好ましい。これにより、粒径10〜200μmの球状の造粒物が得られる。なお、得られた造粒物は、振動ふるい等を用いて、粗大粒子や微粉を除去し粒度分布をシャープなものとするのが望ましい。造粒物の好ましい平均粒子径は10μm〜200μmの範囲である。   Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 to 300 ° C. Thereby, a spherical granulated product having a particle size of 10 to 200 μm is obtained. In addition, it is desirable that the obtained granulated product has a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like. The preferable average particle diameter of the granulated product is in the range of 10 μm to 200 μm.

次に、造粒物を所定温度に加熱した炉に投入して、フェライト粒子を合成するための一般的な手法で焼成することにより、フェライト粒子を生成させる。   Next, the granulated material is put into a furnace heated to a predetermined temperature, and sintered by a general method for synthesizing ferrite particles, thereby generating ferrite particles.

ここで、Sr成分原料としてSrFe13を用いた場合には、下記反応式(1)で示すように、Mnフェライトが生成した後に、Srフェライト化が進むため、Srフェライト化におけるFe成分の供給源はMnフェライトとなり、SrMnFe19で示される化合物が生成される。詳細なメカニズムは不明であるが、xの値がゼロの場合や3を超える場合には、Srフェライトとして結晶性が著しく低下するため、帯電性の安定の効果が得られない。そこで、xの値は0より大きく3未満の範囲とした。より好ましくは、0.5〜2.0の範囲である。また、帯電量を高くできることからyの値は0.7以上3.5以下の範囲とした。なお、zの値はx+y+z=13であることから逆算して定めた。
SrFe13+Fe+Mn → SrFe13+MnFe
→ SrMnFe19+MnFe ・・・・・・(1)
(但し、0<x<3,0.7≦y≦3.5,9.0≦z≦11.3,x+y+z=13である。)
Here, when Sr 4 Fe 6 O 13 is used as the Sr component raw material, as shown in the following reaction formula (1), after Mn ferrite is generated, Sr ferritization proceeds, so Fe in Sr ferritization The component source is Mn ferrite, and a compound represented by Sr x Mn y Fe z O 19 is produced. Although the detailed mechanism is unknown, when the value of x is zero or exceeds 3, the crystallinity of the Sr ferrite is remarkably lowered, so that the effect of stabilizing the charging property cannot be obtained. Therefore, the value of x is set to a range greater than 0 and less than 3. More preferably, it is the range of 0.5-2.0. Further, since the charge amount can be increased, the value of y is set in the range of 0.7 to 3.5. Since the value of z is x + y + z = 13, it was determined by back calculation.
Sr 4 Fe 6 O 13 + Fe 2 O 3 + Mn 3 O 4 → Sr 4 Fe 6 O 13 + MnFe 2 O 4
→ Sr x Mn y Fe z O 19 + MnFe 2 O 4 ······ (1)
(However, 0 <x <3, 0.7 ≦ y ≦ 3.5, 9.0 ≦ z ≦ 11.3, x + y + z = 13.)

一方、これまでSr成分原料として一般に使用されていたSrCOを用いた場合には、下記反応式(2)で示すように、Mnフェライトが生成する前に、Srフェライト化が進むため、Srフェライト化におけるFe成分の供給源はFeとなって、SrFe1219が生成し、SrMnFe19で示される化合物は生成しない。
SrCO+Fe+Mn → SrFe1219+Fe+Mn
→ SrFe1219+MnFe ・・・・・・・・(2)
On the other hand, when using SrCO 3 that has been generally used as a raw material for Sr components, Sr ferrite is formed before Mn ferrite is formed as shown in the following reaction formula (2). source of Fe component in the reduction is a Fe 2 O 3, and generates the SrFe 12 O 19, the compound represented by Sr x Mn y Fe z O 19 does not generate.
SrCO 3 + Fe 2 O 3 + Mn 3 O 4 → SrFe 12 O 19 + Fe 2 O 3 + Mn 3 O 4
→ SrFe 12 O 19 + MnFe 2 O 4 (2)

そしてまた、Sr成分原料として粒径の大きいSrFe13を用いると、反応性が低下して高温になるまでSrフェライト化が起こらなくなり、SrMnFe19で示される化合物がより生成されやすくなって望ましい。Sr成分原料としてのSrFe13の粒径は5μm〜10μmの範囲が好ましい。 In addition, when Sr 4 Fe 6 O 13 having a large particle size is used as the Sr component raw material, Sr ferritization does not occur until the reactivity decreases and the temperature becomes high, and the compound represented by Sr x Mn y Fe z O 19 Is desirable because it is more easily generated. The particle size of Sr 4 Fe 6 O 13 as the Sr component raw material is preferably in the range of 5 μm to 10 μm.

また、焼成温度としては1100℃〜1300℃の範囲が好ましい。焼成温度が1100℃未満であると、相変態が起こりにくくなるとともに焼結も進みにくくなり、焼成温度が1300℃を超えると、過剰焼結による過大グレインの発生がするおそれがある。前記焼成温度に至るまでの昇温速度としては250℃/h〜500℃/hの範囲が好ましい。また、焼成雰囲気は、酸素濃度が0.001%〜21%の範囲で適宜調整すればよい。ただし、図1に示すように、例えば焼成温度が1200℃であっても、酸素濃度が低くなるとSrFeが生成することに注意する必要がある。下記反応式(3)に示すように、生成したSrFeは、Sr原子数がFe原子数よりも多い組成であり、降温時にSrMnFe19に分解するが、冷却速度200℃/h〜500℃/hの範囲では、Sr原子の拡散が間に合わずSrMnFe19においてxの値が3を超える高い部分が残留する。したがって、焼成温度と酸素濃度とは、SrFeが生成しない範囲とすることが重要である。
SrFe1219 + MnFe → SrFe + MnFe
→ SrMnFe19 + MnFe ・・・・・・(3)
(但し、x>3,0.7≦y≦3.8,7.5≦z≦9.3,x+y+z=13)
The firing temperature is preferably in the range of 1100 ° C to 1300 ° C. When the firing temperature is less than 1100 ° C., phase transformation is less likely to occur and sintering is difficult to proceed. When the firing temperature exceeds 1300 ° C., excessive grains may be generated due to over-sintering. The rate of temperature increase up to the firing temperature is preferably in the range of 250 ° C / h to 500 ° C / h. Moreover, what is necessary is just to adjust a baking atmosphere suitably in the range whose oxygen concentration is 0.001%-21%. However, as shown in FIG. 1, it should be noted that Sr 3 Fe 2 O 6 is generated when the oxygen concentration is lowered even when the firing temperature is 1200 ° C., for example. As shown in the following reaction formula (3), the produced Sr 3 Fe 2 O 6 has a composition in which the number of Sr atoms is larger than the number of Fe atoms, and decomposes into Sr x Mn y Fe z O 19 when the temperature is lowered. When the cooling rate is in the range of 200 ° C./h to 500 ° C./h, the diffusion of Sr atoms cannot be made in time, and a high portion in which the value of x exceeds 3 remains in Sr x Mn y Fe z O 19 . Therefore, it is important that the firing temperature and the oxygen concentration are within a range in which Sr 3 Fe 2 O 6 is not generated.
SrFe 12 O 19 + MnFe 2 O 4 → Sr 3 Fe 2 O 6 + MnFe 2 O 4
→ Sr x Mn y Fe z O 19 + MnFe 2 O 4 ······ (3)
(However, x> 3, 0.7 ≦ y ≦ 3.8, 7.5 ≦ z ≦ 9.3, x + y + z = 13)

このようにして得られたフェライト粒子を必要により解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。そして、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の粒径としては数十μm〜数百μmの範囲のものが好ましい。   The ferrite particles thus obtained are pulverized as necessary. Specifically, for example, the fired product is pulverized by a hammer mill or the like. The form of the granulation step may be either a continuous type or a batch type. And if necessary, classification may be performed in order to make the particle size in a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process. The particle diameter of the ferrite particles is preferably in the range of several tens of μm to several hundreds of μm.

その後、必要に応じて、分級後のフェライト粒子を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は、200〜800℃の範囲が好ましく、250〜600℃の範囲がさらに好ましい。加熱時間は0.5時間〜5時間の範囲が好ましい。   Thereafter, if necessary, the ferrite particles after classification may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to increase the resistance of the ferrite particles (high resistance treatment). The oxidizing atmosphere may be either an air atmosphere or a mixed atmosphere of oxygen and nitrogen. The heating temperature is preferably in the range of 200 to 800 ° C, more preferably in the range of 250 to 600 ° C. The heating time is preferably in the range of 0.5 hours to 5 hours.

以上のようにして作製したフェライト粒子からなる本発明のキャリア芯材を樹脂で被覆して電子写真現像用キャリアとして用いるThe carrier core material of the present invention comprising the ferrite particles produced as described above is coated with a resin and used as a carrier for electrophotographic development .

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。 As the resin for coating the surface of the carrier core material , conventionally known resins can be used, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). ) Resin, polystyrene, (meth) acrylic resin, polyvinyl alcohol resin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, and other thermoplastic elastomers, and fluorosilicone resins.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をフェライト粒子に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%〜30質量%、特に0.001質量%〜2質量%の範囲内にあるのがよい。 In order to coat the surface of the carrier core material with a resin, a resin solution or dispersion may be applied to the ferrite particles. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The resin component concentration in the coating solution should generally be in the range of 0.001% to 30% by weight, particularly 0.001% to 2% by weight.

キャリア芯材の樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。 As a method for coating the resin of the carrier core material , for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

キャリアの粒子径は、一般に、体積平均粒子径で10μm〜200μmの範囲、特に20μm〜60μmの範囲が好ましい。   The particle diameter of the carrier is generally preferably in the range of 10 μm to 200 μm, particularly 20 μm to 60 μm in terms of volume average particle diameter.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%〜15質量%の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%〜10質量%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the carrier prepared as described above and a toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass to 15% by mass. When the toner density is less than 1% by mass, the image density becomes too low, while when the toner density exceeds 15% by mass, toner scattering occurs in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of malfunction. A more preferable toner concentration is in the range of 3% by mass to 10% by mass.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。   As the toner, toner produced by a conventionally known method such as a polymerization method, a pulverization classification method, a melt granulation method, or a spray granulation method can be used. Specifically, a binder resin containing a thermoplastic resin as a main component and containing a colorant, a release agent, a charge control agent and the like can be suitably used.

トナーの粒径は、一般に、コールターカウンターによる体積平均粒子径で5μm〜15μmの範囲が好ましく、7μm〜12μmの範囲がより好ましい。   In general, the particle diameter of the toner is preferably in the range of 5 μm to 15 μm and more preferably in the range of 7 μm to 12 μm in terms of the volume average particle diameter measured by a Coulter counter.

トナー表面には、必要により、改質剤を添加してもよ。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。   If necessary, a modifier may be added to the toner surface. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethyl methacrylate and the like. These 1 type (s) or 2 or more types can be used in combination.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   A known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

(原料SrFe13の作製)
Sr成分原料としてのSrFe13を下記方法で作製した。出発原料として、Fe(平均粒径:0.6μm)6.7kgと、SrCO(平均粒径:0.1μm)8.3kgとを水5.0kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を150gを添加して混合物とした。この混合物の固形分濃度は75重量%であった。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10〜200μmの乾燥造粒物を得た。この造粒物から、網目48μmの篩網を用いて粗粒を分離し、網目25μmの篩網を用いて微粒を分離した。この造粒粉を電気炉に投入し、1100℃で3時間焼成した。焼成雰囲気は大気雰囲気とした。そして、得られた焼成物をハンマーミルで解粒しSr成分原料とした。
(Preparation of raw material Sr 4 Fe 6 O 13 )
Sr 4 Fe 6 O 13 as an Sr component raw material was produced by the following method. As starting materials, Fe 2 O 3 (average particle size: 0.6 μm) 6.7 kg and SrCO 3 (average particle size: 0.1 μm) 8.3 kg were dispersed in 5.0 kg of water as a dispersant. 150 g of an ammonium polycarboxylate dispersant was added to form a mixture. The solid content concentration of this mixture was 75% by weight. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry. This mixed slurry was sprayed into hot air at about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 to 200 μm. From this granulated product, coarse particles were separated using a sieve mesh having a mesh size of 48 μm, and fine particles were separated using a sieve mesh having a mesh size of 25 μm. This granulated powder was put into an electric furnace and fired at 1100 ° C. for 3 hours. The firing atmosphere was an air atmosphere. The obtained fired product was pulverized with a hammer mill to obtain an Sr component raw material.

(実施例1)
Mnフェライト粒子からなるキャリア芯材を下記方法で作製した。出発原料として、Fe(平均粒径:0.6μm)を15.9kgと、Mn(平均粒径:0.8μm)を5.9kgとを混合し、混合粉をロータリーキルンを用いて850℃で仮焼成処理をした。得られた仮焼成粉はボールミルを用いて平均粒径1.5μmまで粉砕した。粉砕した仮焼成粉と、前記作製したSrFe13(平均粒径:7.1μm)231gとを水4.8kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を132gを添加して混合物とした。この混合物の固形分濃度は82重量%であった。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10〜200μmの乾燥造粒物を得た。この造粒物から、網目48μmの篩網を用いて粗粒を分離し、網目25μmの篩網を用いて微粒を分離した。この造粒粉を電気炉に投入し、1300℃で3時間焼成した。焼成雰囲気は、酸素濃度15000ppmとした。そして、得られた焼成物をハンマーミルで解粒した後に振動ふるいを用いて分級した。次いで、大気雰囲気下で温度380℃で1時間さらに酸化処理(高抵抗化処理)を行いフェライト粒子からなるキャリア芯材を得た。
Example 1
A carrier core material made of Mn ferrite particles was produced by the following method. As a starting material, 15.9 kg of Fe 2 O 3 (average particle size: 0.6 μm) and 5.9 kg of Mn 3 O 4 (average particle size: 0.8 μm) are mixed, and the mixed powder is mixed with a rotary kiln. And pre-baked at 850 ° C. The obtained calcined powder was pulverized to an average particle size of 1.5 μm using a ball mill. Disperse pulverized calcined powder and 231 g of the prepared Sr 4 Fe 6 O 13 (average particle size: 7.1 μm) in 4.8 kg of water, and 132 g of ammonium polycarboxylate dispersant as a dispersant. Added to make a mixture. The solid content concentration of this mixture was 82% by weight. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry. This mixed slurry was sprayed into hot air at about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 to 200 μm. From this granulated product, coarse particles were separated using a sieve mesh having a mesh size of 48 μm, and fine particles were separated using a sieve mesh having a mesh size of 25 μm. This granulated powder was put into an electric furnace and fired at 1300 ° C. for 3 hours. The firing atmosphere was an oxygen concentration of 15000 ppm. The obtained fired product was pulverized with a hammer mill and then classified using a vibration sieve. Next, oxidation treatment (high resistance treatment) was further performed at a temperature of 380 ° C. for 1 hour in an air atmosphere to obtain a carrier core material made of ferrite particles.

得られたキャリア芯材の磁気特性を後述の方法でそれぞれ測定した。また、EDS分析によって粒子表面の組成分析と、Sr成分についてICP組成分析を行った。表1に測定結果をまとめて示す。また、図2及び図3に、得られたキャリア芯材のSEM写真及びSrについてのEDSマッピング写真を示す。 The magnetic properties of the obtained carrier core material were measured by the methods described below. Moreover, the composition analysis of the particle | grain surface and the ICP composition analysis were performed about the Sr component by EDS analysis. Table 1 summarizes the measurement results. 2 and 3 show an SEM photograph of the obtained carrier core material and an EDS mapping photograph of Sr.

次に、このようにして得られた実施例1のキャリア芯材の表面を樹脂で被覆し、実施例1のキャリアを作製した。具体的には、シリコーン樹脂(東レダウコーニング社製SR2411)を、トルエンに溶解させてコーティング樹脂溶液を作製した。そして、フェライト粒子とコーティング樹脂溶液とを、重量比でキャリア芯材:樹脂溶液=9:1の割合で撹拌機に装填し、キャリア芯材を樹脂溶液に浸漬させながら、温度150℃〜250℃で3時間加熱撹拌した。次いで、熱風循環式加熱装置で温度250℃で5時間さらに加熱を行い、コーティング樹脂層を硬化させてキャリアを得た。 Next, the surface of the carrier core material of Example 1 obtained in this way was coated with a resin to produce the carrier of Example 1. Specifically, a silicone resin (SR2411 manufactured by Toray Dow Corning) was dissolved in toluene to prepare a coating resin solution. Then, the ferrite particles and the coating resin solution are loaded into the stirrer at a ratio of carrier core material : resin solution = 9: 1 by weight, and the temperature is 150 ° C. to 250 ° C. while the carrier core material is immersed in the resin solution. And stirred for 3 hours. Subsequently, it heated further with the hot-air circulation type heating apparatus at the temperature of 250 degreeC for 5 hours, the coating resin layer was hardened, and the carrier was obtained.

得られたキャリアと平均粒径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、実施例1に係る二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの重量/(トナーおよびキャリアの重量)=5/100となるように調整した。以下、全ての実施例、比較例についても同様にして現像剤を得た。得られた現像剤について後述の帯電量比測定を行った。測定結果を表1に合わせて示す。   The obtained carrier and a toner having an average particle size of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer according to Example 1. In this case, the carrier and the toner were adjusted so that the weight of toner / (weight of toner and carrier) = 5/100. Hereinafter, developers were obtained in the same manner for all of the Examples and Comparative Examples. The obtained developer was measured for the charge amount ratio described later. The measurement results are shown in Table 1.

(磁気特性)
室温専用振動試料型磁力計(VSM)(東英工業株式会社製、VSM−P7)を用いて、外部磁場:−10000〜10000(A/m×10/(4π))の範囲で1サイクル連続的に印加して、飽和磁化σs(A・m/kg)、磁化σ1k(A・m/kg)を測定した。
(Magnetic properties)
One cycle in the range of external magnetic field: −10000 to 10000 (A / m × 10 3 / (4π)) using a vibration sample magnetometer (VSM) (VSM-P7, manufactured by Toei Industry Co., Ltd.) By applying continuously, saturation magnetization σs (A · m 2 / kg) and magnetization σ 1k (A · m 2 / kg) were measured.

(粒子表面の組成分析)
日本電子社製のエネルギー分散型X線分析「JSM-2200」(検出器「EX-54185JMV」,ソフトウェア「アナリシスステーション」)を用いて、下記条件でキャリア芯材表面の組成を分析した。
SEM観察
・倍率:4000倍(1視野に1粒子が収まる)
・加速電圧:30.0kV
・作動距離:WD10
・スポットサイズ:70
EDSマッピング
・スイープ回数:50回
・PHAモード:T2
・画素数:1024×768
・ドゥエルタイム:0.1msec
・プローブトラッキング:60sec
抽出領域
Srとして計測される1.810keVのカウント数を画素数で割り、1画素あたりの平均値を算出する。次いで、平均値の100倍以上のカウント数が1平方μm以上で検出されているSr存在領域をマッピング視野内で目視により探す。そして、x軸方向のラインプロファイルからSr存在領域内の最大カウント数の座標を求める。同様に、y軸方向のラインプロファイルからSr存在領域内の最大カウント数の座標を求める。再度、x軸方向のラインプロファイルからSr存在領域内の最大カウント数の座標を求める。上記の操作を、x軸方向で3回、y軸方向で3回繰り返しピーク座標を決定する。決定したピーク座標を中心に矩形1μm×1μmの領域を抽出領域とする。
解析
ソフトウェア内蔵の標準データを使用した。定性分析で含有元素を判別し、定量分析を行った。
定量モード:簡易定量
定量補正:ZAF法
計算方法:単体
定量
SrのL(1.806keV)と、SiのK(1.739keV)とが近く、計算を誤る可能性があるため、Siは定量禁止とした。また、C,N,Oなどの非金属元素は除外して計算した。誤差%よりも原子数%が小さい金属元素は除外して計算した。
換算方法
定量分析で求めた原子数%の比から下記組成式に当てはまるよう計算した。
組成式SrMnFe19
(但し、x+y+z=13とする。)
測定数
1粒子から1点測定する。30粒子を測定し平均値を測定結果とした。
(Composition analysis of particle surface)
The composition of the carrier core material surface was analyzed under the following conditions using an energy dispersive X-ray analysis “JSM-2200” (detector “EX-54185JMV”, software “Analysis Station”) manufactured by JEOL Ltd.
SEM observation / magnification: 4000 times (one particle fits in one field of view)
・ Acceleration voltage: 30.0kV
・ Working distance: WD10
・ Spot size: 70
EDS mapping, number of sweeps: 50 times, PHA mode: T2
-Number of pixels: 1024 x 768
・ Dwell time: 0.1msec
・ Probe tracking: 60 sec
The count value of 1.810 keV measured as the extraction region Sr is divided by the number of pixels to calculate an average value per pixel. Next, the Sr existence region detected when the count number 100 times or more of the average value is 1 square μm or more is visually searched in the mapping visual field. Then, the coordinates of the maximum count number in the Sr existence area are obtained from the line profile in the x-axis direction. Similarly, the coordinates of the maximum count number in the Sr existence area are obtained from the line profile in the y-axis direction. Again, the coordinates of the maximum count number in the Sr existence area are obtained from the line profile in the x-axis direction. The above operation is repeated three times in the x-axis direction and three times in the y-axis direction to determine peak coordinates. A rectangular 1 μm × 1 μm area centering on the determined peak coordinates is set as an extraction area.
Standard data built in the analysis software was used. Quantitative analysis was performed by discriminating the contained elements by qualitative analysis.
Quantitative mode: Simplified quantitative quantitative correction: ZAF method Calculation method: Single unit quantification Sr L (1.806 keV) and Si K (1.739 keV) are close to each other and calculation may be wrong. It was. The calculation was performed excluding nonmetallic elements such as C, N, and O. The calculation was performed excluding metal elements having an atom number% smaller than the error%.
Conversion method It calculated so that it might apply to the following compositional formula from the ratio of atomic% calculated | required by the quantitative analysis.
Compositional formula Sr x Mn y Fe z O 19
(However, x + y + z = 13)
Number of measurements One point is measured from one particle. 30 particles were measured and the average value was taken as the measurement result.

(帯電量比)
15分撹拌後の電子写真現像剤を300mg採取し、ユーテック製のEA02と自動吸引装置を用い、吸引圧力High、分離用メッシュをSUS製の795mesh、トナーの捕集器具をフィルターカプセル(ユーテック製EA010C)として90秒吸引後の帯電量を測定した。同一サンプルについて2回の測定を行い、これらの平均値をキャリアの帯電量とした。キャリアの帯電量は下記式から算出した。なお、測定環境は、温度25℃、相対湿度50%とした。そして、標準キャリアとの帯電量比を算出した。
帯電量(μC/g)=実測電荷(nC)÷トナー重量
(式中、トナー重量=フィルターカプセル吸引後重量(g)−フィルターカプセル吸引前重量(g))
標準キャリアとして、Feを15.9kgと、Mnを6.1kgと、Sr成分原料の添加を0gにした以外は実施例1と同様にしてフェライト粒子を作製し、得られたフェライト粒子の表面を樹脂で被覆してキャリアとした。そして、実施例1と同様の方法で帯電量測定を行った。
(Charge amount ratio)
Collect 300 mg of electrophotographic developer after stirring for 15 minutes, use Utec EA02 and automatic suction device, suction pressure High, separation mesh 795 mesh, toner collection device filter capsule (EATEC EA010C ) And the amount of charge after 90 seconds of suction was measured. Two measurements were performed on the same sample, and the average value of these was taken as the charge amount of the carrier. The charge amount of the carrier was calculated from the following formula. The measurement environment was a temperature of 25 ° C. and a relative humidity of 50%. Then, the charge amount ratio with the standard carrier was calculated.
Charge amount (μC / g) = Measured charge (nC) ÷ Toner weight (where toner weight = weight after filter capsule suction (g) −weight before filter capsule suction (g))
Ferrite particles were produced in the same manner as in Example 1 except that 15.9 kg of Fe 2 O 3 , 6.1 kg of Mn 3 O 4 and 0 g of the Sr component raw material were added as standard carriers. The surface of the ferrite particles was coated with a resin to obtain a carrier. Then, the charge amount was measured by the same method as in Example 1.

(実施例2)
Feを16.0kgと、Mnを5.4kgと、SrFe13を631gにした以外は実施例1と同様にしてフェライト粒子からなるキャリア芯材を得た。得られたキャリア芯材の磁気特性、EDS分析による粒子表面の組成分析、Sr成分についてICP組成分析を実施例1と同様にして行った。表1に測定結果をまとめて示す。また、得られたキャリア芯材の表面を樹脂で被覆してキャリアとし、実施例1と同様の方法でキャリアの帯電量測定を行った。測定結果を表1に合わせて示す。
(Example 2)
A carrier core material made of ferrite particles was obtained in the same manner as in Example 1 except that 16.0 kg of Fe 2 O 3 , 5.4 kg of Mn 3 O 4 and 631 g of Sr 4 Fe 6 O 13 were used. The magnetic properties of the obtained carrier core material , the composition analysis of the particle surface by EDS analysis, and the ICP composition analysis were conducted in the same manner as in Example 1 for the Sr component. Table 1 summarizes the measurement results. Further, the surface of the obtained carrier core material was coated with a resin to obtain a carrier, and the charge amount of the carrier was measured in the same manner as in Example 1. The measurement results are shown in Table 1.

(実施例3)
Feを16.1kgと、Mnを4.9kgと、SrFe13を965gにした以外は実施例1と同様にしてフェライト粒子からなるキャリア芯材を得た。得られたキャリア芯材の磁気特性、EDS分析による粒子表面の組成分析、Sr成分についてICP組成分析を実施例1と同様にして行った。表1に測定結果をまとめて示す。また、得られたキャリア芯材の表面を樹脂で被覆してキャリアとし、実施例1と同様の方法でキャリアの帯電量測定を行った。測定結果を表1に合わせて示す。
(Example 3)
A carrier core material made of ferrite particles was obtained in the same manner as in Example 1 except that 16.1 kg of Fe 2 O 3 , 4.9 kg of Mn 3 O 4 and 965 g of Sr 4 Fe 6 O 13 were used. The magnetic properties of the obtained carrier core material , the composition analysis of the particle surface by EDS analysis, and the ICP composition analysis were conducted in the same manner as in Example 1 for the Sr component. Table 1 summarizes the measurement results. Further, the surface of the obtained carrier core material was coated with a resin to obtain a carrier, and the charge amount of the carrier was measured in the same manner as in Example 1. The measurement results are shown in Table 1.

(実施例4〜12)
実施例4〜6,7〜9,10〜12は、実施例1〜3と同じ組成で、表1に示す製造条件で実施例1と同様にしてフェライト粒子からなるキャリア芯材を得た。得られたキャリア芯材の磁気特性、EDS分析による粒子表面の組成分析、Sr成分についてICP組成分析を実施例1と同様にして行った。表1に測定結果をまとめて示す。また、得られたキャリア芯材の表面を樹脂で被覆してキャリアとし、実施例1と同様の方法でキャリアの帯電量測定を行った。測定結果を表1に合わせて示す。
また、実施例9で得たキャリア芯材についてXRD分析を行った。図4に、XRD分析結果を示す。図4からキャリア芯材にSrMnFe19が析出していることを確認された。
(Examples 4 to 12)
Examples 4-6, 7-9, 10-12 have the same composition as Examples 1-3, and obtained carrier cores made of ferrite particles in the same manner as in Example 1 under the production conditions shown in Table 1. The magnetic properties of the obtained carrier core material , the composition analysis of the particle surface by EDS analysis, and the ICP composition analysis were conducted in the same manner as in Example 1 for the Sr component. Table 1 summarizes the measurement results. Further, the surface of the obtained carrier core material was coated with a resin to obtain a carrier, and the charge amount of the carrier was measured in the same manner as in Example 1. The measurement results are shown in Table 1.
Further, the carrier core material obtained in Example 9 was subjected to XRD analysis. FIG. 4 shows the XRD analysis results. From FIG. 4, it was confirmed that Sr x Mn y Fe z O 19 was deposited on the carrier core material .

(比較例1〜5)
Feを16.4kgと、Mnを5.0kgと、SrCOを557gとし、表1に示す製造条件で実施例1と同様にしてフェライト粒子からなるキャリア芯材を得た。得られたキャリア芯材の磁気特性、EDS分析による粒子表面の組成分析、Sr成分についてICP組成分析を実施例1と同様にして行った。表1に測定結果をまとめて示す。また、得られたキャリア芯材の表面を樹脂で被覆してキャリアとし、実施例1と同様の方法でキャリアの帯電量測定を行った。測定結果を表1に合わせて示す。
(Comparative Examples 1-5)
16.4 kg of Fe 2 O 3 , 5.0 kg of Mn 3 O 4 and 557 g of SrCO 3 were obtained, and a carrier core material made of ferrite particles was obtained in the same manner as in Example 1 under the production conditions shown in Table 1. . The magnetic properties of the obtained carrier core material , the composition analysis of the particle surface by EDS analysis, and the ICP composition analysis were conducted in the same manner as in Example 1 for the Sr component. Table 1 summarizes the measurement results. Further, the surface of the obtained carrier core material was coated with a resin to obtain a carrier, and the charge amount of the carrier was measured in the same manner as in Example 1. The measurement results are shown in Table 1.

(比較例6)
実施例3と同じ組成で、表1に示す製造条件で実施例1と同様にしてフェライト粒子からなるキャリア芯材を得た。得られたキャリア芯材の磁気特性、EDS分析による粒子表面の組成分析、Sr成分についてICP組成分析を実施例1と同様にして行った。表1に測定結果をまとめて示す。また、得られたキャリア芯材の表面を樹脂で被覆してキャリアとし、実施例1と同様の方法でキャリアの帯電量測定を行った。測定結果を表1に合わせて示す。
(Comparative Example 6)
A carrier core material made of ferrite particles having the same composition as in Example 3 and the same manufacturing conditions as shown in Table 1 was obtained in the same manner as in Example 1. The magnetic properties of the obtained carrier core material , the composition analysis of the particle surface by EDS analysis, and the ICP composition analysis were conducted in the same manner as in Example 1 for the Sr component. Table 1 summarizes the measurement results. Further, the surface of the obtained carrier core material was coated with a resin to obtain a carrier, and the charge amount of the carrier was measured in the same manner as in Example 1. The measurement results are shown in Table 1.

(比較例7)
Feを15.8kgと、Mnを5.3kgと、SrFe1219を790gにし、表1に示す製造条件で実施例1と同様にしてフェライト粒子からなるキャリア芯材を得た。得られたキャリア芯材の磁気特性、EDS分析による粒子表面の組成分析、Sr成分についてICP組成分析を実施例1と同様にして行った。表1に測定結果をまとめて示す。また、得られたキャリア芯材の表面を樹脂で被覆してキャリアとし、実施例1と同様の方法でキャリアの帯電量測定を行った。測定結果を表1に合わせて示す。
(Comparative Example 7)
A carrier core material made of ferrite particles was prepared in the same manner as in Example 1 under the production conditions shown in Table 1 with 15.8 kg of Fe 2 O 3 , 5.3 kg of Mn 3 O 4 and 790 g of SrFe 12 O 19. Obtained. The magnetic properties of the obtained carrier core material , the composition analysis of the particle surface by EDS analysis, and the ICP composition analysis were conducted in the same manner as in Example 1 for the Sr component. Table 1 summarizes the measurement results. Further, the surface of the obtained carrier core material was coated with a resin to obtain a carrier, and the charge amount of the carrier was measured in the same manner as in Example 1. The measurement results are shown in Table 1.

表1及び図5から明らかなように、実施例1〜12のキャリア芯材は、高い磁化を有し且つ高い帯電性を有していた。これに対して、粒子表面に存在する化合物のSr,Mn,Feの原子数が、本発明の規定範囲から外れた比較例1〜7のキャリア芯材では、所望の磁気特性は得られたものの、帯電比が2.5以下と実施例のキャリア芯材に比べて帯電性の低いものであった。 As is clear from Table 1 and FIG. 5, the carrier core materials of Examples 1 to 12 had high magnetization and high chargeability. On the other hand, in the carrier core materials of Comparative Examples 1 to 7 in which the number of atoms of Sr, Mn, Fe of the compound existing on the particle surface is out of the specified range of the present invention, the desired magnetic properties were obtained. The charge ratio was 2.5 or less, and the chargeability was lower than that of the carrier core material of the example.

本発明に係るキャリア芯材によれば、高磁化を維持しながら高帯電性を実現でき、キャリアとして用いた場合には長期間にわたって優れた画質が得られ有用である。 According to the carrier core material of the present invention, high chargeability can be realized while maintaining high magnetization, and when used as a carrier, excellent image quality can be obtained over a long period of time.

Claims (4)

組成式SrMnFe19(但し、0<x<3,0.7≦y≦3.5,9.0≦z≦11.3,x+y+z=13である。)で表される化合物が粒子表面に存在するフェライト粒子からなることを特徴とするキャリア芯材It is represented by a composition formula Sr x Mn y Fe z O 19 (where 0 <x <3, 0.7 ≦ y ≦ 3.5, 9.0 ≦ z ≦ 11.3, x + y + z = 13). A carrier core material comprising a ferrite particle in which the compound is present on the particle surface. 前記フェライト粒子がMnフェライト粒子である請求項1記載のキャリア芯材 The carrier core material according to claim 1, wherein the ferrite particles are Mn ferrite particles . 請求項1又は2記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。 Electrophotographic development carrier, characterized in that the claim 1 or 2 the surface of the carrier core material according coated with a resin. 請求項記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。 An electrophotographic developer comprising the electrophotographic developer carrier according to claim 3 and a toner.
JP2015029121A 2014-03-31 2015-02-18 Carrier core material, electrophotographic carrier and electrophotographic developer using the same Active JP5858591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029121A JP5858591B2 (en) 2014-03-31 2015-02-18 Carrier core material, electrophotographic carrier and electrophotographic developer using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014074083 2014-03-31
JP2014074083 2014-03-31
JP2015029121A JP5858591B2 (en) 2014-03-31 2015-02-18 Carrier core material, electrophotographic carrier and electrophotographic developer using the same

Publications (2)

Publication Number Publication Date
JP2015200872A JP2015200872A (en) 2015-11-12
JP5858591B2 true JP5858591B2 (en) 2016-02-10

Family

ID=54552137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029121A Active JP5858591B2 (en) 2014-03-31 2015-02-18 Carrier core material, electrophotographic carrier and electrophotographic developer using the same

Country Status (1)

Country Link
JP (1) JP5858591B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637330B2 (en) * 2016-02-22 2020-01-29 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP7129142B2 (en) 2016-07-22 2022-09-01 Dowaエレクトロニクス株式会社 Carrier core material
JP2018044350A (en) * 2016-09-14 2018-03-22 清水建設株式会社 Vibration suppression device and vibration suppression method for pneumatic caisson method
JP6757284B2 (en) * 2017-03-31 2020-09-16 Dowaエレクトロニクス株式会社 Carrier core material, carrier for electrophotographic using it, and developer for electrophotographic

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3132678A1 (en) * 1981-08-19 1983-03-17 Basf Ag, 6700 Ludwigshafen Process for preparing finely particulate hexagonal ferrites and their use for the manufacture of magnetic recording media
JP3243376B2 (en) * 1994-07-05 2002-01-07 パウダーテック株式会社 Ferrite carrier for electrophotographic developer and developer using the carrier
JP4718247B2 (en) * 2005-06-03 2011-07-06 三井金属鉱業株式会社 Method for producing composite iron oxide particles for ferrite molded body
JP2011227452A (en) * 2010-03-30 2011-11-10 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer and ferrite carrier, method for producing the same and electrophotographic developer containing the same

Also Published As

Publication number Publication date
JP2015200872A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
KR101421767B1 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5858591B2 (en) Carrier core material, electrophotographic carrier and electrophotographic developer using the same
WO2016143646A1 (en) Carrier core material and carrier for electrophotographic development comprising same, and electrophotographic developer
JP5886336B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP2013035737A (en) Method for manufacturing ferrite particle
JP5736078B1 (en) Ferrite particles, electrophotographic carrier and electrophotographic developer using the same
JP5735877B2 (en) Method for producing ferrite particles
CN110494809B (en) Carrier core material, carrier for electrophotography using same, and developer for electrophotography
JP5843378B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5822377B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP4534061B2 (en) Method for producing ferrite particles of carrier powder core material for electrophotographic development
JP6650324B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5737795B1 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2021088487A (en) Ferrite mixed powder, carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer
JP5761921B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5804656B2 (en) Mn ferrite particles, carrier for electrophotographic developer using the same, developer for electrophotography
JP6511320B2 (en) Carrier core material and method for manufacturing the same
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5822378B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5352614B2 (en) Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP6121675B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP6494272B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5578842B2 (en) Method for producing ferrite particles
JP2011209476A (en) Ferrite particle and carrier for electrophotography development using the same, developer for electrophotography and method of manufacturing the ferrite particle
JP5920973B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150710

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150710

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5858591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250