JP4945016B1 - Method for producing positive electrode current collector for non-aqueous electrolyte secondary battery and method for producing positive electrode for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode current collector for non-aqueous electrolyte secondary battery and method for producing positive electrode for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4945016B1
JP4945016B1 JP2012502042A JP2012502042A JP4945016B1 JP 4945016 B1 JP4945016 B1 JP 4945016B1 JP 2012502042 A JP2012502042 A JP 2012502042A JP 2012502042 A JP2012502042 A JP 2012502042A JP 4945016 B1 JP4945016 B1 JP 4945016B1
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
electrolyte secondary
secondary battery
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012502042A
Other languages
Japanese (ja)
Other versions
JPWO2012063740A1 (en
Inventor
大作 秋山
輝和 石田
勝 高橋
紀子 矢熊
亮 大串
友香里 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEC Co Ltd
Original Assignee
MEC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEC Co Ltd filed Critical MEC Co Ltd
Priority to JP2012502042A priority Critical patent/JP4945016B1/en
Application granted granted Critical
Publication of JP4945016B1 publication Critical patent/JP4945016B1/en
Publication of JPWO2012063740A1 publication Critical patent/JPWO2012063740A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

活物質と集電体との間の電子伝導性を向上させることができる非水電解質二次電池用正極集電体の製造方法と、非水電解質二次電池用正極の製造方法を提供する。
本発明の非水電解質二次電池用正極集電体の製造方法は、アルミニウム製集電基材の表面をエッチング剤によって粗化処理する非水電解質二次電池用正極集電体の製造方法であって、前記エッチング剤が、アルカリ源と両性金属イオンとを含むアルカリ水溶液系エッチング剤、及び第二鉄イオン源と第二銅イオン源とマンガンイオン源と無機酸とを含む第二鉄イオン水溶液系エッチング剤から選ばれる一種以上であることを特徴とする。
【選択図】図3
Provided are a method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery and a method for producing a positive electrode for a non-aqueous electrolyte secondary battery that can improve the electron conductivity between the active material and the current collector.
The method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery according to the present invention is a method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery in which the surface of an aluminum current collecting base material is roughened with an etching agent. The etching agent is an alkaline aqueous etching agent containing an alkali source and amphoteric metal ions, and a ferric ion aqueous solution containing a ferric ion source, a cupric ion source, a manganese ion source, and an inorganic acid. It is 1 type or more chosen from a system type etching agent.
[Selection] Figure 3

Description

本発明は、リチウムイオン二次電池等の非水電解質二次電池に用いられる正極集電体の製造方法、及び正極の製造方法に関する。   The present invention relates to a method for producing a positive electrode current collector used in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and a method for producing a positive electrode.

非水電解質二次電池は、重負荷放電に耐え、充電による繰り返し使用が可能なことからポータブル用の電源として携帯電話、ラップトップコンピュータ等の様々な電子機器に用いられている。これら電子機器の小型化・軽量化が次々と実現されているのに伴い、ポータブル用の電源としての非水電解質二次電池に対しても、更なる小型化・軽量化・高エネルギー密度化の要求が高まってきている。   Nonaqueous electrolyte secondary batteries are used in various electronic devices such as mobile phones and laptop computers as portable power sources because they can withstand heavy load discharge and can be repeatedly used by charging. As these electronic devices are being made smaller and lighter one after another, non-aqueous electrolyte secondary batteries as portable power sources will be further reduced in size, weight, and energy density. There is an increasing demand.

また、近年、石油資源の高騰、国際的な地球環境保護運動の高まりを背景として、電気自動車、ハイブリッド自動車、燃料電池自動車などが注目されており、その一部が実用化されている。これらの駆動システムには、補助用電源等として二次電池が不可欠であり、しかも自動車の急発進・急加速に対応できる高出力な二次電池が望まれている。このような背景から、二次電池の中で最もエネルギー密度が高く、かつ高出力を発現できる非水電解質二次電池が有望視されている。   In recent years, electric vehicles, hybrid vehicles, fuel cell vehicles, and the like have attracted attention due to soaring petroleum resources and the increasing global environmental protection movement, and some of them have been put into practical use. In these drive systems, a secondary battery is indispensable as an auxiliary power source and the like, and a high-power secondary battery that can cope with sudden start / acceleration of an automobile is desired. From such a background, non-aqueous electrolyte secondary batteries that have the highest energy density among the secondary batteries and are capable of expressing high output are promising.

これらの要求に応える非水電解質二次電池の中でも、とりわけリチウムイオン二次電池は、高いエネルギー密度が得られるために広く用いられ、市場も著しく成長している。   Among non-aqueous electrolyte secondary batteries that meet these requirements, lithium ion secondary batteries, in particular, are widely used because of their high energy density, and the market is growing significantly.

リチウムイオン二次電池の正極は、通常、アルミニウム等からなる集電体上に、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、リチウム鉄酸化物、リン酸鉄リチウム等のリチウム含有遷移金属化合物を含む活物質層を形成して得られる。例えば、下記特許文献1には、充放電に伴う活物質の膨張収縮などにより活物質と集電体の界面の密着性が悪化することを防止するため、集電体表面を塩酸中で陽極酸化して粗化した後、該粗化面に活物質層を形成する正極の製造方法が記載されている。   The positive electrode of a lithium ion secondary battery usually has a lithium-containing transition such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium iron oxide, or lithium iron phosphate on a current collector made of aluminum or the like. It is obtained by forming an active material layer containing a metal compound. For example, in Patent Document 1 below, the surface of the current collector is anodized in hydrochloric acid in order to prevent deterioration of the adhesion at the interface between the active material and the current collector due to expansion and contraction of the active material due to charge and discharge. And a method for producing a positive electrode in which an active material layer is formed on the roughened surface after roughening.

特開2008−210564号公報JP 2008-210564 A

しかし、従来の正極の製造方法では、活物質と集電体との間の電子伝導性の向上が困難であることが本発明者等の検討により判明した。   However, the inventors have found that it is difficult to improve the electron conductivity between the active material and the current collector in the conventional positive electrode manufacturing method.

本発明は、上記実情に鑑みてなされたものであり、活物質と集電体との間の電子伝導性を向上させることができる非水電解質二次電池用正極集電体の製造方法と、非水電解質二次電池用正極の製造方法を提供する。   The present invention has been made in view of the above circumstances, and a method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery capable of improving electronic conductivity between an active material and a current collector, A method for producing a positive electrode for a non-aqueous electrolyte secondary battery is provided.

本発明の非水電解質二次電池用正極集電体の製造方法は、アルミニウム製集電基材の表面をエッチング剤によって粗化処理する非水電解質二次電池用正極集電体の製造方法であって、
前記エッチング剤が、アルカリ源と両性金属イオンとを含むアルカリ水溶液系エッチング剤、及び第二鉄イオン源と第二銅イオン源とマンガンイオン源と無機酸とを含む第二鉄イオン水溶液系エッチング剤から選ばれる一種以上である、非水電解質二次電池用正極集電体の製造方法である。
The method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery according to the present invention is a method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery in which the surface of an aluminum current collecting base material is roughened with an etching agent. There,
An aqueous alkaline etching agent containing an alkali source and amphoteric metal ions, and an aqueous ferric ion etching agent containing a ferric ion source, a cupric ion source, a manganese ion source, and an inorganic acid. Is a method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery.

本発明の非水電解質二次電池用正極の製造方法は、アルミニウム製正極集電体上に活物質層を形成する非水電解質二次電池用正極の製造方法であって、
前記アルミニウム製正極集電体が、上記本発明の非水電解質二次電池用正極集電体の製造方法により得られた正極集電体であり、
前記正極集電体の粗化処理した表面上に前記活物質層を形成する、非水電解質二次電池用正極の製造方法である。
A method for producing a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention is a method for producing a positive electrode for a non-aqueous electrolyte secondary battery in which an active material layer is formed on an aluminum positive electrode current collector,
The aluminum positive electrode current collector is a positive electrode current collector obtained by the method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery of the present invention,
It is a manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries which forms the said active material layer on the roughened surface of the said positive electrode electrical power collector.

なお、上記本発明における「アルミニウム」は、アルミニウムからなるものであってもよく、アルミニウム合金からなるものであってもよい。また、本明細書において「アルミニウム」は、アルミニウム又はアルミニウム合金をさす。   The “aluminum” in the present invention may be made of aluminum or an aluminum alloy. In this specification, “aluminum” refers to aluminum or an aluminum alloy.

本発明の非水電解質二次電池用正極集電体の製造方法及び非水電解質二次電池用正極の製造方法によれば、特定のエッチング剤でアルミニウム製集電基材の表面を粗化処理するため、集電体と活物質との接触面積が増加することにより、活物質と集電体との間の電子伝導性を向上させることができると考えられる。   According to the method for producing a positive electrode current collector for a nonaqueous electrolyte secondary battery and the method for producing a positive electrode for a nonaqueous electrolyte secondary battery according to the present invention, the surface of the aluminum current collector substrate is roughened with a specific etching agent. Therefore, it is considered that the electron conductivity between the active material and the current collector can be improved by increasing the contact area between the current collector and the active material.

実施例1の集電体の粗化面を、倍率:3500倍、撮影角度:45°の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the roughening surface of the electrical power collector of Example 1 on the conditions of magnification: 3500 times and imaging | photography angle: 45 degrees. 実施例2の集電体の粗化面を、倍率:3500倍、撮影角度:45°の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the roughened surface of the electrical power collector of Example 2 on the conditions of magnification: 3500 times and imaging | photography angle: 45 degrees. 実施例3の集電体の粗化面を、倍率:3500倍、撮影角度:45°の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the roughening surface of the electrical power collector of Example 3 on the conditions of magnification: 3500 times and imaging | photography angle: 45 degrees. 実施例3の集電体の粗化面を、倍率:10000倍、撮影角度:真上の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the roughening surface of the electrical power collector of Example 3 on the conditions of magnification: 10000 time and imaging | photography angle: directly above. 実施例3の集電体の断面を、倍率:3500倍の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the cross section of the electrical power collector of Example 3 on the conditions of magnification: 3500 times. 実施例4の集電体の粗化面を、倍率:3500倍、撮影角度:45°の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the roughening surface of the electrical power collector of Example 4 on the conditions of magnification: 3500 times and imaging | photography angle: 45 degrees. 実施例5の集電体の粗化面を、倍率:3500倍、撮影角度:45°の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the roughening surface of the electrical power collector of Example 5 on the conditions of magnification: 3500 times and imaging | photography angle: 45 degrees. 比較例1の集電体表面を、倍率:3500倍、撮影角度:45°の条件で撮影した走査型電子顕微鏡写真である。4 is a scanning electron micrograph of the surface of the current collector of Comparative Example 1 taken under conditions of a magnification of 3500 times and an imaging angle of 45 °. 比較例2の集電体の粗化面を、倍率:3500倍、撮影角度:45°の条件で撮影した走査型電子顕微鏡写真である。It is a scanning electron micrograph which image | photographed the roughened surface of the electrical power collector of the comparative example 2 on the conditions of magnification: 3500 times and imaging | photography angle: 45 degrees. 比較例3の集電体の粗化面を、倍率:3500倍、撮影角度:45°の条件で撮影した走査型電子顕微鏡写真である。It is a scanning electron micrograph which image | photographed the roughening surface of the electrical power collector of the comparative example 3 on the conditions of magnification: 3500 times and imaging | photography angle: 45 degrees. 実施例12の集電体の粗化面を、倍率:3500倍、撮影角度:45°の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the roughening surface of the electrical power collector of Example 12 on the conditions of magnification: 3500 times and imaging | photography angle: 45 degrees. 実施例12の集電体の粗化面を、倍率:10000倍、撮影角度:真上の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the roughening surface of the electrical power collector of Example 12 on magnification: 10000 time and imaging | photography angle: directly above. 実施例12の集電体の断面を、倍率:3500倍の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the cross section of the electrical power collector of Example 12 on the conditions of magnification: 3500 times. 実施例13の集電体の粗化面を、倍率:3500倍、撮影角度:45°の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the roughened surface of the electrical power collector of Example 13 on conditions with a magnification of 3500 times and an imaging angle of 45 degrees. 実施例13の集電体の粗化面を、倍率:10000倍、撮影角度:真上の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the roughening surface of the electrical power collector of Example 13 on magnification | multiplying_factor: 10000 time and imaging | photography angle: directly above. 実施例13の集電体の断面を、倍率:3500倍の条件で撮影した走査型電子顕微鏡写真である。It is the scanning electron micrograph which image | photographed the cross section of the electrical power collector of Example 13 on the conditions of magnification: 3500 times.

[アルミニウム製集電基材]
本発明に使用できるアルミニウム製集電基材(以下、単に「基材」ともいう)は、非水電解質二次電池の正極に使用できる限り、特に限定されず、様々な形状のものが使用できる。例えば、箔状、エキスパンドメタル状、パンチングメタル状、発泡メタル状、網状等の形状の基材が使用でき、均一な粗化面を形成する観点からは、箔状の基材が好ましい。また、本発明に使用できる基材の厚みは、十分な強度を得る観点から10μm以上が好ましく、15μm以上がより好ましい。また、活物質の充填量を上げる観点から、50μm以下が好ましく、30μm以下がより好ましい。
[Aluminum current collector]
The aluminum current collecting base material (hereinafter also simply referred to as “base material”) that can be used in the present invention is not particularly limited as long as it can be used for the positive electrode of the nonaqueous electrolyte secondary battery, and various shapes can be used. . For example, a base material having a foil shape, an expanded metal shape, a punching metal shape, a foam metal shape, a net shape, or the like can be used, and a foil-like base material is preferable from the viewpoint of forming a uniform roughened surface. In addition, the thickness of the substrate that can be used in the present invention is preferably 10 μm or more, and more preferably 15 μm or more from the viewpoint of obtaining sufficient strength. Moreover, from a viewpoint of raising the filling amount of an active material, 50 micrometers or less are preferable and 30 micrometers or less are more preferable.

[エッチング剤]
本発明では、基材を粗化処理するエッチング剤として、前記アルカリ水溶液系エッチング剤及び前記第二鉄イオン水溶液系エッチング剤から選ばれる一種以上を使用する。本発明では、前記特定のエッチング剤でアルミニウム製集電基材の表面を粗化処理するため、集電体と活物質との接触面積が増加し、活物質と集電体との間の電子伝導性を向上させることができると考えられる。電子伝導に適した良好な粗化形状を得るという観点からは、エッチング剤として、前記アルカリ水溶液系エッチング剤を用いることが好ましい。以下、本発明に使用できるエッチング剤の各成分について説明する。
[Etching agent]
In this invention, 1 or more types chosen from the said alkaline aqueous solution type etching agent and said ferric ion aqueous solution type etching agent are used as an etching agent which roughens a base material. In the present invention, since the surface of the aluminum current collector substrate is roughened with the specific etching agent, the contact area between the current collector and the active material is increased, and electrons between the active material and the current collector are increased. It is thought that conductivity can be improved. From the viewpoint of obtaining a good roughened shape suitable for electron conduction, it is preferable to use the alkaline aqueous solution type etching agent as the etching agent. Hereinafter, each component of the etching agent that can be used in the present invention will be described.

(アルカリ水溶液系エッチング剤)
まず、アルカリ水溶液系エッチング剤について説明する。アルカリ水溶液系エッチング剤は、アルカリ源と両性金属イオンとを含み、必要に応じて、チオ化合物、酸化剤、各種添加剤等を含むことができる。
(Alkali aqueous etchant)
First, the alkaline aqueous etching agent will be described. The alkaline aqueous etching agent contains an alkali source and an amphoteric metal ion, and may contain a thio compound, an oxidizing agent, various additives, and the like as necessary.

<アルカリ源>
アルカリ源としては、特に限定されないが、アルミニウムの溶解性の観点、及びコスト低減の観点から、NaOH、KOHが好ましい。アルカリ源の含有量は、良好な粗化形状を得るという観点から、水酸化物イオンとして0.60重量%以上であることが好ましく、1.45重量%以上であることがより好ましく、2.50重量%以上であることが更に好ましい。また、適切な粗化処理速度を得るという観点から、アルカリ源の含有量は、水酸化物イオンとして22.80重量%以下であることが好ましく、16.30重量%以下であることがより好ましく、12.25重量%以下であることが更に好ましい。
<Alkali source>
Although it does not specifically limit as an alkali source, NaOH and KOH are preferable from a viewpoint of the solubility of aluminum, and a viewpoint of cost reduction. From the viewpoint of obtaining a good roughened shape, the content of the alkali source is preferably 0.60% by weight or more, more preferably 1.45% by weight or more as a hydroxide ion. More preferably, it is 50% by weight or more. Further, from the viewpoint of obtaining an appropriate roughening treatment rate, the content of the alkali source is preferably 22.80% by weight or less, more preferably 16.30% by weight or less as hydroxide ions. More preferably, it is 12.25% by weight or less.

<両性金属イオン>
両性金属イオンとしては、Alイオン以外であれば特に限定されず、Znイオン、Pbイオン、Snイオン、Sbイオン、Cdイオン等が例示でき、電子伝導に適した良好な粗化形状を得るという観点、及び環境負荷の低減の観点からZnイオン、Snイオンが好ましく、Znイオンがより好ましい。両性金属イオンの含有量は、電子伝導に適した良好な粗化形状を得るという観点から、0.2重量%以上であることが好ましく、0.5重量%以上であることがより好ましく、1.0重量%以上であることが更に好ましい。また、適切な粗化処理速度を得るという観点から、両性金属イオンの含有量は、6.0重量%以下であることが好ましく、4.4重量%以下であることがより好ましく、3.5重量%以下であることが更に好ましい。
<Amotropic metal ions>
The amphoteric metal ions are not particularly limited as long as they are other than Al ions, and examples thereof include Zn ions, Pb ions, Sn ions, Sb ions, Cd ions, etc., and a viewpoint of obtaining a good roughened shape suitable for electron conduction. In view of reducing the environmental load, Zn ions and Sn ions are preferable, and Zn ions are more preferable. The content of amphoteric metal ions is preferably 0.2% by weight or more, more preferably 0.5% by weight or more, from the viewpoint of obtaining a good roughened shape suitable for electron conduction. More preferably, it is 0.0% by weight or more. Further, from the viewpoint of obtaining an appropriate roughening treatment rate, the content of amphoteric metal ions is preferably 6.0% by weight or less, more preferably 4.4% by weight or less, 3.5 More preferably, it is not more than% by weight.

両性金属イオンは、両性金属イオン源を配合することによって、アルカリ水溶液系エッチング剤中に含有させることができる。両性金属イオン源の例としては、Znイオン源の場合は、硝酸亜鉛、ホウ酸亜鉛、塩化亜鉛、硫酸亜鉛、臭化亜鉛、塩基性炭酸亜鉛、酸化亜鉛、硫化亜鉛等が挙げられる。また、Snイオン源の場合は、塩化錫(IV)、塩化錫(II)、酢酸錫(II)、臭化錫(II)、二リン酸錫(II)、しゅう酸錫(II)、酸化錫(II)、ヨウ化錫(II)、硫酸錫(II)、硫化錫(IV)、ステアリン酸錫(II)等が挙げられる。   Amphoteric metal ions can be contained in an alkaline aqueous etching agent by blending an amphoteric metal ion source. Examples of amphoteric metal ion sources include zinc nitrate, zinc borate, zinc chloride, zinc sulfate, zinc bromide, basic zinc carbonate, zinc oxide, zinc sulfide and the like in the case of a Zn ion source. In the case of Sn ion source, tin chloride (IV), tin chloride (II), tin acetate (II), tin bromide (II), tin diphosphate (II), tin oxalate (II), oxidation Examples include tin (II), tin (II) iodide, tin (II) sulfate, tin (IV) sulfide, and tin (II) stearate.

<チオ化合物>
本発明に使用できるアルカリ水溶液系エッチング剤には、緻密な粗化処理を行うことによって、電子伝導に適した良好な粗化形状を得るという観点からチオ化合物を配合してもよい。チオ化合物を配合する場合、同様の観点から、チオ化合物の含有量は、0.05重量%以上であることが好ましく、0.1重量%以上であることがより好ましく、0.2重量%以上であることが更に好ましい。同様の観点から、チオ化合物の含有量は、25.0重量%以下であることが好ましく、20.0重量%以下であることがより好ましく、15.0重量%以下であることが更に好ましい。
<Thio compound>
The alkaline aqueous etching agent that can be used in the present invention may be blended with a thio compound from the viewpoint of obtaining a good roughened shape suitable for electron conduction by performing a fine roughening treatment. When the thio compound is blended, from the same viewpoint, the content of the thio compound is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and 0.2% by weight or more. More preferably. From the same viewpoint, the content of the thio compound is preferably 25.0% by weight or less, more preferably 20.0% by weight or less, and further preferably 15.0% by weight or less.

チオ化合物としては、特に限定されないが、電子伝導に適した良好な粗化形状を得るという観点から、チオ硫酸イオン及び炭素数1〜7のチオ化合物から選択される一種以上であることが好ましく、チオ硫酸イオン及び炭素数1〜3のチオ化合物から選択される一種以上であることがより好ましい。このうち、チオ硫酸イオン等のイオンは、そのイオン源を配合することによって、アルカリ水溶液系エッチング剤中に含有させることができる。   The thio compound is not particularly limited, but is preferably one or more selected from thiosulfate ions and thio compounds having 1 to 7 carbon atoms from the viewpoint of obtaining a good roughened shape suitable for electron conduction, It is more preferable that it is 1 or more types selected from a thiosulfate ion and a C1-C3 thio compound. Among these, ions such as thiosulfate ions can be contained in the alkaline aqueous etching agent by blending the ion source.

上記炭素数1〜7のチオ化合物としては、チオ尿素(炭素数1)、チオグリコール酸アンモニウム(炭素数2)、チオグリコール酸(炭素数2)、チオグリセロール(炭素数3)、L−チオプロリン(炭素数4)、ジチオジグリコール酸(炭素数4)、β,β’−チオジプロピオン酸(炭素数5)、N,N−ジエチルジチオカルバミン酸ナトリウム・3水和物(炭素数5)、3,3’−ジチオジプロピオン酸(炭素数6)、3,3’−ジチオジプロパノール(炭素数6)、o−チオクレゾール(炭素数7)、p−チオクレゾール(炭素数7)等が挙げられる。   Examples of the thio compounds having 1 to 7 carbon atoms include thiourea (carbon number 1), ammonium thioglycolate (carbon number 2), thioglycolic acid (carbon number 2), thioglycerol (carbon number 3), and L-thioproline. (Carbon number 4), dithiodiglycolic acid (carbon number 4), β, β′-thiodipropionic acid (carbon number 5), sodium N, N-diethyldithiocarbamate trihydrate (carbon number 5), 3,3′-dithiodipropionic acid (carbon number 6), 3,3′-dithiodipropanol (carbon number 6), o-thiocresol (carbon number 7), p-thiocresol (carbon number 7), etc. Can be mentioned.

<酸化剤>
本発明に使用できるアルカリ水溶液系エッチング剤には、アルミニウムの粗化処理中にアルミニウムとの置換反応で基材表面上に析出する両性金属を再溶解させるために、酸化剤を配合してもよい。酸化剤を配合する場合、酸化剤の含有量は、両性金属の再溶解性の観点から、0.5重量%以上であることが好ましく、1.0重量%以上であることがより好ましく、2.0重量%以上であることが更に好ましい。また、電子伝導に適した良好な粗化形状を得るという観点から、酸化剤の含有量は、10.0重量%以下であることが好ましく、8.4重量%以下であることがより好ましく、6.0重量%以下であることが更に好ましい。
<Oxidizing agent>
The alkaline aqueous etching agent that can be used in the present invention may contain an oxidizing agent in order to redissolve the amphoteric metal that precipitates on the substrate surface by a substitution reaction with aluminum during the roughening treatment of aluminum. . When the oxidizing agent is blended, the content of the oxidizing agent is preferably 0.5% by weight or more, more preferably 1.0% by weight or more, from the viewpoint of resolubility of the amphoteric metal. More preferably, it is 0.0% by weight or more. Further, from the viewpoint of obtaining a good roughened shape suitable for electron conduction, the content of the oxidizing agent is preferably 10.0% by weight or less, more preferably 8.4% by weight or less, More preferably, it is 6.0% by weight or less.


前記酸化剤としては亜塩素酸、次亜塩素酸等の塩素酸及びそれらの塩、過マンガン酸塩、クロム酸塩、重クロム酸塩、セリウム(IV)塩等の酸化性金属塩類、ニトロ基含有化合物、過酸化水素、過硫酸塩等の過酸化物、硝酸イオンなどが挙げられる。なかでも、アルカリ水溶液系エッチング剤中における安定性の観点から、硝酸イオンが好ましい。

Examples of the oxidizing agent include chloric acid such as chlorous acid and hypochlorous acid and salts thereof, oxidizable metal salts such as permanganate, chromate, dichromate and cerium (IV) salt, nitro group Examples thereof include peroxides such as contained compounds, hydrogen peroxide and persulfate, and nitrate ions. Of these, nitrate ions are preferred from the viewpoint of stability in an alkaline aqueous etching agent.

硝酸イオンは、硝酸イオン源を配合することによって、アルカリ水溶液系エッチング剤中に含有させることができる。硝酸イオン源の例としては、硝酸、硝酸ナトリウム、硝酸カリウム、硝酸バリウム、硝酸カルシウム、硝酸アンモニウム、硝酸亜鉛等が挙げられる。   Nitrate ions can be contained in an alkaline aqueous etching agent by blending a nitrate ion source. Examples of nitrate ion sources include nitric acid, sodium nitrate, potassium nitrate, barium nitrate, calcium nitrate, ammonium nitrate, and zinc nitrate.


本発明に使用できるアルカリ水溶液系エッチング剤には、指紋などの表面汚染物による粗化のむらを防ぐために界面活性剤を添加してもよく、必要に応じて他の添加剤を添加してもよい。他の添加剤としては、アルミニウムの溶解に伴うスラッジ発生を抑制するための添加剤、例えばモノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアルカノールアミン、イミダゾール等のアゾール類、クエン酸、リンゴ酸、グルコン酸などのオキシカルボン酸およびそれらの塩等が例示できる。これら他の成分を添加する場合、その含有量は、0.1〜5重量%程度であるのが好ましい。

A surfactant may be added to the alkaline aqueous etching agent that can be used in the present invention to prevent unevenness due to surface contaminants such as fingerprints, and other additives may be added as necessary. . Other additives include additives for suppressing sludge generation associated with aluminum dissolution, such as monoethanolamine, diethanolamine, alkanolamines such as triethanolamine, azoles such as imidazole, citric acid, malic acid, glucone. Examples thereof include oxycarboxylic acids such as acids and salts thereof. When these other components are added, the content is preferably about 0.1 to 5% by weight.

本発明に使用できるアルカリ水溶液系エッチング剤は、前記の各成分をイオン交換水などに溶解させることにより容易に調製することができる。   The alkaline aqueous etching agent that can be used in the present invention can be easily prepared by dissolving the above-described components in ion-exchanged water or the like.

(第二鉄イオン水溶液系エッチング剤)
次に、第二鉄イオン水溶液系エッチング剤について説明する。第二鉄イオン水溶液系エッチング剤は、第二鉄イオン源と第二銅イオン源とマンガンイオン源と無機酸とを含み、必要に応じて、各種添加剤等を含むことができる。
(Ferric ion aqueous solution based etchant)
Next, the ferric ion aqueous solution type etching agent will be described. The ferric ion aqueous solution-based etching agent contains a ferric ion source, a cupric ion source, a manganese ion source, and an inorganic acid, and may contain various additives as necessary.

<第二鉄イオン源>
本発明に使用できる第二鉄イオン水溶液系エッチング剤における第二鉄イオン源は、アルミニウムを酸化する成分である。前記第二鉄イオン源としては、硝酸第二鉄、硫酸第二鉄、塩化第二鉄などがあげられる。前記第二鉄イオン源のうちでは、塩化第二鉄が溶解性に優れ、安価であるという点から好ましい。
<Ferric ion source>
The ferric ion source in the aqueous ferric ion solution-based etchant that can be used in the present invention is a component that oxidizes aluminum. Examples of the ferric ion source include ferric nitrate, ferric sulfate, and ferric chloride. Among the ferric ion sources, ferric chloride is preferable because it has excellent solubility and is inexpensive.

前記第二鉄イオン源の含有量は、鉄イオンとして1.5〜9.0重量%であることが好ましく、より好ましくは2.5〜7.0重量%、更に好ましくは4.0〜6.0重量%である。前記含有量が1.5重量%以上であれば、アルミニウムの粗化速度(溶解速度)の低下を防ぐことができる。一方、前記含有量が9.0重量%以下であれば、粗化速度を適正に維持することができるため、均一な粗化が可能になる。   The content of the ferric ion source is preferably 1.5 to 9.0% by weight as iron ions, more preferably 2.5 to 7.0% by weight, still more preferably 4.0 to 6%. 0.0% by weight. If the said content is 1.5 weight% or more, the fall of the roughening rate (dissolution rate) of aluminum can be prevented. On the other hand, when the content is 9.0% by weight or less, the roughening rate can be properly maintained, and thus uniform roughening is possible.

<第二銅イオン源>
本発明に使用できる第二鉄イオン水溶液系エッチング剤における第二銅イオン源は、処理前の基材表面に形成されている酸化膜を速やかに除去するための成分である。前記第二銅イオン源としては、硫酸第二銅、塩化第二銅、硝酸第二銅、水酸化第二銅などがあげられる。前記第二銅イオン源のうちでは、硫酸第二銅が安価であるという点から好ましい。
<Copper ion source>
The cupric ion source in the ferric ion aqueous solution etchant that can be used in the present invention is a component for quickly removing the oxide film formed on the substrate surface before the treatment. Examples of the cupric ion source include cupric sulfate, cupric chloride, cupric nitrate, and cupric hydroxide. Of the cupric ion sources, cupric sulfate is preferred because it is inexpensive.

第二銅イオン源の含有量は、銅イオンとして0.05〜1.0重量%であることが好ましく、より好ましくは0.10〜0.8重量%、更に好ましくは0.15〜0.4重量%である。前記含有量が0.05重量%以上であれば、酸化物層の除去を容易に行うことができる。一方、前記含有量が1.0重量%以下であれば、基材表面における金属銅の置換析出を防止できる。   The content of the cupric ion source is preferably 0.05 to 1.0% by weight as copper ions, more preferably 0.10 to 0.8% by weight, and still more preferably 0.15 to 0. 4% by weight. When the content is 0.05% by weight or more, the oxide layer can be easily removed. On the other hand, if the content is 1.0% by weight or less, substitutional precipitation of metallic copper on the substrate surface can be prevented.

<マンガンイオン源>
本発明に使用できる第二鉄イオン水溶液系エッチング剤におけるマンガンイオン源は、基材表面をむらなく一様に粗化するための成分である。前記マンガンイオン源としては、硫酸マンガン、塩化マンガン、酢酸マンガン、フッ化マンガン、硝酸マンガンなどがあげられる。前記マンガンイオン源のうちでは、硫酸マンガンや塩化マンガンが安価であるなどの点から好ましい。
<Manganese ion source>
The manganese ion source in the ferric ion aqueous solution-based etching agent that can be used in the present invention is a component for uniformly roughening the surface of the substrate. Examples of the manganese ion source include manganese sulfate, manganese chloride, manganese acetate, manganese fluoride, and manganese nitrate. Of the manganese ion sources, manganese sulfate and manganese chloride are preferable because they are inexpensive.

マンガンイオン源の含有量は、マンガンイオンとして0.02〜1.5重量%であることが好ましく、より好ましくは0.06〜0.6重量%、更に好ましくは0.10〜0.5重量%である。前記含有量が0.02重量%以上であれば、マンガンイオン源を添加する効果を充分発揮させることができる。一方、前記含有量が1.5重量%以下であれば、コスト低減が容易となる。   The content of the manganese ion source is preferably 0.02 to 1.5% by weight as manganese ions, more preferably 0.06 to 0.6% by weight, and still more preferably 0.10 to 0.5% by weight. %. If the said content is 0.02 weight% or more, the effect of adding a manganese ion source can fully be exhibited. On the other hand, if the content is 1.5% by weight or less, cost reduction is facilitated.

<無機酸>
本発明に使用できる第二鉄イオン水溶液系エッチング剤における無機酸は、第二鉄イオンにより酸化されたアルミニウムを溶解させる成分である。前記無機酸としては、塩酸、硫酸、硝酸、リン酸、過塩素酸、スルファミン酸などがあげられる。前記無機酸のうちでは、臭気がほとんどなく、安価である点から硫酸が好ましい。
<Inorganic acid>
The inorganic acid in the aqueous ferric ion solution-based etchant that can be used in the present invention is a component that dissolves aluminum oxidized by ferric ions. Examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, perchloric acid, sulfamic acid, and the like. Of the inorganic acids, sulfuric acid is preferred because it has almost no odor and is inexpensive.

前記無機酸の含有量は、5〜30重量%であることが好ましく、より好ましくは7〜25重量%、更に好ましくは12〜18重量%である。前記含有量が5重量%以上であれば、アルミニウムの粗化速度(溶解速度)の低下を防止できる。一方、前記含有量が30重量%以下であれば、液温が低下した際のアルミニウム塩の結晶析出を防止できるため、作業性を向上できる。   The content of the inorganic acid is preferably 5 to 30% by weight, more preferably 7 to 25% by weight, and still more preferably 12 to 18% by weight. When the content is 5% by weight or more, it is possible to prevent a decrease in the roughening rate (dissolution rate) of aluminum. On the other hand, when the content is 30% by weight or less, crystallization of the aluminum salt can be prevented when the liquid temperature is lowered, so that workability can be improved.

本発明に使用できる第二鉄イオン水溶液系エッチング剤には、指紋などの表面汚染物による粗化のむらを防ぐために界面活性剤を添加してもよく、必要に応じて他の添加剤を添加してもよい。   A surfactant may be added to the ferric ion aqueous solution etchant that can be used in the present invention to prevent unevenness due to surface contaminants such as fingerprints, and other additives may be added as necessary. May be.

本発明の第二鉄イオン水溶液系エッチング剤は、前記の各成分をイオン交換水などに溶解させることにより容易に調製することができる。   The ferric ion aqueous solution type etching agent of the present invention can be easily prepared by dissolving each of the above components in ion exchange water or the like.

次に、上述したエッチング剤を用いて基材の表面を粗化処理する方法を説明する。まず、アルカリ水溶液系エッチング剤を用いる場合について説明する。   Next, a method for roughening the surface of the substrate using the above-described etching agent will be described. First, the case of using an alkaline aqueous etching agent will be described.

アルカリ水溶液系エッチング剤を用いて粗化処理する際、処理対象物の基材表面に機械油などの著しい汚染がある場合は、脱脂を行なった後、前記アルカリ水溶液系エッチング剤による粗化処理を行なえばよい。粗化処理方法としては、浸漬、スプレーなどによる処理方法が挙げられる。処理温度は20〜40℃が好ましく、処理時間は10〜300秒程度が好ましい。前記処理後は、通常水洗、乾燥が行なわれる。   When roughening using an alkaline aqueous etching agent, if there is significant contamination such as machine oil on the surface of the substrate to be treated, degreasing and then roughening with the alkaline aqueous etching agent. Just do it. Examples of the roughening treatment method include treatment methods such as immersion and spraying. The treatment temperature is preferably 20 to 40 ° C., and the treatment time is preferably about 10 to 300 seconds. After the treatment, washing and drying are usually performed.

本発明では、アルカリ水溶液系エッチング剤を用いて粗化処理した後に、析出した両性金属の除去を目的として粗化面を酸洗浄することが好ましい。酸洗浄に用いる酸は両性金属を溶解できるものであれば特に限定されないが、特に、硝酸水溶液、硫酸水溶液、及び硫酸と過酸化水素とを含有する水溶液から選択される一種以上の水溶液で粗化面を処理することが好ましい。基材表面に析出した両性金属の除去と、基材表面の再不働態化を同時に行うことができるため、高い電位に対する耐酸化性を向上させることができるからである。前記水溶液の処理としては、浸漬、スプレーなどによる処理が挙げられる。処理温度は20〜40℃が好ましく、処理時間は5〜40秒程度が好ましい。前記処理後は、通常水洗、乾燥が行なわれる。   In the present invention, it is preferable that the roughened surface is acid-washed for the purpose of removing the precipitated amphoteric metal after the roughening treatment using an alkaline aqueous etching agent. The acid used for the acid cleaning is not particularly limited as long as it can dissolve amphoteric metals, but in particular, roughening with one or more aqueous solutions selected from nitric acid aqueous solution, sulfuric acid aqueous solution, and aqueous solution containing sulfuric acid and hydrogen peroxide It is preferable to treat the surface. This is because the amphoteric metal deposited on the substrate surface can be removed and the substrate surface can be repassivated at the same time, so that the oxidation resistance against a high potential can be improved. Examples of the treatment of the aqueous solution include treatment by dipping, spraying, and the like. The treatment temperature is preferably 20 to 40 ° C., and the treatment time is preferably about 5 to 40 seconds. After the treatment, washing and drying are usually performed.

硝酸水溶液を用いる場合は、両性金属の除去性能とアルミニウムに対する腐食性の観点から硝酸の濃度が5〜65重量%であることが好ましく、25〜45重量%であることがより好ましい。硫酸水溶液を用いる場合は、両性金属の除去性能とアルミニウムに対する腐食性の観点から硫酸の濃度が5〜60重量%であることが好ましく、20〜40重量%であることがより好ましい。   In the case of using an aqueous nitric acid solution, the concentration of nitric acid is preferably 5 to 65% by weight and more preferably 25 to 45% by weight from the viewpoint of amphoteric metal removal performance and corrosiveness to aluminum. In the case of using an aqueous sulfuric acid solution, the concentration of sulfuric acid is preferably 5 to 60% by weight and more preferably 20 to 40% by weight from the viewpoint of amphoteric metal removal performance and corrosiveness to aluminum.

硫酸と過酸化水素とを含有する水溶液を用いる場合は、両性金属の除去性能とアルミニウムに対する腐食性の観点から硫酸の濃度が5〜60重量%であることが好ましく、20〜40重量%であることがより好ましい。同様の観点から過酸化水素の濃度が1〜40重量%であることが好ましく、5〜30重量%であることがより好ましい。   When using an aqueous solution containing sulfuric acid and hydrogen peroxide, the concentration of sulfuric acid is preferably 5 to 60% by weight from the viewpoint of amphoteric metal removal performance and corrosiveness to aluminum, and is 20 to 40% by weight. It is more preferable. From the same viewpoint, the concentration of hydrogen peroxide is preferably 1 to 40% by weight, and more preferably 5 to 30% by weight.

本発明では、上述した酸洗浄、特に、硝酸水溶液、硫酸水溶液、及び硫酸と過酸化水素とを含有する水溶液から選択される一種以上の水溶液で粗化面を処理した後、更に該処理面を陽極酸化処理(アルマイト処理)してもよい。前記陽極酸化処理を行うと、高い電位に対する耐酸化性をより向上させることができる。   In the present invention, after the roughened surface is treated with one or more aqueous solutions selected from the above-described acid cleaning, particularly an aqueous nitric acid solution, an aqueous sulfuric acid solution, and an aqueous solution containing sulfuric acid and hydrogen peroxide, the treated surface is further treated. Anodization treatment (alumite treatment) may be performed. When the anodizing treatment is performed, the oxidation resistance against a high potential can be further improved.

また、本発明では、アルカリ水溶液系エッチング剤を用いて粗化処理した後に、塩酸、臭化水素酸等のハロゲン化水素酸や、アルカリ金属及びアルカリ土類金属から選ばれる1種以上の金属の水酸化物を含むアルカリ性水溶液を用いて、粗化面を洗浄してもよい。ハロゲン化水素酸やアルカリ性水溶液により粗化面の洗浄を行うと、粗化面がわずかにエッチングされるため、粗化面の形状を制御することができる。これにより、使用する正極活物質粒子の大きさや形状に適した粗化面形状を形成することができる。より深い凹部を有する粗化面を形成するには、ハロゲン化水素酸で処理することが好ましい。なお、前記アルカリ性水溶液は、両性金属イオンを含まない水溶液である。   In the present invention, after the roughening treatment using an alkaline aqueous etching agent, hydrohalic acid such as hydrochloric acid and hydrobromic acid, or one or more metals selected from alkali metals and alkaline earth metals are used. The roughened surface may be cleaned using an alkaline aqueous solution containing a hydroxide. When the roughened surface is washed with hydrohalic acid or an alkaline aqueous solution, the roughened surface is slightly etched, so that the shape of the roughened surface can be controlled. Thereby, the roughened surface shape suitable for the magnitude | size and shape of the positive electrode active material particle to be used can be formed. In order to form a roughened surface having deeper recesses, it is preferable to treat with hydrohalic acid. The alkaline aqueous solution is an aqueous solution not containing amphoteric metal ions.

前記ハロゲン化水素酸により洗浄する場合は、粗化面の形状を容易に制御する観点から、ハロゲン化水素の濃度が1〜35重量%のハロゲン化水素酸を用いるのが好ましい。ハロゲン化水素酸としては、コストの観点及び取扱い性の観点から塩酸が好ましい。   In the case of cleaning with the hydrohalic acid, it is preferable to use hydrohalic acid having a hydrogen halide concentration of 1 to 35% by weight from the viewpoint of easily controlling the shape of the roughened surface. Hydrochloric acid is preferably hydrochloric acid from the viewpoints of cost and handling.

前記ハロゲン化水素酸により洗浄する場合、処理方法としては、浸漬、スプレーなどによる処理が挙げられる。処理温度は20〜40℃が好ましく、処理時間は5〜300秒程度が好ましい。前記処理後は、通常水洗、乾燥が行なわれる。   When washing with the hydrohalic acid, examples of the treatment method include treatment by dipping, spraying, and the like. The treatment temperature is preferably 20 to 40 ° C., and the treatment time is preferably about 5 to 300 seconds. After the treatment, washing and drying are usually performed.

前記アルカリ性水溶液により洗浄する場合は、粗化面の形状を容易に制御する観点から、水酸化物の濃度が1〜48重量%のアルカリ性水溶液を用いるのが好ましい。水酸化物としては、コストの観点及び取扱い性の観点から水酸化カリウム、水酸化ナトリウムが好ましい。   When washing with the alkaline aqueous solution, it is preferable to use an alkaline aqueous solution having a hydroxide concentration of 1 to 48% by weight from the viewpoint of easily controlling the shape of the roughened surface. As the hydroxide, potassium hydroxide and sodium hydroxide are preferable from the viewpoints of cost and handling.

前記アルカリ性水溶液により洗浄する場合、処理方法としては、浸漬、スプレーなどによる処理が挙げられる。処理温度は20〜40℃が好ましく、処理時間は5〜300秒程度が好ましい。前記処理後は、通常水洗、乾燥が行なわれる。また、前記アルカリ性水溶液で粗化面を洗浄する場合は、洗浄後の粗化面を更に酸洗浄することが好ましい。前記アルカリ水溶液系エッチング剤の処理で析出した両性金属の除去ができるからである。前記酸洗浄に用いる酸や処理条件等は、上述した両性金属の除去を目的として行う酸洗浄の場合と同様である。   In the case of washing with the alkaline aqueous solution, examples of the treatment method include treatment by dipping and spraying. The treatment temperature is preferably 20 to 40 ° C., and the treatment time is preferably about 5 to 300 seconds. After the treatment, washing and drying are usually performed. Moreover, when wash | cleaning a roughened surface with the said alkaline aqueous solution, it is preferable to further acid-wash the roughened surface after washing | cleaning. This is because the amphoteric metal deposited by the treatment with the alkaline aqueous etching agent can be removed. The acid used for the acid cleaning, the treatment conditions, and the like are the same as in the case of the acid cleaning performed for the purpose of removing the amphoteric metal described above.

次に、第二鉄イオン水溶液系エッチング剤を用いる場合について説明する。第二鉄イオン水溶液系エッチング剤を用いる場合も、処理対象物の基材表面に機械油などの著しい汚染がある場合は、脱脂を行なった後、前記第二鉄イオン水溶液系エッチング剤による粗化処理を行なえばよい。粗化処理方法としては、浸漬、スプレーなどによる処理方法が挙げられる。処理温度は20〜30℃が好ましく、処理時間は10〜300秒程度が好ましい。前記処理後は、通常水洗、乾燥が行なわれる。   Next, the case where a ferric ion aqueous solution type etching agent is used is demonstrated. Even when using ferric ion aqueous solution type etching agent, if there is significant contamination such as machine oil on the substrate surface of the object to be treated, after degreasing, roughening with ferric ion aqueous solution type etching agent What is necessary is just to process. Examples of the roughening treatment method include treatment methods such as immersion and spraying. The treatment temperature is preferably 20 to 30 ° C., and the treatment time is preferably about 10 to 300 seconds. After the treatment, washing and drying are usually performed.

第二鉄イオン水溶液系エッチング剤を用いて粗化処理すると、基材表面の凹凸が細かくなりすぎる場合があるが、そのような場合は、濃度1〜5重量%程度の水酸化ナトリウム水溶液で細かすぎる部分のみを溶解させて除去すればよい。この場合、水酸化ナトリウム水溶液で処理した後、表面に残るスマットを、希硝酸で溶解除去するのが好ましい。基材を粗化した後の第二鉄イオン水溶液系エッチング剤は、水酸化ナトリウム、水酸化カルシウムなどを加えて中和することにより溶解しているアルミニウムを容易に凝集、沈殿させることができるので、廃液処理が容易である。   When roughening is performed using a ferric ion aqueous solution-based etching agent, the unevenness of the substrate surface may become too fine. In such a case, it is fine with a sodium hydroxide aqueous solution having a concentration of about 1 to 5% by weight. Only the excessive portion should be dissolved and removed. In this case, it is preferable that the smut remaining on the surface after the treatment with an aqueous sodium hydroxide solution is dissolved and removed with dilute nitric acid. The ferric ion aqueous solution etchant after roughening the substrate can easily aggregate and precipitate dissolved aluminum by adding sodium hydroxide, calcium hydroxide, etc. to neutralize it. The waste liquid treatment is easy.

前記アルカリ水溶液系エッチング剤又は第二鉄イオン水溶液系エッチング剤を用いた粗化処理によって、基材表面が凹凸形状に粗化される。この際のアルミニウムの深さ方向のエッチング量(溶解量)は、溶解したアルミニウムの重量、比重および表面積から算出した場合、0.1〜3.0μmであることが好ましく、0.2〜2.5μmであることがより好ましく、0.5〜2.0μmであることが更に好ましい。エッチング量が上記範囲内であれば、電子伝導に適した良好な粗化形状を得ることができる。エッチング量は、処理温度や処理時間等により調整できる。   The surface of the base material is roughened into a concavo-convex shape by a roughening treatment using the alkaline aqueous solution type etching agent or the ferric ion aqueous solution type etching agent. In this case, the etching amount (dissolution amount) of the aluminum in the depth direction is preferably 0.1 to 3.0 μm when calculated from the weight, specific gravity and surface area of the dissolved aluminum, and 0.2 to 2. More preferably, it is 5 micrometers, and it is still more preferable that it is 0.5-2.0 micrometers. If the etching amount is within the above range, a good roughened shape suitable for electron conduction can be obtained. The etching amount can be adjusted by the processing temperature, processing time, and the like.

なお、本発明では、前記アルカリ水溶液系エッチング剤又は第二鉄イオン水溶液系エッチング剤を用いて基材を粗化処理する際、基材表面の全面を粗化処理してもよく、活物質層が形成される面だけを部分的に粗化処理してもよい。   In the present invention, when the substrate is roughened using the alkaline aqueous solution-based etchant or the ferric ion aqueous solution-based etchant, the entire surface of the substrate may be roughened, and the active material layer Only the surface on which is formed may be partially roughened.

また、本発明では、前記アルカリ水溶液系エッチング剤による処理と、第二鉄イオン水溶液系エッチング剤による処理を併用してもよい。この場合の処理の順番は限定されない。また、本発明の効果を損なわない範囲で、その他のエッチング剤によるウェットエッチングや、各種のドライエッチングを併用してもよい。   Moreover, in this invention, you may use together the process by the said aqueous alkali solution type etching agent, and the process by a ferric-ion aqueous solution type etching agent. The order of processing in this case is not limited. In addition, wet etching with other etching agents and various dry etchings may be used in combination as long as the effects of the present invention are not impaired.

上述した粗化処理により得られた非水電解質二次電池用正極集電体(以下、単に「集電体」ともいう)は、その粗化処理した表面上に活物質層を形成することによって、非水電解質二次電池用正極(以下、単に「正極」ともいう)が得られる。以下、正極の製造方法の一実施形態について、リチウムイオン二次電池用の正極を例に説明する。   The positive electrode current collector for a non-aqueous electrolyte secondary battery obtained by the roughening treatment described above (hereinafter also simply referred to as “current collector”) is formed by forming an active material layer on the roughened surface. Thus, a positive electrode for a non-aqueous electrolyte secondary battery (hereinafter also simply referred to as “positive electrode”) is obtained. Hereinafter, an embodiment of a method for producing a positive electrode will be described using a positive electrode for a lithium ion secondary battery as an example.

リチウムイオン二次電池用正極の活物質層を構成する活物質は、リチウムを吸蔵・放出できる機能を有している限り特に制限はないが、金属カルコゲナイド系の正極材料が例示できる。具体的には、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、リチウム鉄酸化物、リチウム含有ニッケルコバルト複合酸化物(二元系正極材料)、リチウム含有ニッケルマンガンコバルト複合酸化物(三元系正極材料)、あるいはリン酸鉄リチウムやリン酸マンガンリチウム等のリチウム含有オリビン型遷移金属リン酸塩などのリチウム含有遷移金属化合物;二酸化マンガン等の遷移金属化合物;フッ化黒鉛等の炭素質材料などを使用することができる。更に具体的には、LiCoO、LiNiO、LiMn、LiFeO、LiFePO、並びにこれらの非定比化合物及びこれらに含まれる遷移金属の一部を他の遷移金属で置換した遷移金属化合物、MnO、TiS、FeS、Nb、Mo、CoS、V、P、CrO、V、TeO、GeO等を用いることができる。これらは1種を単独で用いても良く、2種以上を併用しても良い。なかでも、熱的安定性、容量、出力特性に優れるという観点から、リチウム含有遷移金属化合物が好ましい。また、リン酸鉄リチウムは、その他のリチウム含有遷移金属化合物に比べ、電子伝導抵抗が高いが、本発明の方法で得られた集電体を用いると、リン酸鉄リチウムを含む活物質と集電体との間の電子伝導性を向上させることができる。つまり、リン酸鉄リチウムのような電子伝導抵抗が高い活物質を用いても、本発明によれば、集電体と活物質との接触面積が増加するため、活物質と集電体との間の電子伝導性を向上させることができると考えられる。The active material constituting the active material layer of the positive electrode for a lithium ion secondary battery is not particularly limited as long as it has a function of occluding and releasing lithium, and examples thereof include metal chalcogenide-based positive electrode materials. Specifically, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium iron oxide, lithium-containing nickel cobalt composite oxide (binary positive electrode material), lithium-containing nickel manganese cobalt composite oxide (three Primary cathode material), or lithium-containing transition metal compounds such as lithium-containing olivine transition metal phosphates such as lithium iron phosphate and lithium manganese phosphate; transition metal compounds such as manganese dioxide; carbonaceous materials such as graphite fluoride Materials etc. can be used. More specifically, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 , LiFePO 4 , and these non-stoichiometric compounds and transition metals obtained by substituting some of the transition metals contained therein with other transition metals compounds, using MnO 2, TiS 2, FeS 2 , Nb 3 S 4, Mo 3 S 4, CoS 2, V 2 O 5, P 2 O 5, CrO 3, V 3 O 3, TeO 2, GeO 2 , etc. be able to. These may be used alone or in combination of two or more. Of these, lithium-containing transition metal compounds are preferred from the viewpoint of excellent thermal stability, capacity, and output characteristics. In addition, lithium iron phosphate has higher electron conduction resistance than other lithium-containing transition metal compounds. However, when the current collector obtained by the method of the present invention is used, an active material containing lithium iron phosphate and a collector are collected. It is possible to improve electronic conductivity with the electric body. That is, even if an active material having a high electron conduction resistance such as lithium iron phosphate is used, according to the present invention, the contact area between the current collector and the active material is increased. It is considered that the electron conductivity can be improved.

活物質層の構成材料として、導電剤を用いることもできる。導電剤は、用いる活物質の充放電電位において、化学変化を起こさない電子伝導性材料であれば何でも良い。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類、フッ化カーボン、アルミニウム等の金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物類、ポリフェニレン誘導体などの有機導電性材料などを単独又はこれらの混合物として含ませることができる。これらの導電剤のなかでは、人造黒鉛、アセチレンブラックが特に好ましい。導電剤の添加量は、特に限定されないが、活物質100重量部に対して1〜50重量部が好ましく、1〜30重量部がより好ましい。   A conductive agent can also be used as a constituent material of the active material layer. The conductive agent may be anything as long as it is an electron conductive material that does not cause a chemical change at the charge / discharge potential of the active material used. For example, natural graphite (such as flake graphite), graphite such as artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon fiber, metal fiber, etc. Conductive fibers, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, organic conductive materials such as polyphenylene derivatives, etc. Can be included alone or as a mixture thereof. Among these conductive agents, artificial graphite and acetylene black are particularly preferable. Although the addition amount of a electrically conductive agent is not specifically limited, 1-50 weight part is preferable with respect to 100 weight part of active materials, and 1-30 weight part is more preferable.

集電体の粗化処理面上に活物質層を形成する方法は、特に限定されず、公知の活物質層形成方法を採用できるが、例えば、活物質と導電剤とバインダと溶剤とを混合したスラリーを調製し、このスラリーを集電体の粗化処理した表面上に塗布・乾燥することにより形成する方法を採用できる。   The method for forming the active material layer on the roughened surface of the current collector is not particularly limited, and a known active material layer forming method can be employed. For example, an active material, a conductive agent, a binder, and a solvent are mixed. It is possible to adopt a method in which a slurry is prepared, and this slurry is applied and dried on the roughened surface of the current collector.

上記バインダとしては、正極の形成用に使用される従来のバインダが何れも使用できるが、ポリフッ化ビニリデン(PVDF)、ポリアミドイミド、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリメタクリル酸メチルなどが好適に使用できる。バインダの含有量としては、活物質100重量部に対して、1〜20重量部が好ましく、1〜10重量部がより好ましい。   As the binder, any of conventional binders used for forming a positive electrode can be used, but polyvinylidene fluoride (PVDF), polyamideimide, polytetrafluoroethylene, polyethylene, polypropylene, polymethyl methacrylate, and the like are preferable. Can be used. As content of a binder, 1-20 weight part is preferable with respect to 100 weight part of active materials, and 1-10 weight part is more preferable.

上記溶剤としては、正極の形成用に使用される従来の溶剤が何れも使用でき、例えばN−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、メチルエチルケトン、テトラヒドロフラン、アセトン、エタノール、酢酸エチルなどが好適に用いられる。また、正極の形成に使用される従来公知の添加剤を何れもスラリーに添加することができる。   As the solvent, any conventional solvent used for forming a positive electrode can be used. For example, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide, methyl ethyl ketone, tetrahydrofuran, acetone, ethanol , Ethyl acetate and the like are preferably used. Any conventionally known additive used for forming the positive electrode can be added to the slurry.

上記スラリーの25℃における粘度は、得られる活物質層の厚さを適正な範囲にする観点から、1000mPa・s以上が好ましく、2000mPa・s以上がより好ましい。また、集電体への塗工性の観点から、上記粘度は15000mPa・s以下が好ましく、10000mPa・s以下がより好ましい。なお、活物質層の厚さは、通常1μm以上、好ましくは3μm以上であり、また通常100μm以下、好ましくは80μm以下、より好ましくは60μm以下である。   The viscosity of the slurry at 25 ° C. is preferably 1000 mPa · s or more, and more preferably 2000 mPa · s or more, from the viewpoint of adjusting the thickness of the obtained active material layer to an appropriate range. Further, from the viewpoint of applicability to the current collector, the viscosity is preferably 15000 mPa · s or less, and more preferably 10000 mPa · s or less. The thickness of the active material layer is usually 1 μm or more, preferably 3 μm or more, and is usually 100 μm or less, preferably 80 μm or less, more preferably 60 μm or less.

スラリーの固形分濃度は、好ましいスラリー粘度の観点から、20〜60重量%が好ましく、25〜55重量%がより好ましい。   The solid content concentration of the slurry is preferably 20 to 60% by weight, more preferably 25 to 55% by weight, from the viewpoint of preferable slurry viscosity.

以上の方法で得られた正極は、リチウムイオン二次電池の製造工程において、負極、セパレータと共に積層(又は巻回)される。そして、この積層体(又は巻回体)に電解液やポリマー電解質等を注入することによって、リチウムイオン二次電池が製造される。   The positive electrode obtained by the above method is laminated (or wound) together with the negative electrode and the separator in the manufacturing process of the lithium ion secondary battery. And a lithium ion secondary battery is manufactured by inject | pouring electrolyte solution, a polymer electrolyte, etc. into this laminated body (or wound body).

以上、本発明の一実施形態について説明したが、本発明は上記実施形態には限定されない。例えば、上記実施形態では、基材上に直に活物質層を形成する方法を例に説明したが、基材上にグラファイト等からなる中間層を形成し、該中間層上に活物質層を形成してもよい。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, in the above embodiment, the method of forming the active material layer directly on the base material has been described as an example. However, an intermediate layer made of graphite or the like is formed on the base material, and the active material layer is formed on the intermediate layer. It may be formed.

また、上記実施形態では、リチウムイオン二次電池用の正極を例に説明したが、本発明は、集電体表面構造を最適化して、集電体/活物質層(又は中間層)間の界面を制御することにより、活物質と集電体との間の電子伝導性を向上させる技術であり、リチウムイオン二次電池用の正極には限定されない。例えば、マグネシウムイオン二次電池やカルシウムイオン二次電池等のリチウムイオン二次電池以外の非水電解質二次電池用の正極にも適用できる。   Moreover, although the said embodiment demonstrated the positive electrode for lithium ion secondary batteries as an example, this invention optimizes a collector surface structure and is between collector / active material layers (or intermediate | middle layer). This is a technique for improving the electron conductivity between the active material and the current collector by controlling the interface, and is not limited to a positive electrode for a lithium ion secondary battery. For example, the present invention can also be applied to a positive electrode for a nonaqueous electrolyte secondary battery other than a lithium ion secondary battery such as a magnesium ion secondary battery or a calcium ion secondary battery.

次に、本発明の実施例について比較例と併せて説明する。なお、本発明は下記の実施例に限定して解釈されるものではない。   Next, examples of the present invention will be described together with comparative examples. In addition, this invention is limited to a following example and is not interpreted.

(集電体の作製)
まず、表1に示す組成の水溶液を調製した。得られた水溶液(30℃)中に、JIS A1050H H18に規定されたアルミニウム箔(厚み20μm)を浸漬して揺動させ、表1に示すエッチング量だけエッチングした後、水洗を行い、35重量%の硝酸水溶液(30℃)中に浸漬して、20秒間揺動させ、水洗、乾燥した。得られた集電体のうち、実施例1〜5及び比較例1〜3の集電体の粗化面について、走査型電子顕微鏡(SEM)を用いて観察した。その際のSEM写真を図1〜10に示す。実施例は何れも均一に粗化されているが、比較例2及び比較例3は凹凸形状が不均一であった。
(Preparation of current collector)
First, an aqueous solution having the composition shown in Table 1 was prepared. In the obtained aqueous solution (30 ° C.), an aluminum foil (thickness 20 μm) defined in JIS A1050H H18 is immersed and shaken, and after etching by the etching amount shown in Table 1, it is washed with water and 35% by weight Was immersed in a nitric acid aqueous solution (30 ° C.), rocked for 20 seconds, washed with water and dried. Among the obtained current collectors, the roughened surfaces of the current collectors of Examples 1 to 5 and Comparative Examples 1 to 3 were observed using a scanning electron microscope (SEM). SEM photographs at that time are shown in FIGS. Although all of the examples were roughened uniformly, Comparative Example 2 and Comparative Example 3 had uneven unevenness.

(正極の作製)
まず、LiMn(64.0重量%)とアセチレンブラック(3.6重量%)とポリフッ化ビニリデン(4.0重量%)とN−メチル−2−ピロリドン(28.4重量%)とを混合して正極活物質スラリーを調製した。次いで、上記集電体の粗化面上に上記スラリーを塗布し、乾燥して、集電体上に厚み60μmの活物質層が形成された正極(14mm×20mm)を得た。なお、得られた正極の活物質層の密度は2.4g/cmであった。
(Preparation of positive electrode)
First, LiMn 2 O 4 (64.0% by weight), acetylene black (3.6% by weight), polyvinylidene fluoride (4.0% by weight), and N-methyl-2-pyrrolidone (28.4% by weight) Were mixed to prepare a positive electrode active material slurry. Next, the slurry was applied on the roughened surface of the current collector and dried to obtain a positive electrode (14 mm × 20 mm) in which an active material layer having a thickness of 60 μm was formed on the current collector. In addition, the density of the active material layer of the obtained positive electrode was 2.4 g / cm 3 .

(交流インピーダンスの測定)
ソーラートロン社製 セルテストシステム147060BEC型を用いて、25℃の雰囲気下、上記正極に0.1Hz、1.0Hz、1kHz、20kHzの交流電流を印加し、その際の交流インピーダンスを測定した。結果を表2に示す。なお、高周波領域の交流インピーダンスは、活物質層中のイオン伝導が抑制されるため、主に電子伝導に由来する抵抗の影響を受け易くなる傾向にある。
(Measurement of AC impedance)
Using a cell test system 147060BEC type manufactured by Solartron, an alternating current of 0.1 Hz, 1.0 Hz, 1 kHz, and 20 kHz was applied to the positive electrode in an atmosphere at 25 ° C., and the alternating current impedance was measured. The results are shown in Table 2. Note that the AC impedance in the high-frequency region tends to be easily affected by resistance mainly derived from electron conduction because ion conduction in the active material layer is suppressed.

表2に示すように、1kHz以上の周波数領域において、実施例は何れも比較例に比べて交流インピーダンス値を低減できた。   As shown in Table 2, in the frequency region of 1 kHz or more, all of the examples were able to reduce the AC impedance value as compared with the comparative example.

(試験セルの作製)
まず、メソカーボンマイクロビーズ(65.7重量%)とアセチレンブラック(1.4重量%)とポリフッ化ビニリデン(3.5重量%)とN−メチル−2−ピロリドン(29.4重量%)とを混合して負極活物質スラリーを調製した。次いで、厚み20μmの圧延銅箔(表面処理なし)上に上記スラリーを塗布し、乾燥して、圧延銅箔上に厚み35μmの活物質層が形成された負極(14mm×21mm)を得た。なお、得られた負極の活物質層の密度は1.3g/cmであった。次に、上記負極と、上記交流インピーダンス測定に用いた正極の作製方法と同様の方法で得られた正極と、多孔質ポリエチレン製セパレータと、エチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)の混合溶媒(容量比はEC:MEC=3:7)に1MのLiPFを溶解させた電解液とを用いて、試験セルを組み立てた。この際、対向面積(電極有効面積)は2.8cmとし、外装材にはアルミニウムラミネート材を用いた。
(Production of test cell)
First, mesocarbon microbeads (65.7% by weight), acetylene black (1.4% by weight), polyvinylidene fluoride (3.5% by weight), and N-methyl-2-pyrrolidone (29.4% by weight) Were mixed to prepare a negative electrode active material slurry. Next, the slurry was applied on a rolled copper foil (no surface treatment) having a thickness of 20 μm and dried to obtain a negative electrode (14 mm × 21 mm) in which an active material layer having a thickness of 35 μm was formed on the rolled copper foil. In addition, the density of the active material layer of the obtained negative electrode was 1.3 g / cm 3 . Next, a mixture of the negative electrode, a positive electrode obtained by the same method as the positive electrode used for the AC impedance measurement, a porous polyethylene separator, ethylene carbonate (EC), and methyl ethyl carbonate (MEC). A test cell was assembled using an electrolyte obtained by dissolving 1M LiPF 6 in a solvent (volume ratio EC: MEC = 3: 7). At this time, the facing area (electrode effective area) was 2.8 cm 2, and an aluminum laminate was used as the exterior material.

(電流休止法による内部抵抗の測定)
ソーラートロン社製 セルテストシステム147060BEC型を用いて、以下の方法で内部抵抗の測定を行った。まず、上記試験セルを満充電状態とした後、25℃の雰囲気下において0.5C(2時間で全放電する電流量)負荷の放電を行い、放電開始12分後に放電を休止し、このときの電圧変化によりセルの内部抵抗の測定を行った。この際、放電を休止すると同時に瞬間的に電圧が回復する成分をオーム成分とし、その後緩やかに電圧が回復する成分を平衡成分とし、それらの和を電流休止法による内部抵抗とした。結果を表3に示す。なお、オーム成分は主に電子伝導に由来する抵抗を表し、平衡成分は主にセル内部のイオン伝導に由来する抵抗を表している。
(Measurement of internal resistance by current pause method)
Using a cell test system 147060BEC manufactured by Solartron, internal resistance was measured by the following method. First, after the test cell was fully charged, discharge under a load of 0.5 C (current amount to be fully discharged in 2 hours) was performed in an atmosphere at 25 ° C., and the discharge was stopped 12 minutes after the start of discharge. The internal resistance of the cell was measured based on the voltage change. At this time, the component in which the voltage is instantaneously recovered at the same time as the discharge is stopped is defined as an ohmic component, the component in which the voltage is gradually recovered thereafter is defined as an equilibrium component, and the sum thereof is defined as the internal resistance by the current pause method. The results are shown in Table 3. The ohmic component mainly represents resistance derived from electron conduction, and the equilibrium component represents resistance mainly derived from ion conduction inside the cell.

表3に示すように、実施例は何れも比較例に比べてオーム成分の抵抗値を低減できた。この結果から、本発明によれば、活物質と集電体との間の電子伝導性を向上できることが確認された。   As shown in Table 3, all of the examples were able to reduce the resistance value of the ohmic component as compared with the comparative example. From this result, it was confirmed that the electron conductivity between the active material and the current collector can be improved according to the present invention.

次に、上記実施例及び比較例の集電体を用い、かつ活物質としてリン酸鉄リチウムを用いてセルの内部抵抗を評価した結果について説明する。   Next, the results of evaluating the internal resistance of the cell using the current collectors of the above examples and comparative examples and using lithium iron phosphate as the active material will be described.

まず、オリビン型リン酸鉄リチウム(56.3重量%)とアセチレンブラック(5.3重量%)とポリフッ化ビニリデン(4.6重量%)とN−メチル−2−ピロリドン(33.8重量%)とを混合して正極活物質スラリーを調製した。次いで、上記実施例及び比較例の各集電体の粗化面上に上記スラリーを塗布し、乾燥して、集電体上に厚み50μmの活物質層が形成された正極(14mm×20mm)を得た。なお、得られた正極の活物質層の密度は2.0g/cmであった。First, olivine-type lithium iron phosphate (56.3% by weight), acetylene black (5.3% by weight), polyvinylidene fluoride (4.6% by weight), and N-methyl-2-pyrrolidone (33.8% by weight) ) Was mixed to prepare a positive electrode active material slurry. Next, the positive electrode (14 mm × 20 mm) in which an active material layer having a thickness of 50 μm was formed on the current collector by applying the slurry on the roughened surface of each current collector of the above Examples and Comparative Examples and drying the slurry. Got. In addition, the density of the active material layer of the obtained positive electrode was 2.0 g / cm 3 .

次いで、上記と同様に試験セルを作製し、上記と同様に電流休止法による内部抵抗の測定を行った。結果を表4に示す。   Next, a test cell was prepared in the same manner as described above, and the internal resistance was measured by the current pause method in the same manner as described above. The results are shown in Table 4.

表4に示すように、実施例は何れも比較例に比べてオーム成分の抵抗値を大幅に低減できた。この結果から、本発明によれば、活物質と集電体との間の電子伝導性を向上できることが確認された。   As shown in Table 4, all of the examples were able to significantly reduce the resistance value of the ohmic component as compared with the comparative example. From this result, it was confirmed that the electron conductivity between the active material and the current collector can be improved according to the present invention.

次に、活物質としてリチウム含有ニッケルマンガンコバルト複合酸化物を用いて、セルのハイレート放電特性を評価した結果について説明する。   Next, the results of evaluating the high rate discharge characteristics of the cell using lithium-containing nickel manganese cobalt composite oxide as the active material will be described.

(実施例12の集電体の作製)
まず、上述した実施例2と同じ組成の水溶液を調製した。得られた水溶液(30℃)中に、JIS A1050H H18に規定されたアルミニウム箔(厚み20μm)を浸漬して揺動させ、1.0μm(2.70g/m相当)のエッチング量だけエッチングした後、水洗を行った。次いで、25℃の塩酸(塩化水素濃度:7重量%)中に浸漬して、30秒間揺動させた後、水洗、乾燥し、実施例12の集電体を得た。得られた実施例12の集電体の粗化面について、走査型電子顕微鏡(SEM)を用いて観察した。その際のSEM写真を図11〜13に示す。
(Preparation of current collector of Example 12)
First, an aqueous solution having the same composition as in Example 2 was prepared. In the obtained aqueous solution (30 ° C.), an aluminum foil (thickness 20 μm) defined in JIS A1050H H18 was immersed and swung, and etched by an etching amount of 1.0 μm (equivalent to 2.70 g / m 2 ). After that, it was washed with water. Subsequently, it was immersed in hydrochloric acid (hydrogen chloride concentration: 7% by weight) at 25 ° C., rocked for 30 seconds, washed with water and dried to obtain a current collector of Example 12. The roughened surface of the current collector of Example 12 obtained was observed using a scanning electron microscope (SEM). SEM photographs at that time are shown in FIGS.

(実施例13の集電体の作製)
まず、上述した実施例2と同じ組成の水溶液を調製した。得られた水溶液(30℃)中に、JIS A1050H H18に規定されたアルミニウム箔(厚み20μm)を浸漬して揺動させ、1.0μm(2.70g/m相当)のエッチング量だけエッチングした後、水洗を行った。次いで、5重量%の水酸化ナトリウム水溶液(25℃)中に浸漬して、2分間揺動させた後、水洗し、更に35重量%の硝酸水溶液(30℃)中に浸漬して、20秒間揺動させ、水洗、乾燥し、実施例13の集電体を得た。得られた実施例13の集電体の粗化面について、走査型電子顕微鏡(SEM)を用いて観察した。その際のSEM写真を図14〜16に示す。
(Preparation of current collector of Example 13)
First, an aqueous solution having the same composition as in Example 2 was prepared. In the obtained aqueous solution (30 ° C.), an aluminum foil (thickness 20 μm) defined in JIS A1050H H18 was immersed and swung, and etched by an etching amount of 1.0 μm (equivalent to 2.70 g / m 2 ). After that, it was washed with water. Next, it was immersed in a 5% by weight sodium hydroxide aqueous solution (25 ° C.), rocked for 2 minutes, washed with water, and further immersed in a 35% by weight nitric acid aqueous solution (30 ° C.) for 20 seconds. The current collector of Example 13 was obtained by rocking, washing with water and drying. The roughened surface of the current collector obtained in Example 13 was observed using a scanning electron microscope (SEM). SEM photographs at that time are shown in FIGS.

得られた実施例12,13の集電体と、上述した実施例3及び比較例1の集電体を用いて、正極を作製し、これを用いて試験セルを作製して、セルのハイレート放電特性を評価した。詳細を以下に示す。   Using the current collectors of Examples 12 and 13 obtained above and the current collectors of Example 3 and Comparative Example 1 described above, a positive electrode was produced, and a test cell was produced using the positive electrode to obtain a high rate of the cell. The discharge characteristics were evaluated. Details are shown below.

(正極の作製)
LiNi1/3Mn1/3Co1/3(42.8重量%)とアセチレンブラック(3.5重量%)とポリフッ化ビニリデン(3.5重量%)とN−メチル−2−ピロリドン(50.2重量%)とを混合して正極活物質スラリーを調製した。次いで、上記集電体を直径10mmの円盤形状に打抜いた後、その粗化面上に上記スラリーを塗布し、乾燥して、集電体上に厚み20μmの活物質層が形成された正極を得た。なお、得られた正極の活物質層の密度は1.8g/cmであった。
(Preparation of positive electrode)
LiNi 1/3 Mn 1/3 Co 1/3 O 2 (42.8 wt%), acetylene black (3.5 wt%), polyvinylidene fluoride (3.5 wt%) and N-methyl-2-pyrrolidone (50.2 wt%) was mixed to prepare a positive electrode active material slurry. Next, after punching the current collector into a disk shape having a diameter of 10 mm, the slurry is applied on the roughened surface and dried to form an active material layer having a thickness of 20 μm on the current collector Got. In addition, the density of the active material layer of the obtained positive electrode was 1.8 g / cm 3 .

(試験セルの作製)
負極として金属リチウムからなる円盤状負極(直径16mm)を用意し、この負極と、上記正極と、多孔質ポリエチレン製セパレータと、エチレンカーボネート(EC)及びジメチルカーボネート(DMC)の混合溶媒(容量比はEC:DMC=1:1)に1MのLiPFを溶解させた電解液とを用いて、宝泉社製のセル(商品名:HCフラットセル)に組み込んで、試験セルを作製した。
(Production of test cell)
A disk-shaped negative electrode (diameter 16 mm) made of metallic lithium is prepared as the negative electrode, and this negative electrode, the positive electrode, a separator made of porous polyethylene, a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (capacity ratio is EC: DMC = 1: 1) was used in a cell (trade name: HC flat cell) manufactured by Hosen Co., Ltd. using an electrolytic solution in which 1M LiPF 6 was dissolved to prepare a test cell.

(ハイレート放電特性の評価)
上記試験セルを25℃の雰囲気下で8時間放置した後、25℃の雰囲気下で表5に示すサイクル1〜サイクル7までを順に行った。そして、以下の式により5C、10C及び15Cにおける放電容量維持率を算出した。結果を表6に示す。なお、放電容量維持率の算出に用いたサイクル1,5〜7の放電容量は、それぞれのサイクル中において3回の測定で得られた実測値の平均値とした。
5Cにおける放電容量維持率(%)=サイクル5における放電容量/サイクル1における放電容量×100
10Cにおける放電容量維持率(%)=サイクル6における放電容量/サイクル1における放電容量×100
15Cにおける放電容量維持率(%)=サイクル7における放電容量/サイクル1における放電容量×100
(Evaluation of high-rate discharge characteristics)
The test cell was allowed to stand for 8 hours in an atmosphere at 25 ° C., and then cycles 1 to 7 shown in Table 5 were sequentially performed in an atmosphere at 25 ° C. And the discharge capacity maintenance factor in 5C, 10C, and 15C was computed with the following formula | equation. The results are shown in Table 6. In addition, the discharge capacity of cycles 1, 5 to 7 used for calculating the discharge capacity retention rate was an average value of actually measured values obtained by three measurements during each cycle.
Discharge capacity retention rate at 5C (%) = discharge capacity at cycle 5 / discharge capacity at cycle 1 × 100
Discharge capacity retention rate at 10 C (%) = discharge capacity at cycle 6 / discharge capacity at cycle 1 × 100
Discharge capacity retention rate at 15 C (%) = discharge capacity at cycle 7 / discharge capacity at cycle 1 × 100

表6に示すように、実施例は何れも比較例1に対し、大幅に放電容量維持率が向上した。これは、実施例では活物質と集電体との間の電子伝導性が向上し、集電効率が向上したためであると推測される。   As shown in Table 6, the discharge capacity retention rate in each of the Examples was significantly improved as compared with Comparative Example 1. This is presumably because, in the examples, the electron conductivity between the active material and the current collector was improved, and the current collection efficiency was improved.

Claims (12)

アルミニウム製集電基材の表面をエッチング剤によって粗化処理する非水電解質二次電池用正極集電体の製造方法であって、
前記エッチング剤が、アルカリ源と両性金属イオンとを含むアルカリ水溶液系エッチング剤、及び第二鉄イオン源と第二銅イオン源とマンガンイオン源と無機酸とを含む第二鉄イオン水溶液系エッチング剤から選ばれる一種以上である、非水電解質二次電池用正極集電体の製造方法。
A method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery, wherein the surface of an aluminum current collector substrate is roughened with an etching agent,
An aqueous alkaline etching agent containing an alkali source and amphoteric metal ions, and an aqueous ferric ion etching agent containing a ferric ion source, a cupric ion source, a manganese ion source, and an inorganic acid. The manufacturing method of the positive electrode electrical power collector for nonaqueous electrolyte secondary batteries which is 1 or more types chosen from these.
前記エッチング剤が、前記アルカリ水溶液系エッチング剤である請求項1に記載の非水電解質二次電池用正極集電体の製造方法。  The method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery according to claim 1, wherein the etching agent is the alkaline aqueous solution type etching agent. 前記アルカリ水溶液系エッチング剤が、チオ化合物を更に含む請求項1又は2に記載の非水電解質二次電池用正極集電体の製造方法。  The method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery according to claim 1, wherein the alkaline aqueous etching agent further contains a thio compound. 前記アルカリ水溶液系エッチング剤中の前記チオ化合物の含有量が、0.05〜25.0重量%である請求項3に記載の非水電解質二次電池用正極集電体の製造方法。  4. The method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery according to claim 3, wherein the content of the thio compound in the alkaline aqueous etching agent is 0.05 to 25.0 wt%. 前記チオ化合物が、チオ硫酸イオン及び炭素数1〜7のチオ化合物から選択される一種以上である請求項3又は4に記載の非水電解質二次電池用正極集電体の製造方法。  The method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery according to claim 3 or 4, wherein the thio compound is at least one selected from a thiosulfate ion and a thio compound having 1 to 7 carbon atoms. 前記アルカリ水溶液系エッチング剤が、硝酸イオンを更に含む請求項1〜5の何れか1項に記載の非水電解質二次電池用正極集電体の製造方法。  The method for producing a positive electrode current collector for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the alkaline aqueous etching agent further contains nitrate ions. 前記アルミニウム製集電基材の表面を前記アルカリ水溶液系エッチング剤で粗化処理した後、硝酸水溶液、硫酸水溶液、及び硫酸と過酸化水素とを含有する水溶液から選択される一種以上の水溶液で粗化面を処理する請求項1〜6の何れか1項に記載の非水電解質二次電池用正極集電体の製造方法。  After roughening the surface of the aluminum current collector substrate with the alkaline aqueous etching agent, the surface is roughened with one or more aqueous solutions selected from an aqueous nitric acid solution, an aqueous sulfuric acid solution, and an aqueous solution containing sulfuric acid and hydrogen peroxide. The manufacturing method of the positive electrode electrical power collector for nonaqueous electrolyte secondary batteries of any one of Claims 1-6 which processes a chemical conversion surface. 前記アルミニウム製集電基材の表面を前記アルカリ水溶液系エッチング剤で粗化処理した後、ハロゲン化水素酸、並びにアルカリ金属及びアルカリ土類金属から選ばれる1種以上の金属の水酸化物を含むアルカリ性水溶液から選択される一種以上の水溶液で粗化面を処理する請求項1〜6の何れか1項に記載の非水電解質二次電池用正極集電体の製造方法。  After the surface of the aluminum current collector is roughened with the alkaline aqueous etching agent, hydrohalic acid and one or more metal hydroxides selected from alkali metals and alkaline earth metals are contained. The manufacturing method of the positive electrode electrical power collector for nonaqueous electrolyte secondary batteries of any one of Claims 1-6 which processes a roughening surface with 1 or more types of aqueous solution selected from alkaline aqueous solution. 前記アルミニウム製集電基材の表面を粗化処理する際の深さ方向のエッチング量が、0.1〜3.0μmである請求項1〜8の何れか1項に記載の非水電解質二次電池用正極集電体の製造方法。  The non-aqueous electrolyte 2 according to any one of claims 1 to 8, wherein an etching amount in a depth direction when the surface of the aluminum collector base material is roughened is 0.1 to 3.0 µm. A method for producing a positive electrode current collector for a secondary battery. アルミニウム製正極集電体上に活物質層を形成する非水電解質二次電池用正極の製造方法であって、
前記アルミニウム製正極集電体が、請求項1〜9の何れか1項に記載の製造方法により得られた正極集電体であり、
前記正極集電体の粗化処理した表面上に前記活物質層を形成する、非水電解質二次電池用正極の製造方法。
A method for producing a positive electrode for a non-aqueous electrolyte secondary battery, wherein an active material layer is formed on an aluminum positive electrode current collector,
The positive electrode current collector made of aluminum is a positive electrode current collector obtained by the production method according to any one of claims 1 to 9,
The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries which forms the said active material layer on the roughened surface of the said positive electrode electrical power collector.
前記活物質層が、リチウム含有遷移金属化合物を含む請求項10に記載の非水電解質二次電池用正極の製造方法。  The manufacturing method of the positive electrode for nonaqueous electrolyte secondary batteries of Claim 10 in which the said active material layer contains a lithium containing transition metal compound. 前記リチウム含有遷移金属化合物が、リン酸鉄リチウムである請求項11に記載の非水電解質二次電池用正極の製造方法。  The method for producing a positive electrode for a non-aqueous electrolyte secondary battery according to claim 11, wherein the lithium-containing transition metal compound is lithium iron phosphate.
JP2012502042A 2010-11-11 2011-11-04 Method for producing positive electrode current collector for non-aqueous electrolyte secondary battery and method for producing positive electrode for non-aqueous electrolyte secondary battery Expired - Fee Related JP4945016B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012502042A JP4945016B1 (en) 2010-11-11 2011-11-04 Method for producing positive electrode current collector for non-aqueous electrolyte secondary battery and method for producing positive electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010253037 2010-11-11
JP2010253037 2010-11-11
JP2010273955 2010-12-08
JP2010273955 2010-12-08
PCT/JP2011/075473 WO2012063740A1 (en) 2010-11-11 2011-11-04 Method for producing positive electrode collector for nonaqueous electrolyte secondary batteries and method for producing positive electrode for nonaqueous electrolyte secondary batteries
JP2012502042A JP4945016B1 (en) 2010-11-11 2011-11-04 Method for producing positive electrode current collector for non-aqueous electrolyte secondary battery and method for producing positive electrode for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP4945016B1 true JP4945016B1 (en) 2012-06-06
JPWO2012063740A1 JPWO2012063740A1 (en) 2014-05-12

Family

ID=46050887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012502042A Expired - Fee Related JP4945016B1 (en) 2010-11-11 2011-11-04 Method for producing positive electrode current collector for non-aqueous electrolyte secondary battery and method for producing positive electrode for non-aqueous electrolyte secondary battery

Country Status (5)

Country Link
JP (1) JP4945016B1 (en)
KR (1) KR101752032B1 (en)
CN (1) CN103403934B (en)
TW (1) TWI551728B (en)
WO (1) WO2012063740A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520375A (en) * 2011-06-21 2014-08-21 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Chemically treated aluminum or aluminum alloy current collector foil

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6175875B2 (en) * 2013-04-16 2017-08-09 株式会社豊田自動織機 Electrode manufacturing method
JP6425225B2 (en) * 2014-01-21 2018-11-21 セイコーインスツル株式会社 Non-aqueous electrolyte secondary battery
KR102563893B1 (en) * 2016-10-17 2023-08-09 한국전기연구원 Manufacturing methods of composite cathode material for sodium ions secondary batteries and composite cathode material thereby
WO2018172272A1 (en) * 2017-03-24 2018-09-27 Umicore Lithium metal composite oxide powder with suppressed gas generation
CN110931710A (en) * 2019-12-16 2020-03-27 东莞维科电池有限公司 Positive electrode substrate, preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922699A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH11162470A (en) * 1997-11-25 1999-06-18 Toyo Alum Kk Aluminum foil for current collector, its manufacture current collector, secondary battery and electric double layer capacitor
JPH11329448A (en) * 1998-05-15 1999-11-30 Asahi Glass Co Ltd Nonaqueous secondary battery positive electrode current collector and nonaqueous secondary battery having this current collector
JP2000113892A (en) * 1998-10-02 2000-04-21 Mitsubishi Materials Corp Aluminum foil for current collector film of lithium ion secondary battery and its manufacture
JP2003051313A (en) * 2001-08-07 2003-02-21 Matsushita Electric Ind Co Ltd Manufacturing method for secondary battery and secondary battery
JP2004335344A (en) * 2003-05-09 2004-11-25 Sanyo Electric Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery
JP2005002371A (en) * 2003-06-09 2005-01-06 Toyo Aluminium Kk Aluminum foil, its production method, charge collector, secondary battery and electric double layer capacitor
WO2005086260A1 (en) * 2004-03-03 2005-09-15 Sanyo Electric Co., Ltd Nonaqueous electrolyte battery
JP2008210564A (en) * 2007-02-23 2008-09-11 Mitsubishi Chemicals Corp Current collector for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and its manufactueing method, and nonaqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3404286B2 (en) * 1998-04-16 2003-05-06 日本パーカライジング株式会社 Metal surface treatment method, and metal member having a surface obtained by the surface treatment method
JP3295841B2 (en) * 1998-06-15 2002-06-24 日本蓄電器工業株式会社 Method for producing electrode foil for aluminum electrolytic capacitor
JP3959680B2 (en) * 2002-04-19 2007-08-15 日立エーアイシー株式会社 Etching method of aluminum electrolytic capacitor anode foil
JP2004323913A (en) * 2003-04-24 2004-11-18 Nippon Parkerizing Co Ltd Lubrication surface treatment method for metal and lubricative metallic member having lubrication surface obtained by the same
JP5295664B2 (en) * 2007-07-12 2013-09-18 株式会社東芝 Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922699A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH11162470A (en) * 1997-11-25 1999-06-18 Toyo Alum Kk Aluminum foil for current collector, its manufacture current collector, secondary battery and electric double layer capacitor
JPH11329448A (en) * 1998-05-15 1999-11-30 Asahi Glass Co Ltd Nonaqueous secondary battery positive electrode current collector and nonaqueous secondary battery having this current collector
JP2000113892A (en) * 1998-10-02 2000-04-21 Mitsubishi Materials Corp Aluminum foil for current collector film of lithium ion secondary battery and its manufacture
JP2003051313A (en) * 2001-08-07 2003-02-21 Matsushita Electric Ind Co Ltd Manufacturing method for secondary battery and secondary battery
JP2004335344A (en) * 2003-05-09 2004-11-25 Sanyo Electric Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery
JP2005002371A (en) * 2003-06-09 2005-01-06 Toyo Aluminium Kk Aluminum foil, its production method, charge collector, secondary battery and electric double layer capacitor
WO2005086260A1 (en) * 2004-03-03 2005-09-15 Sanyo Electric Co., Ltd Nonaqueous electrolyte battery
JP2008210564A (en) * 2007-02-23 2008-09-11 Mitsubishi Chemicals Corp Current collector for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and its manufactueing method, and nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520375A (en) * 2011-06-21 2014-08-21 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Chemically treated aluminum or aluminum alloy current collector foil
US9160006B2 (en) 2011-06-21 2015-10-13 Hydro Aluminium Rolled Products Gmbh Chemically treated current collector foil made of aluminium or an aluminium alloy

Also Published As

Publication number Publication date
TWI551728B (en) 2016-10-01
JPWO2012063740A1 (en) 2014-05-12
KR101752032B1 (en) 2017-06-28
WO2012063740A1 (en) 2012-05-18
KR20130143057A (en) 2013-12-30
CN103403934B (en) 2016-10-19
TW201219602A (en) 2012-05-16
CN103403934A (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5825894B2 (en) Secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
JP5119277B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
JP5153200B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5718476B2 (en) Electrolytic copper foil for lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
KR101103841B1 (en) Metal ions-assisted electroless etching method for the bundle type silicon nano-rod composite and its application as anode materials for lithium secondary batteries
JP4945016B1 (en) Method for producing positive electrode current collector for non-aqueous electrolyte secondary battery and method for producing positive electrode for non-aqueous electrolyte secondary battery
JP5372881B2 (en) Lithium secondary battery having a stress relaxation layer
KR101604944B1 (en) Method for producing a non-aqueous secondary battery
KR20140039022A (en) Battery
JP2008277156A (en) Negative electrode for nonaqueous electrolyte secondary battery
WO2013038672A1 (en) Nonaqueous electrolyte secondary cell
JP2008047306A (en) Nonaqueous electrolyte secondary battery
JP6067256B2 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4415556B2 (en) Non-aqueous electrolyte battery
JP2013134948A (en) Method for manufacturing negative electrode collector for nonaqueous electrolyte secondary battery and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP4258711B2 (en) Non-aqueous electrolyte battery
JP7384346B2 (en) Insulation suppression electrolyte and insulation suppression method for magnesium secondary batteries
KR20190060587A (en) Process for preparing current collector for pseudo capacitor
JP4207123B2 (en) Non-aqueous electrolyte battery
JP4954902B2 (en) Non-aqueous electrolyte secondary battery
Chaduang et al. Improving performance and cyclability of printed flexible zinc-air batteries using carbopol gel electrolyte
JP5402216B2 (en) Nonaqueous electrolyte secondary battery
JP2015072808A (en) Fiber positive electrode for sodium ion secondary battery and method for manufacturing the same
JP2013051148A (en) Negative electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery using the same
朱瑞傑 Suppressing Dendrites Growth of Zinc Metal Anodes by Modulating Electrode-Electrolyte Interfaces for the Development of High-Performance Zinc-ion Batteries

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Ref document number: 4945016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees