JP5382522B2 - Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier - Google Patents

Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier Download PDF

Info

Publication number
JP5382522B2
JP5382522B2 JP2009242965A JP2009242965A JP5382522B2 JP 5382522 B2 JP5382522 B2 JP 5382522B2 JP 2009242965 A JP2009242965 A JP 2009242965A JP 2009242965 A JP2009242965 A JP 2009242965A JP 5382522 B2 JP5382522 B2 JP 5382522B2
Authority
JP
Japan
Prior art keywords
carrier
core material
electrophotographic developer
carrier core
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009242965A
Other languages
Japanese (ja)
Other versions
JP2011090120A (en
Inventor
享 岩田
康二 安賀
隆志 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powdertech Co Ltd
Original Assignee
Powdertech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powdertech Co Ltd filed Critical Powdertech Co Ltd
Priority to JP2009242965A priority Critical patent/JP5382522B2/en
Publication of JP2011090120A publication Critical patent/JP2011090120A/en
Application granted granted Critical
Publication of JP5382522B2 publication Critical patent/JP5382522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、複写機、プリンター等に用いられる二成分系電子写真現像剤に使用される電子写真現像剤用キャリア芯材、キャリア及びこれらの製造方法、並びに該キャリアを用いた電子写真現像剤に関する。   The present invention relates to a carrier core material for an electrophotographic developer used in a two-component electrophotographic developer used in a copying machine, a printer, and the like, a carrier, a production method thereof, and an electrophotographic developer using the carrier. .

電子写真現像方法は、現像剤中のトナー粒子を感光体上に形成された静電潜像に付着させて現像する方法であり、この方法で使用される現像剤は、トナー粒子とキャリア粒子からなる二成分系現像剤及びトナー粒子のみを用いる一成分系現像剤に分けられる。   The electrophotographic development method is a method in which toner particles in a developer are attached to an electrostatic latent image formed on a photoreceptor and developed, and the developer used in this method is composed of toner particles and carrier particles. The two-component developer and the one-component developer using only toner particles.

こうした現像剤のうち、トナー粒子とキャリア粒子からなる二成分系現像剤を用いた現像方法としては、古くはカスケード法等が採用されていたが、現在では、マグネットロールを用いる磁気ブラシ法が主流である。   Among these developers, as a developing method using a two-component developer composed of toner particles and carrier particles, the cascade method has been used in the past, but at present, the magnetic brush method using a magnet roll is the mainstream. It is.

二成分系現像剤において、キャリア粒子は、現像剤が充填されている現像ボックス内において、トナー粒子と共に攪拌されることによって、トナー粒子に所望の電荷を付与し、さらにこのように電荷を帯びたトナー粒子を感光体の表面に搬送して感光体上にトナー像を形成するための担体物質である。マグネットを保持する現像ロール上に残ったキャリア粒子は、この現像ロールから再び現像ボックス内に戻り、新たなトナー粒子と混合・攪拌され、一定期間繰り返して使用される。   In the two-component developer, the carrier particles are agitated together with the toner particles in the developing box filled with the developer, thereby imparting a desired charge to the toner particles, and thus being charged. A carrier material for transporting toner particles to the surface of the photoreceptor to form a toner image on the photoreceptor. The carrier particles remaining on the developing roll holding the magnet are returned to the developing box from the developing roll, mixed and stirred with new toner particles, and used repeatedly for a certain period.

二成分系現像剤は、一成分系現像剤とは異なり、キャリア粒子はトナー粒子と混合・攪拌され、トナー粒子を帯電させ、さらに搬送する機能を有しており、現像剤を設計する際の制御性が良い。従って、二成分系現像剤は、高画質が要求されるフルカラー現像装置、及び画像維持の信頼性と耐久性が要求される高速印刷を行う装置等に適している。   Unlike the one-component developer, the two-component developer has the function of mixing and stirring the carrier particles with the toner particles, charging the toner particles, and further transporting the toner particles. Good controllability. Therefore, the two-component developer is suitable for a full-color developing device that requires high image quality and a device that performs high-speed printing that requires reliability and durability of image maintenance.

このようにして用いられる二成分系現像剤においては、画像濃度、カブリ、白斑、階調性、解像力等の画像特性が、初期の段階から所定の値を示し、しかもこれらの特性が耐刷期間中に変動せず、安定に維持されることが必要である。これらの特性を安定に維持するためには、二成分系現像剤中に含有されるキャリア粒子の特性が安定していることが必要になる。   In the two-component developer used in this manner, image characteristics such as image density, fog, vitiligo, gradation, and resolving power show predetermined values from the initial stage, and these characteristics are in the printing life period. It needs to be kept stable without fluctuating inside. In order to maintain these characteristics stably, it is necessary that the characteristics of the carrier particles contained in the two-component developer are stable.

二成分系現像剤を形成するキャリア粒子として、従来は、表面を酸化被膜で覆った鉄粉あるいは表面を樹脂で被覆した鉄粉等の鉄粉キャリアが使用されていた。このような鉄粉キャリアは、磁化が高く、導電性も高いことから、ベタ部の再現性のよい画像が得られやすいという利点がある。   Conventionally, iron powder carriers such as iron powder whose surface is covered with an oxide film or iron powder whose surface is coated with a resin have been used as carrier particles for forming a two-component developer. Since such an iron powder carrier has high magnetization and high conductivity, there is an advantage that an image with a good reproducibility of the solid portion can be easily obtained.

しかしながら、このような鉄粉キャリアは真比重が約7.8と重く、また磁化が高すぎることから、現像ボックス中におけるトナー粒子との攪拌・混合により、鉄粉キャリア表面へのトナー構成成分の融着、いわゆるトナースペントが発生しやすくなる。このようなトナースペントの発生により有効なキャリア表面積が減少し、トナー粒子との摩擦帯電能力が低下しやすくなる。   However, such an iron powder carrier has a heavy true specific gravity of about 7.8 and is too high in magnetization, so that the toner constituent components on the surface of the iron powder carrier are mixed by stirring and mixing with toner particles in the developing box. Fusing, so-called toner spent, is likely to occur. The generation of such toner spent reduces the effective carrier surface area and tends to reduce the triboelectric charging ability with the toner particles.

また、樹脂被覆鉄粉キャリアでは、耐久時のストレスにより表面の樹脂が剥離し、高導電性で絶縁破壊電圧が低い芯材(鉄粉)が露出することにより、電荷のリークが生ずることがある。このような電荷のリークにより、感光体上に形成された静電潜像が破壊され、ベタ部にハケスジ等が発生し、均一な画像が得られにくい。これらの理由から、酸化被膜鉄粉及び樹脂被覆鉄粉等の鉄粉キャリアは、現在では使用されなくなってきている。   Moreover, in the resin-coated iron powder carrier, the resin on the surface peels off due to stress during durability, and the core material (iron powder) with high conductivity and low dielectric breakdown voltage is exposed, which may cause charge leakage. . Due to such charge leakage, the electrostatic latent image formed on the photoconductor is destroyed, and a crack or the like is generated in the solid portion, so that it is difficult to obtain a uniform image. For these reasons, iron powder carriers such as oxide-coated iron powder and resin-coated iron powder are no longer used.

近年は、鉄粉キャリアに代わって真比重約5.0程度と軽く、また磁化も低いフェライトをキャリアとして用いたり、さらに表面に樹脂を被覆した樹脂コートフェライトキャリアが多く使用されており、現像剤寿命は飛躍的に伸びてきた。   In recent years, instead of iron powder carriers, ferrite with a true specific gravity of about 5.0, which is light and has a low magnetization, or a resin-coated ferrite carrier whose surface is coated with a resin has been widely used. Lifespan has increased dramatically.

このようなフェライトキャリアの製造方法としては、フェライトキャリア原料を所定量混合した後、仮焼、粉砕し、造粒後に焼成を行うのが一般的であり、条件によっては仮焼を省略できる場合もある。   As a method for producing such a ferrite carrier, a predetermined amount of ferrite carrier raw material is mixed, calcined, pulverized, and then fired after granulation. Depending on conditions, calcining may be omitted. is there.

このようなフェライトキャリアにおいては、磁化と抵抗が重要な特性であり、磁化と抵抗のバランスが必要となる。   In such a ferrite carrier, magnetization and resistance are important characteristics, and a balance between magnetization and resistance is required.

磁化と抵抗のバランスを取るために、Cu、Zn、Ni等の重金属、あるいはMnを用いたフェライトキャリアが用いられてきた。   In order to balance magnetization and resistance, a heavy metal such as Cu, Zn, Ni, or a ferrite carrier using Mn has been used.

最近においては、環境規制が厳しくなり、Ni、Cu、Zn等の重金属の使用は避けられるようになってきており、環境規制に適応した金属の使用が求められている。このためキャリア芯材として用いられるフェライト組成はCu−Znフェライト、Ni−Znフェライトからマンガンフェライト、Mn−Mg−Srフェライト等のMnを多く含有するフェライトに移行している。   Recently, environmental regulations have become stricter, and the use of heavy metals such as Ni, Cu, and Zn has been avoided, and the use of metals adapted to environmental regulations has been demanded. For this reason, the ferrite composition used as the carrier core material has shifted from Cu-Zn ferrite and Ni-Zn ferrite to ferrite containing a large amount of Mn such as manganese ferrite and Mn-Mg-Sr ferrite.

しかし、Mnを多く含有するフェライトにあっても、環境規制の点から各種法規制の対象になりつつあり、上記各種重金属を含まないことに加えてMn含有量を可能な限り少量としたフェライトをキャリア芯材とすることが求められている。   However, even in ferrite containing a large amount of Mn, it is becoming subject to various laws and regulations from the viewpoint of environmental regulations. In addition to not containing the various heavy metals, ferrite with a Mn content as small as possible is added. There is a demand for a carrier core material.

このため、MgやSi等を含有するフェライトをキャリア芯材とすることが提案されている。特許文献1(特開2006−317620号公報)には、Mnを含有しないMg系フェライトをキャリア芯材とすることが提案されているが、表面が平滑であるため、所望の抵抗が得られないのが実情である。   For this reason, it has been proposed to use ferrite containing Mg, Si or the like as a carrier core material. Patent Document 1 (Japanese Patent Laid-Open No. 2006-317620) proposes using Mg-based ferrite containing no Mn as a carrier core material, but the desired resistance cannot be obtained because the surface is smooth. Is the actual situation.

特許文献2(特開2008−65106号公報)には、MO・Fe(MはMn、Mg、Fe等の2価の金属元素)で表される組成の磁性部とSiOを含んでなる非磁性部とを有するキャリア芯材が開示されている。しかし、特許文献2では、見掛け密度が2.0g/cm以下のためキャリア飛散が発生する可能性が高い。さらに、SiOの含有量は4〜20重量%が好ましいとされ、このような含有量では、磁化が低下し、また焼結が進みすぎるため凝集粒子が発生しやすい。 Patent Document 2 (Japanese Patent Laid-Open No. 2008-65106) includes a magnetic part having a composition represented by MO · Fe 2 O 3 (M is a divalent metal element such as Mn, Mg, Fe) and SiO 2 . A carrier core material having a non-magnetic part is disclosed. However, in Patent Document 2, since the apparent density is 2.0 g / cm 3 or less, the possibility of carrier scattering is high. Furthermore, the content of SiO 2 is preferably 4 to 20% by weight. With such a content, the magnetization is lowered, and the sintering proceeds too much, so that aggregated particles are likely to be generated.

特許文献3(特開2008−249899号公報)には、一般式(MO)x(Fe)y(但し、Mは、2価の金属から選ばれる1種又は2種以上の元素、0<5x≦0.5、y=1−x)で表されるソフトフェライト組成を有し、0.1〜10質量%のAlと0.1〜10質量%のSiとを含有する電子現像剤用キャリア芯材が記載されている。しかし、Siの上記含有量では多量であるため、磁化が低下し、焼結が進みすぎてしまう。また、Alも含有するので、磁化の低下はより顕著なものとなる。 Patent Document 3 (Japanese Patent Application Laid-Open No. 2008-249899) includes a general formula (MO) x (Fe 2 O 3 ) y (where M is one or more elements selected from divalent metals, Electrodevelopment having a soft ferrite composition represented by 0 <5x ≦ 0.5, y = 1−x) and containing 0.1 to 10% by mass of Al and 0.1 to 10% by mass of Si An agent carrier core material is described. However, since the content of Si is large, the magnetization decreases and the sintering proceeds too much. Moreover, since Al is also contained, the fall of magnetization becomes more remarkable.

特許文献4(特開2009−80348号公報)には、ソフトフェライトとSiOとを含む粒子で構成されたキャリア芯材であって、SiOが3次元網目構造を形成しており、SiOのクオーツ結晶のピーク強度(I)とSiOのクリストバライト結晶のピーク強度(I)との比(I/I)が特定範囲以上であることを開示している。このSi量は15重量%以下が好ましいとされているが、実施例では4.2重量%以上である。このようなSi量では多量であるため、磁化が低下し、また焼結が進みすぎるため、凝集粒子が発生しやすい。 Patent Document 4 (JP 2009-80348), a carrier core material which is composed of particles comprising a soft ferrite and SiO 2, and SiO 2 is formed a three-dimensional network structure, SiO 2 It is disclosed that the ratio (I 1 / I 2 ) between the peak intensity (I 1 ) of quartz crystal and the peak intensity (I 2 ) of cristobalite crystal of SiO 2 is not less than a specific range. The amount of Si is preferably 15% by weight or less, but in the examples, it is 4.2% by weight or more. Since the amount of Si is large, the magnetization is lowered and the sintering proceeds too much, so that aggregated particles are likely to be generated.

特許文献5(特開2009−86339号公報)には、組成式:MnFe3−x(但し、0≦x≦1.0)で表記される電子写真現像剤用の磁性キャリア芯材であって、粉末XRDパターンにおいて、MnFe相とSiO相とが観測され、SiO含有量がSi換算で4〜15wt%、格子定数が8.483〜8.492Åであることが記載されている。特許文献5では上記の通りSiが4〜15wt%と多量であるため、磁化が低下し、また焼結が進みすぎるため、凝集粒子が発生しやすい。 Patent Document 5 (Japanese Patent Laid-Open No. 2009-86339) discloses a magnetic carrier core for an electrophotographic developer represented by a composition formula: Mn x Fe 3-x O 4 (where 0 ≦ x ≦ 1.0). In the powder XRD pattern, MnFe 2 O 4 phase and SiO 2 phase are observed, the SiO 2 content is 4 to 15 wt% in terms of Si, and the lattice constant is 8.483 to 8.492 Å. Is described. In Patent Document 5, since Si is a large amount of 4 to 15 wt% as described above, magnetization is reduced and sintering proceeds too much, so aggregated particles are likely to be generated.

特許文献6(特許第3997291号公報)には、主としてフェライト又はマグネタイトの粒子からなる電子写真現像用キャリアにおいて、該粒子中に0.001〜0.1重量%のB(ホウ素)及び0.01〜0.5重量%のSiを含有することが示されている。この特許文献6には、Siを少量含有することは示されているが、単にSiを少量含有するのみでは、高磁化でありながら、高抵抗で凝集の少ないキャリア芯材は得られない。   In Patent Document 6 (Japanese Patent No. 3997291), in an electrophotographic developing carrier mainly composed of ferrite or magnetite particles, 0.001 to 0.1% by weight of B (boron) and 0.01% in the particles are disclosed. It is shown to contain ~ 0.5 wt% Si. Although Patent Document 6 shows that a small amount of Si is contained, a carrier core material having high resistance and little aggregation cannot be obtained simply by containing a small amount of Si.

また、キャリアの形状係数(SF−1)に着目して、キャリア特性を向上させる試みもなされている。例えば、特許文献7(特許第3850059号公報)には、キャリア芯材(核体)粒子がフェライト粉であって、飽和磁化が50〜70emu/g、平均粒子径が30〜40μm、粒子径が22μm以下の重量比率が2.0〜17.0重量%であり、平均粒子径以下の粒子の形状係数(SF)が平均粒子径を超える粒子の形状係数(SF)より大きく、SFが1.15〜1.35の範囲にあり、SFとSFとの差が0.1〜0.5の範囲にある静電潜像現像用キャリアが記載されている。この特許文献7は、階調境界部白ヌケ現象や像カケ現象を防止するものであり、凝集粒子を配慮したものではなく、凝集粒子が存在する可能性が高い。そのため電子写真キャリア用芯材として特許文献7の粒子を使用すると、現像器中で凝集粒子が解され多数の微粒子が発生し、感光体を傷つけ画像欠陥の原因となる可能性が高い。 Attempts have also been made to improve carrier characteristics, focusing on the carrier shape factor (SF-1). For example, in Patent Document 7 (Japanese Patent No. 3850059), the carrier core material (nuclear body) particles are ferrite powder, the saturation magnetization is 50 to 70 emu / g, the average particle size is 30 to 40 μm, and the particle size is The weight ratio of 22 μm or less is 2.0 to 17.0% by weight, and the shape factor (SF 1 ) of particles having an average particle size or less is larger than the shape factor (SF 2 ) of particles exceeding the average particle size, and SF 1 In the range of 1.15 to 1.35, and the difference between SF 1 and SF 2 is in the range of 0.1 to 0.5. This Patent Document 7 prevents gradation boundary white spot phenomenon and image blur phenomenon, does not consider aggregated particles, and there is a high possibility that aggregated particles exist. Therefore, when the particles of Patent Document 7 are used as the core material for an electrophotographic carrier, the aggregated particles are broken in the developing device to generate a large number of fine particles, which may cause damage to the photoreceptor and cause image defects.

特許文献8(特開2009−103782号公報)には、キャリア芯材の形状係数SF−1が100〜110であり、SF−1の変動係数が15%以下である静電潜像現像用キャリアが開示されている。この特許文献8は、流動性を向上させることを意図したものであり、凝集粒子を配慮したものではなく、凝集粒子が存在する可能性が高い。そのため電子写真キャリア用芯材として特許文献8の粒子を使用すると、現像器中で凝集粒子が解され多数の微粒子が発生し、感光体を傷つけ画像欠陥の原因となる可能性が高い。   Patent Document 8 (Japanese Patent Laid-Open No. 2009-103782) discloses a carrier for developing an electrostatic latent image in which the shape factor SF-1 of the carrier core is 100 to 110 and the variation coefficient of SF-1 is 15% or less. Is disclosed. This Patent Document 8 is intended to improve fluidity, does not consider aggregated particles, and there is a high possibility that aggregated particles exist. Therefore, when the particles of Patent Document 8 are used as the core material for an electrophotographic carrier, the aggregated particles are broken in the developing device to generate a large number of fine particles, which may damage the photoreceptor and cause image defects.

これら従来技術に示されるように、各重金属を用いず、またMn含有量を可能な限り減じ、高磁化でありながら高抵抗が得られ、凝集粒子が少ない電子写真現像剤用キャリア芯材及びこの表面に樹脂を被覆したキャリアは得られていない。   As shown in these conventional techniques, a carrier core material for an electrophotographic developer that does not use heavy metals, reduces Mn content as much as possible, obtains high resistance while being highly magnetized, and has few agglomerated particles. A carrier whose surface is coated with a resin has not been obtained.

特開2006−317620号公報JP 2006-317620 A 特開2008−65106号公報JP 2008-65106 A 特開2008−249899号公報JP 2008-249899 A 特開2009−80348号公報JP 2009-80348 A 特開2009−86339号公報JP 2009-86339 A 特許第3997291号公報Japanese Patent No. 3997291 特許第3850059号公報Japanese Patent No. 3850059 特開2009−103782号公報JP 2009-103782 A

従って、本発明の目的は、各重金属を用いず、またMn含有量を可能な限り減じ、高磁化でありながら高抵抗が得られ、凝集粒子が少ない電子写真現像剤用キャリア芯材、キャリア及びこれらの製造方法、並びに該キャリアを用いた長寿命化が達成され、かつ高い帯電量を有し、帯電安定性にも優れた電子写真現像剤を提供することにある。   Accordingly, an object of the present invention is to use a carrier core material for an electrophotographic developer without using heavy metals, reducing the Mn content as much as possible, obtaining high resistance while being highly magnetized, and having few aggregated particles, a carrier, and An object of the present invention is to provide an electrophotographic developer which can achieve a long life using these production methods, has a high charge amount, and has excellent charge stability.

本発明者らは、上記のような課題を解決すべく鋭意検討した結果、Mg、Ti、Fe、Sr、Mn及びSiを一定量含有し、SrのpH4標準液による溶出量が一定範囲であり、かつ形状係数SF−1(円形度)が135以上の粒子が特定範囲以下であるキャリア芯材及びこれに樹脂を被覆したキャリアが上記目的を達成し得ることを知見し、本発明に至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention contain a certain amount of Mg, Ti, Fe, Sr, Mn, and Si, and the elution amount of Sr with a pH 4 standard solution is within a certain range. And it was discovered that a carrier core material having a shape factor SF-1 (circularity) of 135 or more in a specific range or less and a carrier coated with a resin on the carrier core material can achieve the above object, and the present invention has been achieved. .

すなわち、本発明は、Mgを0.8〜3重量%、Tiを0.5〜2.4重量%、Feを60〜70重量%、Srを0.3〜2重量%、Mnを0.001〜4重量及びSiを50〜1000ppm含有し、SrのpH4標準液による溶出が50〜1000ppmであり、形状係数SF−1(円形度)が135以上の粒子を12個数%以下含有することを特徴とする電子写真現像剤用キャリア芯材を提供するものである。   That is, according to the present invention, Mg is 0.8 to 3 wt%, Ti is 0.5 to 2.4 wt%, Fe is 60 to 70 wt%, Sr is 0.3 to 2 wt%, and Mn is 0.8. 001-4 weight and Si 50-1000 ppm, Sr elution with pH 4 standard solution is 50-1000 ppm, and shape factor SF-1 (circularity) contains not less than 12 number% of particles having 135 or more. The carrier core material for an electrophotographic developer is provided.

本発明の上記電子写真現像剤用キャリア芯材は、Mgを含有するスピネル構造以外に少なくともFe、Ti及びSrから選ばれる2種類以上の元素を含有する酸化物の結晶構造を含有することが望ましい。   The carrier core material for an electrophotographic developer of the present invention preferably contains an oxide crystal structure containing at least two elements selected from Fe, Ti and Sr in addition to the Mg-containing spinel structure. .

本発明の上記電子写真現像剤用キャリア芯材は、形状係数SF−2(真円度)が100〜120であることが望ましい。   The carrier core material for an electrophotographic developer according to the present invention preferably has a shape factor SF-2 (roundness) of 100 to 120.

本発明の上記電子写真現像剤用キャリア芯材は、レーザー回折式粒度分布測定装置により測定される平均粒径が15〜120μmであることが望ましい。   The carrier core material for an electrophotographic developer according to the present invention preferably has an average particle size of 15 to 120 μm as measured by a laser diffraction particle size distribution analyzer.

本発明の上記電子写真現像剤用キャリア芯材は、表面酸化処理により表面被覆が形成されていることが望ましい。   The carrier core material for an electrophotographic developer of the present invention preferably has a surface coating formed by surface oxidation treatment.

本発明の上記電子写真現像剤用キャリア芯材は、上記表面酸化処理後にFe成分が増加していることが望ましい。 In the carrier core material for an electrophotographic developer of the present invention, the Fe 2 O 3 component is desirably increased after the surface oxidation treatment.

本発明の上記電子写真現像剤用キャリア芯材、表面酸化処理後のBET比表面積が0.08〜0.25m/gであることが望ましい。 The carrier core material for an electrophotographic developer of the present invention and the BET specific surface area after the surface oxidation treatment are preferably 0.08 to 0.25 m 2 / g.

本発明の上記電子写真現像剤用キャリア芯材は、表面酸化処理後において、2mmGap印加電圧250Vにおける抵抗が5×10〜5.5×10Ωであることが望ましい。 The carrier core material for an electrophotographic developer according to the present invention preferably has a resistance of 5 × 10 7 to 5.5 × 10 9 Ω at a 2 mm Gap applied voltage of 250 V after the surface oxidation treatment.

また、本発明は、上記キャリア芯材の表面が樹脂で被覆されている電子写真現像剤用キャリアを提供するものである。   The present invention also provides an electrophotographic developer carrier in which the surface of the carrier core is coated with a resin.

本発明の上記電子写真現像剤用キャリアにおいて、上記樹脂がアクリル樹脂、シリコーン樹脂又は変性シリコーン樹脂であることが望ましい。   In the electrophotographic developer carrier of the present invention, the resin is preferably an acrylic resin, a silicone resin, or a modified silicone resin.

また、本発明は、Fe、Ti、Mg及びSrの各化合物を粉砕、混合、仮焼した後、再粉砕、混合、造粒し、得られた造粒物を一次焼成、本焼成し、さらに解砕、分級、表面酸化処理する電子写真現像剤用キャリア芯材の製造方法であって、上記再粉砕、混合時にSi化合物を添加し、かつ上記本焼成が、酸素濃度が5体積%以下で行われることを特徴とする上記電子写真現像剤用キャリア芯材の製造方法を提供するものである。   In addition, the present invention pulverizes, mixes, and calcines each compound of Fe, Ti, Mg, and Sr, and then re-grinds, mixes, granulates, and the obtained granulated product is subjected to primary firing, main firing, A method for producing a carrier core material for an electrophotographic developer that is subjected to crushing, classification, and surface oxidation treatment, wherein a Si compound is added during the re-pulverization and mixing, and the main baking is performed at an oxygen concentration of 5% by volume or less. The present invention provides a method for producing the carrier core material for an electrophotographic developer.

本発明の上記電子写真現像剤用キャリア芯材の製造方法において、Si化合物の一次粒子の平均粒径が5〜100nmであることが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, the average particle size of the primary particles of the Si compound is preferably 5 to 100 nm.

本発明の上記電子写真現像剤用キャリア芯材の製造方法において、上記Fe、Ti、Mg及びSrの各化合物に加えてMn化合物を添加して粉砕、混合することが望ましい。   In the method for producing a carrier core material for an electrophotographic developer according to the present invention, it is desirable to add a Mn compound in addition to the Fe, Ti, Mg and Sr compounds, and pulverize and mix them.

本発明は、上記製造方法で得られたキャリア芯材の表面を樹脂で被覆することを特徴とする電子写真現像剤用キャリアの製造方法を提供するものである。   The present invention provides a method for producing a carrier for an electrophotographic developer, wherein the surface of the carrier core obtained by the above production method is coated with a resin.

また、本発明は、上記キャリアとトナーからなる電子写真現像剤を提供するものである。   The present invention also provides an electrophotographic developer comprising the carrier and toner.

また、本発明は、上記製造方法により得られたキャリアとトナーとからなる電子写真現像剤を提供するものである。   The present invention also provides an electrophotographic developer comprising a carrier and a toner obtained by the above production method.

本発明の上記電子写真現像剤は、補給用現像剤としても用いられる。   The electrophotographic developer of the present invention is also used as a replenishment developer.

本発明に係る電子写真現像剤用キャリア芯材は、各重金属を用いず、またMn含有量を可能な限り減じ、高磁化でありながら高抵抗が得られ、凝集粒子が少ない。そして、上記キャリア芯材に樹脂を被覆して得られるキャリアとトナーとからなる電子写真現像剤は、長寿命化が達成され、かつ高い帯電量を有し、帯電安定性にも優れる。また、本発明の製造方法によって、上記キャリア芯材及びキャリアが工業的規模をもって安定的に製造できる。   The carrier core material for an electrophotographic developer according to the present invention does not use each heavy metal, reduces the Mn content as much as possible, obtains high resistance while having high magnetization, and has few aggregated particles. An electrophotographic developer comprising a carrier and a toner obtained by coating the carrier core material with a resin has a long life, has a high charge amount, and is excellent in charging stability. Moreover, the carrier core material and the carrier can be stably produced on an industrial scale by the production method of the present invention.

以下、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

<本発明に係る電子写真現像剤用キャリア芯材及びキャリア>
本発明に係る電子写真現像剤用キャリア芯材は、Mgを0.8〜3重量%、好ましくは1〜3重量%、より好ましくは1〜2.5重量%、Tiを0.5〜2.4重量%、好ましくは0.7〜2.4重量%、より好ましくは0.7〜2.2重量%、Feを60〜70重量%、好ましくは60〜68.5重量%、より好ましくは60〜67重量%、Srを0.3〜2重量%、好ましくは0.35〜2重量%、より好ましくは0.35〜1.5重量%含有する。上記組成範囲において、高磁化でありながら高抵抗が得られ、また電子写真現像剤用キャリアとして使用する際も帯電特性も安定しており良好である。
<Carrier Core Material and Carrier for Electrophotographic Developer According to the Present Invention>
In the carrier core material for an electrophotographic developer according to the present invention, Mg is 0.8 to 3% by weight, preferably 1 to 3% by weight, more preferably 1 to 2.5% by weight, and Ti is 0.5 to 2%. 0.4 wt%, preferably 0.7-2.4 wt%, more preferably 0.7-2.2 wt%, Fe 60-70 wt%, preferably 60-68.5 wt%, more preferably Contains from 60 to 67% by weight and Sr from 0.3 to 2% by weight, preferably from 0.35 to 2% by weight, more preferably from 0.35 to 1.5% by weight. Within the above composition range, high resistance is obtained while being highly magnetized, and charging characteristics are stable and good when used as a carrier for an electrophotographic developer.

MgはMgOの電気陰性度がプラス側に偏っているためマイナストナーに対する相性はきわめて良く、MgOを含有するマグネシウムフェライトキャリアとフルカラー用のトナーで構成される帯電の立ち上がりが良い現像剤を得ることが出来る。   Mg has an excellent electronegativity of MgO on the positive side, so it has a very good compatibility with negative toners, and a developer having a good rise in charge composed of a magnesium ferrite carrier containing MgO and a full color toner can be obtained. I can do it.

TiはTiOとして電気陰性度がややマイナス側に偏っているため本来であればマイナストナーとの相性は良くないが、2.4重量%よりも少ない範囲でFeとTiの化合物(酸化物)としてマイナストナー用キャリアを含有することで帯電性に関してはその影響を最小限にすることができる。 Since Ti is TiO 2 and its electronegativity is slightly biased to the minus side, the compatibility with minus toner is not good originally. However, the compound (oxide) of Fe and Ti is less than 2.4% by weight. As a negative toner carrier, the influence on the charging property can be minimized.

Feの含有量が60重量%未満では、Mg及び/又はTiの添加量が相対的に増えることで非磁性成分及び/又は低磁化成分が増加し、所望の磁気特性が得られないことを意味しており、70重量%を超えるとMg及び/又はTiの添加効果は得られず実質的にFeと同等のキャリア芯材になってしまう。Mgの含有量は、Mg:2価のFe=1:1〜1:4付近が最も好ましい。Mgの含有量が0.8重量%未満では、キャリア芯材におけるマグネシウムフェライト相の生成量が少なく、Fe相の生成量が相対的に増加することで保磁力が増大し所望の磁気特性が得られなくなる可能性があり、Mgの含有量が3重量%を超えるとキャリア芯材中にマグネシウムフェライトの生成量が増加し所望の磁気特性が得られなくなる可能性がある。Tiの含有量が0.5重量%未満では、Ti含有による焼成温度を下げる効果が得られず所望の表面性の芯材粒子が得られない可能性があり、2.4重量%を超えると、FeとTiの複合酸化物による非磁性相の影響が大きくなるため磁化が低くなりすぎ所望の磁気特性が得られなくなる可能性がある。2価のFeの存在量は粉末X線回折による結晶構造解析、もしくはMnの含有量が少なく、酸化還元滴定が可能な場合には過マンガン酸カリウムや重クロム酸カリウムによる酸化還元滴定で把握することが出来る。 If the Fe content is less than 60% by weight, it means that the nonmagnetic component and / or low magnetization component increases due to the relative increase in the addition amount of Mg and / or Ti, and the desired magnetic properties cannot be obtained. However, if it exceeds 70% by weight, the effect of adding Mg and / or Ti cannot be obtained, and the carrier core material is substantially equivalent to Fe 3 O 4 . The content of Mg is most preferably in the vicinity of Mg: divalent Fe = 1: 1 to 1: 4. If the Mg content is less than 0.8% by weight, the amount of magnesium ferrite phase produced in the carrier core material is small, and the amount of Fe 3 O 4 phase produced is relatively increased, so that the coercive force is increased and the desired magnetism is increased. The characteristics may not be obtained, and if the Mg content exceeds 3% by weight, the amount of magnesium ferrite produced in the carrier core material may increase and the desired magnetic characteristics may not be obtained. If the Ti content is less than 0.5% by weight, the effect of lowering the firing temperature due to the Ti content may not be obtained, and core particles having a desired surface property may not be obtained. The influence of the nonmagnetic phase due to the composite oxide of Fe and Ti increases, so that the magnetization becomes too low and desired magnetic characteristics may not be obtained. The amount of divalent Fe can be determined by crystal structure analysis by powder X-ray diffraction or by redox titration with potassium permanganate or dichromate when Mn content is low and redox titration is possible. I can do it.

本発明に係る電子写真現像剤用キャリア芯材は、上記のように、Srを0.3〜2.0重量%含有する。Srが0.3重量%未満の場合には、Srの含有効果が得られず本焼成時の酸素濃度の変化に伴うFeの生成による磁化の低下が大きくなりやすくなるので好ましくない。さらに、一次焼成及び本焼成時にSrが芯材粒子表面に移動する効果が得られないため、抵抗及び芯材の帯電量を上げる効果が期待できない。Srの含有量が2.0重量%を超えると、ハードフェライト化しはじめるため磁気ブラシ上で現像剤の流動性が急激に悪くなる恐れがある。 As described above, the carrier core material for an electrophotographic developer according to the present invention contains 0.3 to 2.0% by weight of Sr. When Sr is less than 0.3% by weight, the effect of containing Sr is not obtained, and the decrease in magnetization due to the generation of Fe 2 O 3 accompanying the change in oxygen concentration during the main firing tends to increase, which is not preferable. Furthermore, since the effect of moving Sr to the surface of the core particle during the primary firing and the main firing cannot be obtained, the effect of increasing the resistance and the charge amount of the core material cannot be expected. When the content of Sr exceeds 2.0% by weight, it becomes hard ferrite and the fluidity of the developer on the magnetic brush may be abruptly deteriorated.

なお、Sr及びFeを含有する酸化物の結晶構造としては、SrO・6Fe又はSrFe1219として表現されるストロンチウムフェライトがあり、本発明に係る電子写真現像用キャリア芯材に含有されていても良い。 The crystal structure of the oxide containing Sr and Fe includes strontium ferrite expressed as SrO.6Fe 2 O 3 or SrFe 12 O 19 and is contained in the carrier core material for electrophotographic development according to the present invention. May be.

本発明に係る電子写真現像剤用キャリア芯材は、Mnを少量含有する。Mnの含有量は0.001〜4重量%、好ましくは0.01〜3.8重量%、より好ましくは0.01〜1.5重量%である。Mnは、用途に応じて抵抗と磁化のバランスを改善させるため意図的に添加してもよい。この場合は特に本焼成における炉出の際の再酸化を防止する効果が期待できる。意図的添加でない場合においては、原料由来の不純物としてのMnの微量の含有は問題ない。添加するときのMnの形態は特に制限はないがMnO、Mn、Mn、MnCOが工業用途で入手しやすいので好ましい。 The carrier core material for an electrophotographic developer according to the present invention contains a small amount of Mn. The Mn content is 0.001 to 4% by weight, preferably 0.01 to 3.8% by weight, more preferably 0.01 to 1.5% by weight. Mn may be intentionally added in order to improve the balance between resistance and magnetization depending on the application. In this case, in particular, an effect of preventing reoxidation at the time of exit from the furnace in the main firing can be expected. In the case where it is not intentionally added, there is no problem with the inclusion of a trace amount of Mn as an impurity derived from the raw material. The form of Mn when added is not particularly limited, but MnO 2 , Mn 2 O 3 , Mn 3 O 4 and MnCO 3 are preferable because they are easily available for industrial use.

本発明に係る電子写真現像剤用キャリア芯材は、Siを含有され、その含有量は50〜1000ppm、好ましくは50〜800ppmである。Siを含有することによって、低温で焼成することが可能となり、凝集粒子も発生しない。しかも、Siの含有によって適度に焼結が進むため、Mnを多く含有することなく、比較的低温の本焼成で目標とする高磁化が得られるようになる。   The carrier core material for an electrophotographic developer according to the present invention contains Si, and the content thereof is 50 to 1000 ppm, preferably 50 to 800 ppm. By containing Si, it becomes possible to fire at a low temperature, and no agglomerated particles are generated. Moreover, since the sintering proceeds moderately due to the inclusion of Si, the target high magnetization can be obtained by the relatively low temperature main firing without containing much Mn.

(Fe、Mg、Ti、Sr、Mn及びSiの含有量)
これらFe、Mg、Ti、Sr、Mn及びSiの含有量は、下記によって測定される。
キャリア芯材0.2gを秤量し、純水60mlに1Nの塩酸20ml及び1Nの硝酸20mlを加えたものを加熱し、キャリア芯材を完全溶解させた水溶液を準備し、ICP分析装置(島津製作所製ICPS−1000IV)を用いてFe、Mg、Ti、Sr、Mn及びSiの含有量を測定した。
(Contents of Fe, Mg, Ti, Sr, Mn and Si)
The contents of these Fe, Mg, Ti, Sr, Mn and Si are measured by the following.
0.2 g of carrier core material is weighed, 60 ml of pure water plus 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid is heated to prepare an aqueous solution in which the carrier core material is completely dissolved, and an ICP analyzer (Shimadzu Corporation) The content of Fe, Mg, Ti, Sr, Mn and Si was measured using ICPS-1000IV).

本発明に係る電子写真現像剤用キャリア芯材は、SrのpH4標準液による溶出が50〜1000ppmであることが必要である。好ましくは50〜900ppm、より好ましくは50〜800ppmである。   The carrier core material for an electrophotographic developer according to the present invention is required to have an elution with Sr pH 4 standard solution of 50 to 1000 ppm. Preferably it is 50-900 ppm, More preferably, it is 50-800 ppm.

SrのpH4標準液による溶出が50ppmよりも低い場合はSrを含有していないことを意味しており、Srの含有効果を期待できないことを意味している。1000ppmよりも多い場合には芯材表面のSr存在量が多すぎるため芯材が高抵抗になりすぎ、キャリア化した際に高抵抗によるキャリア飛散や画像欠陥が生じる原因となる。SrのpH4標準液による溶出量は下記により測定される。   When the elution by Sr pH 4 standard solution is lower than 50 ppm, it means that Sr is not contained, which means that the effect of containing Sr cannot be expected. If the amount is more than 1000 ppm, the amount of Sr present on the surface of the core material is too high, so that the core material becomes too high in resistance and causes carrier scattering and image defects due to high resistance when it is turned into a carrier. The elution amount of Sr with pH 4 standard solution is measured as follows.

(Sr溶出量)
キャリア芯材50gとpHメーター校正用pH4標準液50mlを100mlガラスビンに入れ、ペイントシェーカーで10分間攪拌した。攪拌終了後、上澄み液を2mlサンプリングし、純水を加えて100mlに希釈した溶液をICPにて測定し、得られた測定値を50倍してSr溶出量の値とした。なお、pH4標準液はJIS Z 8802のpH測定方法に指定されているものを使用した。
(Sr elution amount)
50 g of carrier core material and 50 ml of pH 4 standard solution for pH meter calibration were placed in a 100 ml glass bottle and stirred for 10 minutes with a paint shaker. After completion of stirring, 2 ml of the supernatant was sampled, a solution diluted with pure water to 100 ml was measured with ICP, and the obtained measured value was multiplied by 50 to obtain the Sr elution value. The pH 4 standard solution used was specified in the pH measurement method of JIS Z 8802.

本発明に係る電子写真現像剤用キャリア芯材は、形状係数SF−1(円形度)が135以上の粒子を12個数%以下、好ましくは10個数%含有する。このように、形状係数SF−1(円形度)が135以上の粒子を12個数%以下であることによって、凝集粒子が多く存在しないキャリア芯材が得られる。この形状係数SF−1(円形度)は、下記によって測定される。   The carrier core material for an electrophotographic developer according to the present invention contains 12% by number or less, preferably 10% by number of particles having a shape factor SF-1 (circularity) of 135 or more. As described above, when the number of particles having a shape factor SF-1 (circularity) of 135 or more is 12% by number or less, a carrier core material free from many agglomerated particles can be obtained. This shape factor SF-1 (circularity) is measured by the following.

(形状係数SF−1(円形度))
セイシン企業社製粒度・形状分布測定器PITA−1を用いて芯材粒子3000個を観察し、装置付属のソフトウエアImageAnalysisを用いてArea(投影面積)及びフェレ径(最大)を求め、下記に示す数1により算出し得られた値である。キャリアの形状が球形に近いほど100に近い値となる。形状指数SF−1は、1粒子毎に算出し、100粒子の平均値をそのキャリアの形状指数SF−1とした。
(Shape factor SF-1 (circularity))
Observe 3000 core particles using a particle size / shape distribution measuring instrument PITA-1 manufactured by Seishin Enterprise Co., Ltd., and determine the Area (projected area) and ferret diameter (maximum) using the software Image Analysis provided with the device. It is a value obtained by the expression 1 shown. The closer the carrier shape is to a spherical shape, the closer to 100. The shape index SF-1 was calculated for each particle, and the average value of 100 particles was defined as the shape index SF-1 of the carrier.

なお、サンプル液は分散媒として粘度0.5Pa・sのキサンタンガム水溶液を調製し、その中にキサンタンガム水溶液30ccに芯材粒子0.1gを分散させてものを用いた。このように分散媒の粘度を適正にあわすことで芯材粒子が分散媒中で分散したままの状態を保つことが出来、測定をスムーズに行なうことが出来る。さらに測定条件は(対物)レンズの倍率は10倍、フィルタはND4×2、キャリア液1及びキャリア液2は粘度0.5Pa・sのキサンタンガム水溶液を使用し、その流量はいずれも10μl/sec、サンプル液流量0.08μl/secとした。   The sample liquid was prepared by preparing a xanthan gum aqueous solution having a viscosity of 0.5 Pa · s as a dispersion medium, in which 0.1 g of core material particles were dispersed in 30 cc of the xanthan gum aqueous solution. Thus, by appropriately giving the viscosity of the dispersion medium, the core particles can be kept dispersed in the dispersion medium, and the measurement can be performed smoothly. Furthermore, the measurement conditions are (objective) lens magnification of 10 times, filter is ND4 × 2, carrier liquid 1 and carrier liquid 2 are xanthan gum aqueous solutions having a viscosity of 0.5 Pa · s, and the flow rate is 10 μl / sec. The sample liquid flow rate was 0.08 μl / sec.

Figure 0005382522
Figure 0005382522

(形状係数SF−2(真円度))
本発明に係る電子写真現像剤用キャリア芯材は、形状係数SF−2(真円度)が100〜120であることが望ましい。形状係数SF−2は、キャリアの投影周囲長を2乗した値をキャリアの投影面積で割った値に4πで除し、さらに100倍して得られる数値であり、キャリアの形状が球に近いほど100に近い値になる。キャリア芯材の形状係数SF−2が120を超えると芯材表面の凹凸が大きいことを意味し、樹脂がしみ込みやすくなるため電子写真用キャリアとして所望の特性が得られなくなる可能性がある。この形状係数SF−2(真円度)は、下記に示す数2によって算出される。
(Shape factor SF-2 (roundness))
The carrier core material for an electrophotographic developer according to the present invention preferably has a shape factor SF-2 (roundness) of 100 to 120. The shape factor SF-2 is a value obtained by dividing the value obtained by squaring the carrier projection perimeter length by the value obtained by dividing the value by the carrier projection area by 4π, and multiplying it by 100. The shape of the carrier is close to a sphere. The value becomes closer to 100. If the shape factor SF-2 of the carrier core material exceeds 120, it means that the surface of the core material has large irregularities, and the resin is likely to penetrate, so that desired characteristics as an electrophotographic carrier may not be obtained. The shape factor SF-2 (roundness) is calculated by the following formula 2.

Figure 0005382522
Figure 0005382522

本発明に係る電子写真現像剤用キャリア芯材は、Mgを含有するスピネル構造以外に少なくともFe、Ti及びSrを含有する酸化物の結晶構造を含有する。Fe過剰のマグネシウム系フェライトにTi及びSrを添加することで、通常のフェライトを構成するスピネル結晶構造の化合物以外に、比較的磁化の低いFe、Ti及びSrを含有する複合酸化物を、必要とする磁化の範囲で生成させ、表面酸化処理時にスピネル相よりも優先的にFe及びTi及びSrを含有する複合酸化物を酸化させることで磁化を大きく変化させることなく抵抗のみを制御することが可能となる。つまり、Fe、Ti及びSrを含有する複合酸化物中に含まれるFeの価数が変化することで抵抗を調整している。結晶構造については、下記によって測定される。   The carrier core material for an electrophotographic developer according to the present invention contains a crystal structure of an oxide containing at least Fe, Ti and Sr in addition to the spinel structure containing Mg. By adding Ti and Sr to Fe-excess magnesium-based ferrite, a composite oxide containing Fe, Ti, and Sr with relatively low magnetization is required in addition to a compound having a spinel crystal structure constituting ordinary ferrite. It is possible to control only the resistance without greatly changing the magnetization by oxidizing the composite oxide containing Fe, Ti and Sr preferentially over the spinel phase during the surface oxidation treatment. It becomes. That is, the resistance is adjusted by changing the valence of Fe contained in the composite oxide containing Fe, Ti, and Sr. The crystal structure is measured by the following.

(結晶構造の測定:X線回折測定)
測定装置としてパナリティカル社製「X’PertPRO MPD」を用いた。X線源としてCo管球(CoKα線)を、光学系として集中光学系及び高速検出器「X‘Celarator」を用いて、測定は0.2°/secの連続スキャンで行った。測定結果は通常の粉末の結晶構造解析と同様に解析用ソフトウエア「X’Pert HighScore」を用いてデータ処理し、結晶構造の同定し、得られた結晶構造を精密化することで重量換算の存在比率を算出した。存在比率の算出に際してマグネシウムフェライトとFeのピークの分離が難しいためスピネル相として取り扱い、それ以外の結晶構造はそれぞれの存在比率を算出した。なお、結晶構造の同定を行う際にFe、Oを必須元素としMn、Mg、Ti、Srは含有する可能性のある元素とした。また、X線源についてはCu管球でも問題なく測定できるが、Feを多く含んだサンプルの場合には測定対象となるピークと比較してバックグラウンドが大きくなるので、Co管球を用いる方が好ましい。また、光学系は平行法でも同様の結果が得られる可能性があるが、X線強度が低く測定に時間がかかるため集中光学系での測定が好ましい。さらに、連続スキャンの速度は特に制限はないが結晶構造の解析を行う際に十分なS/N比を得るためにスピネル構造の(113)面のピーク強度が50000cps以上となるようにし、粒子の特定の優先方向への配向がないようにサンプルセルにキャリア芯材をセットし測定を行った。
(Measurement of crystal structure: X-ray diffraction measurement)
“X′PertPRO MPD” manufactured by Panalical Co., Ltd. was used as a measuring apparatus. Measurement was performed by continuous scanning at 0.2 ° / sec using a Co tube (CoKα ray) as an X-ray source and a concentrated optical system and a high-speed detector “X'Celarator” as an optical system. The measurement results are processed with data using analysis software “X'Pert HighScore” in the same way as the crystal structure analysis of ordinary powders, the crystal structure is identified, and the obtained crystal structure is refined so that the weight conversion The abundance ratio was calculated. When calculating the abundance ratio, it was difficult to separate the peaks of magnesium ferrite and Fe 3 O 4 , so that it was treated as a spinel phase, and the abundance ratios of the other crystal structures were calculated. In identifying the crystal structure, Fe and O are essential elements, and Mn, Mg, Ti, and Sr are elements that may be contained. In addition, the X-ray source can be measured without problems even with a Cu tube, but in the case of a sample containing a large amount of Fe, the background becomes larger than the peak to be measured, so it is better to use a Co tube preferable. In addition, the optical system may obtain the same result even when the parallel method is used, but measurement with a concentrated optical system is preferable because the X-ray intensity is low and measurement takes time. Further, the speed of continuous scanning is not particularly limited, but in order to obtain a sufficient S / N ratio when analyzing the crystal structure, the peak intensity of the (113) plane of the spinel structure is set to 50000 cps or more, The measurement was performed by setting the carrier core material in the sample cell so that there was no orientation in a specific preferred direction.

マグネシウムフェライトを構成するスピネル構造としてMgFeが代表的なものであるが、元素の構成比からもわかるようにFe過剰であるためMgの一部がFeに置換され形式的にMgFey−x、(MgFe1−x)(Mgx‘Fe1−x’等で表現される結晶構造及びその一部がMn、Ti及びSrのうち1種類以上の元素で置換されたものもすべて含まれるものとし、非酸化性雰囲気で焼成されることにより周期的にスピネル構造に格子欠陥が含まれるものも含むものとする。 MgFe 2 O 4 is a typical spinel structure that constitutes magnesium ferrite, but as can be seen from the composition ratio of the elements, Fe is excessive, so that part of Mg is replaced with Fe and formally Mg x Fe. y-x O 4, (Mg x Fe 1-x) (Mg x 'Fe 1-x') 2 O 4 crystal structure and a part thereof is expressed by the like Mn, 1 or more of Ti and Sr All elements substituted with elements are also included, and those in which lattice defects are periodically included in the spinel structure by firing in a non-oxidizing atmosphere are also included.

マグネシウムフェライト以外にFeがスピネル構造として測定されることがあるが、本発明で言うFeとはFeのみだけでなくFeとOの比が2.5:4〜3:4のものを含むものとし、さらにFeの一部がMgとMn、Ti及びSrのうち1種類以上の元素で置換しているものをすべて含むものとし、非酸化性雰囲気で焼成されることにより周期的にスピネル構造に格子欠陥が含まれるものも含むものとする。 In addition to magnesium ferrite, Fe 3 O 4 may be measured as a spinel structure. In the present invention, Fe 3 O 4 is not only Fe 3 O 4 but also Fe: O ratio is 2.5: 4 to 3: 4, and including all that part of Fe is replaced with one or more elements of Mg, Mn, Ti and Sr, and fired in a non-oxidizing atmosphere It also includes those in which lattice defects are periodically included in the spinel structure.

Fe及びTiを含有する酸化物の結晶構造としてスピネル構造ではFeTiOが、スピネル構造以外ではFeTiO、FeTiOが代表的である。Tiと比べてFeが圧倒的に存在量としては多く、FeTiO以外に(FeTiO(Fe、Fe(FeTi)O、(FeTi1−x)(Fex‘Ti1−x’)O等で表現される結晶構造及びその一部がMn及び/又はSrに置換されたもの、さらに非酸化性雰囲気で焼成されることにより周期的に上記結晶構造に格子欠陥が含まれるものも含むものとする。上記結晶構造以外にストロンチウムフェライトの前駆体であるSrFeの一部がTi及び/又はMnに置換されたSrFeTi、SrFeMnTi等で表わされる酸化物もすべて含まれるものとし、非酸化性雰囲気で焼成されることにより周期的に上記結晶構造に格子欠陥が含まれるものも含むものとする。 As the crystal structure of the oxide containing Fe and Ti, Fe 2 TiO 4 is typical in the spinel structure, and FeTiO 3 and Fe 2 TiO 5 are typical in other than the spinel structure. Many as Fe is the amount present overwhelmingly as compared with Ti, in addition to Fe x TiO y (FeTiO 3) x (Fe 2 O 3) y, Fe (Fe x Ti y) O 4, (Fe x Ti 1- x) (Fe x 'Ti 1 -x') which O 4 crystal structure and a part thereof is expressed by the like is substituted with Mn and / or Sr, periodically by being calcined in a non-oxidizing atmosphere In addition, the crystal structure includes a lattice defect. In addition to the above crystal structure, a part of Sr a Fe b O c which is a precursor of strontium ferrite is substituted with Ti and / or Mn, Sr a Fe b Ti c O d , Sr a Fe b Mn c Ti d O e All oxides represented by the above and the like are also included, and include those in which lattice defects are periodically included in the crystal structure by firing in a non-oxidizing atmosphere.

本発明に係る電子写真現像剤用キャリア芯材は、レーザー回折式粒度分布測定装置により測定される平均粒径が好ましくは15〜120μm、より好ましくは15〜80μm、最も好ましくは15〜60μmである。体積平均粒径が15μm未満であると、キャリア付着が発生しやすくなるため好ましくない。体積平均粒径が120μmを超えると、画質が劣化しやすくなり、好ましくない。この体積平均粒径は、下記によって測定される。   The carrier core material for an electrophotographic developer according to the present invention preferably has an average particle size measured by a laser diffraction particle size distribution measuring device of 15 to 120 μm, more preferably 15 to 80 μm, and most preferably 15 to 60 μm. . If the volume average particle size is less than 15 μm, carrier adhesion tends to occur, which is not preferable. If the volume average particle diameter exceeds 120 μm, the image quality tends to deteriorate, which is not preferable. This volume average particle size is measured by:

(体積平均粒径)
装置として日機装株式会社製マイクロトラック粒度分析計(Model9320−X100)を用いた。分散媒には水を用いた。
(Volume average particle size)
As a device, a Nikkiso Co., Ltd. Microtrac particle size analyzer (Model 9320-X100) was used. Water was used as the dispersion medium.

本発明に係る電子写真現像剤用キャリア芯材は、表面酸化処理により表面被膜が形成されている。この表面酸化処理によって形成される酸化処理被膜の厚さは、0.1nm〜5μmであることが好ましい。0.1nm未満であると、酸化被膜層の効果が小さく、5μmを超えると、明らかに磁化が低下したり、高抵抗になりすぎるため、現像能力が低下する等の不具合が発生し易くなる。また、必要に応じて、酸化処理の前に還元を行ってもよい。酸化皮膜の厚さは酸化皮膜が形成されていることが確認できる程度の高倍率のSEM写真、光学顕微鏡及びレーザー顕微鏡から測定することが出来る。なお、酸化皮膜は芯材表面に均一で形成されていても良いし、部分的に酸化皮膜が形成されていても良い。   The carrier core material for an electrophotographic developer according to the present invention has a surface coating formed by surface oxidation treatment. The thickness of the oxidized film formed by this surface oxidation treatment is preferably 0.1 nm to 5 μm. If the thickness is less than 0.1 nm, the effect of the oxide film layer is small. If the thickness exceeds 5 μm, the magnetization is clearly lowered or the resistance becomes too high, so that problems such as a reduction in developing ability tend to occur. Moreover, you may reduce | restore before an oxidation process as needed. The thickness of the oxide film can be measured from a high-magnification SEM photograph, an optical microscope, and a laser microscope that can confirm that the oxide film is formed. The oxide film may be formed uniformly on the surface of the core material, or the oxide film may be partially formed.

本発明に係る電子写真現像剤用キャリア芯材は、表面酸化処理後にFe成分が増加していることが望ましい。絶縁性の高いFe成分が芯材表面近傍に生成することで抵抗を高くすることができる。一般的に、Feは磁化をほとんど持っていないのでFeの酸化によるFeの生成では高磁化と高抵抗を同時に満たすことは出来ず、特に焼成が不十分で芯材内部までFeが存在している場合や雰囲気制御による焼成でFeが存在している場合、高磁化の芯材を得ることは出来ない。一方、表面酸化処理による表面近傍のFe成分の増加によって磁化の低下を最小限に抑えつつ高抵抗化することができる。 The carrier core material for an electrophotographic developer according to the present invention preferably has an increased Fe 2 O 3 component after the surface oxidation treatment. The resistance can be increased by generating a highly insulating Fe 2 O 3 component in the vicinity of the surface of the core material. In general, since Fe 2 O 3 has almost no magnetization, generation of Fe 2 O 3 by oxidation of Fe 3 O 4 cannot satisfy both high magnetization and high resistance at the same time. If the Fe 2 O 3 in the firing by the case and atmosphere control the Fe 2 O 3 to an internal wood are present are present, can not be obtained core material of a high magnetization. On the other hand, the increase in the Fe 2 O 3 component in the vicinity of the surface by the surface oxidation treatment can increase the resistance while minimizing the decrease in magnetization.

本発明でいうFeOとは、FeOのみだけでなくFeとOの比が0.8:1〜1:1のものを含むものとし、さらにFeの一部がMnに置換しているものをすべて含むものとする。なお、結晶構造の測定方法については後述する。   The term “FeO” as used in the present invention includes not only FeO but also Fe: O ratio of 0.8: 1 to 1: 1, and further includes all of which Fe is partially substituted with Mn. Shall be. The crystal structure measurement method will be described later.

本発明に係る電子写真現像剤用キャリア芯材は、表面酸化処理後のBET比表面積が0.08〜0.25m/gが望ましい。BET比表面積が0.08m/g未満では、芯材表面の凹凸が少ないため樹脂被覆後の樹脂のアンカー効果が得られず、電子写真用キャリアとして寿命が短くなる可能性があり、BET比表面積が0.25m/gを超えると芯材表面の凹凸が大きく樹脂がしみ込みやすくなるため電子写真用キャリアとして所望の特性が得られなくなる可能性がある。このBET比表面積は、下記により測定される。 The carrier core material for an electrophotographic developer according to the present invention preferably has a BET specific surface area of 0.08 to 0.25 m 2 / g after the surface oxidation treatment. When the BET specific surface area is less than 0.08 m 2 / g, since the core surface has few irregularities, the anchor effect of the resin after resin coating cannot be obtained, and the life as an electrophotographic carrier may be shortened. If the surface area exceeds 0.25 m 2 / g, the irregularities on the surface of the core material are so large that the resin can easily penetrate, so that desired characteristics as an electrophotographic carrier may not be obtained. This BET specific surface area is measured by the following.

(BET比表面積)
自動比表面積測定装置GEMINI2360」(島津製作所社製)を用いて、吸着ガスであるNを吸着させて測定したキャリア粒子のN吸着量から求めることができる。なお、ここでは、このN吸着量を測定する際に用いられる測定管は、測定前に、減圧状態にて50℃で2時間の空焼きを行った。さらに、この測定管にキャリア粒子5gを充填し、減圧状態で30℃の温度で2時間前処理を行った後に、25℃下でNガスをそれぞれ吸着させてその吸着量を測定した。それらの吸着量は、吸着等温線を描き、BET式から算出される値である。
(BET specific surface area)
Using an automatic specific surface area measuring apparatus GEMINI 2360 (manufactured by Shimadzu Corp.), it can be determined from the N 2 adsorption amount of carrier particles measured by adsorbing N 2 as an adsorption gas. Here, the measurement tube used for measuring the N 2 adsorption amount was baked for 2 hours at 50 ° C. in a reduced pressure state before the measurement. Further, 5 g of carrier particles were filled in this measuring tube, and after pretreatment at a temperature of 30 ° C. for 2 hours under reduced pressure, N 2 gas was adsorbed at 25 ° C., and the amount of adsorption was measured. These adsorption amounts are values calculated from the BET equation by drawing an adsorption isotherm.

本発明に係る電子写真現像剤用キャリア芯材は、表面酸化処理後において、2mmGap印加電圧250Vにおける抵抗が5×10〜5.5×10Ωであることが望ましい。電気抵抗が5×10Ω未満では、抵抗が低すぎてキャリアとして使用した際に帯電低下を引き起こす原因となる。電気抵抗が5.5×10Ωを超えると、抵抗が高くなりすぎ、摩擦帯電に伴う電荷の移動が阻害される恐れがある。この電気抵抗は、下記によって測定される。 The carrier core material for an electrophotographic developer according to the present invention desirably has a resistance of 5 × 10 7 to 5.5 × 10 9 Ω at a 2 mm Gap applied voltage of 250 V after the surface oxidation treatment. If the electric resistance is less than 5 × 10 7 Ω, the resistance is too low, which causes a decrease in charge when used as a carrier. When the electric resistance exceeds 5.5 × 10 9 Ω, the resistance becomes too high, and there is a fear that the movement of electric charge accompanying triboelectric charging is hindered. This electrical resistance is measured by:

(電気抵抗)
電極間間隔2.0mmにて非磁性の平行平板電極(10mm×40mm)を対抗させ、その間に、試料200mgを秤量して充填する。磁石(表面磁束密度:1500Gauss、電極に接する磁石の面積:10mm×30mm)を平行平板電極に付けることにより電極間に試料を保持させ、250Vの電圧を印加し、250Vの印加電圧における抵抗を絶縁抵抗計(SM−8210、東亜ディケーケー(株)製)にて測定した。なお、室温23℃、湿度55%に制御された恒温恒湿室内で測定を行った。
(Electrical resistance)
A non-magnetic parallel plate electrode (10 mm × 40 mm) is made to oppose with a distance between electrodes of 2.0 mm, and 200 mg of a sample is weighed and filled between them. A sample is held between electrodes by attaching a magnet (surface magnetic flux density: 1500 Gauss, area of magnet in contact with electrode: 10 mm × 30 mm) to parallel plate electrodes, a voltage of 250 V is applied, and resistance at an applied voltage of 250 V is insulated. The resistance was measured with a resistance meter (SM-8210, manufactured by Toa Decay Corporation). Note that the measurement was performed in a constant temperature and humidity room controlled at a room temperature of 23 ° C. and a humidity of 55%.

本発明に係る電子写真現像剤用キャリア芯材は、表面酸化処理後において、Feの増加量は、0〜7%であることが望ましい。7%を超えると磁化が大きく下がりはじめるので所望の磁化が得られない可能性が高くなる。Feの増加量は表面酸化処理前後の芯材のX線回折測定によって得られる結晶構造の構成比の変化から知ることができ、測定方法は前述の通りである。 In the carrier core material for an electrophotographic developer according to the present invention, the increase amount of Fe 2 O 3 is desirably 0 to 7% after the surface oxidation treatment. If it exceeds 7%, the magnetization starts to decrease greatly, so that there is a high possibility that the desired magnetization cannot be obtained. The increased amount of Fe 2 O 3 can be known from the change in the composition ratio of the crystal structure obtained by X-ray diffraction measurement of the core material before and after the surface oxidation treatment, and the measurement method is as described above.

本発明に係る電子写真現像剤用キャリアは、上記キャリア芯材の表面が樹脂で被覆されている。   In the carrier for an electrophotographic developer according to the present invention, the surface of the carrier core material is coated with a resin.

本発明に係る電子写真現像剤用樹脂被覆キャリアは、樹脂被膜量が、キャリア芯材に対して0.1〜10重量%が望ましい。被膜量が0.1重量%未満ではキャリア表面に均一な被膜層を形成することが難しく、また10重量%を超えるとキャリア同士の凝集が発生してしまい、歩留まり低下等の生産性の低下と共に、実機内での流動性あるいは帯電量等の現像剤特性変動の原因となる。   The resin-coated carrier for an electrophotographic developer according to the present invention desirably has a resin coating amount of 0.1 to 10% by weight with respect to the carrier core material. When the coating amount is less than 0.1% by weight, it is difficult to form a uniform coating layer on the carrier surface. When the coating amount exceeds 10% by weight, the carriers are aggregated together with a decrease in productivity such as a decrease in yield. This causes fluctuations in developer characteristics such as fluidity or charge amount in the actual machine.

ここに用いられる被膜形成樹脂は、組み合わせるトナー、使用される環境等によって適宜選択できる。その種類は特に限定されないが、例えば、フッ素樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、フッ素アクリル樹脂、アクリル−スチレン樹脂、シリコーン樹脂、あるいはアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、アルキッド樹脂、ウレタン樹脂、フッ素樹脂等の各樹脂で変性した変性シリコーン樹脂等が挙げられる。本発明では、アクリル樹脂、シリコーン樹脂又は変性シリコーン樹脂が最も好ましく用いられる。   The film forming resin used here can be appropriately selected depending on the toner to be combined, the environment in which it is used, and the like. The type is not particularly limited, for example, fluorine resin, acrylic resin, epoxy resin, polyamide resin, polyamideimide resin, polyester resin, unsaturated polyester resin, urea resin, melamine resin, alkyd resin, phenol resin, fluorine acrylic resin, Examples thereof include acrylic-styrene resins, silicone resins, or modified silicone resins modified with resins such as acrylic resins, polyester resins, epoxy resins, polyamide resins, polyamideimide resins, alkyd resins, urethane resins, and fluororesins. In the present invention, acrylic resin, silicone resin or modified silicone resin is most preferably used.

またキャリアの電気抵抗や帯電量、帯電速度をコントロールすることを目的に、被膜形成樹脂中に導電性剤を添加することができる。導電性剤はそれ自身の持つ電気抵抗が低いことから、添加量が多すぎると急激な電荷リークを引き起こしやすい。従って、添加量としては、被膜形成樹脂の固形分に対し0.1〜20.0重量%であり、好ましくは0.25〜15.0重量%、特に好ましくは0.5〜10.0重量%である。導電性剤としては、導電性カーボンやカーボンナノチューブ、酸化チタン、酸化スズ等の酸化物、各種の有機系導電剤が挙げられる。   A conductive agent can be added to the film-forming resin for the purpose of controlling the electrical resistance, charge amount, and charging speed of the carrier. Since the conductive agent itself has a low electric resistance, an excessive amount of the conductive agent tends to cause an abrupt charge leak. Accordingly, the addition amount is 0.1 to 20.0% by weight, preferably 0.25 to 15.0% by weight, particularly preferably 0.5 to 10.0% by weight based on the solid content of the film-forming resin. %. Examples of the conductive agent include conductive carbon, carbon nanotubes, oxides such as titanium oxide and tin oxide, and various organic conductive agents.

また、上記被膜形成樹脂中には、帯電制御剤を含有させることができる。帯電制御剤の例としては、トナー用に一般的に用いられる各種の帯電制御剤や、各種シランカップリング剤が挙げられる。これは被膜形成によって芯材露出面積を比較的小さくなるように制御した場合、帯電付与能力が低下することがあるが、各種の帯電制御剤やシランカップリング剤を添加することにより、コントロールできるためである。使用できる帯電制御剤やカップリング剤の種類は特に限定されないが、ニグロシン系染料、4級アンモニウム塩、有機金属錯体、含金属モノアゾ染料等の帯電制御剤、アミノシランカップリング剤やフッ素系シランカップリング剤等が好ましい。帯電量の測定方法は、上述の通りである。   In addition, the film forming resin can contain a charge control agent. Examples of the charge control agent include various charge control agents generally used for toners and various silane coupling agents. This is because, when the core material exposed area is controlled to be relatively small by film formation, the charge imparting ability may decrease, but it can be controlled by adding various charge control agents and silane coupling agents. It is. The types of charge control agents and coupling agents that can be used are not particularly limited, but charge control agents such as nigrosine dyes, quaternary ammonium salts, organometallic complexes, and metal-containing monoazo dyes, aminosilane coupling agents, and fluorine-based silane couplings. An agent or the like is preferable. The method for measuring the charge amount is as described above.

<本発明に係る電子写真現像剤用キャリア芯材及びキャリアの製造方法>
次に、本発明に係る電子写真現像剤用キャリア芯材及びキャリアの製造方法について説明する。
<Carrier Core Material for Electrophotographic Developer According to the Present Invention and Carrier Manufacturing Method>
Next, the carrier core material for an electrophotographic developer and the method for producing the carrier according to the present invention will be described.

本発明に係る電子写真現像剤用キャリア芯材の製造方法は、Fe、Ti、Mg及びSrの各化合物を粉砕、混合、仮焼した後、再粉砕、混合、造粒し、得られた造粒物を一次焼成、本焼成し、さらに解砕、分級、表面酸化処理する。   The method for producing a carrier core material for an electrophotographic developer according to the present invention is obtained by pulverizing, mixing, and calcining each compound of Fe, Ti, Mg, and Sr, and then re-pulverizing, mixing, and granulating the resulting product. The granules are subjected to primary firing, main firing, and further pulverization, classification, and surface oxidation treatment.

Fe、Ti、Mg及びSrの各化合物を粉砕、混合、仮焼を行った後、再粉砕、混合、造粒して造粒物を調製する方法は、特に制限はなく、従来公知の方法が採用することができ、乾式による方法を用いても湿式による方法を用いてもよい。この際にMn化合物を添加してもよい。原料としてFeとTiOとMg(OH)及び/又はMgCOとSrCOを混合し、さらにカーボンブラック及び/又はバインダーを添加し、非酸化性雰囲気又は弱還元性雰囲気で仮焼成し、少なくとも2価のFeを含有するスピネル相及びFeとTi及びSrを含有する複合酸化物相が存在するフェライト前駆体の状態を生成しておくことが良く、さらにこの仮焼成においてFeOが生成していても良い。仮焼後得られた仮焼物を再度粉砕、混合、造粒する。この、再度粉砕、混合時に、必要に応じてFe化合物、Mg化合物、Ti化合物、Sr化合物、Mn化合物から選ばれる1種類以上の化合物を追加の原料として添加してもよい。添加するときの各元素の化合物の形態は特に制限はないが、Fe化合物の場合はFe、Fe、FeO、Mg化合物の場合はMgO、Mg(OH)、MgCO、Ti化合物の場合はTiO、FeTiO、FeTiO、Sr化合物の場合はSrO、SrCO、SrTiO、Mn化合物の場合はMnO、Mn、Mn、MnCOが工業用途で入手しやすいので好ましい。従来の製造方法では本焼成時にFeからスピネル相を生成させるため結晶構造の変化にかなりのエネルギーが必要となるが、あらかじめFeとTiOとMg(OH)及び/又はMgCOとSrCOを混合し、さらにカーボンブラック及び/又はバインダーを添加し仮焼成を行った場合には、本焼成において必要最小限の結晶構造の変化だけでフェライト化が終了するので低温焼成が可能となる。なお、バインダーとしてはポリビニルアルコールやポリビニルピロリドンを使うことが好ましい。 The method of preparing a granulated product by pulverizing, mixing, and calcining each compound of Fe, Ti, Mg, and Sr, and then re-pulverizing, mixing, and granulating is not particularly limited. It is possible to employ a dry method or a wet method. At this time, a Mn compound may be added. Mixing Fe 2 O 3 and TiO 2 and Mg (OH) 2 and / or MgCO 3 and SrCO 3 as raw materials, adding carbon black and / or binder, and pre-baking in non-oxidizing atmosphere or weak reducing atmosphere It is preferable to generate a ferrite precursor state in which a spinel phase containing at least divalent Fe and a composite oxide phase containing Fe, Ti, and Sr are present, and FeO is generated in this preliminary firing. You may do it. The calcined material obtained after the calcining is pulverized, mixed and granulated again. At the time of pulverization and mixing again, one or more compounds selected from Fe compounds, Mg compounds, Ti compounds, Sr compounds, and Mn compounds may be added as additional raw materials as necessary. The form of the compound of each element when added is not particularly limited, but in the case of Fe compound, Fe 2 O 3 , Fe 3 O 4 , FeO, in the case of Mg compound, MgO, Mg (OH) 2 , MgCO 3 , In the case of Ti compound, TiO 2 , FeTiO 3 , Fe 2 TiO 5 , in the case of Sr compound, SrO, SrCO 3 , SrTiO 3 , in the case of Mn compound, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , MnCO 3 It is preferable because it is easily available for industrial use. In the conventional manufacturing method, since a spinel phase is generated from Fe 2 O 3 at the time of main firing, considerable energy is required to change the crystal structure, but Fe 2 O 3 , TiO 2 , Mg (OH) 2 and / or When MgCO 3 and SrCO 3 are mixed and carbon black and / or a binder are added and pre-baking is performed, ferriteization is completed with only a necessary change in the crystal structure in the main baking, so low-temperature baking is performed. It becomes possible. In addition, it is preferable to use polyvinyl alcohol or polyvinylpyrrolidone as a binder.

上記製造方法においてSi化合物は、再粉砕、混合時にSiO等を添加され、最終組成として50〜1000ppm含有される。このようにSi化合物を添加することによって低温で焼成が可能となり、凝集粒子も発生しない。 In the above manufacturing method, the Si compound is added with SiO 2 or the like at the time of re-pulverization and mixing, and is contained in a final composition of 50 to 1000 ppm. By adding the Si compound in this way, firing is possible at a low temperature, and no agglomerated particles are generated.

本発明の製造方法では、得られた造粒物を一次焼成、本焼成する。一次焼成は、非酸化性雰囲気下、500〜1100℃で行われる。   In the production method of the present invention, the obtained granulated product is subjected to primary firing and main firing. The primary firing is performed at 500 to 1100 ° C. in a non-oxidizing atmosphere.

次に、1220℃以下、好ましくは1100〜1200℃で本焼成が行われる。本焼成はより結晶構造をしっかりしたものとし、表面酸化による磁化の低下を防止する効果が期待できる。一次焼成を行うことで本焼成において一次焼成を行わない場合と比較して低温で焼成できるため、凹凸を持った芯材粒子としやすくなるだけでなく、高い球形度を確保することが可能となる。   Next, the main calcination is performed at 1220 ° C. or less, preferably 1100 to 1200 ° C. The main firing has a more solid crystal structure, and an effect of preventing a decrease in magnetization due to surface oxidation can be expected. By performing the primary firing, it can be fired at a lower temperature than in the case where the primary firing is not performed in the main firing, so that not only the core material particles with unevenness are easily formed but also high sphericity can be secured. .

本発明の製造方法では、上述したように、予め本焼成前の芯材粒子の造粒物の時点で原料由来の結晶構造だけでなく、少なくとも2価のFeを含有するスピネル相及びFeとTi及びSrを含有する複合酸化物相を含有し、さらに非酸化性雰囲気下、500〜1100℃で一次焼成を行うことでFeを経由せずにフェライト化を促進することが出来るので、本焼成においても1220℃以下の低温焼成が可能となる。 In the production method of the present invention, as described above, not only the crystal structure derived from the raw material but also the spinel phase containing at least divalent Fe and Fe and Ti in advance at the time of granulation of the core material particles before the main firing. And a composite oxide phase containing Sr, and further, by performing primary firing at 500 to 1100 ° C. in a non-oxidizing atmosphere, ferritization can be promoted without passing through Fe 2 O 3 , Even in the main baking, low-temperature baking at 1220 ° C. or lower is possible.

本発明の製造方法では、本焼成を酸素濃度が5体積%以下の雰囲気で行う。酸素濃度が5体積%を超える場合は、焼成物の磁化が低くなりすぎ、キャリア飛散の原因となるので好ましくない。高磁化のキャリア芯材を得るために、酸素濃度3体積%以下が好ましく、1体積%以下がさらに好ましい。   In the production method of the present invention, the main baking is performed in an atmosphere having an oxygen concentration of 5% by volume or less. When the oxygen concentration exceeds 5% by volume, the magnetization of the fired product becomes too low, which causes carrier scattering, which is not preferable. In order to obtain a highly magnetized carrier core material, the oxygen concentration is preferably 3% by volume or less, more preferably 1% by volume or less.

その後、回収し、乾燥、分級を行ってキャリア芯材を得る。分級方法としては、既存の風力分級、メッシュ濾過法、沈降法など用いて所望の粒径に粒度調整する。乾式回収を行う場合は、サイクロン等で回収することも可能である。   Thereafter, it is collected, dried and classified to obtain a carrier core material. As a classification method, the particle size is adjusted to a desired particle size using an existing air classification, mesh filtration method, sedimentation method, or the like. When dry collection is performed, it can also be collected with a cyclone or the like.

その後、必要に応じて、表面を低温加熱することで酸化被膜処理を施し、電気抵抗調整を行うことができる。酸化被膜処理は、一般的なロータリー式電気炉、バッチ式電気炉等を用い、例えば、300〜800℃、好ましくは450〜700℃で熱処理を行う。酸化皮膜を均一に芯材粒子に形成させるためにはロータリー式電気炉を用いることが好ましい。   Thereafter, if necessary, the surface can be heated at a low temperature to perform an oxide film treatment to adjust electric resistance. For the oxide film treatment, a general rotary electric furnace, batch electric furnace or the like is used, and for example, heat treatment is performed at 300 to 800 ° C., preferably 450 to 700 ° C. In order to uniformly form the oxide film on the core particles, it is preferable to use a rotary electric furnace.

本発明の電子写真現像剤用キャリアは、上記キャリア芯材の表面に、上記した樹脂を被覆し、樹脂被膜を形成する。被覆する方法としては、公知の方法、例えば刷毛塗り法、流動床によるスプレードライ方式、ロータリドライ方式、万能攪拌機による液浸乾燥法等により被覆することができる。被覆率を向上させるためには、流動床による方法が好ましい。   In the carrier for an electrophotographic developer of the present invention, the surface of the carrier core material is coated with the above resin to form a resin film. As a coating method, it can be coated by a known method such as a brush coating method, a spray drying method using a fluidized bed, a rotary drying method, an immersion drying method using a universal stirrer, or the like. In order to improve the coverage, a fluidized bed method is preferred.

樹脂をキャリア芯材に被覆後、焼き付けする場合には、外部加熱方式又は内部加熱方式のいずれでもよく、例えば固定式又は流動式電気炉、ロータリー式電気炉、バーナー炉でもよく、もしくはマイクロウェーブによる焼き付けでもよい。UV硬化樹脂を用いる場合は、UV加熱器を用いる。焼き付けの温度は使用する樹脂により異なるが、融点又はガラス転移点以上の温度は必要であり、熱硬化性樹脂又は縮合架橋型樹脂等では、充分硬化が進む温度まで上げる必要がある。   When the resin is coated on the carrier core and then baked, either an external heating method or an internal heating method may be used, for example, a fixed or fluid electric furnace, a rotary electric furnace, a burner furnace, or by microwave It can be burned. When a UV curable resin is used, a UV heater is used. Although the baking temperature varies depending on the resin to be used, a temperature equal to or higher than the melting point or the glass transition point is necessary. For a thermosetting resin or a condensation-crosslinking resin, it is necessary to raise the temperature to a point where the curing proceeds sufficiently.

<本発明に係る電子写真用現像剤>
次に、本発明に係る電子写真用現像剤について説明する。
本発明に係る電子写真現像剤は、上述した電子写真現像剤用キャリアとトナーとからなるものである。
<Electrophotographic developer according to the present invention>
Next, the electrophotographic developer according to the present invention will be described.
The electrophotographic developer according to the present invention comprises the above-described carrier for an electrophotographic developer and a toner.

本発明の電子写真現像剤を構成するトナー粒子には、粉砕法によって製造される粉砕トナー粒子と、重合法により製造される重合トナー粒子とがある。本発明ではいずれの方法により得られたトナー粒子も使用することができる。   The toner particles constituting the electrophotographic developer of the present invention include pulverized toner particles produced by a pulverization method and polymerized toner particles produced by a polymerization method. In the present invention, toner particles obtained by any method can be used.

粉砕トナー粒子は、例えば、結着樹脂、荷電制御剤、着色剤をヘンシェルミキサー等の混合機で充分に混合し、次いで、二軸押出機等で溶融混練し、冷却後、粉砕、分級し、外添剤を添加後、ミキサー等で混合することにより得ることができる。   The pulverized toner particles are, for example, a binder resin, a charge control agent, and a colorant are sufficiently mixed with a mixer such as a Henschel mixer, then melt-kneaded with a twin screw extruder or the like, cooled, pulverized, classified, After adding the external additive, it can be obtained by mixing with a mixer or the like.

粉砕トナー粒子を構成する結着樹脂としては特に限定されるものではないが、ポリスチレン、クロロポリスチレン、スチレン−クロロスチレン共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸共重合体、更にはロジン変性マレイン酸樹脂、エポキシ樹脂、ポリエステル樹脂及びポリウレタン樹脂等を挙げることができる。これらは単独又は混合して用いられる。   The binder resin constituting the pulverized toner particles is not particularly limited, but polystyrene, chloropolystyrene, styrene-chlorostyrene copolymer, styrene-acrylic acid ester copolymer, styrene-methacrylic acid copolymer, Furthermore, rosin modified maleic acid resin, epoxy resin, polyester resin, polyurethane resin and the like can be mentioned. These may be used alone or in combination.

荷電制御剤としては、任意のものを用いることができる。例えば正荷電性トナー用としては、ニグロシン系染料及び4級アンモニウム塩等を挙げることができ、また、負荷電性トナー用としては、含金属モノアゾ染料等を挙げることができる。   Any charge control agent can be used. For example, nigrosine dyes and quaternary ammonium salts can be used for positively charged toners, and metal-containing monoazo dyes can be used for negatively charged toners.

着色剤(色材)としては、従来より知られている染料、顔料が使用可能である。例えば、カーボンブラック、フタロシアニンブルー、パーマネントレッド、クロムイエロー、フタロシアニングリーン等を使用することができる。その他、トナーの流動性、耐凝集性向上のためのシリカ粉体、チタニア等のような外添剤をトナー粒子に応じて加えることができる。   As the colorant (coloring material), conventionally known dyes and pigments can be used. For example, carbon black, phthalocyanine blue, permanent red, chrome yellow, phthalocyanine green, etc. can be used. In addition, external additives such as silica powder and titania for improving the fluidity and aggregation resistance of the toner can be added according to the toner particles.

重合トナー粒子は、懸濁重合法、乳化重合法、乳化凝集法、エステル伸長重合法、相転乳化法といった公知の方法で製造されるトナー粒子である。このような重合法トナー粒子は、例えば、界面活性剤を用いて着色剤を水中に分散させた着色分散液と、重合性単量体、界面活性剤及び重合開始剤を水性媒体中で混合攪拌し、重合性単量体を水性媒体中に乳化分散させて、攪拌、混合しながら重合させた後、塩析剤を加えて重合体粒子を塩析させる。塩析によって得られた粒子を、濾過、洗浄、乾燥させることにより、重合トナー粒子を得ることができる。その後、必要により乾燥されたトナー粒子に機能付与のため外添剤を添加することもできる。   The polymerized toner particles are toner particles produced by a known method such as a suspension polymerization method, an emulsion polymerization method, an emulsion aggregation method, an ester elongation polymerization method, or a phase inversion emulsification method. Such polymerized toner particles are prepared by, for example, mixing and stirring a colored dispersion in which a colorant is dispersed in water using a surfactant, a polymerizable monomer, a surfactant, and a polymerization initiator in an aqueous medium. Then, the polymerizable monomer is emulsified and dispersed in an aqueous medium, polymerized while stirring and mixing, and then a salting-out agent is added to salt out the polymer particles. Polymerized toner particles can be obtained by filtering, washing and drying the particles obtained by salting out. Thereafter, if necessary, an external additive may be added to the dried toner particles to provide a function.

更に、この重合トナー粒子を製造するに際しては、重合性単量体、界面活性剤、重合開始剤、着色剤以外に、定着性改良剤、帯電制御剤を配合することができ、これらにより得られた重合トナー粒子の諸特性を制御、改善することができる。また、水性媒体への重合性単量体の分散性を改善するとともに、得られる重合体の分子量を調整するために連鎖移動剤を用いることができる。   Further, in the production of the polymerized toner particles, in addition to the polymerizable monomer, the surfactant, the polymerization initiator, and the colorant, a fixability improving agent and a charge control agent can be blended and obtained. Various characteristics of the polymerized toner particles can be controlled and improved. A chain transfer agent can be used to improve the dispersibility of the polymerizable monomer in the aqueous medium and adjust the molecular weight of the resulting polymer.

上記重合トナー粒子の製造に使用される重合性単量体に特に限定はないが、例えば、スチレン及びその誘導体、エチレン、プロピレン等のエチレン不飽和モノオレフィン類、塩化ビニル等のハロゲン化ビニル類、酢酸ビニル等のビニルエステル類、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸2−エチルヘキシル、アクリル酸ジメチルアミノエステル及びメタクリル酸ジエチルアミノエステル等のα−メチレン脂肪族モノカルボン酸エステル類等を挙げることができる。   The polymerizable monomer used for the production of the polymerized toner particles is not particularly limited. For example, styrene and its derivatives, ethylene unsaturated monoolefins such as ethylene and propylene, vinyl halides such as vinyl chloride, Vinyl esters such as vinyl acetate, α-methylene aliphatic monocarboxylic acids such as methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, 2-ethylhexyl methacrylate, dimethylamino acrylate and diethylaminoester methacrylate Examples include esters.

上記重合トナー粒子の調製の際に使用される着色剤(色材)としては、従来から知られている染料、顔料が使用可能である。例えば、カーボンブラック、フタロシアニンブルー、パーマネントレッド、クロムイエロー及びフタロシアニングリーン等を使用することができる。また、これらの着色剤はシランカップリング剤やチタンカップリング剤等を用いてその表面が改質されていてもよい。   Conventionally known dyes and pigments can be used as the colorant (coloring material) used in the preparation of the polymerized toner particles. For example, carbon black, phthalocyanine blue, permanent red, chrome yellow, phthalocyanine green, and the like can be used. Moreover, the surface of these colorants may be modified using a silane coupling agent, a titanium coupling agent, or the like.

上記重合トナー粒子の製造に使用される界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、両イオン性界面活性剤及びノニオン系界面活性剤を使用することができる。   As the surfactant used in the production of the polymerized toner particles, an anionic surfactant, a cationic surfactant, an amphoteric surfactant and a nonionic surfactant can be used.

ここで、アニオン系界面活性剤としては、オレイン酸ナトリウム、ヒマシ油等の脂肪酸塩、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができる。また、ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン、脂肪酸エステル、オキシエチレン−オキシプロピレンブロックポリマー等を挙げることができる。更に、カチオン系界面活性剤としては、ラウリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等を挙げることができる。また、両イオン性界面活性剤としては、アミノカルボン酸塩、アルキルアミノ酸等を挙げることができる。   Here, examples of the anionic surfactant include fatty acid salts such as sodium oleate and castor oil, alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate, alkyl benzene sulfonates such as sodium dodecyl benzene sulfonate, and alkyl naphthalene sulfonic acids. Salt, alkyl phosphate ester salt, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl sulfate ester salt and the like. Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin, fatty acid ester, and oxyethylene-oxypropylene block polymer. . Furthermore, examples of the cationic surfactant include alkylamine salts such as laurylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride and stearyltrimethylammonium chloride. Examples of amphoteric surfactants include aminocarboxylates and alkylamino acids.

上記のような界面活性剤は、重合性単量体に対して、通常は0.01〜10重量%の範囲内の量で使用することができる。このような界面活性剤は、単量体の分散安定性に影響を与えるとともに、得られた重合トナー粒子の環境依存性にも影響を及ぼす。上記範囲内の量で使用することは単量体の分散安定性の確保と重合トナー粒子の環境依存性を低減する観点から好ましい。   The surfactant as described above can be used usually in an amount in the range of 0.01 to 10% by weight with respect to the polymerizable monomer. Such a surfactant affects the dispersion stability of the monomer and also affects the environmental dependency of the obtained polymerized toner particles. Use in an amount within the above range is preferable from the viewpoint of ensuring the dispersion stability of the monomer and reducing the environmental dependency of the polymerized toner particles.

重合トナー粒子の製造には、通常は重合開始剤を使用する。重合開始剤には、水溶性重合開始剤と油溶性重合開始剤とがあり、本発明ではいずれをも使用することができる。本発明で使用することができる水溶性重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、水溶性パーオキサイド化合物を挙げることができ、また、油溶性重合開始剤としては、例えば、アゾビスイソブチロニトリル等のアゾ系化合物、油溶性パーオキサイド化合物を挙げることができる。   For the production of polymerized toner particles, a polymerization initiator is usually used. The polymerization initiator includes a water-soluble polymerization initiator and an oil-soluble polymerization initiator, and any of them can be used in the present invention. Examples of the water-soluble polymerization initiator that can be used in the present invention include persulfates such as potassium persulfate and ammonium persulfate, water-soluble peroxide compounds, and oil-soluble polymerization initiators. Examples thereof include azo compounds such as azobisisobutyronitrile and oil-soluble peroxide compounds.

また、本発明において連鎖移動剤を使用する場合には、この連鎖移動剤としては、例えば、オクチルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン等のメルカプタン類、四臭化炭素等を挙げることができる。   When a chain transfer agent is used in the present invention, examples of the chain transfer agent include mercaptans such as octyl mercaptan, dodecyl mercaptan, tert-dodecyl mercaptan, carbon tetrabromide, and the like.

更に、本発明で使用する重合トナー粒子が、定着性改善剤を含む場合、この定着性改良剤としては、カルナバワックス等の天然ワックス、ポリプロピレン、ポリエチレン等のオレフィン系ワックス等を使用することができる。   Further, when the polymerized toner particles used in the present invention contain a fixability improver, a natural wax such as carnauba wax, an olefin wax such as polypropylene or polyethylene can be used as the fixability improver. .

また、本発明で使用する重合トナー粒子が、帯電制御剤を含有する場合、使用する帯電制御剤に特に制限はなく、ニグロシン系染料、4級アンモニウム塩、有機金属錯体、含金属モノアゾ染料等を使用することができる。   Further, when the polymerized toner particles used in the present invention contain a charge control agent, the charge control agent to be used is not particularly limited, and nigrosine dyes, quaternary ammonium salts, organometallic complexes, metal-containing monoazo dyes, etc. Can be used.

また、重合トナー粒子の流動性向上等のために使用される外添剤としては、シリカ、酸化チタン、チタン酸バリウム、フッ素樹脂微粒子、アクリル樹脂微粒子等を挙げることができ、これらは単独であるいは組み合わせて使用することができる。   Examples of the external additive used for improving the fluidity of polymerized toner particles include silica, titanium oxide, barium titanate, fluororesin fine particles, and acrylic resin fine particles. Can be used in combination.

更に、水性媒体から重合粒子を分離するために使用される塩析剤としては、硫酸マグネシウム、硫酸アルミニウム、塩化バリウム、塩化マグネシウム、塩化カルシウム、塩化ナトリウム等の金属塩を挙げることができる。   Furthermore, examples of the salting-out agent used for separating the polymer particles from the aqueous medium include metal salts such as magnesium sulfate, aluminum sulfate, barium chloride, magnesium chloride, calcium chloride, and sodium chloride.

上記のようにして製造されたトナー粒子の体積平均粒径は、2〜15μm、好ましくは3〜10μmの範囲内にあり、重合トナー粒子の方が粉砕トナー粒子よりも、粒子の均一性が高い。トナー粒子が2μmよりも小さくなると、帯電能力が低下し、かぶりやトナー飛散を引き起こしやすく、15μmを超えると、画質が劣化する原因となる。   The volume average particle size of the toner particles produced as described above is in the range of 2 to 15 μm, preferably 3 to 10 μm, and the polymerized toner particles have higher particle uniformity than the pulverized toner particles. . If the toner particles are smaller than 2 μm, the charging ability is lowered, and it is easy to cause fogging and toner scattering, and if it exceeds 15 μm, the image quality is deteriorated.

上記のように製造されたキャリアとトナーとを混合し、電子写真現像剤を得ることができる。キャリアとトナーの混合比、即ちトナー濃度は、3〜15重量%に設定することが好ましい。3重量%未満であると所望の画像濃度が得にくく、15重量%を超えると、トナー飛散やかぶりが発生しやすくなる。   An electrophotographic developer can be obtained by mixing the carrier and toner manufactured as described above. The mixing ratio of the carrier and the toner, that is, the toner concentration is preferably set to 3 to 15% by weight. If it is less than 3% by weight, it is difficult to obtain a desired image density. If it exceeds 15% by weight, toner scattering and fogging are likely to occur.

本発明に係る電子写真現像剤は、補給用現像剤として用いることもできる。この際のキャリアとトナーの混合比、即ちトナー濃度は100〜3000重量%に設定することが好ましい。   The electrophotographic developer according to the present invention can also be used as a replenishment developer. At this time, the mixing ratio of the carrier and the toner, that is, the toner concentration is preferably set to 100 to 3000% by weight.

上記のように調製された本発明に係る電子写真現像剤は、有機光導電体層を有する潜像保持体に形成されている静電潜像を、バイアス電界を付与しながら、トナー及びキャリアを有する二成分現像剤の磁気ブラシによって反転現像する現像方式を用いたデジタル方式のコピー機、プリンター、FAX、印刷機等に使用することができる。また、磁気ブラシから静電潜像側に現像バイアスを印加する際に、DCバイアスにACバイアスを重畳する方法である交番電界を用いるフルカラー機等にも適用可能である。   The electrophotographic developer according to the present invention prepared as described above uses an electrostatic latent image formed on a latent image holding member having an organic photoconductor layer, while applying a bias electric field to the toner and the carrier. The present invention can be used in digital copiers, printers, fax machines, printers, and the like that use a developing method in which reversal development is performed using a two-component developer magnetic brush. Further, the present invention can also be applied to a full color machine using an alternating electric field, which is a method of superimposing an AC bias on a DC bias when a developing bias is applied from the magnetic brush to the electrostatic latent image side.

以下、実施例等に基づき本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples and the like.

Feを7.72モル、Mgを0.415モル、Tiを0.15モル、Srを0.04モル及びMn0.1モルとなるようにFe、Mg(OH)、TiO、SrCO及びMnを秤量し、ローラーコンパクターでペレット化した。このとき、焼成を促進させる目的と3価のFeを還元させるため活性炭を1.0wt%添加し、得られたペレットを1000℃にて酸素濃度2vol%の雰囲気でロータリー式の焼成炉で仮焼成し、有機物とガスの成分を除去しながらフェライト化を進めると同時に酸化鉄の一部を還元した。 Fe 2 O 3 , Mg (OH) 2 , TiO 2 , so that Fe is 7.72 mol, Mg is 0.415 mol, Ti is 0.15 mol, Sr is 0.04 mol and Mn is 0.1 mol. SrCO 3 and Mn 3 O 4 were weighed and pelletized with a roller compactor. At this time, 1.0 wt% of activated carbon was added for the purpose of promoting firing and to reduce trivalent Fe, and the resulting pellet was temporarily fired in a rotary firing furnace at 1000 ° C. in an atmosphere with an oxygen concentration of 2 vol%. In addition, the ferritization was advanced while removing organic substances and gas components, and at the same time a part of the iron oxide was reduced.

得られた仮焼成物をビーズミルにて粉砕した。また、粉砕の際、一次粒子の平均粒子径12nmのSiOを水に対して固形分20重量%の割合でIKA社製ホモジナイザーT65D ULTRA−TURRAXを使って分散したもの100ccと、バインダー成分としてPVAを2400ccとなるように添加し、ポリカルボン酸系分散剤をスラリーの粘度が2〜3ポイズになるように添加し、スラリー粒径のD50が2μmであった。得られた粉砕スラリーをスプレードライヤーにて再度造粒し、900℃にて非酸化性雰囲気でロータリー式の焼成炉で一次焼成を行い、有機物を除去しながらフェライト化を進めると同時に酸化鉄の一部を還元した。 The obtained calcined product was pulverized with a bead mill. Further, during the pulverization, 100 cc of SiO 2 having an average particle diameter of 12 nm of primary particles dispersed by using a homogenizer T65D ULTRA-TURRAX manufactured by IKA at a ratio of solid content of 20% by weight with respect to water, and PVA as a binder component Was added so that the viscosity of the slurry was 2 to 3 poise, and the D 50 of the slurry particle size was 2 μm. The obtained pulverized slurry is granulated again with a spray dryer, and subjected to primary firing in a rotary firing furnace at 900 ° C. in a non-oxidizing atmosphere. Part was reduced.

一次焼成したものを80メッシュの篩を使って粗大粒子を除去した後1165℃、非酸化性雰囲気で16時間焼成し焼成物を得た。得られた焼成物を解砕、分級、磁力選鉱を行い、キャリア芯材粒子を得た。   After the primary firing, coarse particles were removed using an 80-mesh sieve, and fired in a non-oxidizing atmosphere at 1165 ° C. for 16 hours to obtain a fired product. The obtained fired product was crushed, classified, and magnetically separated to obtain carrier core particles.

さらに得られたキャリア芯材粒子を表面酸化処理温度530℃、大気雰囲気の条件下、ロータリー式の電気炉で表面酸化処理を行い表面酸化処理済みのキャリア芯材粒子を得た。   Further, the obtained carrier core material particles were subjected to surface oxidation treatment in a rotary electric furnace under the conditions of a surface oxidation treatment temperature of 530 ° C. and an air atmosphere to obtain surface oxidized carrier core particles.

表2に示されるように、SiO添加量を50ccとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。 As shown in Table 2, carrier core particles were obtained in the same manner as in Example 1 except that the addition amount of SiO 2 was 50 cc.

表2に示されるように、SiO添加量を300ccとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。 As shown in Table 2, carrier core particles were obtained in the same manner as in Example 1 except that the amount of SiO 2 added was 300 cc.

表3に示されるように、本焼成温度を1110℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 3, carrier core particles were obtained in the same manner as in Example 1 except that the main firing temperature was 1110 ° C.

表3に示されるように、本焼成温度を1195℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 3, carrier core particles were obtained in the same manner as in Example 1 except that the main firing temperature was 1195 ° C.

表1に示されるように、Mg原料を0.34モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Mg raw material was 0.34 mol.

表1に示されるように、Mg原料を0.6モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Mg raw material was 0.6 mol.

表1に示されるように、Ti原料を0.09モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Ti raw material was changed to 0.09 mol.

表1に示されるように、Ti原料を0.24モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Ti raw material was changed to 0.24 mol.

表1に示されるように、Sr原料を0.03モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Sr raw material was 0.03 mol.

表1に示されるように、Sr原料を0.1モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Sr raw material was 0.1 mol.

表1に示されるように、Mn原料を0モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Mn raw material was changed to 0 mol.

表1に示されるように、Mn原料を0.4モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Mn raw material was changed to 0.4 mol.

表4に示されるように、表面酸化処理温度を680℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 4, carrier core particles were obtained in the same manner as in Example 1 except that the surface oxidation treatment temperature was 680 ° C.

表4に示されるように、表面酸化処理温度を480℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 4, carrier core particles were obtained in the same manner as in Example 1 except that the surface oxidation treatment temperature was 480 ° C.

表2に示されるように、一次焼成温度を1000℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 2, carrier core particles were obtained in the same manner as in Example 1 except that the primary firing temperature was 1000 ° C.

表2に示されるように、一次焼成温度を650℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 2, carrier core particles were obtained in the same manner as in Example 1 except that the primary firing temperature was 650 ° C.

表1に示されるように、Sr原料を0.1モル、Mn原料を0.4モルとし、かつ表2に示されるように、還元剤の添加量を800ccとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。   As shown in Table 1, Example 1 except that the Sr raw material was 0.1 mol, the Mn raw material was 0.4 mol, and the addition amount of the reducing agent was 800 cc as shown in Table 2. Similarly, carrier core particles were obtained.

比較例Comparative example

[比較例1]
表2に示されるように、SiO添加量を0ccとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 1]
As shown in Table 2, carrier core particles were obtained in the same manner as in Example 1 except that the addition amount of SiO 2 was 0 cc.

[比較例2]
表2に示されるように、SiO添加量を500ccとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 2]
As shown in Table 2, carrier core particles were obtained in the same manner as in Example 1 except that the addition amount of SiO 2 was 500 cc.

[比較例3]
表3に示されるように、本焼成温度を1250℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 3]
As shown in Table 3, carrier core particles were obtained in the same manner as in Example 1 except that the main firing temperature was 1250 ° C.

[比較例4]
表3に示されるように、本焼成温度を1090℃とした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 4]
As shown in Table 3, carrier core particles were obtained in the same manner as in Example 1 except that the main firing temperature was 1090 ° C.

[比較例5]
表1に示されるように、Mg原料を0モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 5]
As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Mg raw material was changed to 0 mol.

[比較例6]
表1に示されるように、Mg原料を0.83モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 6]
As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Mg raw material was changed to 0.83 mol.

[比較例7]
表1に示されるように、Ti原料を0モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 7]
As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Ti raw material was changed to 0 mol.

[比較例8]
表1に示されるように、Ti原料を0.3モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 8]
As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Ti raw material was changed to 0.3 mol.

[比較例9]
表1に示されるように、Sr原料を0モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 9]
As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Sr raw material was changed to 0 mol.

[比較例10]
表1に示されるように、Sr原料を0.14モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 10]
As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the Sr raw material was changed to 0.14 mol.

[比較例11]
表1に示されるように、Mn原料を1モルとした以外は、実施例1と同様にしてキャリア芯材粒子を得た。
[Comparative Example 11]
As shown in Table 1, carrier core particles were obtained in the same manner as in Example 1 except that the amount of Mn raw material was 1 mol.

実施例1〜18及び比較例1〜11について、表1にキャリア芯材の仮造粒条件、仮焼条件及び仮焼後の結晶構造、表2にキャリア芯材の本造粒条件、粉砕条件、一次焼成、特性値(見掛け密度及び磁化)及び一次焼成後の結晶構造、表3に本焼成条件、本焼成後の結晶構造、各種特性(SF−1が1.33以下の個数/3000個、SF−2、体積平均粒径、見掛け密度)、Sr溶出量及び化学分析値、表4に表面酸化処理条件、磁化、抵抗及びBET比表面積をそれぞれ示す。見掛け密度及び磁化の測定方法を下記に示す。それ以外の測定方法は上述の通りである。   Regarding Examples 1 to 18 and Comparative Examples 1 to 11, Table 1 shows provisional granulation conditions of the carrier core material, calcination conditions and crystal structure after calcination, Table 2 shows main granulation conditions and pulverization conditions of the carrier core material. , Primary firing, characteristic values (apparent density and magnetization) and crystal structure after primary firing, Table 3 shows main firing conditions, crystal structure after main firing, various properties (number of SF-1 is 1.33 or less / 3000) , SF-2, volume average particle diameter, apparent density), Sr elution amount and chemical analysis value, Table 4 shows surface oxidation treatment conditions, magnetization, resistance and BET specific surface area. A method for measuring the apparent density and the magnetization is shown below. Other measurement methods are as described above.

(見掛け密度)
JIS Z 2504に準拠して測定した。詳細は次の通りである。
1.装置
粉末見掛密度計は漏斗、コップ、漏斗支持器、支持棒及び支持台から構成されるものを用いる。天秤は、秤量200gで感量50mgのものを用いる。
2.測定方法
(1)試料は、少なくとも150g以上とする。
(2)試料は孔径2.5+0.2/−0mmのオリフィスを持つ漏斗に注ぎ流れ出た試料が、コップ一杯になってあふれ出るまで流し込む。
(3)あふれ始めたら直ちに試料の流入をやめ、振動を与えないようにコップの上に盛り上がった試料をへらでコップの上端に沿って平らにかきとる。
(4)コップの側面を軽く叩いて、試料を沈ませコップの外側に付着した試料を除去して、コップ内の試料の重量を0.05gの精度で秤量する。
3.計算
前項2−(4)で得られた測定値に0.04を乗じた数値をJIS−Z8401(数値の丸め方)によって小数点以下第2位に丸め、「g/cm」の単位の見掛け密度とする。
(Apparent density)
It measured based on JISZ2504. Details are as follows.
1. Apparatus The powder apparent density meter is composed of a funnel, a cup, a funnel support, a support bar and a support base. A balance with a weighing of 200 mg and a weighing of 50 mg is used.
2. Measuring method (1) The sample shall be at least 150 g or more.
(2) The sample is poured into a funnel having an orifice with a pore diameter of 2.5 + 0.2 / −0 mm, and poured until the sample that has flowed out fills the glass and overflows.
(3) Stop the inflow of the sample as soon as it begins to overflow, and scrape the sample raised on the cup flatly with a spatula along the top edge of the cup so as not to give vibration.
(4) Tap the side surface of the cup to sink the sample and remove the sample attached to the outside of the cup, and weigh the sample in the cup with an accuracy of 0.05 g.
3. Calculation The numerical value obtained by multiplying the measured value obtained in 2- (4) above by 0.04 is rounded to the second decimal place by JIS-Z8401 (how to round the numerical value), and the unit of “g / cm 3 ” appears. Density.

(磁気特性:磁化)
積分型B−HトレーサーBHU−60型(理研電子社製)を使用して測定した。電磁石間に磁場測定用Hコイル及び磁化測定用4πIコイルを入れる。この場合、試料は4πIコイルに入れる。電磁石の電流を変化させ磁場Hを変化させたHコイル及び4πIコイルの出力をそれぞれ積分し、H出力をX軸に、4πIコイルの出力をY軸に、ヒステリシスループを記録紙に描く。ここで測定条件としては、試料充填量:約1g、試料充填セル:内径7mmφ±0.02mm、高さ10mm±0.1mm、4πIコイル:巻数30回にて測定した。
(Magnetic characteristics: magnetization)
It measured using the integral type BH tracer BHU-60 type (made by Riken Denshi Co., Ltd.). A magnetic field measuring H coil and a magnetization measuring 4πI coil are placed between the electromagnets. In this case, the sample is placed in a 4πI coil. The outputs of the H coil and the 4πI coil whose magnetic field H is changed by changing the current of the electromagnet are respectively integrated, and the H output is drawn on the X axis, the output of the 4πI coil is drawn on the Y axis, and a hysteresis loop is drawn on the recording paper. As measurement conditions, sample filling amount: about 1 g, sample filling cell: inner diameter 7 mmφ ± 0.02 mm, height 10 mm ± 0.1 mm, 4πI coil: measured with 30 turns.

Figure 0005382522
Figure 0005382522

Figure 0005382522
Figure 0005382522

Figure 0005382522
Figure 0005382522

Figure 0005382522
Figure 0005382522

表1〜表4の結果から明らかなように、実施例1〜18については芯材同士の凝集が少なく、形状の良い芯材粒子が得られた。さらに表面酸化処理を行なった後も樹脂被覆に適した表面性が得られ、抵抗、磁化もキャリア用芯材として十分なものとなった。一方、比較例1、4及び10はいずれもSr溶出量が多く、表面酸化処理後も抵抗が高くキャリア用芯材として適さないものとなった。比較例2、3、6、7、9及び11はSF−1が135以上の個数が多く、粒子同士の凝集が多くキャリア用芯材粒子として適さないものとなった。比較例5は表面酸化処理後のBET比表面積が小さく樹脂被覆に適さないものとなった。比較例8はTiの添加量が多く、表面酸化処理後の抵抗が高くなりすぎキャリア用芯材として適さないものとなった。   As is clear from the results in Tables 1 to 4, in Examples 1 to 18, core particles having good shape were obtained with little aggregation between the core materials. Furthermore, even after the surface oxidation treatment, surface properties suitable for resin coating were obtained, and resistance and magnetization were sufficient as a carrier core material. On the other hand, Comparative Examples 1, 4 and 10 all had a large amount of Sr elution, and the resistance was high after the surface oxidation treatment, making it unsuitable as a carrier core material. In Comparative Examples 2, 3, 6, 7, 9, and 11, the number of SF-1 was 135 or more, and the particles were agglomerated so that they were not suitable as carrier core particles. Comparative Example 5 had a small BET specific surface area after the surface oxidation treatment and was not suitable for resin coating. In Comparative Example 8, the amount of Ti added was large, and the resistance after the surface oxidation treatment was too high to be suitable as a carrier core material.

実施例1と同様の方法で平均粒径59.17μmのキャリア芯材粒子を作成し、信越シリコーン社製アクリル変性シリコーン樹脂KR−9706を被覆樹脂として流動床コーティング装置により塗布した。このとき樹脂溶液はキャリア芯材に対する樹脂の固形分で1重量%となるように樹脂を秤量し、樹脂の固形分が10重量%となるようにトルエンとMEKを重量比で3:1に混合した溶剤を添加したものを使用した。樹脂を塗布した後、完全に揮発分をなくすために200℃設定の熱交換型攪拌加熱装置で3時間撹拌しながら乾燥させて樹脂被覆キャリアを得た。   Carrier core material particles having an average particle size of 59.17 μm were prepared in the same manner as in Example 1, and applied with a fluidized bed coating apparatus using acrylic modified silicone resin KR-9706 manufactured by Shin-Etsu Silicone Co., Ltd. as a coating resin. At this time, the resin solution is weighed so that the resin solid content with respect to the carrier core is 1% by weight, and toluene and MEK are mixed at a weight ratio of 3: 1 so that the resin solid content is 10% by weight. What added the solvent was used. After applying the resin, in order to completely eliminate the volatile matter, the resin-coated carrier was obtained by drying with stirring in a heat exchange type stirring and heating apparatus set at 200 ° C. for 3 hours.

実施例1と同様の方法で平均粒径59.17μmのキャリア芯材粒子を作成し、信越シリコーン社製シリコーン樹脂KR−350、東レ・ダウコーニング社製アルミニウム系触媒CAT−AC、信越シリコーン社製アミノシランカップリング剤KBM−603及びライオン社製ケッチェンブラックEC600JDを被覆樹脂として流動床コーティング装置により塗布した。このとき樹脂溶液はキャリア芯材に対する樹脂の固形分で1.5重量%となるように樹脂を秤量し、樹脂の固形分に対してアルミニウム系触媒CAT−ACを2重量%、アミノシランカップリング剤KBM−603を10重量%、ケッチェンブラックEC600JDを15重量%それぞれ添加した。さらに樹脂の固形分が10重量%となるようにトルエンを添加し、IKA社製ホモジナイザーT65D ULTRA−TURRAXで3分間前分散を行った後、縦型ビーズミル5分間分散処理を行ったものを樹脂溶液として使用した。樹脂を塗布した後、完全に揮発分をなくすために250℃設定の熱風乾燥機で3時間乾燥させて樹脂被覆キャリアを得た。   Carrier core particles having an average particle size of 59.17 μm were prepared in the same manner as in Example 1, and the silicone resin KR-350 manufactured by Shin-Etsu Silicone, the aluminum-based catalyst CAT-AC manufactured by Toray Dow Corning, manufactured by Shin-Etsu Silicone Aminosilane coupling agent KBM-603 and Lion Ketjen Black EC600JD were applied as a coating resin by a fluidized bed coating apparatus. At this time, the resin solution is weighed so that the resin solid content with respect to the carrier core is 1.5% by weight, the aluminum catalyst CAT-AC is 2% by weight with respect to the resin solid content, and the aminosilane coupling agent. 10% by weight of KBM-603 and 15% by weight of Ketjen Black EC600JD were added. Further, toluene is added so that the solid content of the resin becomes 10% by weight, and after pre-dispersing for 3 minutes with a homogenizer T65D ULTRA-TURRAX made by IKA, a resin solution obtained by dispersing for 5 minutes in a vertical bead mill is used. Used as. After applying the resin, in order to completely eliminate the volatile matter, the resin-coated carrier was obtained by drying with a hot air dryer set at 250 ° C. for 3 hours.

実施例1と同様の方法で平均粒径59.17μmのキャリア芯材粒子を作成し、三菱レイヨン社製アクリル樹脂ダイヤナールBR−80を被覆樹脂として万能混合撹拌機により塗布した。このとき樹脂溶液はキャリア芯材に対する樹脂の固形分で0.5重量%となるように樹脂を秤量し、樹脂の固形分が10重量%となるようにトルエンを添加したものを使用した。なお、樹脂は粉末であるため樹脂溶液は50℃となるように湯煎し樹脂粉末が完全に溶解させた。樹脂を塗布した後、完全に揮発分をなくすために145℃設定の熱風乾燥機で2時間乾燥させて樹脂被覆キャリアを得た。   Carrier core material particles having an average particle diameter of 59.17 μm were prepared in the same manner as in Example 1, and applied with an acrylic resin Dianal BR-80 manufactured by Mitsubishi Rayon Co., Ltd. as a coating resin using a universal mixing stirrer. At this time, a resin solution was used in which the resin was weighed so that the solid content of the resin with respect to the carrier core was 0.5 wt%, and toluene was added so that the solid content of the resin would be 10 wt%. Since the resin is a powder, the resin solution was bathed in water so that the temperature was 50 ° C., and the resin powder was completely dissolved. After applying the resin, in order to completely eliminate the volatile matter, the resin-coated carrier was obtained by drying with a hot air dryer set at 145 ° C. for 2 hours.

実施例19〜21について、キャリア47.5g、トナー2.5gを秤量し、50ccガラスビンに入れ、回転数100rpmのボールミルで30min撹拌混合し、トナー濃度5重量%の帯電量測定用の現像剤を得た。得られた現像剤をEpping社製帯電量測定装置q/m−meterで帯電量を測定した。結果を表5に示す。   For Examples 19 to 21, 47.5 g of carrier and 2.5 g of toner were weighed, placed in a 50 cc glass bottle, stirred and mixed for 30 minutes in a ball mill with a rotation speed of 100 rpm, and a developer for measuring the charge amount with a toner concentration of 5% by weight. Obtained. The charge amount of the obtained developer was measured with a charge amount measuring device q / m-meter manufactured by Epping. The results are shown in Table 5.

Figure 0005382522
Figure 0005382522

表5の結果から明らかなように、得られたいずれの樹脂被覆キャリアは十分な帯電特性を持ち、電子写真用キャリアとして十分使えるものとなった。   As is clear from the results in Table 5, any of the obtained resin-coated carriers has sufficient charging characteristics and can be sufficiently used as an electrophotographic carrier.

本発明に係る電子写真現像剤用キャリア芯材は、各重金属を用いず、またMn含有量を可能な限り減じ、高磁化でありながら高抵抗が得られ、凝集粒子が少ない。そして、上記キャリア芯材に樹脂を被覆して得られるキャリアとトナーとからなる電子写真現像剤は、長寿命化が達成され、かつ高い帯電量を有し、帯電安定性にも優れる。また、本発明の製造方法によって、上記キャリア芯材及びキャリアが工業的規模をもって安定的に製造できる。   The carrier core material for an electrophotographic developer according to the present invention does not use each heavy metal, reduces the Mn content as much as possible, obtains high resistance while having high magnetization, and has few aggregated particles. An electrophotographic developer comprising a carrier and a toner obtained by coating the carrier core material with a resin has a long life, has a high charge amount, and is excellent in charging stability. Moreover, the carrier core material and the carrier can be stably produced on an industrial scale by the production method of the present invention.

従って、本発明は、特に高画質の要求されるフルカラー機並びに画像維持の信頼性及び耐久性の要求される高速機の分野に広く使用可能である。   Therefore, the present invention can be widely used in the field of full-color machines that particularly require high image quality and high-speed machines that require image maintenance reliability and durability.

Claims (17)

Mgを0.8〜3重量%、Tiを0.5〜2.4重量%、Feを60〜70重量%、Srを0.3〜2重量%、Mnを0.001〜4重量及びSiを50〜1000ppm含有し、SrのpH4標準液による溶出が50〜1000ppmであり、形状係数SF−1(円形度)が135以上の粒子を12個数%以下含有することを特徴とする電子写真現像剤用キャリア芯材。   0.8 to 3 wt% Mg, 0.5 to 2.4 wt% Ti, 60 to 70 wt% Fe, 0.3 to 2 wt% Sr, 0.001 to 4 wt% Mn and Si Electrophotographic development characterized by containing 12 to 10% by number of particles having a shape factor SF-1 (circularity) of 135 or more with a dissolution factor of 50 to 1000 ppm and an elution with a pH 4 standard solution of Sr of 50 to 1000 ppm Carrier core material. Mgを含有するスピネル構造以外に少なくともFe、Ti及びSrから選ばれる2種類以上の元素を含有する酸化物の結晶構造を含有する請求項1に記載の電子写真現像剤用キャリア芯材。   The carrier core material for an electrophotographic developer according to claim 1, further comprising an oxide crystal structure containing at least two elements selected from Fe, Ti and Sr in addition to the Mg-containing spinel structure. 形状係数SF−2(真円度)が100〜120である請求項1又は請求項2に記載の電子写真現像剤用キャリア芯材。   The carrier core material for an electrophotographic developer according to claim 1 or 2, wherein the shape factor SF-2 (roundness) is 100 to 120. レーザー回折式粒度分布測定装置により測定される平均粒径が15〜120μmである請求項1〜請求項3のいずれかに記載の電子写真現像剤用キャリア芯材。   The carrier core material for an electrophotographic developer according to any one of claims 1 to 3, wherein an average particle size measured by a laser diffraction particle size distribution analyzer is 15 to 120 µm. 表面酸化処理により表面被覆が形成されている請求項1〜請求項4のいずれかに記載の電子写真現像剤用キャリア芯材   The carrier core material for an electrophotographic developer according to any one of claims 1 to 4, wherein a surface coating is formed by surface oxidation treatment. 上記表面酸化処理後にFe成分が増加している請求項5に記載の電子写真現像剤用キャリア芯材。 The carrier core material for an electrophotographic developer according to claim 5, wherein the Fe 2 O 3 component is increased after the surface oxidation treatment. 上記表面酸化処理後のBET比表面積が0.08〜0.25m/gである請求項5又は請求項6に記載の電子写真現像剤用キャリア芯材。 The carrier core material for an electrophotographic developer according to claim 5 or 6, wherein the BET specific surface area after the surface oxidation treatment is 0.08 to 0.25 m 2 / g. 上記表面酸化処理において、2mmGap印加電圧250Vにおける抵抗が5×10〜5.5×10Ωである請求項5〜請求項7のいずれかに記載の電子写真現像剤用キャリア芯材。 The carrier core material for an electrophotographic developer according to any one of claims 5 to 7, wherein, in the surface oxidation treatment, the resistance at a 2 mm Gap applied voltage of 250 V is 5 x 10 7 to 5.5 x 10 9 Ω. 請求項1〜請求項8のいずれかに記載のキャリア芯材の表面が樹脂で被覆されている電子写真現像剤用キャリア。   A carrier for an electrophotographic developer, wherein the surface of the carrier core material according to any one of claims 1 to 8 is coated with a resin. 上記樹脂がアクリル樹脂、シリコーン樹脂又は変性シリコーン樹脂である請求項9に記載の電子写真現像剤用キャリア。   The carrier for an electrophotographic developer according to claim 9, wherein the resin is an acrylic resin, a silicone resin, or a modified silicone resin. Fe、Ti、Mg及びSrの各化合物を粉砕、混合、仮焼した後、再粉砕、混合、造粒し、得られた造粒物を一次焼成、本焼成し、さらに解砕、分級、表面酸化処理する電子写真現像剤用キャリア芯材の製造方法であって、上記再粉砕、混合時にSi化合物を添加し、かつ上記本焼成が、酸素濃度が5体積%以下で行われることを特徴とする請求項1〜請求項8のいずれかに記載の電子写真現像剤用キャリア芯材の製造方法。   After each compound of Fe, Ti, Mg and Sr is pulverized, mixed, calcined, re-pulverized, mixed, granulated, and the resulting granulated product is subjected to primary firing, main firing, further pulverization, classification, surface A method for producing a carrier core material for an electrophotographic developer to be oxidized, wherein the Si compound is added at the time of re-grinding and mixing, and the main firing is performed at an oxygen concentration of 5% by volume or less. A method for producing a carrier core material for an electrophotographic developer according to any one of claims 1 to 8. Si化合物の一次粒子の平均粒径が5〜100nmである請求項11に記載の電子写真現像剤用キャリア芯材の製造方法。   The method for producing a carrier core material for an electrophotographic developer according to claim 11, wherein the average particle size of the primary particles of the Si compound is 5 to 100 nm. 上記Fe、Ti、Mg及びSrの各化合物に加えてMn化合物を添加し、粉砕、混合する請求項11又は請求項12に記載の電子写真現像剤用キャリア芯材の製造方法。   The method for producing a carrier core material for an electrophotographic developer according to claim 11 or 12, wherein a Mn compound is added to the Fe, Ti, Mg and Sr compounds, and the mixture is pulverized and mixed. 請求項11〜請求項13のいずれかに記載の製造方法で得られたキャリア芯材の表面を樹脂で被覆することを特徴とする電子写真現像剤用キャリアの製造方法。   A method for producing a carrier for an electrophotographic developer, wherein the surface of the carrier core obtained by the production method according to any one of claims 11 to 13 is coated with a resin. 請求項9又は請求項10に記載のキャリアとトナーとからなる電子写真現像剤。   An electrophotographic developer comprising the carrier according to claim 9 and a toner. 請求項14に記載の製造方法により得られたキャリアとトナーからなる電子写真現像剤。   An electrophotographic developer comprising a carrier and a toner obtained by the production method according to claim 14. 補給用現像剤として用いられる請求項15又は請求項16に記載の電子写真現像剤。   The electrophotographic developer according to claim 15 or 16, which is used as a replenishing developer.
JP2009242965A 2009-10-22 2009-10-22 Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier Active JP5382522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242965A JP5382522B2 (en) 2009-10-22 2009-10-22 Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242965A JP5382522B2 (en) 2009-10-22 2009-10-22 Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier

Publications (2)

Publication Number Publication Date
JP2011090120A JP2011090120A (en) 2011-05-06
JP5382522B2 true JP5382522B2 (en) 2014-01-08

Family

ID=44108439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242965A Active JP5382522B2 (en) 2009-10-22 2009-10-22 Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier

Country Status (1)

Country Link
JP (1) JP5382522B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5921801B2 (en) * 2010-02-22 2016-05-24 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer and method for producing the same
JP5635784B2 (en) * 2010-03-12 2014-12-03 Dowaエレクトロニクス株式会社 Ferrite particles and production method thereof, carrier for electrophotographic development using ferrite particles, developer for electrophotography
JP5822377B2 (en) * 2010-09-30 2015-11-24 Dowaエレクトロニクス株式会社 Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2013205614A (en) * 2012-03-28 2013-10-07 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer, ferrite carrier and method for producing the same, and electrophotographic developer using ferrite carrier
JP5907420B2 (en) * 2012-03-29 2016-04-26 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP2014153469A (en) * 2013-02-06 2014-08-25 Fuji Xerox Co Ltd Carrier for electrostatic charge image development, developer for electrostatic charge image development, process cartridge, and image forming apparatus
JP6757284B2 (en) * 2017-03-31 2020-09-16 Dowaエレクトロニクス株式会社 Carrier core material, carrier for electrophotographic using it, and developer for electrophotographic

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963618B2 (en) * 2007-03-29 2012-06-27 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer, method for producing the same, and electrophotographic developer
WO2010016603A1 (en) * 2008-08-04 2010-02-11 キヤノン株式会社 Magnetic carrier and two-component developer

Also Published As

Publication number Publication date
JP2011090120A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5348588B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP5334251B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP5488890B2 (en) Porous ferrite core material for electrophotographic developer, resin-filled ferrite carrier, and electrophotographic developer using the ferrite carrier
JP5488910B2 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP5622151B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP5360701B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP5522446B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
JP5086865B2 (en) Carrier core material for electrophotographic developer, carrier and electrophotographic developer using the carrier
JP5708038B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP5382522B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP5255310B2 (en) Carrier core material for electrophotographic developer, carrier and electrophotographic developer using the carrier
WO2017175646A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer
JP6156626B2 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP5850331B2 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP5541598B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier for electrophotographic developer
JP5995048B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP2016106262A (en) Electrophotographic developer ferrite carrier core material, ferrite carrier and manufacturing method of electrophotographic developer ferrite carrier core material, and ferrite carrier, and electrophotographic developer ferrite carrier core material using ferrite carrier
JP5240901B2 (en) Carrier core material for electrophotographic developer, carrier and electrophotographic developer using the carrier
JP6040471B2 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP2013205614A (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier and method for producing the same, and electrophotographic developer using ferrite carrier
JP2012208446A (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer
WO2017175647A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer
JP5907420B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Ref document number: 5382522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250