JP6040471B2 - Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier - Google Patents

Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier Download PDF

Info

Publication number
JP6040471B2
JP6040471B2 JP2013004989A JP2013004989A JP6040471B2 JP 6040471 B2 JP6040471 B2 JP 6040471B2 JP 2013004989 A JP2013004989 A JP 2013004989A JP 2013004989 A JP2013004989 A JP 2013004989A JP 6040471 B2 JP6040471 B2 JP 6040471B2
Authority
JP
Japan
Prior art keywords
ferrite
particles
core material
carrier
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013004989A
Other languages
Japanese (ja)
Other versions
JP2014137425A (en
Inventor
紘佑 齋藤
紘佑 齋藤
康二 安賀
康二 安賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powdertech Co Ltd
Original Assignee
Powdertech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powdertech Co Ltd filed Critical Powdertech Co Ltd
Priority to JP2013004989A priority Critical patent/JP6040471B2/en
Publication of JP2014137425A publication Critical patent/JP2014137425A/en
Application granted granted Critical
Publication of JP6040471B2 publication Critical patent/JP6040471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、複写機、プリンター等に用いられる二成分系電子写真現像剤に使用される電子写真現像剤用フェライトキャリア芯材及びフェライトキャリア、並びに該フェライトキャリアを用いた電子写真現像剤に関する。   The present invention relates to a ferrite carrier core material and ferrite carrier for an electrophotographic developer used in a two-component electrophotographic developer used in a copying machine, a printer, and the like, and an electrophotographic developer using the ferrite carrier.

電子写真現像方法は、現像剤中のトナー粒子を感光体上に形成された静電潜像に付着させて現像する方法であり、この方法で使用される現像剤は、トナー粒子とキャリア粒子からなる二成分系現像剤及びトナー粒子のみを用いる一成分系現像剤に分けられる。   The electrophotographic development method is a method in which toner particles in a developer are attached to an electrostatic latent image formed on a photoreceptor and developed, and the developer used in this method is composed of toner particles and carrier particles. The two-component developer and the one-component developer using only toner particles.

こうした現像剤のうち、トナー粒子とキャリア粒子からなる二成分系現像剤を用いた現像方法としては、古くはカスケード法等が採用されていたが、現在では、マグネットロールを用いる磁気ブラシ法が主流である。   Among these developers, as a developing method using a two-component developer composed of toner particles and carrier particles, the cascade method has been used in the past, but at present, the magnetic brush method using a magnet roll is the mainstream. It is.

二成分系現像剤において、キャリア粒子は、現像剤が充填されている現像ボックス内において、トナー粒子と共に攪拌されることによって、トナー粒子に所望の電荷を付与し、さらにこのように電荷を帯びたトナー粒子を感光体の表面に搬送して感光体上にトナー像を形成するための担体物質である。マグネットを保持する現像ロール上に残ったキャリア粒子は、この現像ロールから再び現像ボックス内に戻り、新たなトナー粒子と混合・攪拌され、一定期間繰り返して使用される。   In the two-component developer, the carrier particles are agitated together with the toner particles in the developing box filled with the developer, thereby imparting a desired charge to the toner particles, and thus being charged. A carrier material for transporting toner particles to the surface of the photoreceptor to form a toner image on the photoreceptor. The carrier particles remaining on the developing roll holding the magnet are returned to the developing box from the developing roll, mixed and stirred with new toner particles, and used repeatedly for a certain period.

二成分系現像剤は、一成分系現像剤とは異なり、キャリア粒子はトナー粒子と混合・攪拌され、トナー粒子を帯電させ、さらに搬送する機能を有しており、現像剤を設計する際の制御性が良い。従って、二成分系現像剤は高画質が要求されるフルカラー現像装置及び画像維持の信頼性、耐久性が要求される高速印刷を行う装置等に適している。   Unlike the one-component developer, the two-component developer has the function of mixing and stirring the carrier particles with the toner particles, charging the toner particles, and further transporting the toner particles. Good controllability. Therefore, the two-component developer is suitable for a full-color developing device that requires high image quality and a device that performs high-speed printing that requires image maintenance reliability and durability.

このようにして用いられる二成分系現像剤においては、画像濃度、カブリ、白斑、階調性、解像力等の画像特性が、初期の段階から所定の値を示し、しかもこれらの特性が耐刷期間中に変動せず、安定に維持されることが必要である。これらの特性を安定に維持するためには、二成分系現像剤中に含有されるキャリア粒子の特性が安定していることが必要になる。   In the two-component developer used in this manner, image characteristics such as image density, fog, vitiligo, gradation, and resolving power show predetermined values from the initial stage, and these characteristics are in the printing life period. It needs to be kept stable without fluctuating inside. In order to maintain these characteristics stably, it is necessary that the characteristics of the carrier particles contained in the two-component developer are stable.

二成分系現像剤を形成するキャリア粒子として、従来は、表面を酸化被膜で覆った鉄粉あるいは表面を樹脂で被覆した鉄粉等の鉄粉キャリアが使用されていた。このような鉄粉キャリアは、磁化が高く、導電性も高いことから、ベタ部の再現性のよい画像が得られやすいという利点がある。   Conventionally, iron powder carriers such as iron powder whose surface is covered with an oxide film or iron powder whose surface is coated with a resin have been used as carrier particles for forming a two-component developer. Since such an iron powder carrier has high magnetization and high conductivity, there is an advantage that an image with a good reproducibility of the solid portion can be easily obtained.

しかしながら、このような鉄粉キャリアは真比重が約7.8と重く、また磁化が高すぎることから、現像ボックス中におけるトナー粒子との攪拌・混合により、鉄粉キャリア表面へのトナー構成成分の融着、いわゆるトナースペントが発生しやすくなる。このようなトナースペントの発生により有効なキャリア表面積が減少し、トナー粒子との摩擦帯電能力が低下しやすくなる。   However, such an iron powder carrier has a heavy true specific gravity of about 7.8 and is too high in magnetization, so that the toner constituent components on the surface of the iron powder carrier are mixed by stirring and mixing with toner particles in the developing box. Fusing, so-called toner spent, is likely to occur. The generation of such toner spent reduces the effective carrier surface area and tends to reduce the triboelectric charging ability with the toner particles.

また、樹脂被覆鉄粉キャリアでは、耐久時のストレスにより表面の樹脂が剥離し、高導電性で絶縁破壊電圧が低い芯材(鉄粉)が露出することにより、電荷のリークが生ずることがある。このような電荷のリークにより、感光体上に形成された静電潜像が破壊され、ベタ部にハケスジ等が発生し、均一な画像が得られにくい。これらの理由から、酸化被膜鉄粉及び樹脂被覆鉄粉等の鉄粉キャリアは、現在では使用されなくなってきている。   Moreover, in the resin-coated iron powder carrier, the resin on the surface peels off due to stress during durability, and the core material (iron powder) with high conductivity and low dielectric breakdown voltage is exposed, which may cause charge leakage. . Due to such charge leakage, the electrostatic latent image formed on the photoconductor is destroyed, and a crack or the like is generated in the solid portion, so that it is difficult to obtain a uniform image. For these reasons, iron powder carriers such as oxide-coated iron powder and resin-coated iron powder are no longer used.

近年は、鉄粉キャリアに代わって真比重約5.0程度と軽く、また磁化も低いフェライト粒子をキャリアとして用いたり、さらにフェライト粒子の表面に樹脂を被覆した樹脂コートフェライトキャリアが多く使用されており、現像剤寿命は飛躍的に伸びてきた。   In recent years, instead of iron powder carriers, ferrite particles, which are light as true specific gravity of about 5.0 and have low magnetization, are used as carriers, and resin coated ferrite carriers in which resin is coated on the surface of ferrite particles are often used. As a result, the developer life has been dramatically increased.

このようなフェライトキャリアの製造方法としては、フェライト原料を所定量混合した後、仮焼、粉砕し、造粒後に焼成を行うのが一般的であり、条件によっては仮焼を省略できる場合もある。   As a method for producing such a ferrite carrier, a predetermined amount of ferrite raw materials are mixed, calcined, pulverized, and generally fired after granulation. Depending on conditions, calcining may be omitted. .

ところで、最近、環境規制が厳しくなり、Ni、Cu、Zn等の金属の使用は避けられるようになってきており、環境規制に適応した金属の使用が求められており、キャリア芯材として用いられるフェライト粒子の組成はCu−Znフェライト、Ni−ZnフェライトからMnを用いたマンガンフェライト、Mn−Mg−Srフェライト等に移行している。   Recently, environmental regulations have become stricter, and the use of metals such as Ni, Cu, and Zn has been avoided, and the use of metals suitable for environmental regulations has been demanded, and it is used as a carrier core material. The composition of the ferrite particles has shifted from Cu—Zn ferrite, Ni—Zn ferrite to manganese ferrite using Mn, Mn—Mg—Sr ferrite and the like.

特許文献1(特開2006−337828号公報)には、表面が溝又は筋で10μm四方あたり2〜50の領域に分割されており、マンガンフェライトを主成分とする電子写真用フェライトキャリア芯材が記載されている。このフェライトキャリア芯材は、組成が均一で、一定の表面性、良好な流動性を有し、かつ高磁化、低抵抗であり、このフェライトキャリア芯材に樹脂を被覆したフェライトキャリアを用いた電子写真用現像剤は、帯電の立ち上がりが速く、経時における安定した帯電量を有するとされている。   Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-337828) discloses a ferrite carrier core material for electrophotography in which the surface is divided into regions of 2 to 50 per 10 μm square by grooves or streaks, and the main component is manganese ferrite. Have been described. This ferrite carrier core material has a uniform composition, constant surface properties, good fluidity, high magnetization, low resistance, and an electron using a ferrite carrier in which this ferrite carrier core material is coated with a resin. Photographic developers are said to have a fast charge rise and a stable charge over time.

この特許文献1では、上記のようなフェライトキャリア芯材を製造するために、FeとMnのモル比(Fe/Mn)が4〜16のFeとMnを主成分とする複合酸化物を粉砕、混合後、造粒、焼成し、さらに解砕、分級する製造方法において、焼成を酸素濃度が5体積%以下の雰囲気で行うことが示されている。   In Patent Document 1, in order to produce the ferrite carrier core material as described above, a composite oxide mainly composed of Fe and Mn having a molar ratio of Fe to Mn (Fe / Mn) of 4 to 16 is crushed. It has been shown that in a production method in which granulation, firing, and further pulverization and classification are performed after mixing, firing is performed in an atmosphere having an oxygen concentration of 5% by volume or less.

しかし、Mnも各種法規制の対象になりつつあり、上記各種重金属はもとよりMnを使用しない新たなキャリア芯材が求められている。   However, Mn is also subject to various laws and regulations, and a new carrier core material that does not use Mn as well as the above various heavy metals is demanded.

Mnを含有するキャリア芯材に代わるものとして、Mgを含有するキャリア芯材も提案されている。特許文献2(特開2005−162597号公報)には、式XMgFeCa(XはLi、Na、Ti等又はその組み合わせ)で示されるMg系フェライト材料(キャリア芯材)が示され、飽和磁化が30〜80emu/g、絶縁破壊電圧が1.5〜5.0kVであるとされ、このMg系フェライト材料により、高画質化と環境規制への対応を図ることができるとされている。特許文献3(特開2009−237155号公報)には、(MFe3−x)O(MはMg等の金属、0<x<3)で表記されるソフトフェライトを有し、その中にAlが固溶し、0.1〜1質量%のAlが含有されている電子写真現像用キャリア芯材が記載されている。この電子写真現像用キャリア芯材によって、画像異常の原因であるキャリア飛散を抑制し、かつコート芯材に被覆される樹脂の剥離を防止する効果が高いとされているが、CaやAlの添加はフェライト粒子の局所的な高抵抗化と低磁化領域が発生しやすく、必ずしもキャリア飛散の防止に効果があるとはいえない。 As an alternative to a carrier core material containing Mn, a carrier core material containing Mg has also been proposed. Patent Document 2 (JP 2005-162597), wherein X a Mg b Fe c Ca d O e (X is Li, Na, Ti, etc., or a combination thereof) Mg ferrite material (carrier core material represented by ), The saturation magnetization is 30 to 80 emu / g, and the dielectric breakdown voltage is 1.5 to 5.0 kV. With this Mg-based ferrite material, it is possible to achieve high image quality and comply with environmental regulations. It is supposed to be possible. Patent Document 3 (Japanese Patent Application Laid-Open No. 2009-237155) has (M x Fe 3-x ) O 4 (M is a metal such as Mg, and soft ferrite represented by 0 <x <3). There is described a carrier core material for electrophotographic development in which Al 2 O 3 is dissolved and 0.1 to 1% by mass of Al is contained. This electrophotographic developing carrier core material is said to be highly effective in suppressing carrier scattering that is the cause of image abnormalities and preventing the resin coated on the coating core material from peeling off. Is likely to cause local high resistance and low magnetization region of ferrite particles and is not necessarily effective in preventing carrier scattering.

また、特許文献4(特開2010−210975号公報)には、マグネシウム元素を1.0〜14.0重量%含むフェライト粒子を有し、該フェライト粒子中のマグネシウム元素の平均分布比Dが1.1〜2.0である静電荷像現像用キャリアが記載されている。この静電荷像現像用キャリアによれば、画像濃度均一性及び印刷物の外観に優れ、低温低湿環境で印刷した後さらに高温高湿環境下に放置した場合においても画像濃度均一性に優れるとされているが、意図的にマグネシウム平均元素分布を制御し、キャリアの特性向上を図ろうとするものではない。   Patent Document 4 (Japanese Patent Laid-Open No. 2010-210975) has ferrite particles containing 1.0 to 14.0% by weight of magnesium element, and the average distribution ratio D of magnesium element in the ferrite particles is 1. A carrier for developing an electrostatic charge image of 1 to 2.0 is described. According to this electrostatic charge image developing carrier, the image density uniformity and the appearance of the printed matter are excellent, and it is said that the image density uniformity is excellent even when printed in a low temperature and low humidity environment and then left in a high temperature and high humidity environment. However, it does not intend to improve the carrier characteristics by intentionally controlling the magnesium average element distribution.

さらに、特許文献5(特開2012−25640号公報)には、(MFe3−x)O(MはMg等の金属、0≦x≦1)で表されるフェライト粒子本体の表面をアルミナで被覆してなるフェライト粒子、及びその表面を樹脂で被覆した電子写真現像用キャリアが記載されている。このフェライト粒子によれば、見掛け密度が小さく、かつ流動性に優れるとされている。 Further, Patent Document 5 (Japanese Patent Application Laid-Open No. 2012-25640) discloses a surface of a ferrite particle body represented by (M x Fe 3-x ) O 4 (M is a metal such as Mg, 0 ≦ x ≦ 1). Ferrite particles coated with alumina, and a carrier for electrophotographic development whose surface is coated with a resin. According to the ferrite particles, the apparent density is small and the fluidity is excellent.

このようにMgを用いたキャリア芯材は提案されているが、一般に磁化と抵抗はトレードオフの関係にあるため、高磁化と中抵抗〜高抵抗といった特性を両立することは難しい。特に酸化しやすい組成のフェライト粒子や比表面積が大きく酸化されやすいフェライト粒子ではトレードオフの傾向は顕著である。そのため、Mnを添加することで磁化と抵抗のトレードオフの関係を緩和し高磁化かつ中抵抗〜高抵抗を実現し、現在は電子写真現像剤用キャリア芯材として利用されている。しかしながら、上述したように、各種重金属規制の強化に伴いMnを使用しにくい状況となりつつある。   Thus, although the carrier core material using Mg is proposed, since magnetization and resistance are generally in a trade-off relationship, it is difficult to achieve both high magnetization and characteristics such as medium resistance to high resistance. Particularly in the case of ferrite particles having a composition that easily oxidizes and ferrite particles having a large specific surface area that are easily oxidized, the trade-off tendency is remarkable. Therefore, by adding Mn, the trade-off relationship between magnetization and resistance is relaxed to realize high magnetization, medium resistance to high resistance, and it is currently used as a carrier core material for electrophotographic developer. However, as described above, it is becoming difficult to use Mn with the strengthening of various heavy metal regulations.

また、Mnを意図的に添加しないMg系キャリア芯材において、従来の焼成方法でも高磁化、かつ中抵抗〜高抵抗を実現する方法としては、本焼成後、表面酸化することで抵抗を所望のレベルに合わせ込む取り組みがなされてきたが、上記トレードオフの関係を十分解決できているとは言えない。   In addition, in a Mg-based carrier core material in which Mn is not intentionally added, as a method of realizing high magnetization and medium resistance to high resistance even with a conventional firing method, a desired resistance can be obtained by surface oxidation after firing. Efforts to match the level have been made, but it cannot be said that the above trade-off relationship has been sufficiently solved.

特開2006−337828号公報JP 2006-337828 A 特開2005−162597号公報Japanese Patent Laid-Open No. 2005-162597 特開2009−237155号公報JP 2009-237155 A 特開2010−210975号公報JP 2010-210975 A 特開2012−25640号公報JP 2012-25640 A

従って、本発明の目的は、重金属を用いず、かつ、表面酸化処理を行うことなく、任意の抵抗や磁化を有し、かつ帯電性に優れた電子現像剤用フェライトキャリア芯材及びフェライトキャリア、並びに該フェライトキャリアを用いた電子写真現像剤を提供することにある。   Accordingly, an object of the present invention is to use a ferrite carrier core material and a ferrite carrier for an electronic developer that have any resistance and magnetization and excellent chargeability without using heavy metals and without performing surface oxidation treatment. Another object is to provide an electrophotographic developer using the ferrite carrier.

本発明者らは、上記のような課題を解決すべく鋭意検討した結果、フェライト粒子の表面がFe及びMgを含有する複合酸化物粒子で被覆したキャリア芯材及びこれに樹脂を被覆したフェライトキャリアが上記目的を達成し得ることを知見し、本発明に至った。本発明は、これらの知見に基づきなされたものである。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have found that the core of the ferrite particles is coated with composite oxide particles containing Fe and Mg, and the ferrite carrier in which the resin is coated. Has found that the above object can be achieved, and has led to the present invention. The present invention has been made based on these findings.

すなわち、本発明は、粒子表面近傍にFe及びMgを含有する複合酸化物粒子が固溶し、複合酸化物粒子の含有量が1.96〜10.7重量%であるフェライト粒子からなり、
当該フェライト粒子は粒子内部と粒子表面近傍とでFe及びMg含有量が異なることを特徴とする電子写真現像剤用フェライトキャリア芯材を提供するものである。
That is, the present invention comprises ferrite particles in which composite oxide particles containing Fe and Mg are solid-dissolved near the particle surface, and the content of the composite oxide particles is 1.96 to 10.7 wt%.
The ferrite particles is to provide an electrophotographic developer ferrite carrier core material is Fe and Mg content at the grain inside and the grain near the surface, characterized the different of Turkey.

本発明に係る上記電子写真現像剤用フェライトキャリア芯材において、上記複合酸化物粒子の結晶構造は、スピネル相及びコランダム構造を有することが望ましい。   In the ferrite carrier core material for an electrophotographic developer according to the present invention, the crystal structure of the composite oxide particles preferably has a spinel phase and a corundum structure.

本発明に係る上記電子写真現像剤用フェライトキャリア芯材において、上記複合酸化物粒子にTi及び/又はSrが含有されることが望ましい。   In the ferrite carrier core material for an electrophotographic developer according to the present invention, the composite oxide particles preferably contain Ti and / or Sr.

本発明は、上記フェライトキャリア芯材の表面に樹脂を被覆してなる電子写真現像剤用フェライトキャリアを提供するものである。   The present invention provides a ferrite carrier for an electrophotographic developer obtained by coating the surface of the ferrite carrier core material with a resin.

本発明は、上記フェライトキャリアとトナーとからなる電子写真現像剤を提供するものである。   The present invention provides an electrophotographic developer comprising the above ferrite carrier and a toner.

本発明に係る上記電子写真現像剤は、補給用現像剤としても用いられる。   The electrophotographic developer according to the present invention is also used as a replenishment developer.

本発明に係る電子写真現像剤用フェライトキャリア芯材は、重金属を用いず、かつ、表面酸化処理を行うことなく、任意の抵抗や磁化を有し、かつ帯電性に優れている。そのため、上記フェライトキャリア芯材に樹脂を被覆して得られるフェライトキャリアとトナーとからなる電子写真現像剤は、各環境下での帯電安定性にも優れる。   The ferrite carrier core material for an electrophotographic developer according to the present invention has an arbitrary resistance and magnetization without using a heavy metal and without performing surface oxidation treatment, and is excellent in chargeability. Therefore, an electrophotographic developer composed of a ferrite carrier and a toner obtained by coating the ferrite carrier core material with a resin is excellent in charging stability in each environment.

以下、本発明を実施するための形態について説明する。
<本発明に係る電子写真現像剤用フェライトキャリア芯材及びフェライトキャリア>
本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子は、表面近傍に複合酸化物粒子が固溶している。また、粒子内部と粒子表面近傍とでFe及びMg含有量が異なる。上記の特徴を有するフェライトキャリア芯材は、適度な抵抗や磁化を有し、かつ帯電性に優れ、特に高温高湿下での高帯電を維持でき、環境依存性が良好である。なお、本発明でいうフェライト粒子とは、特記しない限り個々のフェライト粒子の集合体を意味し、また単に粒子とは、個々のフェライト粒子をいう。
Hereinafter, modes for carrying out the present invention will be described.
<Ferrite carrier core material and ferrite carrier for electrophotographic developer according to the present invention>
In the ferrite particles used as the ferrite carrier core material for an electrophotographic developer according to the present invention, composite oxide particles are dissolved in the vicinity of the surface. Further, the Fe and Mg contents are different between the inside of the particle and the vicinity of the particle surface. The ferrite carrier core material having the above characteristics has appropriate resistance and magnetization, is excellent in chargeability, can maintain high charge particularly under high temperature and high humidity, and has good environmental dependency. In the present invention, the term “ferrite particles” means an aggregate of individual ferrite particles unless otherwise specified, and the term simply refers to individual ferrite particles.

従来のフェライト粒子の表面酸化処理による高抵抗化は主としてFe2+の酸化によって達成されるものである。この処理は本焼成後の後工程として簡便に実施できる点を特徴としている反面、Feリッチなフェライト組成では主として磁化の発現を担うマグネタイト組成部が不定比化合物であり、酸化度に応じて結晶構造の組み換えがフェライト粒子全体に容易に広がることで磁化の低下が極めて大きくなる。そのため高抵抗化と磁化のバランスが取ることは容易ではない。 The increase in resistance by the surface oxidation treatment of conventional ferrite particles is achieved mainly by oxidation of Fe 2+ . This treatment is characterized by the fact that it can be easily implemented as a post-process after the main firing, but in the Fe-rich ferrite composition, the magnetite composition part mainly responsible for the development of magnetization is a non-stoichiometric compound, and the crystal structure depends on the degree of oxidation. This recombination easily spreads over the entire ferrite particles, so that the decrease in magnetization becomes extremely large. Therefore, it is not easy to balance high resistance and magnetization.

一方、本発明によるフェライトキャリア芯材として用いられるフェライト粒子ではあらかじめ高抵抗であり、かつ、ある程度の磁化を有する複合酸化物粒子(仮焼粉)を本焼成前のフェライト芯材用粒子(仮焼粉の造粒物)に付着させ、その後本焼成を行うことでフェライト粒子表面に高抵抗層を形成させることで高抵抗化を実現する。また、本焼成後に表面酸化処理を行わないこと、及び、磁化を有する複合酸化物粒子を使用することで従来の表面酸化処理して得られるフェライト粒子と比較して磁化の低下は圧倒的に少ないのが特徴である。   On the other hand, in the ferrite particles used as the ferrite carrier core material according to the present invention, composite oxide particles (calcined powder) having a high resistance and having a certain degree of magnetization are preliminarily formed into ferrite core material particles (calcined calcined powder). A high resistance layer is realized by forming a high resistance layer on the surface of the ferrite particles by adhering to a powder granulated product) and then performing a main firing. In addition, since the surface oxidation treatment is not performed after the main firing and the use of the composite oxide particles having magnetization, the decrease in magnetization is overwhelmingly small compared to the ferrite particles obtained by conventional surface oxidation treatment. Is the feature.

本発明に係る上記電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子は、Mgを0.9〜3.5重量%及びFeを66〜71重量%を含有することが望ましい。   The ferrite particles used as the ferrite carrier core material for an electrophotographic developer according to the present invention preferably contain 0.9 to 3.5% by weight of Mg and 66 to 71% by weight of Fe.

フェライトキャリア芯材として用いられるフェライト粒子がMgを含有することによって、フェライトキャリアとフルカラー用のトナーで構成される帯電の立ち上がりが良い現像剤を得ることができる。また抵抗を高くすることができる。Mgの含有量が0.9重量%未満では、十分な含有効果が得られず、抵抗が低くなり、カブリの発生や階調性の悪化等、画質が悪化する。また、磁化が高くなりすぎるため、磁気ブラシの穂が硬くなり、はけ筋等の画像欠陥の発生原因となる。一方、Mgの含有量が3.5重量%を超えると、磁化が低下するためにキャリア飛散が発生するだけでなく、焼成温度が低い場合にはMgに起因する水酸基の影響で水分吸着量が大きくなり帯電量や抵抗といった電気的特性の環境依存性を悪化させる原因となる。   When the ferrite particles used as the ferrite carrier core material contain Mg, it is possible to obtain a developer having a good rise in charge, which is composed of a ferrite carrier and a full color toner. Also, the resistance can be increased. If the Mg content is less than 0.9% by weight, a sufficient content effect cannot be obtained, the resistance becomes low, and the image quality deteriorates, such as generation of fogging and deterioration of gradation. In addition, since the magnetization becomes too high, the ears of the magnetic brush become hard, causing image defects such as scissors. On the other hand, when the Mg content exceeds 3.5% by weight, not only carrier scattering occurs due to a decrease in magnetization, but when the firing temperature is low, the amount of moisture adsorbed is affected by the hydroxyl group caused by Mg. It becomes large and causes the environmental dependence of electrical characteristics such as charge amount and resistance to deteriorate.

フェライト粒子中のFeの含有量が66重量%未満では、Mg及び/又はTiの含有量が相対的に増えた場合は、非磁性成分及び/又は低磁化成分が増加することを意味しており、所望の磁気特性が得られないのみならず、表面の抵抗とフェライト粒子内部の抵抗の差が広がりすぎることで高電界側において抵抗のブレークダウンが発生し、キャリアとして使用した際に白斑やキャリア飛散の原因となる。Feの含有量が71重量%を超えると、Mg及び/又はTiの含有効果は得られず実質的にマグネタイトと同等のフェライト粒子になってしまう。   When the content of Fe in the ferrite particles is less than 66% by weight, when the content of Mg and / or Ti is relatively increased, it means that the nonmagnetic component and / or the low magnetization component is increased. Not only can the desired magnetic properties not be obtained, but also the difference between the surface resistance and the resistance inside the ferrite particles becomes too wide, causing breakdown of the resistance on the high electric field side. Causes scattering. If the Fe content exceeds 71% by weight, the Mg and / or Ti content effect cannot be obtained, and ferrite particles substantially equivalent to magnetite are obtained.

本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子はTiを0.3〜2.0重量%含有することが望ましい。Tiは焼成温度を下げる効果を有し、凝集粒子を減らすことができるだけでなく、均一でシワ状の表面性を得ることができる。フェライト粒子中のTiの含有量が0.3重量%未満では、Tiの含有効果が得られず、BET比表面積が高くなりやすく、十分な帯電性が得られない。また、Tiの含有量が2.0重量%を超えると、磁化の立ち上がりが悪くなり、キャリア飛散の原因となる。   The ferrite particles used as the ferrite carrier core material for an electrophotographic developer according to the present invention preferably contain 0.3 to 2.0% by weight of Ti. Ti has the effect of lowering the firing temperature and can not only reduce aggregated particles but also obtain a uniform and wrinkled surface property. When the content of Ti in the ferrite particles is less than 0.3% by weight, the effect of containing Ti cannot be obtained, the BET specific surface area tends to be high, and sufficient chargeability cannot be obtained. On the other hand, when the Ti content exceeds 2.0% by weight, the rise of magnetization is deteriorated, which causes carrier scattering.

本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子はSrを0.1〜1.0重量%含有することが望ましい。Srは抵抗や表面性の調整に寄与し、高磁化を保つ効果を有するだけでなく、含有することでフェライト粒子の帯電能力を高める効果も得られ、特にTi存在下ではその効果は大きい。フェライト粒子中のSr含有量が0.1重量%未満の場合には、Srの含有効果が得られず酸素濃度が高い条件で焼成を行った場合に、磁化の低下が大きくなる。Srの含有量が1.0重量%を超えると、残留磁化や保磁力が高くなり、現像剤として用いたとき、はけ筋等の画像欠陥が発生し、画質が低下する。   The ferrite particles used as the ferrite carrier core material for an electrophotographic developer according to the present invention preferably contains 0.1 to 1.0% by weight of Sr. Sr contributes to the adjustment of resistance and surface properties, and has the effect of maintaining high magnetization, but also contains the effect of increasing the charging ability of the ferrite particles, and the effect is particularly great in the presence of Ti. When the Sr content in the ferrite particles is less than 0.1% by weight, the effect of containing Sr is not obtained, and the magnetization is greatly reduced when firing is performed under a high oxygen concentration. When the Sr content exceeds 1.0% by weight, the residual magnetization and coercive force increase, and when used as a developer, image defects such as scissors occur and image quality deteriorates.

(Fe、Mg、Ti及びSrの含有量)
これらFe、Mg、Ti及びSrの含有量は、下記によって測定される。
フェライト粒子(フェライトキャリア芯材)0.2gを秤量し、純水60mlに1Nの塩酸20ml及び1Nの硝酸20mlを加えたものを加熱し、フェライト粒子を完全溶解させた水溶液を準備し、ICP分析装置(島津製作所製ICPS−1000IV)を用いてFe、Mg、Ti及びSrの含有量を測定した。
(Contents of Fe, Mg, Ti and Sr)
The contents of these Fe, Mg, Ti and Sr are measured by the following.
Weigh 0.2 g of ferrite particles (ferrite carrier core material), heat 60 ml of pure water plus 20 ml of 1N hydrochloric acid and 20 ml of 1N nitric acid to prepare an aqueous solution in which ferrite particles are completely dissolved, and perform ICP analysis The content of Fe, Mg, Ti and Sr was measured using an apparatus (ICPS-1000IV manufactured by Shimadzu Corporation).

本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子の表面に含有される複合酸化物粒子の結晶構造は、スピネル相及びコランダム構造を有することが望ましい。   The crystal structure of the composite oxide particles contained on the surface of the ferrite particles used as the ferrite carrier core material for an electrophotographic developer according to the present invention desirably has a spinel phase and a corundum structure.

複合酸化物粒子はマグネシウムフェライトを含有しており、大気雰囲気で焼成を行われているものが好ましい。さらにこの複合酸化物粒子はフェライト粒子本体よりもMgの含有量が多いことが好ましい。Fe過剰のマグネシウムフェライトを大気焼成することでスピネル相以外に主としてFeとOによって構成されるコランダム構造も生成する。いずれの結晶構造においても電気伝導を担うFe2+の存在がほとんど無いため複合酸化物粒子自体が高抵抗となりやすい。さらにこれらの複合酸化物粒子をフェライト粒子表面に付着させて本焼成を行うと、フェライト粒子本体と一体となり過剰なFe2+は適度にFe3+となることで適度に酸化されフェライト粒子全体でスピネル化を促進させることも出来る。 The composite oxide particles preferably contain magnesium ferrite and are fired in an air atmosphere. Further, the composite oxide particles preferably have a higher Mg content than the ferrite particle body. A corundum structure mainly composed of Fe and O is generated in addition to the spinel phase by firing Fe-excess magnesium ferrite in the air. In any crystal structure, since there is almost no Fe 2+ responsible for electrical conduction, the composite oxide particles themselves tend to have high resistance. Further, when these composite oxide particles conduct the sintering by attaching the ferrite particle surface, excess Fe 2+ becomes ferrite particle body integrally are moderately oxidized by a moderately Fe 3+ spinel on the entire ferrite particles Can be promoted.

さらに、複合酸化物粒子に含まれるMgの拡散効果によってフェライト粒子の磁化の立ち上がりが向上する効果が得られることがあるだけでなく、これらの複合酸化物粒子はそれほど高くないものの磁化を有していることにより、表面酸化処理したフェライトキャリア芯材粒子と比較して磁化が下がりにくい特徴を有している。   Furthermore, not only may the effect of improving the rise of magnetization of the ferrite particles be obtained by the diffusion effect of Mg contained in the composite oxide particles, but these composite oxide particles have a magnetization that is not so high. Therefore, it has a feature that the magnetization is not easily lowered as compared with the ferrite carrier core material particles subjected to the surface oxidation treatment.

フェライト粒子本体及び複合酸化物粒子に含まれる、マグネシウムフェライトを構成するスピネル構造としてMgFeが代表的なものであるが、元素の構成比からもわかるようにFe過剰であるためMgの一部がFeに置換され形式的にMgFey−x、(MgFe1−x)(Mgx‘Fe1−x’等で表現される結晶構造、及び、その一部がTiで置換されたものも含み、さらに、周期的にスピネル構造に格子欠陥が含まれるものもスピネル構造の中に含むものとした。 MgFe 2 O 4 is a typical spinel structure included in the ferrite particle main body and the composite oxide particles, but the Fe content is too high as shown in the elemental composition ratio. A part of which is replaced by Fe, and a crystal structure that is formally expressed by Mg x Fe y-x O 4 , (Mg x Fe 1-x ) (Mg x ′ Fe 1-x ′ ) 2 O 4, and the like Some of them were substituted with Ti, and those in which the spinel structure periodically contains lattice defects were also included in the spinel structure.

また、Fe及びTiを含有する複合酸化物としてはFeTiO、FeTiOが代表的であるが、Tiと比べてFeが圧倒的に存在量としては多く、FeTiO以外に(FeTiO(Fe、Fe(FeTi)O、(FeTi1−x)(Fex‘Ti1−x’)O等で表現される物質のうち、結晶構造がスピネル構造となっているものについてはスピネル構造を持つ物質として含むものとし、結晶構造及びその一部がMgに置換されたもの、さらに周期的に上記結晶構造に格子欠陥が含まれるものも含まれるものとした。一方で、上記物質の中でFeと同様の結晶構造を持つものについてはFeの一部とし、コランダム構造として取り扱った。 Further, as composite oxides containing Fe and Ti, FeTiO 3 and Fe 2 TiO 5 are typical, but Fe is overwhelmingly present as abundance compared to Ti, and other than Fe x TiO y (FeTiO 3). 3) x (Fe 2 O 3 ) y, Fe (Fe x Ti y) O 4, (Fe x Ti 1-x) (Fe x 'Ti 1-x') of the substance represented by O 4 or the like, If the crystal structure is a spinel structure, it shall be included as a substance having a spinel structure, and the crystal structure and a part of the crystal structure may be replaced with Mg, and the crystal structure may include lattice defects periodically. Included. On the other hand, among the above substances, those having the same crystal structure as Fe 2 O 3 were treated as a corundum structure as a part of Fe 2 O 3 .

上記に例示した物質は、マグネシウムフェライトの代わりに格子定数の長さや組成比によっては便宜的にFeと同様のスピネル構造として測定されることもある。本発明で言うFeとは、Feの一部がMgとTiで置換しているものも含み周期的にスピネル構造に格子欠陥が存在するものも含むものとした。結晶構造の測定方法については下記の通りである。 The materials exemplified above may be measured as a spinel structure similar to Fe 3 O 4 for convenience, depending on the length of lattice constant and the composition ratio instead of magnesium ferrite. The term “Fe 3 O 4 ” as used in the present invention includes those in which part of Fe is substituted with Mg and Ti, and also includes those in which lattice defects are periodically present in the spinel structure. The method for measuring the crystal structure is as follows.

(結晶構造の測定:X線回折測定)
測定装置としてパナリティカル社製「X’PertPRO MPD」を用いた。X線源としてCo管球(CoKα線)を、光学系として集中光学系及び高速検出器「X‘Celarator」を用いて、測定は0.2°/secの連続スキャンで行った。測定結果は通常の粉末の結晶構造解析と同様に解析用ソフトウエア「X’Pert HighScore」を用いてデータ処理し、結晶構造の同定し、得られた結晶構造を精密化することで重量存在比率を算出した。存在比率の算出に際してマグネシウムフェライトとFeのピークの分離が難しいためスピネル相として取り扱い、それ以外の結晶構造はそれぞれの存在比率を算出した。なお、結晶構造の同定を行う際にFe、Oを必須元素としMg、Ti、Srは含有する可能性のある元素とした。また、X線源についてはCu管球でも問題なく測定できるが、Feを多く含んだサンプルの場合には測定対象となるピークと比較してバックグラウンドが大きくなるので、Co管球を用いる方が好ましい。また、光学系は平行法でも同様の結果が得られるが、X線強度が低く測定に時間がかかるため集中光学系での測定が好ましい。さらに、連続スキャンの速度は特に制限はないが結晶構造の解析を行う際に十分なS/N比を得るために、スピネル構造のメインピークである(311)面のピーク強度が約50000cpsとなるようにし、粒子の特定の優先方向への配向がないようにサンプルセルにキャリア芯材をセットし測定を行った。
(Measurement of crystal structure: X-ray diffraction measurement)
“X′PertPRO MPD” manufactured by Panalical Co., Ltd. was used as a measuring apparatus. Measurement was performed by continuous scanning at 0.2 ° / sec using a Co tube (CoKα ray) as an X-ray source and a concentrated optical system and a high-speed detector “X'Celarator” as an optical system. The measurement results are processed using data for analysis “X'Pert HighScore” in the same way as the crystal structure analysis of ordinary powders, the crystal structure is identified, and the resulting crystal structure is refined to determine the weight abundance ratio. Was calculated. When calculating the abundance ratio, it was difficult to separate the peaks of magnesium ferrite and Fe 3 O 4 , so that it was treated as a spinel phase, and the abundance ratios of the other crystal structures were calculated. In identifying the crystal structure, Fe and O are essential elements, and Mg, Ti, and Sr are elements that may be contained. In addition, the X-ray source can be measured without problems even with a Cu tube, but in the case of a sample containing a large amount of Fe, the background becomes larger than the peak to be measured, so it is better to use a Co tube. preferable. The same result can be obtained even when the optical system is a parallel method, but measurement with a concentrated optical system is preferable because the X-ray intensity is low and measurement takes time. Further, the speed of continuous scanning is not particularly limited, but in order to obtain a sufficient S / N ratio when analyzing the crystal structure, the peak intensity of the (311) plane which is the main peak of the spinel structure is about 50000 cps. Thus, the measurement was performed with the carrier core material set in the sample cell so that the particles were not oriented in a specific preferred direction.

Sr化合物としては、Srフェライトやストロンチウムフェライトの前駆体であるSrFe等、SrFeであらわされるSr−Fe化合物、SrTiO等、SrTiであらわされるSr−Ti化合物、SrFeの一部をTiで置換したSr−Fe−Ti化合物等がある。また、上記結晶構造以外に、非酸化性雰囲気で焼成されることにより周期的に上記結晶構造に格子欠陥が含まれるものも含むものとした。 The Sr compound is represented by Sr 2 Fe 2 O 5 which is a precursor of Sr ferrite or strontium ferrite, Sr-Fe compound represented by Sr x Fe y O z , SrTiO 3 or the like, Sr x Ti y O z There are Sr—Ti compounds, Sr—Fe—Ti compounds in which a part of Sr x Fe y O z is substituted with Ti, and the like. Further, in addition to the above crystal structure, the crystal structure periodically includes lattice defects by being fired in a non-oxidizing atmosphere.

本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子は、1mmGap印加電圧250Vにおける電気抵抗が5×10〜5×10Ωであることが望ましい。 The ferrite particles used as the ferrite carrier core material for an electrophotographic developer according to the present invention desirably have an electric resistance of 5 × 10 6 to 5 × 10 9 Ω at a 1 mm Gap applied voltage of 250V.

1mmGap印加電圧250Vにおけるフェライト粒子の電気抵抗が5×10よりも小さい場合は抵抗が低すぎ、キャリアとして使用した際に画像濃度が必要以上に高くなりトナー消費量が増える可能性がある。フェライト粒子の電気抵抗が5×10Ωよりも高い場合はキャリアとして使用した際に画像濃度が出にくく、キャリアとして使用できない可能性ある。 When the electrical resistance of the ferrite particles is less than 5 × 10 6 at a 1 mm Gap applied voltage of 250 V, the resistance is too low, and when used as a carrier, the image density becomes higher than necessary and the toner consumption may increase. When the electrical resistance of the ferrite particles is higher than 5 × 10 9 Ω, image density is difficult to be obtained when used as a carrier, and it may not be used as a carrier.

本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子は、6.5mmGap印加電圧500Vにおける電気抵抗が5×10〜1×1011Ωであることが望ましい。 The ferrite particles used as the ferrite carrier core material for an electrophotographic developer according to the present invention preferably have an electric resistance of 5 × 10 7 to 1 × 10 11 Ω at a voltage of 6.5 mm Gap applied.

6.5mmGap印加電圧500Vにおけるフェライト粒子の電気抵抗が5×10よりも小さい場合は抵抗が低すぎてキャリアとして使用した際に白斑が発生したりキャリア飛散する可能性がある。フェライト粒子の電気抵抗が1×1011Ωよりも高い場合はキャリアとして使用した際にエッジが効きすぎた画像になることがある。 When the electrical resistance of the ferrite particles is smaller than 5 × 10 7 when the applied voltage of 6.5 mm Gap is 500 V, the resistance is too low and white spots may be generated or carriers may be scattered when used as a carrier. When the electrical resistance of the ferrite particles is higher than 1 × 10 11 Ω, an image with an excessively effective edge may be obtained when used as a carrier.

(電気抵抗)
この電気抵抗は、下記によって測定される。
電極間間隔1mm又は6.5mmで非磁性の平行平板電極(10mm×40mm)を対向させ、その間に、試料(フェライト粒子)200mgを秤量して充填する。磁石(表面磁束密度:1500Gauss、電極に接する磁石の面積:10mm×30mm)を平行平板電極に付けることにより電極間に試料を保持させ、250V又は500Vの電圧を印加し、250V又は500Vの印加電圧における抵抗を絶縁抵抗計(SM−8210、東亜ディケーケー(株)製)にて測定した。
(Electrical resistance)
This electrical resistance is measured by:
A non-magnetic parallel plate electrode (10 mm × 40 mm) is opposed to each other with a distance of 1 mm or 6.5 mm between the electrodes, and 200 mg of a sample (ferrite particles) is weighed and filled therebetween. A sample is held between the electrodes by attaching a magnet (surface magnetic flux density: 1500 Gauss, area of the magnet in contact with the electrode: 10 mm × 30 mm) to the parallel plate electrodes, a voltage of 250 V or 500 V is applied, and an applied voltage of 250 V or 500 V The resistance was measured with an insulation resistance meter (SM-8210, manufactured by Toa Decay Co., Ltd.).

本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子は、1K・1000/4π・A/mの磁場をかけたときのVSM測定による磁化が40〜60Am/kgであることが望ましい。フェライト粒子の1K・1000/4π・A/mにおける磁化が40Am/g未満であると、飛散物磁化が悪化しキャリア付着による画像欠陥の原因となる。一方、本発明の上記組成範囲では、フェライト粒子は60Am/gを超えることはない。この磁気特性は、下記によって測定される。 Ferrite particles used as a ferrite carrier core material for an electrophotographic developer according to the present invention have a magnetization of 40 to 60 Am 2 / kg measured by VSM when a magnetic field of 1 K · 1000 / 4π · A / m is applied. Is desirable. When the magnetization of the ferrite particles at 1 K · 1000 / 4π · A / m is less than 40 Am 2 / g, the scattered matter magnetization is deteriorated, causing image defects due to carrier adhesion. On the other hand, in the composition range of the present invention, the ferrite particles do not exceed 60 Am 2 / g. This magnetic property is measured by:

(磁気特性)
振動試料型磁気測定装置(型式:VSM−C7−10A(東英工業社製))を用いた。測定試料(フェライト粒子)は、内径5mm、高さ2mmのセルに詰めて上記装置にセットした。測定は、印加磁場を加え、1K・1000/4π・A/mまで掃引した。次いで、印加磁場を減少させ、記録紙上にヒステリシスカーブを作成した。このカーブのデータより印加磁場が1K・1000/4π・A/mにおける磁化を読み取った。
(Magnetic properties)
A vibrating sample type magnetometer (model: VSM-C7-10A (manufactured by Toei Kogyo Co., Ltd.)) was used. The measurement sample (ferrite particles) was packed in a cell having an inner diameter of 5 mm and a height of 2 mm and set in the above apparatus. The measurement was performed by applying an applied magnetic field and sweeping to 1K · 1000 / 4π · A / m. Next, the applied magnetic field was decreased to create a hysteresis curve on the recording paper. From this curve data, the magnetization at an applied magnetic field of 1 K · 1000 / 4π · A / m was read.

本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子は、BET比表面積が0.06〜0.25m/gが望ましく、0.08〜0.22m/gであることがさらに望ましい。 The ferrite particles used as the ferrite carrier core material for an electrophotographic developer according to the present invention preferably have a BET specific surface area of 0.06 to 0.25 m 2 / g, and 0.08 to 0.22 m 2 / g. Is more desirable.

BET比表面積が上記範囲よりも小さい場合には、樹脂被覆を行なっても十分に樹脂のアンカー効果が得られないだけでなく、被覆されなかった樹脂によってフェライト粒子同士が凝集してしまうことがある。そのため実質的な被覆樹脂量が減少し、キャリアとしての寿命が短くなったり、凝集したフェライト粒子が現像器中で解されることでフェライト粒子表面が大きく露出し、低抵抗化することでキャリア飛散が発生する原因となる。BET比表面積が上記範囲よりも大きい場合は、被覆樹脂がフェライト粒子表面にとどまらず染み込みすぎることでキャリアとして所望の抵抗と帯電量が得られないことがある。なお、BET比表面積測定を行う際、測定結果は測定サンプルであるフェライト粒子表面の水分の影響を受ける可能性があるので、可能な限りサンプル表面に付着している水分を除去するような前処理を行うことが好ましい。   When the BET specific surface area is smaller than the above range, the resin anchor effect may not be sufficiently obtained even if the resin coating is performed, and the ferrite particles may be aggregated by the uncoated resin. . For this reason, the amount of the coating resin is substantially reduced, the life as a carrier is shortened, or the aggregated ferrite particles are unraveled in the developing device, so that the surface of the ferrite particles is greatly exposed and the resistance is reduced to reduce carrier scattering. Cause the occurrence. When the BET specific surface area is larger than the above range, the coating resin does not stay on the ferrite particle surface and soaks too much, so that a desired resistance and charge amount as a carrier may not be obtained. When measuring the BET specific surface area, the measurement result may be affected by the moisture on the surface of the ferrite particles as the measurement sample, so pretreatment to remove moisture adhering to the sample surface as much as possible It is preferable to carry out.

(BET比表面積)
このBET比表面積の測定は、比表面積測定装置(型式:Macsorb HM model−1208(マウンテック社製))を用いた。測定試料を比表面積測定装置専用の標準サンプルセルに約5〜7g入れ、精密天秤で正確に秤量し、測定ポートに試料(フェライト粒子)をセットし、測定を開始した。測定は1点法で行い、測定終了時に試料の重量を入力すると、BET比表面積が自動的に算出される。なお、測定前に前処理として、測定試料を薬包紙に20g程度を取り分けた後、真空乾燥機で−0.1MPaまで脱気し−0.1MPa以下に真空度が到達していることを確認した後、200℃で2時間加熱した。
環境:温度;10〜30℃、湿度;相対湿度で20〜80% 結露なし
(BET specific surface area)
The BET specific surface area was measured using a specific surface area measuring device (model: Macsorb HM model-1208 (manufactured by Mountec)). About 5 to 7 g of the measurement sample was put in a standard sample cell dedicated to a specific surface area measurement device, accurately weighed with a precision balance, the sample (ferrite particles) was set in the measurement port, and measurement was started. The measurement is performed by a one-point method, and the BET specific surface area is automatically calculated when the weight of the sample is input at the end of the measurement. In addition, as a pretreatment before the measurement, about 20 g of the measurement sample was placed on the medicine wrapping paper, and then deaerated to −0.1 MPa with a vacuum dryer, and it was confirmed that the degree of vacuum had reached −0.1 MPa or less. Then, it heated at 200 degreeC for 2 hours.
Environment: temperature; 10-30 ° C, humidity; 20-80% relative humidity, non-condensing

本発明に係る電子写真現像剤用キャリア芯材として用いられるフェライト粒子は、レーザー回折式粒度分布測定装置により測定される体積平均粒径が好ましくは15〜60μm、より好ましくは15〜50μm、最も好ましくは20〜45μmである。フェライト粒子の体積平均粒径が15μm未満であると、キャリア付着が発生しやすくなるため好ましくない。フェライト粒子の体積平均粒径が60μmを超えると、画質が劣化しやすくなり、好ましくない。   The ferrite particles used as the carrier core material for an electrophotographic developer according to the present invention preferably have a volume average particle size measured by a laser diffraction particle size distribution measuring device of 15 to 60 μm, more preferably 15 to 50 μm, and most preferably. Is 20 to 45 μm. If the volume average particle size of the ferrite particles is less than 15 μm, carrier adhesion tends to occur, which is not preferable. If the volume average particle diameter of the ferrite particles exceeds 60 μm, the image quality tends to deteriorate, which is not preferable.

(体積平均粒径)
この体積平均粒径は、レーザー回折散乱法により測定した。装置として日機装株式会社製マイクロトラック粒度分析計(Model9320−X100)を用いた。屈折率は2.42とし、25±5℃、湿度55±15%の環境下で測定を行った。ここで言う体積平均粒径(メジアン径)とは、体積分布モード、ふるい下表示での累積50%粒子径である。分散媒には水を用いた。
(Volume average particle size)
This volume average particle diameter was measured by a laser diffraction scattering method. As a device, a Nikkiso Co., Ltd. Microtrac particle size analyzer (Model 9320-X100) was used. The refractive index was 2.42, and the measurement was performed in an environment of 25 ± 5 ° C. and humidity 55 ± 15%. The volume average particle diameter (median diameter) referred to here is the cumulative 50% particle diameter in the volume distribution mode and under the sieve display. Water was used as the dispersion medium.

(体積抵抗率)
体積抵抗率は次のようにして測定される。すなわち、N/N環境下、断面積が4cmのフッ素樹脂製のシリンダーに高さ4mmとなるように試料を充填した後、両端に電極を取り付け、さらにその上から1Kgの分銅を乗せて抵抗を測定する。電極にはエレクトロメーター(KEITHLEY社製 絶縁抵抗計model6517A)をつなぎ、印加電圧を変化させながら電流値を測定し、エレクトロメーターの定格出力である1mAを超える直前の印加電圧と測定した電流から体積抵抗を算出した。なお、測定条件はエレクトロメーターのSTAIRCASEモードを使用し、電圧印加を2.5Vから開始し、2.5V刻みで1000Vまで階段状に変化させるようにした。また、各印加電圧において2.5秒間維持した。
(Volume resistivity)
The volume resistivity is measured as follows. That is, in an N / N environment, a fluororesin cylinder having a cross-sectional area of 4 cm 2 is filled with a sample so as to have a height of 4 mm, electrodes are attached to both ends, and a 1 kg weight is further placed thereon to provide resistance. Measure. Connect an electrometer (insulation resistance meter model 6517A manufactured by KEITHLEY) to the electrode, measure the current value while changing the applied voltage, and apply the volume resistance from the measured voltage and the applied voltage immediately before the rated output of the electrometer exceeds 1 mA. Was calculated. In addition, the measurement conditions used the STIRCASE mode of the electrometer, started voltage application from 2.5V, and made it change in steps to 1000V in 2.5V increments. Further, it was maintained for 2.5 seconds at each applied voltage.

本発明に係る電子写真現像剤用フェライトキャリアは、上記フェライトキャリア芯材(フェライト粒子)の表面が樹脂で被覆されている。樹脂被覆回数は1回のみでも良いし、2回以上の複数回樹脂被覆を行なっても良く、所望の特性に応じて被覆回数を決めることができる。また、被覆樹脂の組成、被覆量及び樹脂被覆に使用する装置は被覆回数が2回以上の複数回の場合は、変化させても良いし、変えなくても良い。   In the ferrite carrier for an electrophotographic developer according to the present invention, the surface of the ferrite carrier core material (ferrite particles) is coated with a resin. The number of times of resin coating may be only once, or two or more times of resin coating may be performed, and the number of times of coating can be determined according to desired characteristics. Further, the composition of the coating resin, the coating amount, and the apparatus used for resin coating may be changed or may not be changed when the number of times of coating is two times or more.

本発明に係る電子写真現像剤用フェライトキャリアは、樹脂被覆量が、フェライトキャリア芯材に対して0.1〜10重量%が望ましい。樹脂被覆量が0.1重量%未満ではキャリア表面に均一な被覆層を形成することが難しく、また樹脂被覆量が10重量%を超えるとフェライトキャリア同士の凝集が発生してしまい、歩留まり低下等の生産性の低下と共に、実機内での流動性あるいは帯電量等の現像剤特性変動の原因となる。   The ferrite carrier for an electrophotographic developer according to the present invention desirably has a resin coating amount of 0.1 to 10% by weight with respect to the ferrite carrier core material. If the resin coating amount is less than 0.1% by weight, it is difficult to form a uniform coating layer on the carrier surface. If the resin coating amount exceeds 10% by weight, the ferrite carriers agglomerate with each other, resulting in a decrease in yield. As a result, the developer characteristics such as fluidity or charge amount in the actual machine are changed.

ここに用いられる被覆樹脂は、組み合わせるトナー、使用される環境等によって適宜選択できる。その種類は特に限定されないが、例えば、フッ素樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、フッ素アクリル樹脂、アクリル−スチレン樹脂、シリコーン樹脂、あるいはアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、アルキッド樹脂、ウレタン樹脂、フッ素樹脂等の各樹脂で変性した変性シリコーン樹脂等が挙げられる。本発明では、アクリル樹脂、シリコーン樹脂又は変性シリコーン樹脂が最も好ましく用いられる。   The coating resin used here can be appropriately selected depending on the toner to be combined, the environment in which it is used, and the like. The type is not particularly limited, for example, fluorine resin, acrylic resin, epoxy resin, polyamide resin, polyamideimide resin, polyester resin, unsaturated polyester resin, urea resin, melamine resin, alkyd resin, phenol resin, fluorine acrylic resin, Examples thereof include acrylic-styrene resins, silicone resins, or modified silicone resins modified with resins such as acrylic resins, polyester resins, epoxy resins, polyamide resins, polyamideimide resins, alkyd resins, urethane resins, and fluororesins. In the present invention, acrylic resin, silicone resin or modified silicone resin is most preferably used.

またキャリアの電気抵抗や帯電量、帯電速度をコントロールすることを目的に、被覆樹脂中に導電剤を含有することができる。導電剤はそれ自身の持つ電気抵抗が低いことから、含有量が多すぎると急激な電荷リークを引き起こしやすい。従って、含有量としては、被覆樹脂の固形分に対し0.25〜20.0重量%であり、好ましくは0.5〜15.0重量%、特に好ましくは1.0〜10.0重量%である。導電剤としては、導電性カーボン、酸化チタンや酸化スズ等の酸化物、各種の有機系導電剤が挙げられる。   In addition, a conductive agent can be contained in the coating resin for the purpose of controlling the electrical resistance, charge amount, and charging speed of the carrier. Since the conductive agent has a low electric resistance, if the content is too large, it is likely to cause a rapid charge leak. Accordingly, the content is 0.25 to 20.0% by weight, preferably 0.5 to 15.0% by weight, particularly preferably 1.0 to 10.0% by weight, based on the solid content of the coating resin. It is. Examples of the conductive agent include conductive carbon, oxides such as titanium oxide and tin oxide, and various organic conductive agents.

また、上記被覆樹脂中には、帯電制御剤を含有させることができる。帯電制御剤の例としては、トナー用に一般的に用いられる各種の帯電制御剤、各種シランカップリング剤及び無機微粒子等が挙げられる。これは被覆層の形成によって芯材露出面積を比較的小さくなるように制御した場合、帯電付与能力が低下することがあるが、各種の帯電制御剤やシランカップリング剤を添加することにより、コントロールできるためである。使用できる帯電制御剤やカップリング剤の種類は特に限定されないが、ニグロシン系染料、4級アンモニウム塩、有機金属錯体、含金属モノアゾ染料等の帯電制御剤、アミノシランカップリング剤やフッ素系シランカップリング剤等が好ましい。帯電制御に使用できる無機微粒子としては電気陰性度が偏った物質を用いれば良く、シリカ等を用いることが好ましい。   Further, the coating resin can contain a charge control agent. Examples of the charge control agent include various charge control agents generally used for toners, various silane coupling agents, and inorganic fine particles. This is because, when the core exposed area is controlled to be relatively small by forming a coating layer, the charge imparting ability may be reduced, but it can be controlled by adding various charge control agents and silane coupling agents. This is because it can. The types of charge control agents and coupling agents that can be used are not particularly limited, but charge control agents such as nigrosine dyes, quaternary ammonium salts, organometallic complexes, and metal-containing monoazo dyes, aminosilane coupling agents, and fluorine-based silane couplings. An agent or the like is preferable. As the inorganic fine particles that can be used for charge control, a substance having a biased electronegativity may be used, and silica or the like is preferably used.

<本発明に係る電子写真現像剤用フェライトキャリア芯材及びフェライトキャリアの製造方法>
次に、本発明に係る電子写真現像剤用キャリア芯材及びキャリアの製造方法について説明する。
<Ferrite carrier core material for electrophotographic developer and method for producing ferrite carrier according to the present invention>
Next, the carrier core material for an electrophotographic developer and the method for producing the carrier according to the present invention will be described.

本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子の製造方法は、例えば次のように行われる。   The method for producing ferrite particles used as a ferrite carrier core material for an electrophotographic developer according to the present invention is performed, for example, as follows.

(フェライト芯材用粒子の調製)
Fe及びMgの各化合物、さらに必要に応じてTi等の化合物を粉砕、混合、仮焼した後、ロッドミルで粉砕し、フェライト芯材用仮焼粉(粒子)とする。
(Preparation of ferrite core particles)
Each compound of Fe and Mg and, if necessary, a compound such as Ti are pulverized, mixed, and calcined, and then pulverized by a rod mill to obtain a calcined powder (particles) for a ferrite core material.

フェライト芯材用仮焼粉の好ましい組成の一例は、Fe65〜72重量%、Mg0.9〜2重量%、Ti0.3〜2重量%、Sr0.1〜1重量%である。   An example of a preferable composition of the calcined powder for a ferrite core material is Fe 65 to 72% by weight, Mg 0.9 to 2% by weight, Ti 0.3 to 2% by weight, and Sr 0.1 to 1% by weight.

上記のフェライト芯材用仮焼粉の組成範囲を満たすことで複合酸化物微粒子を被覆後、電子写真現像材用フェライトキャリア芯材として必要十分な各種特性を得ることが出来る。   By satisfying the composition range of the calcined powder for ferrite core material described above, various characteristics necessary and sufficient as a ferrite carrier core material for an electrophotographic developer can be obtained after coating the composite oxide fine particles.

フェライトキャリア芯材として用いられるフェライト粒子がMgを含有することによって、フェライトキャリアとフルカラー用のトナーで構成される帯電の立ち上がりが良い現像剤を得ることができる。また抵抗を高くすることができる。フェライト芯材用仮焼粉のMgの含有量が0.9重量%未満では、十分な含有効果が得られず、抵抗が低くなり、カブリの発生や階調性の悪化等、画質が悪化する。また、磁化が高くなりすぎるため、磁気ブラシの穂が硬くなり、はけ筋等の画像欠陥の発生原因となる。一方、フェライト芯材用仮焼粉のMgの含有量が2重量%を超えると、複合酸化物被覆後のフェライトキャリア用芯材の磁化が低下するためにキャリア飛散が発生しやすい。   When the ferrite particles used as the ferrite carrier core material contain Mg, it is possible to obtain a developer having a good rise in charge, which is composed of a ferrite carrier and a full color toner. Also, the resistance can be increased. If the Mg content of the calcined powder for ferrite core material is less than 0.9% by weight, a sufficient content effect cannot be obtained, the resistance becomes low, and the image quality deteriorates, such as generation of fog and deterioration of gradation. . In addition, since the magnetization becomes too high, the ears of the magnetic brush become hard, causing image defects such as scissors. On the other hand, when the Mg content of the calcined powder for ferrite core material exceeds 2% by weight, the magnetization of the core material for ferrite carrier after the composite oxide coating is lowered, and carrier scattering is likely to occur.

フェライト芯材用仮焼粉のFeの含有量が65重量%未満では、Mg、Ti、Srのいずれかから選ばれる1種類以上の元素の含有量が相対的に増え、非磁性成分及び/又は低磁化成分が増加することを意味しており、所望の磁気特性が得られない。フェライト芯材用仮焼粉のFeの含有量が72重量%を超えると、Mg、Ti、Srのいずれかから選ばれる1種類以上の元素の含有効果は得られず実質的にマグネタイトと同等のフェライト粒子になってしまう。   When the Fe content of the calcined powder for ferrite core material is less than 65% by weight, the content of one or more elements selected from Mg, Ti, and Sr is relatively increased, and nonmagnetic components and / or This means that the low magnetization component increases, and desired magnetic properties cannot be obtained. When the Fe content of the calcined powder for ferrite core material exceeds 72% by weight, the effect of containing one or more elements selected from Mg, Ti, and Sr cannot be obtained, and is substantially equivalent to magnetite. It becomes ferrite particles.

フェライト芯材用仮焼粉は、上記のようにTiを0.3〜2.0重量%含有することが望ましい。Tiは焼成温度を下げる効果を有し、凝集粒子を減らすことができるだけでなく、均一でシワ状の表面性を得ることができる。フェライト芯材用仮焼粉のTiの含有量が0.3重量%未満では、Tiの含有効果が得られない。   As described above, the calcined powder for ferrite core material desirably contains 0.3 to 2.0% by weight of Ti. Ti has the effect of lowering the firing temperature and can not only reduce aggregated particles but also obtain a uniform and wrinkled surface property. When the Ti content of the calcined powder for ferrite core material is less than 0.3% by weight, the Ti content effect cannot be obtained.

フェライト芯材用仮焼粉は、上記のようにSrを0.1〜1.0重量%含有することが望ましい。Srは抵抗や表面性の調整に寄与し、高磁化を保つ効果を有するだけでなく、含有することでフェライト粒子の帯電能力を高める効果も得られ、特にTi存在下ではその効果は大きい。フェライト芯材用仮焼粉のSr含有量が0.1重量%未満の場合には、Srの含有効果が得られない。   As described above, the calcined powder for ferrite core material desirably contains 0.1 to 1.0% by weight of Sr. Sr contributes to the adjustment of resistance and surface properties, and has the effect of maintaining high magnetization, but also contains the effect of increasing the charging ability of the ferrite particles, and the effect is particularly great in the presence of Ti. When the Sr content of the calcined powder for ferrite core material is less than 0.1% by weight, the effect of containing Sr cannot be obtained.

上記したフェライト芯材用仮焼粉を水及び必要に応じ分散剤、バインダー等を添加し、スラリーとし、粘度調整後、スプレードライヤーにて粒状化し、造粒を行い、さらに脱バインダー処理してフェライト芯材用粒子を得る。脱バインダー処理は600〜1000℃で行われる。   The above-mentioned calcined powder for ferrite core material is added with water and, if necessary, a dispersant, a binder, etc. to make a slurry, after adjusting the viscosity, granulated with a spray dryer, granulated, and further debindered to give ferrite Core particles are obtained. The binder removal treatment is performed at 600 to 1000 ° C.

上記スラリーのスラリー粒径D50が0.5〜4.5μmであることが望ましい。スラリー粒径を上記範囲とすることによって、所望のBET比表面積を有したフェライト粒子を得ることができる。スラリー粒径D50が0.5μm未満では、粉砕後の仮焼粉の比表面積が大きくなりすぎフェライト粒子の焼成が進みすぎることによって所望のBET比表面積を持ったフェライト粒子が得られない。4.5μmを超えると樹脂被覆した際に所望のキャリア特性が得られないだけでなく得られたフェライトキャリア芯材(フェライト粒子)及び/又はフェライトキャリアの強度が悪化し、破砕されたフェライト粒子の破片が画像欠陥の原因となる可能性がある。 It is desirable that the slurry has a slurry particle size D 50 of 0.5 to 4.5 μm. By setting the slurry particle size within the above range, ferrite particles having a desired BET specific surface area can be obtained. When the slurry particle size D 50 is less than 0.5 μm, the specific surface area of the calcined powder after pulverization becomes too large, and the ferrite particles having a desired BET specific surface area cannot be obtained due to excessive firing of the ferrite particles. If the thickness exceeds 4.5 μm, not only the desired carrier characteristics cannot be obtained when the resin is coated, but also the strength of the obtained ferrite carrier core material (ferrite particles) and / or ferrite carrier deteriorates, Debris can cause image defects.

スラリー粒径を上記範囲とするには、本造粒用のスラリーを調製する際に粉砕時間を制御するか、粉砕メディアを目標のスラリー粒径及び粒度分布になるように選択するか、湿式サイクロンを用いてスラリー中に存在する原料粒子を分級すればよい。湿式サイクロンを用いた場合には分級後のスラリーの固形分が異なるので再度固形分の調整が必要になるものの、短時間で目標のスラリー粒径とすることができるため、粉砕時間の制御と組み合わせて用いてもよい。   In order to make the slurry particle size within the above range, it is necessary to control the pulverization time when preparing the slurry for this granulation, or to select the pulverization media so as to achieve the target slurry particle size and particle size distribution, or wet cyclone. The raw material particles present in the slurry may be classified using When a wet cyclone is used, the solid content of the slurry after classification is different, so it is necessary to adjust the solid content again, but the target slurry particle size can be achieved in a short time, combined with control of the grinding time May be used.

(フェライト被覆用粒子の調製)
上記と同様に、Fe及びMgの各化合物、さらに必要に応じてTi等の化合物を粉砕、混合し、大気中で仮焼した後、ロッドミルで粉砕し、フェライト被覆用仮焼粉とする。このフェライト被覆用仮焼粉は、フェライト芯材用仮焼粉よりも体積抵抗が大きい。
(Preparation of ferrite coating particles)
Similarly to the above, each compound of Fe and Mg and, if necessary, a compound such as Ti are pulverized and mixed, calcined in the air, and then pulverized with a rod mill to obtain a calcined powder for ferrite coating. The calcined powder for ferrite coating has a larger volume resistance than the calcined powder for ferrite core material.

次に、酢酸水にシランカップリング剤を添加し、ホモジナイザー混合攪拌し、上記フェライト被覆用仮焼粉を添加し、アンモニア水でpH調整し、さらに攪拌し、得られたスラリーを固液分離し、乾燥させた後、粉砕し、フェライト被覆用粒子とする。   Next, a silane coupling agent is added to the acetic acid water, the homogenizer is mixed and stirred, the calcined powder for ferrite coating is added, the pH is adjusted with aqueous ammonia, and the resulting slurry is further solid-liquid separated. After drying, it is pulverized to obtain ferrite-coated particles.

フェライト被覆用粒子の好ましい組成の一例は、Fe55〜65重量%、Mg2〜9重量%である。   An example of a preferable composition of the ferrite coating particles is 55 to 65% by weight of Fe and 2 to 9% by weight of Mg.

より好ましいフェライト被覆用粒子の好ましい組成の一例は、上記に組成に加えて、Ti0.3〜2重量%、Sr0.1〜1重量%である。   An example of a more preferable composition of the ferrite coating particles is Ti 0.3 to 2 wt% and Sr 0.1 to 1 wt% in addition to the above composition.

上記のフェライト被覆用粒子の組成範囲を満たすことで複合酸化物微粒子を被覆後、電子写真現像材用フェライトキャリア芯材として必要十分な各種特性を得ることが出来る。   By satisfying the composition range of the above-mentioned ferrite coating particles, various characteristics necessary and sufficient as a ferrite carrier core material for an electrophotographic developer can be obtained after coating the composite oxide fine particles.

フェライト被覆用粒子として用いられる複合酸化物微粒子がMgを2重量%以上含有することによって、複合酸化物微粒子被覆後の電子写真現像材用フェライトキャリア芯材の抵抗を高くすることができる。Mgの含有量が2重量%未満では、十分な含有効果が得られず、抵抗が低くなり、カブリの発生や階調性の悪化等、画質が悪化する。一方、Mgの含有量が9重量%を超えると、複合酸化物被覆後のキャリア用芯材の磁化が低下するためにキャリア飛散が発生しやすい。   When the composite oxide fine particles used as the ferrite coating particles contain 2% by weight or more of Mg, the resistance of the ferrite carrier core material for an electrophotographic developer after coating the composite oxide fine particles can be increased. If the Mg content is less than 2% by weight, a sufficient content effect cannot be obtained, the resistance becomes low, and the image quality deteriorates, such as generation of fogging and deterioration of gradation. On the other hand, if the Mg content exceeds 9% by weight, carrier scattering is likely to occur because the magnetization of the carrier core material after the composite oxide coating is reduced.

フェライト被覆用粒子中のFeの含有量が55重量%未満では、Mg、Ti、Srのいずれかから選ばれの1種類以上の元素の含有量が相対的に増え、非磁性成分及び/又は低磁化成分が増加することを意味しており、所望の磁気特性が得られない。Feの含有量が65重量%を超えると、Mg、Ti、Srのいずれかから選ばれる1種類以上の元素の含有効果は得られず実質的に被覆前の芯材粒子と同等にフェライト粒子になってしまうため意味が無い。   When the content of Fe in the ferrite coating particles is less than 55% by weight, the content of one or more elements selected from Mg, Ti, and Sr is relatively increased, and the nonmagnetic component and / or the content is low. This means that the magnetization component increases, and the desired magnetic properties cannot be obtained. When the Fe content exceeds 65% by weight, the effect of containing one or more elements selected from Mg, Ti, and Sr is not obtained, and the ferrite particles are substantially equivalent to the core particles before coating. Because it becomes, there is no meaning.

フェライト被覆用粒子はTiを、上記のように0.3〜2.0重量%含有することが望ましい。Tiは焼成温度を下げる効果を有し、凝集粒子を減らすことができるだけでなく、均一でシワ状の表面性を得ることができる。フェライト粒子中のTiの含有量が0.3重量%未満では、Tiの含有効果が得られない。   The ferrite coating particles preferably contain 0.3 to 2.0% by weight of Ti as described above. Ti has the effect of lowering the firing temperature and can not only reduce aggregated particles but also obtain a uniform and wrinkled surface property. When the content of Ti in the ferrite particles is less than 0.3% by weight, the Ti content effect cannot be obtained.

フェライト被覆用粒子は、上記のようにSrを0.1〜1.0重量%含有することが望ましい。Srは抵抗や表面性の調整に寄与し、高磁化を保つ効果を有するだけでなく、含有することでフェライト粒子の帯電能力を高める効果も得られ、特にTi存在下ではその効果は大きい。フェライト粒子中のSr含有量が0.1重量%未満の場合には、Srの含有効果が得られない。   The ferrite coating particles preferably contain 0.1 to 1.0% by weight of Sr as described above. Sr contributes to the adjustment of resistance and surface properties, and has the effect of maintaining high magnetization, but also contains the effect of increasing the charging ability of the ferrite particles, and the effect is particularly great in the presence of Ti. When the Sr content in the ferrite particles is less than 0.1% by weight, the effect of containing Sr cannot be obtained.

フェライト被覆用粒子は体積平均粒径が0.1μm〜5μmであることが望ましい。0.1μmよりも小さい場合にはシランカップリング剤による表面処理を行う際に粒子同士の分散させるのが困難になり、シランカップリング剤で処理した被覆粒子は凝集体となり、所望の被覆量でフェライト芯材粒子表面に被覆しても被覆層にムラができやすく、キャリア芯材として十分な抵抗が得られない可能性がある。5μmを超えると被覆粒子間に隙間が出来やすく、本焼成後に1つのキャリア芯材粒子表面に部分的に磁化の低い領域が生成することで飛散物磁化が低下し、キャリアとして使用する際のキャリア飛散の原因となる。   The ferrite coating particles preferably have a volume average particle size of 0.1 μm to 5 μm. When the surface treatment is smaller than 0.1 μm, it is difficult to disperse the particles when performing the surface treatment with the silane coupling agent, and the coated particles treated with the silane coupling agent become aggregates with a desired coating amount. Even if the ferrite core material particle surface is coated, the coating layer is likely to be uneven, and sufficient resistance as a carrier core material may not be obtained. If it exceeds 5 μm, gaps are likely to be formed between the coated particles, and after the main firing, a region having a low magnetization is partially formed on the surface of one carrier core particle, resulting in a decrease in scattered matter magnetization and a carrier used as a carrier. Causes scattering.

フェライト被覆用粒子は、フェライト芯材用粒子それぞれの体積平均粒径にもよるが、フェライト芯材用粒子に対して2〜12重量%であることが好ましい。2重量%よりも少ない場合は、本焼成後に十分な抵抗が得られない。12重量%よりも多い場合にはフェライト芯材用粒子に付着しなかったフェライト被覆用粒子同士が凝集し、低磁化粒子を形成することがあり、キャリアとして使用する際のキャリア飛散の原因となる。   The ferrite coating particles are preferably 2 to 12% by weight with respect to the ferrite core particles, though depending on the volume average particle diameter of each of the ferrite core particles. When the amount is less than 2% by weight, sufficient resistance cannot be obtained after the main baking. When the amount is more than 12% by weight, the ferrite coating particles that have not adhered to the ferrite core particles may aggregate to form low-magnetization particles, which causes carrier scattering when used as a carrier. .

フェライト被覆用粒子はシランカップリング剤で帯電付与されていることが好ましい。シランカップリング剤は炭素数8〜10の直鎖アルキル基を有し、かつ、メトキシ基もしくはエトキシ基を有しているものが好ましい。アルキル基の炭素数が7以下の場合、最小被覆面積/フェライト被覆用粒子のBET比表面積×フェライト被覆用粒子の重量に相当する添加量で帯電付与の処理を行ったとしても十分な帯電付与が出来ず、フェライト芯材粒子に凝集体で付着してしまう可能性がある。11以上の場合は疎水性が強すぎるため、シランカップリング剤の水中での処理が困難になる。メトキシ基及びエトキシ基以外の反応基を有している場合、シランカップリング剤の加水分解の速度が遅くなりすぎるため、シランカップリング剤処理の時間がかかりすぎ、生産性が劣るため使用できない。   The ferrite coating particles are preferably charged with a silane coupling agent. The silane coupling agent preferably has a linear alkyl group having 8 to 10 carbon atoms and has a methoxy group or an ethoxy group. When the number of carbon atoms of the alkyl group is 7 or less, sufficient charge can be imparted even if the charge application is performed with an addition amount corresponding to the minimum coating area / the BET specific surface area of the ferrite coating particles × the weight of the ferrite coating particles. There is a possibility that the ferrite core material particles may adhere to the ferrite core particles as aggregates. In the case of 11 or more, since the hydrophobicity is too strong, it becomes difficult to treat the silane coupling agent in water. When it has reactive groups other than a methoxy group and an ethoxy group, the rate of hydrolysis of the silane coupling agent is too slow, so that it takes too much time for the silane coupling agent treatment and the productivity is inferior, so it cannot be used.

フェライト被覆用粒子に対してシランカップリング剤処理を行う時のシランカップリング剤の添加量は、処理を行うフィラーの100重量%に対して「フェライト被覆用粒子のBET比表面積/シランカップリング剤の最小被覆面積×100×A」重量%としたときに、Aは0.8〜2の範囲で行われる。0.8よりも小さい場合は、フェライト被覆用粒子に帯電付与が十分行えないため、フェライト被覆用粒子同士が凝集し、フェライト芯材用粒子に凝集体で付着してしまい、本焼成後に1つのキャリア芯材用粒子表面に部分的に磁化の低い領域が生成することで飛散物磁化が低下し、キャリアとして使用する際のキャリア飛散の原因となる可能性がある。2を超える場合、過剰なシランカップリング剤による帯電付与の影響が大きく、フェライト芯材用粒子に密にフェライト被覆用粒子が付着しないため、本焼成後に十分な抵抗が得られないだけでなく、フェライト芯材用粒子に付着しなかったフェライト被覆用粒子同士が凝集し、低磁化粒子を形成することがあり、キャリアとして使用する際のキャリア飛散の原因となる。   When the silane coupling agent treatment is performed on the ferrite coating particles, the addition amount of the silane coupling agent is “BET specific surface area of the ferrite coating particles / silane coupling agent with respect to 100 wt% of the filler to be treated. A is performed in the range of 0.8 to 2 when the minimum coverage area of 100 × A ”wt%. If it is smaller than 0.8, the ferrite coating particles cannot be sufficiently charged, so the ferrite coating particles aggregate together and adhere to the ferrite core particles as aggregates. When a region with low magnetization is partially formed on the surface of the carrier core particle, the scattered matter magnetization is lowered, which may cause carrier scattering when used as a carrier. If it exceeds 2, the influence of charging imparted by an excessive silane coupling agent is large, and the ferrite coating particles do not adhere closely to the ferrite core particles, so that not only sufficient resistance cannot be obtained after the main firing, The ferrite coating particles that have not adhered to the ferrite core material particles may aggregate to form low-magnetization particles, which may cause carrier scattering when used as a carrier.

ここに用いられるフェライト被覆用粒子は、1K・1000/4π・A/mの磁場をかけたときのVSM測定による磁化が30Am/kg以下であることが望ましい。フェライト被覆用粒子の1K・1000/4π・A/mにおける磁化が30Am/gよりも大きくなると、マグネタイト成分の増加を意味し、被覆用粒子を被覆しても低抵抗となりやすく、キャリア飛散の原因となることがある。 The ferrite coating particles used here preferably have a magnetization of 30 Am 2 / kg or less as measured by VSM when a magnetic field of 1 K · 1000 / 4π · A / m is applied. When the magnetization of the ferrite coating particles at 1K · 1000 / 4π · A / m is larger than 30 Am 2 / g, it means an increase in the magnetite component, and even if the coating particles are coated, the resistance tends to be low, and carrier scattering It can be a cause.

ここに用いられる被覆用粒子は、仮焼を大気中で行うことがより好ましい。非酸化性雰囲気で仮焼を行った場合はマグネタイトが生成しやすく、被覆用粒子を被覆しても低抵抗となりやすくキャリア飛散の原因となることがある。   The coating particles used here are more preferably calcined in the air. When calcination is performed in a non-oxidizing atmosphere, magnetite is likely to be generated, and even if the coating particles are coated, the resistance tends to be low, which may cause carrier scattering.

ここにおいて、それぞれ得られたフェライト芯材用粒子(仮焼粉)の体積抵抗とフェライト被覆用粒子(仮焼粉)の体積抵抗が次の比であることが望ましい。すなわち、フェライト被覆用粒子(仮焼粉)の体積抵抗/フェライト芯材用粒子(仮焼粉)の体積抵抗>10であることが望ましい。より好ましくはフェライト被覆用粒子(仮焼粉)の体積抵抗/フェライト芯材用粒子(仮焼粉)の体積抵抗>50であることが望ましい。この比が10を超えることによって、本焼成工程においてMg及びFe3+をフェライト芯材表面に拡散し、磁化の低下を防ぎつつ、必要な抵抗を付加することができる。 Here, it is desirable that the volume resistance of the obtained ferrite core material particles (calcined powder) and the volume resistance of the ferrite coating particles (calcined powder) are in the following ratio. That is, it is desirable that the volume resistance of the ferrite coating particles (calcined powder) / the volume resistance of the ferrite core particles (calcined powder)> 10. More preferably, the volume resistance of the ferrite coating particles (calcined powder) / the volume resistance of the ferrite core particles (calcined powder)> 50. When this ratio exceeds 10, Mg and Fe 3+ are diffused on the surface of the ferrite core material in the main firing step, and necessary resistance can be added while preventing a decrease in magnetization.

(フェライト粒子の調製)
上記のようにして得られたフェライト芯材用粒子にフェライト被覆用粒子を添加し、混合ミルで混合し、フェライト粒子用原料とした。このフェライト粒子用原料を不活性雰囲気又は弱酸化性雰囲気、例えば窒素雰囲気下や酸素濃度が3体積%以下の窒素と酸素の混合ガス雰囲気下、950〜1230℃で行う。
(Preparation of ferrite particles)
Ferrite coating particles were added to the ferrite core material particles obtained as described above, and mixed with a mixing mill to obtain a ferrite particle material. This raw material for ferrite particles is performed at 950 to 1230 ° C. in an inert atmosphere or a weakly oxidizing atmosphere such as a nitrogen atmosphere or a mixed gas atmosphere of nitrogen and oxygen having an oxygen concentration of 3% by volume or less.

その後、焼成物を解砕、分級を行ってフェライト粒子を得る。分級方法としては、既存の風力分級、メッシュ濾過法、沈降法等を用いて所望の粒径に粒度調整する。乾式回収を行う場合は、サイクロン等で回収することも可能である。   Thereafter, the fired product is crushed and classified to obtain ferrite particles. As a classification method, the particle size is adjusted to a desired particle size using an existing air classification, mesh filtration method, sedimentation method, or the like. When dry collection is performed, it can also be collected with a cyclone or the like.

このようにして、上記各特性を有する本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子が得られる。   In this way, ferrite particles used as the ferrite carrier core material for an electrophotographic developer according to the present invention having the above characteristics can be obtained.

本発明に係る電子写真現像剤用フェライトキャリア芯材として用いられるフェライト粒子のMg含有量と被覆しないフェライト粒子(上述したフェライト芯材用粒子)のMg含有量の比は1.05〜1.35であることが好ましい。   The ratio of the Mg content of ferrite particles used as the ferrite carrier core material for an electrophotographic developer according to the present invention to the Mg content of uncoated ferrite particles (the ferrite core material particles described above) is 1.05 to 1.35. It is preferable that

Mg含有量の比が1.05より小さい場合は、複合酸化物粒子の被覆量が少ないため被覆後フェライト芯材用粒子として十分な抵抗が得られず効果が得られない。1.35より多い場合は磁化が低くなりやすく、キャリア飛散の原因となる可能性がある。   When the ratio of the Mg content is smaller than 1.05, since the coating amount of the composite oxide particles is small, sufficient resistance cannot be obtained as the ferrite core material particles after coating, and the effect cannot be obtained. When it exceeds 1.35, the magnetization tends to be low, which may cause carrier scattering.

本焼成前のフェライト芯材用粒子の表面に微粒子を付着させた後に本焼成を行う方法については前述の通り提案されているが、乾式で帯電付与の前処理を行わない微粒子を用いて本焼成前のフェライト芯材用粒子の表面に付着させる場合、付着させる微粒子の凝集が激しくフェライト芯材用粒子に付着しにくいか、大きな凝集体として付着するため組成の偏りが大きく、本焼成後に得られたフェライト粒子の特性は決して良くない。   The method of performing the main firing after attaching the fine particles to the surface of the ferrite core material particles before the main firing has been proposed as described above, but the main firing is performed using fine particles that are dry and not subjected to pretreatment for charging. When adhering to the surface of the previous ferrite core particles, the fine particles to be adhered are intensely agglomerated or difficult to adhere to the ferrite core particles, or they adhere as large agglomerates, resulting in a large compositional bias and are obtained after firing. The properties of the ferrite particles are never good.

本発明に係るフェライト粒子においては付着させるフェライト被覆用粒子の表面に対して易分散性を得られるようにするため、帯電付与の表面処理を行うことを特徴としている。帯電付与の表面処理を行うことで粒子同士の凝集が減少し、本焼成前のフェライト芯材用粒子に付着しやすくなる。また、フェライト芯材用粒子の帯電極性と逆極性の表面処理剤を用いることで本焼成前のフェライト芯材用粒子に付着したフェライト被覆用粒子が脱離を防止する効果が得られる。   The ferrite particles according to the present invention are characterized in that a surface treatment for charging is performed in order to obtain easy dispersibility with respect to the surface of the ferrite coating particles to be adhered. By performing the surface treatment for applying the charge, the aggregation of the particles decreases, and the particles easily adhere to the ferrite core material particles before the main firing. In addition, by using a surface treating agent having a polarity opposite to the charged polarity of the ferrite core material particles, an effect of preventing the ferrite coating particles attached to the ferrite core material particles before firing from being detached can be obtained.

湿式による本焼成前のフェライト芯材用粒子に対する微粒子の表面被覆は、表面被覆を行なったフェライト粒子用原料ごと溶媒となる液体の除去が必要となるため、工程として大掛かりになるためコストがかさむ。乾式による微粒子のフェライト芯材用粒子への被覆は微粒子の表面処理のみを行えば良く、容易に行え、コストの上昇も少ないのが特徴である。   The surface coating of the fine particles on the ferrite core material particles before the main firing by wet processing requires the removal of the liquid as a solvent together with the ferrite particle raw material subjected to the surface coating, which increases the cost of the process. The coating of the fine particles on the ferrite core material particles by the dry method is only required to perform the surface treatment of the fine particles, and it is easy to carry out and the cost increase is small.

本発明の電子写真現像剤用フェライトキャリアは、上記フェライトキャリア芯材(フェライト粒子)の表面に、上記した樹脂を被覆し、樹脂被膜を形成する。被覆する方法としては、公知の方法、例えば刷毛塗り法、流動床によるスプレードライ方式、ロータリドライ方式、万能攪拌機による液浸乾燥法等により被覆することができる。被覆率を向上させるためには、流動床による方法が好ましい。   In the ferrite carrier for an electrophotographic developer of the present invention, the above-mentioned resin is coated on the surface of the ferrite carrier core material (ferrite particles) to form a resin film. As a coating method, it can be coated by a known method such as a brush coating method, a spray drying method using a fluidized bed, a rotary drying method, an immersion drying method using a universal stirrer, or the like. In order to improve the coverage, a fluidized bed method is preferred.

樹脂をフェライトキャリア芯材に被覆後、焼き付けする場合には、外部加熱方式又は内部加熱方式のいずれでもよく、例えば固定式又は流動式電気炉、ロータリー式電気炉、バーナー炉でもよく、もしくはマイクロウェーブによる焼き付けでもよい。UV硬化樹脂を用いる場合は、UV加熱器を用いる。焼き付けの温度は使用する樹脂により異なるが、融点又はガラス転移点以上の温度は必要であり、熱硬化性樹脂又は縮合架橋型樹脂等では、充分硬化が進む温度まで上げる必要がある。   When the resin is coated on the ferrite carrier core and then baked, either an external heating method or an internal heating method may be used, for example, a fixed or fluid electric furnace, a rotary electric furnace, a burner furnace, or a microwave oven Baking by may be used. When a UV curable resin is used, a UV heater is used. Although the baking temperature varies depending on the resin to be used, a temperature equal to or higher than the melting point or the glass transition point is necessary. For a thermosetting resin or a condensation-crosslinking resin, it is necessary to raise the temperature to a point where the curing proceeds sufficiently.

<本発明に係る電子写真用現像剤>
次に、本発明に係る電子写真用現像剤について説明する。
本発明に係る電子写真現像剤は、上述した電子写真現像剤用フェライトキャリアとトナーとからなるものである。
<Electrophotographic developer according to the present invention>
Next, the electrophotographic developer according to the present invention will be described.
The electrophotographic developer according to the present invention comprises the above-described ferrite carrier for electrophotographic developer and toner.

本発明の電子写真現像剤を構成するトナー粒子には、粉砕法によって製造される粉砕トナー粒子と、重合法により製造される重合トナー粒子とがある。本発明ではいずれの方法により得られたトナー粒子も使用することができる。   The toner particles constituting the electrophotographic developer of the present invention include pulverized toner particles produced by a pulverization method and polymerized toner particles produced by a polymerization method. In the present invention, toner particles obtained by any method can be used.

粉砕トナー粒子は、例えば、結着樹脂、荷電制御剤、着色剤をヘンシェルミキサー等の混合機で充分に混合し、次いで、二軸押出機等で溶融混練し、冷却後、粉砕、分級し、外添剤を添加後、ミキサー等で混合することにより得ることができる。   The pulverized toner particles are, for example, a binder resin, a charge control agent, and a colorant are sufficiently mixed with a mixer such as a Henschel mixer, then melt-kneaded with a twin screw extruder or the like, cooled, pulverized, classified, After adding the external additive, it can be obtained by mixing with a mixer or the like.

粉砕トナー粒子を構成する結着樹脂としては特に限定されるものではないが、ポリスチレン、クロロポリスチレン、スチレン−クロロスチレン共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸共重合体、更にはロジン変性マレイン酸樹脂、エポキシ樹脂、ポリエステル樹脂及びポリウレタン樹脂等を挙げることができる。これらは単独又は混合して用いられる。   The binder resin constituting the pulverized toner particles is not particularly limited, but polystyrene, chloropolystyrene, styrene-chlorostyrene copolymer, styrene-acrylic acid ester copolymer, styrene-methacrylic acid copolymer, Furthermore, rosin modified maleic acid resin, epoxy resin, polyester resin, polyurethane resin and the like can be mentioned. These may be used alone or in combination.

荷電制御剤としては、任意のものを用いることができる。例えば正荷電性トナー用としては、ニグロシン系染料及び4級アンモニウム塩等を挙げることができ、また、負荷電性トナー用としては、含金属モノアゾ染料等を挙げることができる。   Any charge control agent can be used. For example, nigrosine dyes and quaternary ammonium salts can be used for positively charged toners, and metal-containing monoazo dyes can be used for negatively charged toners.

着色剤(色材)としては、従来より知られている染料、顔料が使用可能である。例えば、カーボンブラック、フタロシアニンブルー、パーマネントレッド、クロムイエロー、フタロシアニングリーン等を使用することができる。その他、トナーの流動性、耐凝集性向上のためのシリカ粉体、チタニア等のような外添剤をトナー粒子に応じて加えることができる。   As the colorant (coloring material), conventionally known dyes and pigments can be used. For example, carbon black, phthalocyanine blue, permanent red, chrome yellow, phthalocyanine green, etc. can be used. In addition, external additives such as silica powder and titania for improving the fluidity and aggregation resistance of the toner can be added according to the toner particles.

重合トナー粒子は、懸濁重合法、乳化重合法、乳化凝集法、エステル伸長重合法、相転乳化法といった公知の方法で製造されるトナー粒子である。このような重合法トナー粒子は、例えば、界面活性剤を用いて着色剤を水中に分散させた着色分散液と、重合性単量体、界面活性剤及び重合開始剤を水性媒体中で混合攪拌し、重合性単量体を水性媒体中に乳化分散させて、攪拌、混合しながら重合させた後、塩析剤を加えて重合体粒子を塩析させる。塩析によって得られた粒子を、濾過、洗浄、乾燥させることにより、重合トナー粒子を得ることができる。その後、必要により乾燥されたトナー粒子に機能付与のため外添剤を添加することもできる。   The polymerized toner particles are toner particles produced by a known method such as a suspension polymerization method, an emulsion polymerization method, an emulsion aggregation method, an ester elongation polymerization method, or a phase inversion emulsification method. Such polymerized toner particles are prepared by, for example, mixing and stirring a colored dispersion in which a colorant is dispersed in water using a surfactant, a polymerizable monomer, a surfactant, and a polymerization initiator in an aqueous medium. Then, the polymerizable monomer is emulsified and dispersed in an aqueous medium, polymerized while stirring and mixing, and then a salting-out agent is added to salt out the polymer particles. Polymerized toner particles can be obtained by filtering, washing and drying the particles obtained by salting out. Thereafter, if necessary, an external additive may be added to the dried toner particles to provide a function.

更に、この重合トナー粒子を製造するに際しては、重合性単量体、界面活性剤、重合開始剤、着色剤以外に、定着性改良剤、帯電制御剤を配合することができ、これらにより得られた重合トナー粒子の諸特性を制御、改善することができる。また、水性媒体への重合性単量体の分散性を改善するとともに、得られる重合体の分子量を調整するために連鎖移動剤を用いることができる。   Further, in the production of the polymerized toner particles, in addition to the polymerizable monomer, the surfactant, the polymerization initiator, and the colorant, a fixability improving agent and a charge control agent can be blended and obtained. Various characteristics of the polymerized toner particles can be controlled and improved. A chain transfer agent can be used to improve the dispersibility of the polymerizable monomer in the aqueous medium and adjust the molecular weight of the resulting polymer.

上記重合トナー粒子の製造に使用される重合性単量体に特に限定はないが、例えば、スチレン及びその誘導体、エチレン、プロピレン等のエチレン不飽和モノオレフィン類、塩化ビニル等のハロゲン化ビニル類、酢酸ビニル等のビニルエステル類、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸2−エチルヘキシル、アクリル酸ジメチルアミノエステル及びメタクリル酸ジエチルアミノエステル等のα−メチレン脂肪族モノカルボン酸エステル類等を挙げることができる。   The polymerizable monomer used for the production of the polymerized toner particles is not particularly limited. For example, styrene and its derivatives, ethylene unsaturated monoolefins such as ethylene and propylene, vinyl halides such as vinyl chloride, Α-methylene aliphatic monocarboxylic acids such as vinyl esters such as vinyl acetate, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, 2-ethylhexyl methacrylate, dimethylamino acrylate and diethylaminoester methacrylate Examples include esters.

上記重合トナー粒子の調製の際に使用される着色剤(色材)としては、従来から知られている染料、顔料が使用可能である。例えば、カーボンブラック、フタロシアニンブルー、パーマネントレッド、クロムイエロー及びフタロシアニングリーン等を使用することができる。また、これらの着色剤はシランカップリング剤やチタンカップリング剤等を用いてその表面が改質されていてもよい。   Conventionally known dyes and pigments can be used as the colorant (coloring material) used in the preparation of the polymerized toner particles. For example, carbon black, phthalocyanine blue, permanent red, chrome yellow, phthalocyanine green, and the like can be used. Moreover, the surface of these colorants may be modified using a silane coupling agent, a titanium coupling agent, or the like.

上記重合トナー粒子の製造に使用される界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、両イオン性界面活性剤及びノニオン系界面活性剤を使用することができる。   As the surfactant used in the production of the polymerized toner particles, an anionic surfactant, a cationic surfactant, an amphoteric surfactant and a nonionic surfactant can be used.

ここで、アニオン系界面活性剤としては、オレイン酸ナトリウム、ヒマシ油等の脂肪酸塩、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができる。また、ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン、脂肪酸エステル、オキシエチレン−オキシプロピレンブロックポリマー等を挙げることができる。更に、カチオン系界面活性剤としては、ラウリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等を挙げることができる。また、両イオン性界面活性剤としては、アミノカルボン酸塩、アルキルアミノ酸等を挙げることができる。   Here, examples of the anionic surfactant include fatty acid salts such as sodium oleate and castor oil, alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate, alkyl benzene sulfonates such as sodium dodecyl benzene sulfonate, and alkyl naphthalene sulfonic acids. Salt, alkyl phosphate ester salt, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl sulfate ester salt and the like. Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin, fatty acid ester, and oxyethylene-oxypropylene block polymer. . Furthermore, examples of the cationic surfactant include alkylamine salts such as laurylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride and stearyltrimethylammonium chloride. Examples of amphoteric surfactants include aminocarboxylates and alkylamino acids.

上記のような界面活性剤は、重合性単量体に対して、通常は0.01〜10重量%の範囲内の量で使用することができる。このような界面活性剤は、単量体の分散安定性に影響を与えるとともに、得られた重合トナー粒子の環境依存性にも影響を及ぼす。上記範囲内の量で使用することは単量体の分散安定性の確保と重合トナー粒子の環境依存性を低減する観点から好ましい。   The surfactant as described above can be used usually in an amount in the range of 0.01 to 10% by weight with respect to the polymerizable monomer. Such a surfactant affects the dispersion stability of the monomer and also affects the environmental dependency of the obtained polymerized toner particles. Use in an amount within the above range is preferable from the viewpoint of ensuring the dispersion stability of the monomer and reducing the environmental dependency of the polymerized toner particles.

重合トナー粒子の製造には、通常は重合開始剤を使用する。重合開始剤には、水溶性重合開始剤と油溶性重合開始剤とがあり、本発明ではいずれをも使用することができる。本発明で使用することができる水溶性重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、水溶性パーオキサイド化合物を挙げることができ、また、油溶性重合開始剤としては、例えば、アゾビスイソブチロニトリル等のアゾ系化合物、油溶性パーオキサイド化合物を挙げることができる。   For the production of polymerized toner particles, a polymerization initiator is usually used. The polymerization initiator includes a water-soluble polymerization initiator and an oil-soluble polymerization initiator, and any of them can be used in the present invention. Examples of the water-soluble polymerization initiator that can be used in the present invention include persulfates such as potassium persulfate and ammonium persulfate, water-soluble peroxide compounds, and oil-soluble polymerization initiators. Examples thereof include azo compounds such as azobisisobutyronitrile and oil-soluble peroxide compounds.

また、本発明において連鎖移動剤を使用する場合には、この連鎖移動剤としては、例えば、オクチルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン等のメルカプタン類、四臭化炭素等を挙げることができる。   When a chain transfer agent is used in the present invention, examples of the chain transfer agent include mercaptans such as octyl mercaptan, dodecyl mercaptan, tert-dodecyl mercaptan, carbon tetrabromide, and the like.

更に、本発明で使用する重合トナー粒子が、定着性改善剤を含む場合、この定着性改良剤としては、カルナバワックス等の天然ワックス、ポリプロピレン、ポリエチレン等のオレフィン系ワックス等を使用することができる。   Further, when the polymerized toner particles used in the present invention contain a fixability improver, a natural wax such as carnauba wax, an olefin wax such as polypropylene or polyethylene can be used as the fixability improver. .

また、本発明で使用する重合トナー粒子が、帯電制御剤を含有する場合、使用する帯電制御剤に特に制限はなく、ニグロシン系染料、4級アンモニウム塩、有機金属錯体、含金属モノアゾ染料等を使用することができる。   Further, when the polymerized toner particles used in the present invention contain a charge control agent, the charge control agent to be used is not particularly limited, and nigrosine dyes, quaternary ammonium salts, organometallic complexes, metal-containing monoazo dyes, etc. Can be used.

また、重合トナー粒子の流動性向上等のために使用される外添剤としては、シリカ、酸化チタン、チタン酸バリウム、フッ素樹脂微粒子、アクリル樹脂微粒子等を挙げることができ、これらは単独であるいは組み合わせて使用することができる。   Examples of the external additive used for improving the fluidity of polymerized toner particles include silica, titanium oxide, barium titanate, fluororesin fine particles, and acrylic resin fine particles. Can be used in combination.

更に、水性媒体から重合粒子を分離するために使用される塩析剤としては、硫酸マグネシウム、硫酸アルミニウム、塩化バリウム、塩化マグネシウム、塩化カルシウム、塩化ナトリウム等の金属塩を挙げることができる。   Furthermore, examples of the salting-out agent used for separating the polymer particles from the aqueous medium include metal salts such as magnesium sulfate, aluminum sulfate, barium chloride, magnesium chloride, calcium chloride, and sodium chloride.

上記のようにして製造されたトナー粒子の体積平均粒径は、2〜15μm、好ましくは3〜10μmの範囲内にあり、重合トナー粒子の方が粉砕トナー粒子よりも、粒子の均一性が高い。トナー粒子が2μmよりも小さくなると、帯電能力が低下しかぶりやトナー飛散を引き起こしやすく、15μmを超えると、画質が劣化する原因となる。   The volume average particle size of the toner particles produced as described above is in the range of 2 to 15 μm, preferably 3 to 10 μm, and the polymerized toner particles have higher particle uniformity than the pulverized toner particles. . If the toner particles are smaller than 2 μm, the charging ability is lowered, and it is easy to cause fogging and toner scattering, and if it exceeds 15 μm, the image quality is deteriorated.

上記のように製造されたキャリアとトナーとを混合し、電子写真現像剤を得ることができる。キャリアとトナーの混合比、即ちトナー濃度は、3〜15重量%に設定することが好ましい。3重量%未満であると所望の画像濃度が得にくく、15重量%を超えると、トナー飛散やかぶりが発生しやすくなる。   An electrophotographic developer can be obtained by mixing the carrier and toner manufactured as described above. The mixing ratio of the carrier and the toner, that is, the toner concentration is preferably set to 3 to 15% by weight. If it is less than 3% by weight, it is difficult to obtain a desired image density. If it exceeds 15% by weight, toner scattering and fogging are likely to occur.

本発明に係る電子写真現像剤は、補給用現像剤として用いることもできる。この際のキャリアとトナーの混合比、即ちトナー濃度は100〜3000重量%に設定することが好ましい。   The electrophotographic developer according to the present invention can also be used as a replenishment developer. At this time, the mixing ratio of the carrier and the toner, that is, the toner concentration is preferably set to 100 to 3000% by weight.

上記のように調製された本発明に係る電子写真現像剤は、有機光導電体層を有する潜像保持体に形成されている静電潜像を、バイアス電界を付与しながら、トナー及びキャリアを有する二成分現像剤の磁気ブラシによって反転現像する現像方式を用いたデジタル方式のコピー機、プリンター、FAX、印刷機等に使用することができる。また、磁気ブラシから静電潜像側に現像バイアスを印加する際に、DCバイアスにACバイアスを重畳する方法である交番電界を用いるフルカラー機等にも適用可能である。   The electrophotographic developer according to the present invention prepared as described above uses an electrostatic latent image formed on a latent image holding member having an organic photoconductor layer, while applying a bias electric field to the toner and the carrier. The present invention can be used in digital copiers, printers, fax machines, printers, and the like that use a developing method in which reversal development is performed using a two-component developer magnetic brush. Further, the present invention can also be applied to a full color machine using an alternating electric field, which is a method of superimposing an AC bias on a DC bias when a developing bias is applied from the magnetic brush to the electrostatic latent image side.

以下、実施例等に基づき本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples and the like.

[調製例1]
(フェライト芯材用粒子の調製)
Feを85.54モル、Mg(OH)を9.55モル、SrCOを1.03モル及びTiOを3.87モルとなるように秤量し、さらに、還元剤としてカーボンブラックを原料重量に対して1.25重量%添加したものを混合、粉砕後、ローラーコンパクターでペレット化した。得られたペレットを1000℃にて酸素濃度0体積%下の窒素雰囲気下、ロータリー式の焼成炉で仮焼成をおこなった。これをロッドミルにて粉砕したものをフェライト芯材用仮焼粉とした。
[Preparation Example 1]
(Preparation of ferrite core particles)
Fe 2 O 3 was weighed to 85.54 mol, Mg (OH) 2 to 9.55 mol, SrCO 3 to 1.03 mol and TiO 2 to 3.87 mol, and carbon black as a reducing agent. After adding and adding 1.25% by weight to the raw material weight, the mixture was pulverized and pelletized with a roller compactor. The obtained pellets were temporarily fired at 1000 ° C. in a rotary firing furnace in a nitrogen atmosphere with an oxygen concentration of 0% by volume. This was pulverized with a rod mill to obtain a calcined powder for a ferrite core material.

このフェライト芯材用仮焼粉を湿式ビーズミルで1時間粉砕し、バインダー成分としてPVAをスラリー固形分に対して1.5重量%となるように添加し、ポリカルボン酸系分散剤をスラリーの粘度が2〜3ポイズになるように添加した。この際のスラリー粒径のD50は2.676μmであった。 This calcined powder for ferrite core material is pulverized with a wet bead mill for 1 hour, PVA is added as a binder component so as to be 1.5% by weight with respect to the solid content of the slurry, and the polycarboxylic acid dispersant is added to the viscosity of the slurry. Was added to make 2 to 3 poise. The D 50 of the slurry particle size at this time was 2.676 μm.

このようにして得られた粉砕スラリーをスプレードライヤーにて造粒、乾燥し、酸素濃度0体積%下の窒素雰囲気下、ロータリーキルンを用いて850℃で脱バインダー処理し、フェライト芯材用粒子を得た。   The pulverized slurry thus obtained is granulated and dried with a spray dryer, and debindered at 850 ° C. using a rotary kiln in a nitrogen atmosphere with an oxygen concentration of 0% by volume to obtain ferrite core material particles. It was.

[調製例2]
(フェライト被覆用粒子の調製)
Feを75.49モル、Mg(OH)を19.87モル、SrCOを0.98モル及びTiOを3.66モルとなるように秤量し、粉砕後、ローラーコンパクターでペレット化した。得られたペレットを1000℃にて大気雰囲気下、ロータリー式の焼成炉で仮焼成をおこなった。これをロッドミルにて粉砕したものをフェライト被覆用仮焼粉とした。
[Preparation Example 2]
(Preparation of ferrite coating particles)
Fe 2 O 3 was weighed to 75.49 mol, Mg (OH) 2 to 19.87 mol, SrCO 3 to 0.98 mol and TiO 2 to 3.66 mol, and after pulverization, pelletized with a roller compactor Turned into. The obtained pellets were temporarily fired at 1000 ° C. in an air atmosphere in a rotary firing furnace. This was pulverized with a rod mill to obtain a calcined powder for ferrite coating.

5重量%の酢酸水にデシルトリメトキシシランを添加し、ホモジナイザーで30分間混合撹拌し、次いでフェライト被覆用仮焼粉を固形分で20重量%となるように添加した。さらに15分間撹拌を続けた後、アンモニア水を添加し、pHを8.5とした後15分間撹拌を継続した。得られたスラリーを固液分離し、熱風乾燥機で150℃、6時間乾燥させて水分を完全に除去したあと、ヘンシェルミキサーを使って粉砕しフェライト被覆用粒子とした。   Decyltrimethoxysilane was added to 5% by weight of acetic acid water, mixed and stirred for 30 minutes with a homogenizer, and then the calcined powder for ferrite coating was added so that the solid content was 20% by weight. After further stirring for 15 minutes, aqueous ammonia was added to adjust the pH to 8.5, and then stirring was continued for 15 minutes. The obtained slurry was solid-liquid separated, dried with a hot air dryer at 150 ° C. for 6 hours to completely remove moisture, and then pulverized with a Henschel mixer to obtain ferrite-coated particles.

[調製例3]
(フェライト被覆用粒子の調製)
Feを66.45モル、Mg(OH)を29.15モル、SrCOを0.93モル及びTiOを3.47モルとなるようにした以外は調製例2と同様の方法でフェライト被覆用粒子を得た。
[Preparation Example 3]
(Preparation of ferrite coating particles)
The same method as in Preparation Example 2, except that Fe 2 O 3 was 66.45 mol, Mg (OH) 2 was 29.15 mol, SrCO 3 was 0.93 mol and TiO 2 was 3.47 mol. Thus, particles for ferrite coating were obtained.

[調製例4]
(フェライト被覆用粒子の調製)
Feを58.31モル、Mg(OH)を37.51モル、SrCOを0.88モル及びTiOを3.3モルとなるようにした以外は調製例2と同様の方法でフェライト被覆用粒子を得た。
[Preparation Example 4]
(Preparation of ferrite coating particles)
The same method as in Preparation Example 2, except that 58.31 mol of Fe 2 O 3 , 37.51 mol of Mg (OH) 2 , 0.88 mol of SrCO 3 and 3.3 mol of TiO 2 were used. Thus, particles for ferrite coating were obtained.

[実施例1]
調製例2で得られたフェライト被覆用粒子を脱バインダー処理済みの調製例1で得られたフェライト芯材用粒子に対して7.5重量%添加し、混合ミルで15分間混合撹拌した。得られた混合物を80メッシュの振動ふるいで凝集体をほぐし、フェライト粒子用原料とした。
[Example 1]
The ferrite coating particles obtained in Preparation Example 2 were added in an amount of 7.5% by weight to the ferrite core particles obtained in Preparation Example 1 that had been subjected to binder removal treatment, and mixed and stirred for 15 minutes in a mixing mill. The obtained mixture was loosened with an 80-mesh vibrating screen to obtain a raw material for ferrite particles.

上記で得られたフェライト粒子用原料を、電気炉を用いて、酸素濃度0体積%下の窒素雰囲気下、1100℃で4時間保持し、本焼成を行なった。その後、解砕し、さらに分級してフェライト粒子を得た。   The raw material for ferrite particles obtained above was held at 1100 ° C. for 4 hours in a nitrogen atmosphere with an oxygen concentration of 0% by volume using an electric furnace to perform main firing. Thereafter, it was crushed and further classified to obtain ferrite particles.

[実施例2]
フェライト被覆用粒子を調製例3で得られたものとした以外は、実施例1と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Example 2]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the ferrite coating particles were obtained in Preparation Example 3.

[実施例3]
フェライト被覆用粒子を調製例4で得られたものとした以外は、実施例1と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Example 3]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the ferrite coating particles were obtained in Preparation Example 4.

[実施例4]
フェライト被覆用粒子の添加量を5重量%とした以外は、実施例2と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Example 4]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 2 except that the addition amount of the ferrite coating particles was changed to 5% by weight.

[実施例5]
フェライト被覆用粒子の添加量を10重量%とした以外は、実施例2と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Example 5]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 2 except that the addition amount of the ferrite coating particles was 10% by weight.

[実施例6]
本焼成温度を1060℃とした以外は、実施例2と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Example 6]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 2 except that the main firing temperature was 1060 ° C.

[実施例7]
本焼成温度を1200℃とした以外は、実施例2と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Example 7]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 2 except that the main firing temperature was 1200 ° C.

[実施例8]
ビーズミルの粉砕時間を2hrとした以外は、実施例2と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Example 8]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 2 except that the grinding time of the bead mill was set to 2 hr.

[実施例9]
ビーズミルの粉砕時間を0.5hrとした以外は、実施例2と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Example 9]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 2 except that the bead mill grinding time was 0.5 hr.

[比較例1]
フェライト被覆粒子を添加しなかった以外は、実施例1と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Comparative Example 1]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the ferrite-coated particles were not added.

[比較例2]
フェライト被覆用粒子の添加量を15重量%とした以外は、実施例1と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Comparative Example 2]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the addition amount of the ferrite coating particles was 15% by weight.

[比較例3]
比較例1で得られたフェライト粒子をさらに大気中にて540℃で表面酸化処理した以外は、実施例1と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Comparative Example 3]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the ferrite particles obtained in Comparative Example 1 were further surface oxidized at 540 ° C. in the air.

[比較例4]
比較例1で得られたフェライト粒子をさらに大気中にて650℃で表面酸化処理した以外は、実施例1と同様にしてフェライト粒子(フェライトキャリア芯材)を得た。
[Comparative Example 4]
Ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the ferrite particles obtained in Comparative Example 1 were further surface oxidized at 650 ° C. in the air.

調製例1〜4の配合割合(原料比率モル及び炭素量)、仮焼条件(仮焼温度及び雰囲気)及び仮焼後の得られた粒子の結晶構造を表1に示し、得られた仮焼粉の化学分析結果、物性(粉砕後の平均粒径、BET比表面積、体積抵抗、VSM磁化)及びシランカップリング剤処理条件(処理剤、最小被覆面積、処理量、処理温度及び処理時間)を表2に示す。また、実施例1〜9及び比較例1〜4において、使用されたフェライト芯材用粒子(使用フェライト芯材用粒子、本造粒のスラリー粒径及び脱バインダー処理条件(処理温度及び雰囲気))、粒子被覆処理条件(使用フェライト被覆用粒子、混合量)、本焼成条件(焼成温度及び雰囲気)及び酸化処理条件(処理温度及び雰囲気)を表3に示し、得られたフェライト粒子の化学分析結果、被覆前粒子との比及び結晶構造を表4に示す。さらに、実施例1〜9及び比較例1〜4により得られたフェライト粒子の粉体特性(体積平均粒径、見掛け密度、流動性及びBET比表面積)、VSM磁化(飽和磁化、残留磁化及び保磁力)及び飛散試験(δ飛散物/δ本体)を表5に示し、1mmGap及び6.5mmGapの抵抗(50V、100V、250V、500V及び1000V)及び各環境下での帯電量を表6に示す。ここにおいて、表5に示す見掛け密度、流動性及び飛散物量、並びに表6に示す帯電量の測定方法は下記の通りである。また、その他の各測定方法は上述の通りである。 Table 1 shows the blending ratio (raw material ratio mole and carbon amount) of Preparation Examples 1 to 4, calcining conditions (calcining temperature and atmosphere), and the crystal structure of the obtained particles after calcining, and the obtained calcining Results of chemical analysis of powder, physical properties (average particle size after grinding, BET specific surface area, volume resistance, VSM magnetization) and silane coupling agent treatment conditions (treatment agent, minimum coating area, treatment amount, treatment temperature and treatment time) It shows in Table 2. In Examples 1 to 9 and Comparative Examples 1 to 4, the ferrite core material particles used (the ferrite core material particles used, the slurry particle size of this granulation and the binder removal treatment conditions (treatment temperature and atmosphere)). Table 3 shows the particle coating treatment conditions (the ferrite coating particles used, the mixing amount), the main firing conditions (firing temperature and atmosphere) and the oxidation treatment conditions (treatment temperature and atmosphere). The chemical analysis results of the obtained ferrite particles Table 4 shows the ratio to the pre-coated particles and the crystal structure. Furthermore, the powder characteristics (volume average particle diameter, apparent density, fluidity and BET specific surface area) of the ferrite particles obtained in Examples 1 to 9 and Comparative Examples 1 to 4, VSM magnetization (saturation magnetization, residual magnetization, and retention). Magnetic force) and scattering test (δ scattered matter / δ main body ) are shown in Table 5, and resistances (50V, 100V, 250V, 500V and 1000V) of 1 mmGap and 6.5 mmGap and the charge amount in each environment are shown in Table 6. . Here, the apparent density, fluidity and amount of scattered matter shown in Table 5 and the method for measuring the charge amount shown in Table 6 are as follows. The other measurement methods are as described above.

(見掛け密度)
JIS Z 2504に準拠して測定した。詳細は次の通りである。
1.装置
粉末見掛密度計は漏斗、コップ、漏斗支持器、支持棒及び支持台から構成されるものを用いる。天秤は、秤量200gで感量50mgのものを用いる。
2.測定方法
(1)試料は、少なくとも150g以上とする。
(2)試料は孔径2.5+0.2/−0mmのオリフィスを持つ漏斗に注ぎ流れ出た試料が、コップ一杯になってあふれ出るまで流し込む。
(3)あふれ始めたら直ちに試料の流入をやめ、振動を与えないようにコップの上に盛り上がった試料をへらでコップの上端に沿って平らにかきとる。
(4)コップの側面を軽く叩いて、試料を沈ませコップの外側に付着した試料を除去して、コップ内の試料の重量を0.05gの精度で秤量する。
3.計算
前項2−(4)で得られた測定値に0.04を乗じた数値をJIS−Z8401(数値の丸め方)によって小数点以下第2位に丸め、「g/cm」の単位の見掛け密度とする。
(Apparent density)
It measured based on JISZ2504. Details are as follows.
1. Apparatus The powder apparent density meter is composed of a funnel, a cup, a funnel support, a support bar and a support base. A balance with a weighing of 200 mg and a weighing of 50 mg is used.
2. Measuring method (1) The sample shall be at least 150 g or more.
(2) The sample is poured into a funnel having an orifice with a pore diameter of 2.5 + 0.2 / −0 mm, and poured until the sample that has flowed out fills the glass and overflows.
(3) Stop the inflow of the sample as soon as it begins to overflow, and scrape the sample raised on the cup flatly with a spatula along the top edge of the cup so as not to give vibration.
(4) Tap the side surface of the cup to sink the sample and remove the sample attached to the outside of the cup, and weigh the sample in the cup with an accuracy of 0.05 g.
3. Calculation The numerical value obtained by multiplying the measured value obtained in 2- (4) above by 0.04 is rounded to the second decimal place by JIS-Z8401 (how to round the numerical value), and the unit of “g / cm 3 ” appears. Density.

(流動性)
JIS Z2502(金属粉の流動性試験法)によって測定される。
(Liquidity)
It is measured by JIS Z2502 (fluidity test method for metal powder).

(飛散試験:δ飛散物/δ本体
フェライト粒子の1K・1000/4π・A/mの磁場をかけたときの磁化をδ本体Am/kgとし、軸に直交する方向に100mTのピーク磁束密度をもつ領域を有する円筒スリーブ上に、該フェライト粒子を磁気的に保持し、該ピーク磁束密度を有する磁極領域のみを開口し、該円筒スリーブを10分間回転し、回転軸に直交する方向に重力の3倍の脱離力を付与して、開口部より脱離した脱離フェライト粒子の1K・1000/4π・A/mの磁場をかけたときの磁化をδ飛散物Am/kgとした。δ飛散物/δ本体が大きいことは、実使用上においてキャリアがマグネットロールから脱離しやすいことを意味し、キャリア飛散によって感光体を傷付けたり、白斑が発生する等の不具合を生じることとなる。
(Scattering test: δ scattered matter / δ body )
On a cylindrical sleeve having a region having a peak magnetic flux density of 100 mT in a direction perpendicular to the axis, the magnetization of the ferrite particles when a magnetic field of 1 K · 1000 / 4π · A / m is applied is δ main body Am 2 / kg, The ferrite particles are held magnetically, only the magnetic pole region having the peak magnetic flux density is opened, the cylindrical sleeve is rotated for 10 minutes, and a detachment force that is three times the gravity is applied in a direction perpendicular to the rotation axis. Thus, the magnetization of the detached ferrite particles detached from the opening when a magnetic field of 1 K · 1000 / 4π · A / m was applied was δ scattered matter Am 2 / kg. The large δ scattered matter / δ main body means that the carrier is likely to be detached from the magnet roll in actual use, and causes problems such as scratching the photosensitive member or generating white spots due to carrier scattering.

(フェライトキャリア芯材の帯電量)
試料(フェライト粒子)と、フルカラープリンターに使用されている市販の負極性トナーで平均粒径が約6μmのものを、トナー濃度を6.5重量%(トナー重量=3.25g、フェライトキャリア芯材(フェライト粒子)重量=46.75g)に秤量した。秤量したフェライトキャリア芯材及びトナーを、後述の各環境下に12時間以上暴露した。その後、フェライトキャリア芯材とトナーを50ccのガラス瓶に入れ、100rpmの回転数にて、30分間撹拌を行った。
帯電量測定装置として、直径31mm、長さ76mmの円筒形のアルミ素管(以下、スリーブ)の内側に、N極とS極を交互に合計8極の磁石(磁束密度0.1T)を配置したマグネットロールと、該スリーブと5.0mmのGapをもった円筒状の電極を、該スリーブの外周に配置した。
このスリーブ上に、現像剤0.5gを均一に付着させた後、外側のアルミ素管は固定したまま、内側のマグネットロールを100rpmで回転させながら、外側の電極とスリーブ間に、直流電圧2000Vを60秒間印加し、トナーを外側の電極に移行させた。このとき、円筒状の電極にはエレクトロメーター(KEITHLEY社製 絶縁抵抗計model6517A)をつなぎ、移行したトナーの電荷量を測定した。
60秒経過後、印加していた電圧を切り、マグネットロールの回転を止めた後、外側の電極を取り外し、電極に移行したトナーの重量を測定した。
測定された電荷量と移行したトナー重量から、帯電量を計算した。
(Charge amount of ferrite carrier core material)
Sample (ferrite particles) and commercially available negative polarity toner used in full-color printers with an average particle size of about 6 μm, toner concentration of 6.5% by weight (toner weight = 3.25 g, ferrite carrier core material) (Ferrite particles) Weight = 46.75 g). The weighed ferrite carrier core material and toner were exposed to each environment described later for 12 hours or more. Thereafter, the ferrite carrier core material and the toner were placed in a 50 cc glass bottle and stirred at a rotation speed of 100 rpm for 30 minutes.
As a charge quantity measuring device, magnets with a total of 8 poles (flux density 0.1T) are arranged alternately in the N and S poles inside a cylindrical aluminum tube (hereinafter referred to as sleeve) with a diameter of 31mm and a length of 76mm. The magnet roll, the sleeve, and a cylindrical electrode having a gap of 5.0 mm were disposed on the outer periphery of the sleeve.
After 0.5 g of developer is uniformly deposited on the sleeve, a DC voltage of 2000 V is applied between the outer electrode and the sleeve while rotating the inner magnet roll at 100 rpm while fixing the outer aluminum tube. Was applied for 60 seconds to transfer the toner to the outer electrode. At this time, an electrometer (insulation resistance meter model 6517A manufactured by KEITHLEY) was connected to the cylindrical electrode, and the charge amount of the transferred toner was measured.
After the elapse of 60 seconds, the applied voltage was turned off, the rotation of the magnet roll was stopped, the outer electrode was removed, and the weight of the toner transferred to the electrode was measured.
The charge amount was calculated from the measured charge amount and the transferred toner weight.

ここで各環境下の条件は次の通りである。
常温常湿(N/N)環境=温度20〜25℃、相対湿度50〜60%
低温低湿(L/L)環境=温度10〜15℃、相対湿度10〜15%
高温高湿(H/H)環境=温度30〜35℃、相対湿度80〜85%
Here, the conditions under each environment are as follows.
Normal temperature and humidity (N / N) environment = temperature 20-25 ° C, relative humidity 50-60%
Low temperature and low humidity (L / L) environment = temperature 10-15 ° C, relative humidity 10-15%
High temperature and high humidity (H / H) environment = temperature 30-35 ° C, relative humidity 80-85%

Figure 0006040471
Figure 0006040471

Figure 0006040471
Figure 0006040471

Figure 0006040471
Figure 0006040471

Figure 0006040471
Figure 0006040471

Figure 0006040471
Figure 0006040471

Figure 0006040471
Figure 0006040471

実施例1〜9のフェライト粒子の磁気特性、BET比表面積、帯電量、電気抵抗はいずれも良好で、ブレークダウン電圧も高いフェライトキャリア芯材であった。   The ferrite particles of Examples 1 to 9 were ferrite carrier core materials having good magnetic properties, BET specific surface area, charge amount, electrical resistance, and high breakdown voltage.

これに対し、比較例1のフェライト粒子は磁化が高かったものの抵抗が低く、フェライトキャリア芯材としては使用できないものであった。   In contrast, the ferrite particles of Comparative Example 1 were high in magnetization but low in resistance, and could not be used as a ferrite carrier core material.

比較例2のフェライト粒子は、飛散物磁化が低く、かつ抵抗も高くなりすぎ、フェライトキャリア芯材としては使用できないものであった。   The ferrite particles of Comparative Example 2 had a low scattered matter magnetization and an excessively high resistance, and could not be used as a ferrite carrier core material.

比較例3のフェライト粒子は、比較例1よりも抵抗は高かくなったものの磁化が下がり、フェライトキャリア芯材としては使用できないものであった。   Although the ferrite particles of Comparative Example 3 had higher resistance than Comparative Example 1, the magnetization decreased, and the ferrite particles could not be used as a ferrite carrier core material.

比較例4のフェライト粒子は、比較例3のフェライト粒子よりも抵抗は高かったが磁化が低く、フェライトキャリア芯材としては使用できないものであった。   The ferrite particles of Comparative Example 4 had higher resistance than the ferrite particles of Comparative Example 3, but had low magnetization, and could not be used as a ferrite carrier core material.

[実施例10]
実施例1で得られたフェライトキャリア芯材(フェライト粒子)に100重量部に一次平均粒径0.4μmのアクリル樹脂粉末を3重量部添加し、容積3LのV型混合機で10分間混合し、得られた混合物を240℃設定の熱風乾燥機に2時間入れて樹脂の溶融を行いフェライトキャリア芯材に樹脂被覆を行った。その後、凝集粒子を解砕し樹脂被覆フェライトキャリアを得た。
[Example 10]
3 parts by weight of an acrylic resin powder having a primary average particle size of 0.4 μm is added to 100 parts by weight of the ferrite carrier core material (ferrite particles) obtained in Example 1, and mixed for 10 minutes with a V-type mixer having a volume of 3 L. The obtained mixture was put in a hot air dryer set at 240 ° C. for 2 hours to melt the resin, and the ferrite carrier core material was coated with the resin. Thereafter, the aggregated particles were crushed to obtain a resin-coated ferrite carrier.

[実施例11]
実施例2で得られたフェライトキャリア芯材(フェライト粒子)を用いた以外は、実施例10と同様に樹脂被覆フェライトキャリアを得た。
[Example 11]
A resin-coated ferrite carrier was obtained in the same manner as in Example 10, except that the ferrite carrier core material (ferrite particles) obtained in Example 2 was used.

[実施例12]
実施例3で得られたフェライトキャリア芯材(フェライト粒子)を用いた以外は、実施例10と同様に樹脂被覆フェライトキャリアを得た。
[Example 12]
A resin-coated ferrite carrier was obtained in the same manner as in Example 10 except that the ferrite carrier core material (ferrite particles) obtained in Example 3 was used.

[実施例13]
実施例4で得られたフェライトキャリア芯材(フェライト粒子)を用いた以外は、実施例10と同様に樹脂被覆フェライトキャリアを得た。
[Example 13]
A resin-coated ferrite carrier was obtained in the same manner as in Example 10 except that the ferrite carrier core material (ferrite particles) obtained in Example 4 was used.

[実施例14]
実施例5で得られたフェライトキャリア芯材(フェライト粒子)を用いた以外は、実施例10と同様に樹脂被覆フェライトキャリアを得た。
[Example 14]
A resin-coated ferrite carrier was obtained in the same manner as in Example 10 except that the ferrite carrier core material (ferrite particles) obtained in Example 5 was used.

[実施例15]
実施例6で得られたフェライトキャリア芯材(フェライト粒子)を用いた以外は、実施例10と同様に樹脂被覆フェライトキャリアを得た。
[Example 15]
A resin-coated ferrite carrier was obtained in the same manner as in Example 10 except that the ferrite carrier core material (ferrite particles) obtained in Example 6 was used.

[実施例16]
実施例7で得られたフェライトキャリア芯材(フェライト粒子)を用いた以外は、実施例10と同様に樹脂被覆フェライトキャリアを得た。
[Example 16]
A resin-coated ferrite carrier was obtained in the same manner as in Example 10 except that the ferrite carrier core material (ferrite particles) obtained in Example 7 was used.

[実施例17]
実施例8で得られたフェライトキャリア芯材(フェライト粒子)を用いた以外は、実施例10と同様に樹脂被覆フェライトキャリアを得た。
[Example 17]
A resin-coated ferrite carrier was obtained in the same manner as in Example 10 except that the ferrite carrier core material (ferrite particles) obtained in Example 8 was used.

[実施例18]
実施例9で得られたフェライトキャリア芯材(フェライト粒子)を用いた以外は、実施例10と同様に樹脂被覆フェライトキャリアを得た。
[Example 18]
A resin-coated ferrite carrier was obtained in the same manner as in Example 10 except that the ferrite carrier core material (ferrite particles) obtained in Example 9 was used.

実施例10〜18の使用したフェライトキャリア芯材(フェライト粒子)、樹脂被覆の条件(被覆用樹脂、被覆量、混合方法、混合時間、硬化温度、硬化時間)及びキャリア帯電量を表7に示す。なお、帯電量の測定方法は、上述のフェライトキャリア芯材の測定方法と同様である。   Table 7 shows the ferrite carrier core material (ferrite particles) used in Examples 10 to 18, resin coating conditions (coating resin, coating amount, mixing method, mixing time, curing temperature, curing time) and carrier charge amount. . The method for measuring the charge amount is the same as the method for measuring the ferrite carrier core material described above.

Figure 0006040471
Figure 0006040471

表7の結果から明らかなように、実施例10〜18のフェライトキャリアは、各環境下での帯電性が良好であった。   As is clear from the results in Table 7, the ferrite carriers of Examples 10 to 18 had good chargeability in each environment.

本発明に係る電子写真現像剤用フェライトキャリア芯材は、適度な凹凸、強度及び抵抗や磁化を有し、かつ帯電性に優れ、特に高温高湿下での高帯電及び高抵抗を維持でき環境依存性が良好である。そのため、上記フェライトキャリア芯材に樹脂を被覆して得られるフェライトキャリアとトナーとからなる電子写真現像剤は、各環境下での帯電安定性にも優れる。また、本発明の製造方法によって、上記フェライトキャリア芯材及びフェライトキャリアが安定的に生産性をもって得られる。   The ferrite carrier core material for an electrophotographic developer according to the present invention has moderate unevenness, strength, resistance, and magnetization, and is excellent in chargeability, and particularly can maintain high charge and high resistance under high temperature and high humidity. Good dependency. Therefore, an electrophotographic developer composed of a ferrite carrier and a toner obtained by coating the ferrite carrier core material with a resin is excellent in charging stability in each environment. In addition, the ferrite carrier core material and the ferrite carrier can be stably obtained with productivity by the production method of the present invention.

従って、本発明は、特に高画質が要求されるフルカラー機並びに画像維持の信頼性及び耐久性の要求される高速機の分野に広く使用可能である。   Therefore, the present invention can be widely used in the field of full-color machines that particularly require high image quality and high-speed machines that require image maintenance reliability and durability.

Claims (6)

粒子表面近傍にFe及びMgを含有する複合酸化物粒子が固溶し、複合酸化物粒子の含有量が1.96〜10.7重量%であるフェライト粒子からなり、
当該フェライト粒子は粒子内部と粒子表面近傍とでFe及びMg含有量が異なることを特徴とする電子写真現像剤用フェライトキャリア芯材。
The composite oxide particles containing Fe and Mg are dissolved in the vicinity of the particle surface, and the composite oxide particles are composed of ferrite particles having a content of 1.96 to 10.7% by weight,
The ferrite particles for an electrophotographic developer ferrite carrier core material is Fe and Mg content at the grain inside and the grain near the surface, it characterized the different of Turkey.
上記複合酸化物粒子の結晶構造は、スピネル相及びコランダム構造を有する請求項1に記載の電子写真現像剤用フェライトキャリア芯材。   The ferrite carrier core material for an electrophotographic developer according to claim 1, wherein the crystal structure of the composite oxide particles has a spinel phase and a corundum structure. 上記複合酸化物粒子にTi及び/又はSrが含有される請求項1又は2に記載の電子写真現像剤用フェライトキャリア芯材。   The ferrite carrier core material for an electrophotographic developer according to claim 1 or 2, wherein the composite oxide particles contain Ti and / or Sr. 請求項1〜3のいずれかに記載のフェライトキャリア芯材の表面に樹脂を被覆してなる電子写真現像剤用フェライトキャリア。   The ferrite carrier for electrophotographic developers formed by coat | covering the resin on the surface of the ferrite carrier core material in any one of Claims 1-3. 請求項4に記載のフェライトキャリアとトナーとからなる電子写真現像剤。   An electrophotographic developer comprising the ferrite carrier according to claim 4 and a toner. 補給用現像剤として用いられる請求項5に記載の電子写真現像剤。   6. The electrophotographic developer according to claim 5, which is used as a replenishing developer.
JP2013004989A 2013-01-15 2013-01-15 Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier Active JP6040471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013004989A JP6040471B2 (en) 2013-01-15 2013-01-15 Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004989A JP6040471B2 (en) 2013-01-15 2013-01-15 Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier

Publications (2)

Publication Number Publication Date
JP2014137425A JP2014137425A (en) 2014-07-28
JP6040471B2 true JP6040471B2 (en) 2016-12-07

Family

ID=51414971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004989A Active JP6040471B2 (en) 2013-01-15 2013-01-15 Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier

Country Status (1)

Country Link
JP (1) JP6040471B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637330B2 (en) * 2016-02-22 2020-01-29 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
US10775711B2 (en) 2016-04-05 2020-09-15 Powdertech Co., Ltd. Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for manufacturing ferrite carrier core material for electrophotographic developer
WO2017175646A1 (en) 2016-04-05 2017-10-12 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089518A (en) * 1998-09-14 2000-03-31 Fuji Xerox Co Ltd Coated carrier for developing electrostatic latent image, electrostatic latent image developer and image forming method
JP2002214847A (en) * 2001-01-18 2002-07-31 Canon Inc Image forming method
JP4055448B2 (en) * 2002-03-27 2008-03-05 戸田工業株式会社 Spherical ferrite particles, production method thereof, and carrier for electrophotographic development comprising the spherical ferrite particles
JP3872024B2 (en) * 2003-02-07 2007-01-24 パウダーテック株式会社 Carrier core material, coated carrier, electrophotographic two-component developer and image forming method
JP2010181525A (en) * 2009-02-04 2010-08-19 Powdertech Co Ltd Method for manufacturing carrier core material for electrophotographic developer, and carrier core material obtained by the method
JP5348588B2 (en) * 2009-04-07 2013-11-20 パウダーテック株式会社 Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP5467016B2 (en) * 2010-08-30 2014-04-09 シャープ株式会社 Resin-coated carrier and method for producing resin-coated carrier

Also Published As

Publication number Publication date
JP2014137425A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5348588B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP5692766B1 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer using ferrite particles having outer shell structure, and electrophotographic developer using the ferrite carrier
JP5334251B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP5488910B2 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP5488890B2 (en) Porous ferrite core material for electrophotographic developer, resin-filled ferrite carrier, and electrophotographic developer using the ferrite carrier
JP5622151B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP6156626B2 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP5522446B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
JP5360701B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP5708038B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP3872025B2 (en) Carrier core material, coated carrier, electrophotographic two-component developer, and image forming method
JP6766134B2 (en) Method for manufacturing ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, ferrite carrier core material for electrophotographic developer and electrophotographic developer
JP5382522B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP5850331B2 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP5541598B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier for electrophotographic developer
JP5995048B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
WO2016121697A1 (en) Ferrite particles having outer shell structure
JP6465292B2 (en) Ferrite carrier core material for electrophotographic developer and method for producing the same
JP2016106262A (en) Electrophotographic developer ferrite carrier core material, ferrite carrier and manufacturing method of electrophotographic developer ferrite carrier core material, and ferrite carrier, and electrophotographic developer ferrite carrier core material using ferrite carrier
JP6040471B2 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP2013205614A (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier and method for producing the same, and electrophotographic developer using ferrite carrier
JP2012208446A (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer
WO2017175647A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer
WO2018181845A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, manufacturing method thereof, and electrophotographic developer using said ferrite carrier
JP5907420B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161018

R150 Certificate of patent or registration of utility model

Ref document number: 6040471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250