JP4946398B2 - 監視衛星 - Google Patents

監視衛星 Download PDF

Info

Publication number
JP4946398B2
JP4946398B2 JP2006324104A JP2006324104A JP4946398B2 JP 4946398 B2 JP4946398 B2 JP 4946398B2 JP 2006324104 A JP2006324104 A JP 2006324104A JP 2006324104 A JP2006324104 A JP 2006324104A JP 4946398 B2 JP4946398 B2 JP 4946398B2
Authority
JP
Japan
Prior art keywords
satellite
monitoring
satellites
infrared sensor
flies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006324104A
Other languages
English (en)
Other versions
JP2008137439A (ja
Inventor
久幸 迎
哲郎 山口
貴憲 末谷
稔久 松英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006324104A priority Critical patent/JP4946398B2/ja
Publication of JP2008137439A publication Critical patent/JP2008137439A/ja
Application granted granted Critical
Publication of JP4946398B2 publication Critical patent/JP4946398B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Relay Systems (AREA)

Description

この発明は、低軌道を周回し、地上の所定緯度の地域を観測する監視衛星に関するものである。
従来、静止地球軌道(GEO)に配置した少なくとも4機の衛星を用いて、極を除く地球の高解像度映像を収集する監視衛星システムが知られている(例えば、特許文献1参照)。この種の静止軌道衛星では、静止軌道からの観測を行うため、軌道高度36000kmの遠距離監視となり、搭載する撮像装置の感度が不足するという問題がある。
特表2003−507262号公報(図3)
一方、低軌道を周回する低軌道衛星(LEO)を用いて、地表面を観測する衛星システムが知られている(例えば、特許文献2、3参照)。この種の従来の衛星システムでは、軌道傾斜角が略0度以外の軌道を採用している。
特開平5−61963号公報(図1)
特開平6−14250号公報(図1)
特許文献2、3に示されるような従来の監視衛星は、地球全球のいかなる場所も監視できるよう配慮されている。その反面、常時全球監視を続けるためには、10機以上の多数の監視衛星が必要になるという課題があった。
また、従来の監視衛星を用いて、地上の災害監視や、地上から発射された飛翔体の探知や追尾も可能である。しかし、この場合には赤外センサを2軸ジンバルで支持して、赤外センサを指向制御する必要があった。このため、監視衛星に搭載される計算機において、複雑な演算が必要であった。
また、異なる軌道面を飛翔する同種の監視衛星に取得データを伝送する際に、データ授受する双方の監視衛星の送受信機を指向制御する必要があるという課題があった。
また、監視衛星が地上設備から離れた位置を航行中に、地上からの飛翔体の発射を探知した場合、その情報を地上設備や艦船、航空機等にデータ伝送するためには、データ中継するためのデータ中継衛星や飛行体等、別のデータ伝送手段が必要になるという課題があった。
この発明は上述のような課題を解決するためになされたものであり、少ない衛星機数で、地球全球面内における特定緯度の地域を網羅的に監視する監視衛星を得ることを目的とする。また、地上へのデータ伝送を容易に行うことのできる監視衛星を得ることを目的とする。
上記課題を解決するために、この発明に係る監視衛星は、赤外センサと、上記赤外センサが検知した信号を処理する計算機と、前後を飛翔する別の人工衛星との間でデータ授受を行う送受信機と、地上または飛行体にデータ伝送する送信機とを備え、軌動傾斜角略0度で赤道上空を飛翔し、かつ上記前後を飛翔する別の人工衛星が、何れも可視となる位置を飛翔することを特徴とする。
この発明に係る監視衛星によれば、常時監視するために必要となる衛星機数が少ないので、低コストで、地球全球面内における特定緯度の地域を網羅的に監視することを可能とする、という効果がある。
また、監視衛星の飛翔位置と姿勢角度が時事刻々変わる軌道ではないので、位置と角度の演算が容易となり、監視衛星に搭載する計算機の負担が小さくなるという効果がある。
また、複数の監視衛星の飛翔相対位置が変わらないので、複雑な送受信機を具備することなく、容易にデータ伝送が可能になるという効果がある。更に、全機がデータを共用できるという効果がある。
さらに、地上から発射される飛翔体の軌跡を探知、追尾した後、監視衛星から直接、地上設備にデータ伝送できるので、データ遅延ロスがなく、データ伝送を容易に実現できるという効果がある。
以下、本発明に係る監視衛星の実施の形態を、図面に基づいて説明する。
なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、実施の形態1による監視衛星の構成を示す図である。図2は、監視衛星1に搭載された赤外センサ2の構成を示す図である。図3は、監視衛星1の軌道配置を示す図である。
図1乃至3において、監視衛星1は、衛星本体6に、赤外センサ2と、計算機3と、送受信機4と、送信機5を備えた人工衛星である。また、監視衛星1は、衛星本体6に、太陽電池パドル7と、太陽電池パドル7を回転させる回転軸8が設けられる。監視衛星1は、地球10の赤道上空における、高度1000〜2000kmの低軌道(以下、衛星軌道)60上を周回する低軌道周回衛星(LEO)である。監視衛星1は、軌道傾斜角が概ね0度で衛星軌道60上を飛翔する。赤外センサ2は、複数の光学レンズ乃至ミラーからなる光学系21と、撮像素子22と、信号処理器23を備える。撮像素子22は、光学系21の焦点付近に配置された1次元赤外線検出器または2次元赤外線検出器から成る。この赤外線検出器は1次元または2次元配列された複数の熱検知素子から構成される。
なお、地上もしくは海上から発射される飛翔体は、ピーク温度が略2000K〜3000Kの高温プルームを噴射する。また、このような飛翔体は、高温プルームの噴射終了後に弾道飛行する際、空気摩擦により略300Kの温度となる。このため、撮像素子22の赤外線検出器として、概略2000Kの温度領域に検知感度の高い短波長赤外や中波長赤外用検出器、及び略300Kに検知感度の高い長波長赤外用検出器から適宜組合せて利用することにより、このような飛翔体の探知が可能となる。
赤外センサ2は、監視衛星1から、地上における状態変化の発生有無を検知する。例えば、赤外センサ2は、地上もしくは海上から発射された飛翔体の高温プルームを探知し、飛翔体の存在を検知する。また、赤外センサ2は、飛翔体の存在検知に応じて、飛翔体の画像追尾を行う。なお、画像追尾時は、飛翔体が発する高温プルームの噴射を検知するだけでなく、噴射終了後に弾道飛行中の飛翔体温度を検知することによって、継続して追尾を続けることが可能である。
監視衛星1には、赤外センサ2の視野方向を2次元に変更する2軸ジンバル9を搭載しても良い。この場合、赤外センサ2は、2軸ジンバル9の周りで視線方向を変更し、1次元走査または2次元走査を行う。図2に例示した赤外センサ2は、1次元走査により、特定の瞬間に撮像した1次元の1ライン分の画像19をスキャン方向に移動させ、スキャン後画像12を得る。これによって、赤外センサ2は2次元の熱画像を得る。また、撮像素子22に2次元赤外線検出器を用いる場合は、赤外センサ2は撮像素子22の出力信号から直接2次元の熱画像を得ることができる。
勿論、撮像素子22に2次元赤外線検出器を用いて赤外センサ2を監視衛星1に直接固定し、2軸ジンバル9を搭載しない構成であっても良い。この場合、2軸ジンバル9を制御するために必要な複雑な制御アルゴリズムが不要となる。
信号処理器23は、撮像素子22で検知された2次元の熱画像をディジタル画像信号に変換し、ノイズ除去処理、輝度補正処理、高輝度領域の抽出処理、2値化処理、クラッタ除去処理等の各種赤外線画像処理を施す。また、画像処理の施されたディジタル画像信号について、連続した異なるサンプリング時間に撮像された画像間の差分画像を得て、得られた差分画像から目標画像を抽出する目標抽出処理を行う。この際、差分画像について、輝度が所定値以上となる高輝度領域の画像から目標画像を得て、目標の存在や目標画像の輝度や目標画像における画素領域の位置を検知する。この画素領域の位置は、画素領域が多数画素に跨る場合には、検知感度で重み付けした中心位置の推定値を求めることによって得ることができる。
また、差分画像から検知された目標画像について、全画像内での目標画像における画素領域の位置や目標画像における画素領域の位置変化に基づいて、目標画像を追尾する。この画像追尾においては、目標画像が赤外センサ2の視野中心(画像中心)に存在し続けるように追尾してもいいし、視野範囲から逸脱しない範囲で間欠的に目標画像を追尾してもよい。
計算機3は、監視衛星1の姿勢を変化させる姿勢制御を行うことにより、赤外センサ2の視野中心を1次元または2次元走査することができる。また、計算機3は、赤外センサ2が検知した目標画像の信号を解析して、例えば飛翔体の飛翔位置や、目標画像の位置を取得した時刻を演算する。さらに、計算機3は、赤外センサ2が取得した目標画像の探知有無、目標画像の輝度を示す情報(探知情報)と、目標画像における画素領域の位置情報と位置情報を得た時刻を含む追尾情報とを、送信機5を介して地上局50にデータ伝送する。地上局50は、例えば地上設備51や、艦船52や、航空機53上に設けられる。地上局50では、軌道計算を行うことによって、衛星軌道60上における、監視衛星1の正確な絶対位置を常に把握している。この際、監視衛星1にGPS受信機を設け、補助的に位置情報の補正を行っても良い。地上局50では、監視衛星1の絶対位置と、監視衛星1によって得られた追尾情報に基づいて、目標画像に対応した探知目標の絶対位置や速度を求める。同時に、地上局50は所有する通信手段を用いて、地上の他の機関に対して、探知目標の発現を知らせる警報を発するとともに、探知目標の絶対位置や速度の情報を伝達する。
また、計算機3は、赤外センサ2が取得した目標画像の探知情報と、目標画像の位置情報と位置情報を得た時刻を含む追尾情報と、目標画像を取得した監視衛星1を特定する識別情報(以下、衛星ID)を、送受信機4を媒介して、隣接する別の監視衛星1に対して順次データ伝送する。すなわち、隣接する監視衛星1間では、相互に、目標画像の探知情報と追尾情報と衛星IDを含むデータの授受が繰り返し行われ、複数の監視衛星1間で数珠繋ぎにデータ伝送が行われる。監視衛星1から地上局50が可視でない場合、送受信機4を介して別の監視衛星1に伝送されたデータが、別の監視衛星1の送信機5を媒介して、地上局50に伝送される。図1の例では、図の右端の監視衛星1によって得られた目標画像が、送受信機4を媒介して、図の左端の監視衛星1に伝送される。また、図の左端の監視衛星1は、送信機5を媒介して、地上局50との間でデータ伝送を行い、取得した目標画像の探知情報と追尾情報と衛星IDを含むデータを送信する。地上局50では、衛星IDに基づいて、探知情報及び追尾情報のデータを取得した監視衛星1を特定できるとともに、このデータ取得した監視衛星1の絶対位置を把握することができる。
なお、従来の低軌道周回衛星では、別の監視衛星に少ないデータ量で、地上から発射された飛翔体の弾道情報を伝送するためには、2次元ジンバルで指向制御したセンサ視線方向や衛星軌道位置などをオンボードで自動計算処理して、飛翔体の弾道位置を計算する必要があった。これに加えて、軌道傾斜角が0度以外の軌道である故、時々刻々衛星が飛翔する緯度経度が変化し、発射探知した飛翔体弾道の位置計算が複雑になり、高速かつ大容量の計算機を必要としていた。
これに対し、この実施の形態1では、監視衛星1が赤道上空を航行するとともに、相互可視となるように、低軌道の地球周回軌道上に所定間隔で複数機の監視衛星を配置し、隣接する監視衛星間で順次データ伝送を行っている。これによって、各監視衛星1の周回に伴い、地上局50から可視となる監視衛星1が絶えることなく、順次地上局50の上空を航行するので、監視衛星から地上局50へのデータ伝送が比較的容易になる。また、監視衛星1が飛翔する緯度経度が変化しないので、飛翔体弾道の位置計算が極めて容易になる。
監視衛星1に搭載される赤外センサ2は、衛星本体6に対して傾斜して取付けられる。赤外センサ2は、衛星軌道60上で、地球10に対して予め設定された所定の視野方向11を指向する。例えば、緯度θに監視対象地域が位置する場合、監視対象地域が衛星から見て水平線になるようにし、赤外センサ2が地平線上で真横から監視対象地域を捉えるように、監視衛星1の軌道高度と赤外センサ2の指向方向が決定される。図3の例で説明すると、赤外センサ2は軌道高度Hの位置に配置され、赤外センサ2の視野方向は(90°−θ)となるように設定される。このとき、地球の半径Rを用いて、θ=cos−1R/(R+H)が成り立つ。この際、赤外センサ2は、その視野内に常に深宇宙を捉えるので、地球を直視した場合に比べて、地表を背景とするクラッタが低減される。
なお、従来の低軌道周回衛星では、センサから飛翔体の弾道を監視する際の背景が地表面になる場合に、背景クラッタ信号に妨害されて飛翔体を見失う可能性が高かった。この実施の形態1の監視衛星1では、赤外センサ2が地平線上で真横から監視対象地域を捉えるように視線方向を設定しているので、背景が深宇宙となり、従来の低軌道周回衛星を用いた地球観測時に生じるクラッタの問題を、解決することができる。
図4は、監視衛星1が赤道上空を周回する際の、北極から見た太陽電池パドル7の指向方向を示す図である。太陽電池パドル7はパドル平面を常に太陽に正対させ、太陽光が太陽電池パドル7に垂直に入射する方向を向くように、太陽電池パドル7の指向方向を制御する。図の例では、太陽電池パドル7は南北方向に展開し、南北軸周りに太陽を指向しながら、地球10の周囲を周回する。また、赤外センサ2は、視線方向が常に地球の所定緯度方向を向くように姿勢制御される。図の例では、赤外センサ2の視線方向が、北極から見てあたかも地球中心方向を向くように図示している。
監視衛星1は地球センサ、太陽センサ、スターセンサ等の姿勢角検出センサを搭載する。計算機3は、姿勢角検出センサにより検出される太陽の方向、地球の方向、衛星の絶対角度等に基づいて、赤外センサ2や太陽電池パドル7が所定方向を向くように、所定の制御処理を行う。このように、地球の陰になり太陽光が入射しない僅かな不可視領域65を除き、太陽が可視となる衛星軌道60上の大半の領域において、太陽電池パドル7が太陽光を得ることが可能となる。
図5は、衛星軌道60を飛翔する複数の監視衛星1の軌道配置を示す図である。図5(a)は北極から見た監視衛星1の軌道配置例を示し、図5(b)は、北緯40度線における各監視衛星1のセンサ視野の配置例を説明する図である。また、図6は、監視衛星1の軌道と所定緯度から発射される飛翔体の弾道100との関係を示す図であり、図6(a)は赤道方向から見た図、図6(b)は監視衛星1の視線方向から見た弾道100の軌跡を示す図である。
図5の例では、監視衛星1は衛星機数が全部で6機であり、地球の中心から見て60度の等間隔で、衛星軌道60の周囲に配置される。符号100は、地上から発射される飛翔体の弾道を示す。図に示すように、赤外センサ2が有するセンサ視野が、特定の緯度(例えば、北緯35度乃至40度線)において重なりが小さくなるように、各監視衛星1が適切な視野を有して配置される。このように、各監視衛星1を赤道上空の所定位置に配備すれば、監視衛星間の通信視野を十分に確保できるとともに、センサ視野が所定緯度61上(例えば、北緯35度乃至40度線上)を網羅することが可能となる。
図6の例では、監視衛星1を赤道75上空に6機配備し、赤外センサ2の視線方向が、所定緯度61(例えば北緯35度乃至40度線)で地球に接する水平線となるように配置することで、所定緯度の発射地点101から発射された飛翔体が、着地地点102に着地するまでの弾道軌跡100を、赤外センサ2の視野内に網羅的に捉えることが可能となることを示す。
図7は、少なくとも5機以上の監視衛星1を衛星軌道60上に配備する場合の、衛星軌道高度Hと観測緯度θとセンサ視野角φと衛星機数Nの関係を例示する計算表である。図には、例1〜例10の10種の計算例を示している。例1〜例6は、監視衛星1の衛星機数を6機とした場合であって、観測緯度を30度〜39度の間で変化させた場合の配置例を示す。例7は監視衛星1の衛星機数を5機とした場合の配置例を示す。例8は監視衛星1の衛星機数を7機とした場合の例を示す。例9、10は監視衛星1の衛星機数を8機とした場合の例を示す。
例2に示すように、例えば観測緯度が35度で、かつ衛星機数が少なくとも6機以上の場合、衛星軌道高度(赤道上空)略1400kmにおいて、北緯35度上空を隈なく監視するのに十分なセンサ視野角61度以上を確保できる。同時に、衛星間通信に必要な衛星視野を最大で71度確保することができ、十分な衛星間通信視野を得ることができる。
また、例7に示すように、例えば観測緯度が40度で、かつ衛星機数が少なくとも5機以上の場合、衛星軌道高度(赤道上空)略1900kmにおいて、北緯40度上空を隈なく監視するのに十分なセンサ視野角60度以上を確保できる。同時に、衛星間通信に必要な衛星視野が最大で79度確保することができ、十分な衛星間通信視野を得ることができる。
次に、実施の形態1に係る他の態様について説明する。
図8は、2つの監視衛星1を用いてステレオ視を行う例を示す図である。また、図7の例10に、この場合の衛星軌道高度と観測緯度とセンサ視野角と衛星機数の関係を例示する。図に示すように、少なくとも8機以上の監視衛星を、衛星軌道高度(赤道上空)略1900kmに配備することによって、最大で79度の衛星間通信視野を確保することが可能となる。また、センサ視野角を70度以上に設定することにより、北緯40度線上を隈なく網羅可能であり、かつ図示のように、同時に2機以上の観測視野がオーバーラップするので、2機の監視衛星1を用いたステレオ視が可能となる。
以上説明した通り、この実施の形態1による監視衛星は、複数の人工衛星、上記人工衛星に搭載された赤外センサ、上記赤外センサの視野方向を2次元に変更する2軸ジンバル、上記赤外センサが検知した信号を解析してミサイルの飛翔位置と時刻を解析する計算機、上記人工衛星と同様の軌道を飛翔する他の人工衛星との間でデータ授受をする送受信機、地上設備乃至艦船や航空機に対してデータ伝送する送信機とにより構成される監視衛星において、上記人工衛星が機動傾斜角略0度で赤道上空を飛翔しており、かつ前後を飛翔する別の人工衛星との間で、何れも相互に可視となる通信可能な位置関係を維持して飛翔するものである。この際、上記赤外センサは、地上から発射された飛翔体が噴射する高温プルーム乃至噴射後に弾道飛行する際の飛翔体温度を、探知及び追尾し、上記計算機は、上記赤外センサが検知した信号を解析して上記飛翔体の飛翔位置と時刻を解析する。
これによって、常時監視するために必要となる衛星機数を少くすることができるので、低軌道の地球周回軌道上を航行する低コストな監視衛星を得ることができる、という効果がある。また衛星の飛翔位置と姿勢角度が時事刻々変わる軌道ではないので、位置と角度の演算が容易となり、計算機の負担が小さくなるという効果がある。
また、飛翔体発射の探知情報乃至追尾情報を、後続の監視衛星に伝送する動作を軌道上全ての監視衛星で繰り返し実施し、所定地域の上空を飛翔する監視衛星から地上や飛行体に対してデータ伝送する。
これによって、複数の監視衛星の飛翔相対位置が変わらないので、複雑な送受信機を具備することなく、容易にデータ伝送が可能になるという効果がある。更に全機がデータを共用できるという効果がある。例えば、後続の監視衛星に対して探知目標の位置や移動速度を伝達することにより、目標を追尾中の監視衛星が目標から遠ざかり、後続の監視衛星が続いて目標上空に到達した場合であっても、後続の監視衛星が即座に目標を追尾することが可能となる。また、地上から発射される飛翔体の存在を探知し、その弾道を追尾した衛星が、直接国内地上設備にデータ伝送できるので、データ遅延ロスなく、地上局に容易にデータ伝送できるという効果がある。
また、軌道高度約1400kmを飛翔し、北緯35度近傍で概略東西方向に飛翔する飛翔体の弾道を追尾する。
これによって、所定緯度地域から発射される飛翔体の弾道を地平線上で真横から捉えるため、背景が深宇宙なので赤外センサのS/Nが高い状態で監視可能となり、追尾に失敗する可能性が低くなるという効果がある。
また、軌道高度約1900kmを飛翔し、北緯40度近傍で概略東西方向に飛翔する飛翔体の弾道を追尾する。
これによって、北緯35度近傍に着弾する可能性の高い飛翔体の弾道を、地平線上で真横から捉えるため、背景が深宇宙なので赤外センサのS/Nが高い状態で監視可能となり、追尾に失敗する可能性が低くなるという効果がある。
また、衛星機数6機以上かつセンサ視野角61度以上に設定する。
これによって、衛星直下に対して北向きに55度乃至50度傾けた固定視野の赤外センサで観測可能となるため、2次元ジンバルが不要になるという効果がある。更にセンサ視線ベクトルの補正が不要となるため、データ処理の演算量が少なくなり計算機の負担が小さくできるという効果がある。
また、監視衛星を、衛星機数5機以上かつセンサ視野角60度以上に設定する。
これによって、常時監視するために必要となる衛星機数が6機乃至5機と少ないので、従来の低軌道周回衛星と比較して半分以下の低コストで監視衛星を実現可能になるという効果がある。
勿論、地上もしくは海上から発射される飛翔体の発射緯度と着弾予想緯度を勘案して、軌道高度略1400km乃至1900kmの間で、同様の効果を期待して、適宜軌道高度を設定可能であることは、言うまでもない。
また、監視対象緯度上のいかなる地点も、2機以上の監視衛星で同時に監視できるように、衛星機数乃至赤外センサ観測視野範囲を設定する。
これによって、ステレオ視により2方向から同時に空中三角測量できるので、飛翔体の位置及び飛翔方向を精度よく計測可能となるという効果がある。
さらに、軌道高度約1900kmを飛翔し、北緯40度近傍で概略東西方向に飛翔する飛翔体の弾道を追尾する監視衛星であって、衛星機数8機以上かつセンサ視野角70度以上に設定する。
これによって、衛星間通信視野が確保可能であり、かつセンサ視野が北緯40度線上を隈なく網羅可能で、なおかつ同時に2機以上の観測視野がオーバーラップするので、ステレオ視が可能となる。
この発明の実施の形態1による、監視衛星の構成を示す図である。 この発明の実施の形態1による、監視衛星に搭載された赤外センサの構成を示す図である。 この発明の実施の形態1による、監視衛星の軌道配置を示す図である。 この発明の実施の形態1による、監視衛星が赤道上空を周回する際の、北極から見た太陽電池パドルの指向方向を示す図である。 衛星軌道を飛翔する監視衛星の軌道配置を示す図である。 監視衛星の軌道と所定緯度から発射される飛翔体の弾道軌跡との関係を示す図である。 衛星軌道高度と観測緯度とセンサ視野角と衛星機数の関係を示す計算例である。 2つの監視衛星でステレオ視を行う場合の軌道配置例を示す図である。
符号の説明
1 監視衛星、2 赤外センサ、3 計算機、4 送受信機、5 送信機、7 太陽電池パドル、10 地球、60 衛星軌道、70 衛星間データ通信、80 センサ視野。

Claims (9)

  1. 所定緯度で地球に接する水平線を視野に捉える、または地球の所定緯度の地域にて地平線上で真横から監視対象を視野に捉えるとともに深宇宙を視野内に捉えるように配置された赤外センサと、
    上記赤外センサの検知信号を処理する計算機と、
    前後を飛翔する別の人工衛星との間でデータ授受を行う送受信機と、
    地上または飛行体にデータ伝送する送信機と
    を備え、
    軌動傾斜角略0度で赤道上空を飛翔し、かつ上記前後を飛翔する別の人工衛星が、何れも可視となる位置を飛翔することを特徴とする監視衛星。
  2. 赤外センサと、
    上記赤外センサの検知信号を処理する計算機と、
    前後を飛翔する別の人工衛星との間でデータ授受を行う送受信機と、
    地上または飛行体にデータ伝送する送信機と
    を備え、
    軌動傾斜角略0度で赤道上空を飛翔し、かつ上記前後を飛翔する別の人工衛星が、何れも可視となる位置を飛翔する監視衛星であって、
    監視対象緯度上のいかなる地点も、2機以上の監視衛星で同時に監視できるように、上記監視衛星の衛星機数乃至赤外センサ観測視野範囲が設定されたことを特徴とする監視衛星。
  3. 上記赤外センサは、地上から発射された飛翔体が噴射する高温プルームもしくは飛翔体温度を探知及び追尾し、
    上記計算機は、上記赤外センサの検知信号に基づいて、上記飛翔体の飛翔位置と時刻を演算することを特徴とした請求項1または請求項2に記載の監視衛星。
  4. 飛翔体発射の探知情報乃至追尾情報を、後続の監視衛星に伝送する動作を軌道上全ての監視衛星で繰り返し実施し、所定地域の上空を飛翔する監視衛星から地上や飛行体に対してデータ伝送することを特徴とする請求項1から請求項3の何れか1項に記載の監視衛星。
  5. 軌道高度約1400kmを飛翔し、上記赤外センサは、北緯35度近傍で概略東西方向に飛翔する飛翔体の弾道を追尾する請求項3に記載の監視衛星。
  6. 軌道高度約1900kmを飛翔し、上記赤外センサは、北緯40度近傍で概略東西方向に飛翔する飛翔体の弾道を追尾する請求項3に記載の監視衛星。
  7. 衛星機数6機以上かつセンサ視野角61度以上に設定したことを特徴とする請求項5に記載の監視衛星。
  8. 衛星機数5機以上かつセンサ視野角60度以上に設定した請求項6に記載の監視衛星。
  9. 軌道高度約1900kmを飛翔し、北緯40度近傍で概略東西方向に飛翔する飛翔体の弾道を追尾するとともに、衛星機数8機以上かつセンサ視野角70度以上に設定した請求項2に記載の監視衛星。
JP2006324104A 2006-11-30 2006-11-30 監視衛星 Expired - Fee Related JP4946398B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324104A JP4946398B2 (ja) 2006-11-30 2006-11-30 監視衛星

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324104A JP4946398B2 (ja) 2006-11-30 2006-11-30 監視衛星

Publications (2)

Publication Number Publication Date
JP2008137439A JP2008137439A (ja) 2008-06-19
JP4946398B2 true JP4946398B2 (ja) 2012-06-06

Family

ID=39599382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324104A Expired - Fee Related JP4946398B2 (ja) 2006-11-30 2006-11-30 監視衛星

Country Status (1)

Country Link
JP (1) JP4946398B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172182A1 (ja) * 2020-02-26 2021-09-02 三菱電機株式会社 衛星コンステレーション、地上設備および飛翔体追跡システム

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235848B2 (ja) * 2009-11-26 2013-07-10 三菱電機株式会社 軌道推定システム
JPWO2017175696A1 (ja) * 2016-04-06 2019-03-28 日本電気株式会社 Leo衛星システム
US9722692B1 (en) * 2016-10-19 2017-08-01 Vector Launch Inc. Statefulness among clustered satellite platforms
JP7262369B2 (ja) * 2019-10-29 2023-04-21 三菱電機株式会社 衛星コンステレーション
US20240025564A1 (en) * 2020-09-28 2024-01-25 Mitsubishi Electric Corporation Monitoring system, monitoring satellite, and communication satellite
JP7395023B2 (ja) * 2020-12-22 2023-12-08 三菱電機株式会社 衛星コンステレーション、飛翔体監視システム、傾斜軌道衛星システム、傾斜軌道衛星およびハイブリッドコンステレーション
JP7418365B2 (ja) * 2021-01-08 2024-01-19 三菱電機株式会社 衛星コンステレーション、地球側制御設備及び人工衛星
JP7394801B2 (ja) * 2021-02-19 2023-12-08 三菱電機株式会社 滑空飛翔体追跡方法、飛翔体追跡システム、飛翔体対処システム、および、地上システム
US20240109674A1 (en) * 2021-02-19 2024-04-04 Mitsubishi Electric Corporation Flying object coping system, surveillance ground center, coping ground center, communication route search device, flight path prediction device, and coping asset selection device
JP7394802B2 (ja) * 2021-02-19 2023-12-08 三菱電機株式会社 滑空飛翔体識別方法、飛翔体追跡システム、飛翔体対処システム、および、地上システム
JPWO2022176893A1 (ja) * 2021-02-19 2022-08-25
JP7446251B2 (ja) * 2021-02-19 2024-03-08 三菱電機株式会社 衛星コンステレーションシステムおよび衛星コンステレーション
WO2022176895A1 (ja) * 2021-02-19 2022-08-25 三菱電機株式会社 通信ルート探索方法、地上システム、監視衛星コンステレーション、通信衛星コンステレーション、飛翔体対処システム、統合データライブラリ、衛星及び衛星コンステレーション
WO2022176890A1 (ja) * 2021-02-19 2022-08-25 三菱電機株式会社 飛翔体対処システム、防衛情報統合センター、通信ルート探索装置、飛翔経路予測装置、対処アセット選択装置、赤道上空衛星システム、極軌道衛星システムおよび監視衛星
US20240092507A1 (en) 2021-02-19 2024-03-21 Mitsubishi Electric Corporation Flying object coping system, monitoring ground center, communication route search device, flight path prediction device, polar orbit satellite system, polar orbit satellite, inclined orbit satellite system, and inclined orbit satellite
US20240101282A1 (en) * 2021-02-19 2024-03-28 Mitsubishi Electric Corporation Flying object coping system, satellite unified ordering center, communication route search device, flight path prediction device, above-equator satellite system, above-equator satellite, inclined orbit satellite system, inclined orbit satellite, unified data library, and satellite constellation
JP7418367B2 (ja) * 2021-02-19 2024-01-19 三菱電機株式会社 弾道飛翔体追跡方法、飛翔体追跡システム、飛翔体対処システムおよび地上システム
JP7407764B2 (ja) * 2021-04-27 2024-01-04 三菱電機株式会社 飛翔体追跡システム、飛翔経路予測方法、監視衛星、および、地上設備
JP7499957B2 (ja) 2021-04-27 2024-06-14 三菱電機株式会社 飛翔体監視システム、通信衛星、監視衛星および飛翔体監視方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257526B1 (en) * 1998-11-09 2001-07-10 Hughes Electronics Corporation Satellite system and method of deploying same
JP2002354462A (ja) * 2001-05-23 2002-12-06 Mitsubishi Electric Corp 画像撮影・データ伝送システム
JP2006258758A (ja) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp 目標追尾装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172182A1 (ja) * 2020-02-26 2021-09-02 三菱電機株式会社 衛星コンステレーション、地上設備および飛翔体追跡システム
JPWO2021172182A1 (ja) * 2020-02-26 2021-09-02
JP7270831B2 (ja) 2020-02-26 2023-05-10 三菱電機株式会社 衛星コンステレーション、地上設備および飛翔体追跡システム

Also Published As

Publication number Publication date
JP2008137439A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4946398B2 (ja) 監視衛星
EP3376248B1 (en) Celestial navigation using laser communication system
US6281970B1 (en) Airborne IR fire surveillance system providing firespot geopositioning
US9284074B2 (en) Method, satellite, and a system or an arrangement with at least one satellite for detecting natural or artificial objects, and the use thereof in the execution of said method
CN108614273B (zh) 一种机载双波段光电广域侦察与跟踪装置及方法
US11079234B2 (en) High precision—automated celestial navigation system
JP2783522B2 (ja) 衛星焦点平面アレイイメージ装置
AU2018334389B2 (en) Offload adjustment for satellite image diversity
US20110291918A1 (en) Enhancing Vision Using An Array Of Sensor Modules
JP2008107941A (ja) 監視装置
Yunpeng et al. Review on strategies of space-based optical space situational awareness
US8862398B2 (en) Tracking target objects orbiting earth using satellite-based telescopes
JP7434649B2 (ja) 衛星情報伝送システム
JP2016113145A (ja) 人工衛星によって放射されたレーザービームによるセンサーの回転位置の決定
JP6482855B2 (ja) 監視システム
US5927652A (en) System for observation of geostationary satellites, use of a system of this kind and corresponding observation methods
US7279675B2 (en) Floating periscope
Iyengar et al. The Goodrich 3rd generation DB-110 system: operational on tactical and unmanned aircraft
RU82678U1 (ru) Система наблюдения за космическими объектами
RU2395319C2 (ru) Способ мониторинга пожарной обстановки
US9204104B1 (en) Imaging and sensing assembly, system and method
Grollet et al. ARTEMIS: Staring IRST for the FREMM frigate
EP1048928A1 (en) Spaceborne hot temperature event (HTE) detection arrangement and multi-satellite HTE detection system
Fujita et al. Optical tracking and spectroscopic measurement of Hayabusa capsule reentry fireball
JP7156454B1 (ja) 監視システム、監視衛星、監視方法、および監視プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees