JP2013051148A - Negative electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery using the same - Google Patents

Negative electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery using the same Download PDF

Info

Publication number
JP2013051148A
JP2013051148A JP2011189065A JP2011189065A JP2013051148A JP 2013051148 A JP2013051148 A JP 2013051148A JP 2011189065 A JP2011189065 A JP 2011189065A JP 2011189065 A JP2011189065 A JP 2011189065A JP 2013051148 A JP2013051148 A JP 2013051148A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
active material
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011189065A
Other languages
Japanese (ja)
Inventor
Mutsumi Yano
睦 矢野
Masahisa Fujimoto
正久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011189065A priority Critical patent/JP2013051148A/en
Publication of JP2013051148A publication Critical patent/JP2013051148A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic secondary battery having an enhanced initial discharge capacity.SOLUTION: The negative electrode active material comprises zinc and a metal which serves as a negative electrode active material and which does not react with lithium; the zinc is coated with the metal. The formation of zinc oxide on the surface of the zinc particle caused by oxygen in the air can be suppressed by coating the zinc with the metal which never reacts with lithium. The oxygen included in the zinc oxide causes the following reaction at the times of charge and discharge: O+2 Li→LiO. Since the reaction is irreversible, the initial discharge capacity of the zinc particle is reduced. However, coating the zinc with the metal which never reacts with lithium, the surface of the zinc particle is not oxidized, and therefore the irreversible reaction is not caused. Consequently, a high initial discharge capacity can be obtained.

Description

本願発明は、非水電解質二次電池用負極活物質及びそれを用いた非水電解質二次電池に関するものである。   The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.

負極活物質に従来用いられている黒鉛(特許文献1)は、化学的耐久性や構造安定性に優れ、リチウムの吸蔵及び放出反応の可逆性も高い。さらに、作動電位が低く、充放電曲線の平坦性にも優れるという利点があり、モバイル機器用の電源等に多く利用されている。   Graphite (Patent Document 1) conventionally used as a negative electrode active material is excellent in chemical durability and structural stability, and has high reversibility of lithium insertion and release reactions. Furthermore, there is an advantage that the operating potential is low and the flatness of the charge / discharge curve is excellent, and it is widely used for power supplies for mobile devices.

特開2009−245613JP2009-245613

しかし、黒鉛は、初期放電容量が十分高くないという問題があった。本願発明は、非水電解質二次電池の初期放電容量を高めることを主な目的とする。   However, graphite has a problem that the initial discharge capacity is not sufficiently high. The main object of the present invention is to increase the initial discharge capacity of the nonaqueous electrolyte secondary battery.

本願発明の1つの局面による非水電解質二次電池用負極活物質は、リチウムと反応しない金属を被覆した亜鉛を含むことを特徴とする。また、本願発明の1つの局面による非水電解質二次電池は、正極と、負極と、非水電解質とを備え、前記負極がリチウムと反応しない金属を被覆した亜鉛を含む負極活物質を備えることを特徴とする。   A negative electrode active material for a non-aqueous electrolyte secondary battery according to one aspect of the present invention includes zinc coated with a metal that does not react with lithium. A nonaqueous electrolyte secondary battery according to one aspect of the present invention includes a positive electrode, a negative electrode, and a nonaqueous electrolyte, and the negative electrode includes a negative electrode active material containing zinc coated with a metal that does not react with lithium. It is characterized by.

本願発明によれば非水電解質二次電池の初期放電容量を高めることができる。   According to the present invention, the initial discharge capacity of the nonaqueous electrolyte secondary battery can be increased.

セルの概略図Schematic diagram of the cell

本願発明で用いられる非水電解質二次電池用負極活物質は、リチウムと反応しない金属を被覆した亜鉛を含む。亜鉛は負極活物質の総量に対し10〜90質量%含まれていることが好ましい。前記金属は銅又はニッケルであることが好ましい。前記金属は亜鉛の総量に対して0.05〜10.0質量%含まれていることが好ましい。銅又はニッケルの被覆方法としては、弱酸または弱アルカリ水溶液中に亜鉛を混合し、亜鉛表面の酸化亜鉛を除去した後、銅又はニッケル塩水溶液を滴下する方法が好ましい。   The negative electrode active material for a non-aqueous electrolyte secondary battery used in the present invention contains zinc coated with a metal that does not react with lithium. It is preferable that 10-90 mass% of zinc is contained with respect to the total amount of a negative electrode active material. The metal is preferably copper or nickel. The metal is preferably contained in an amount of 0.05 to 10.0% by mass with respect to the total amount of zinc. As a method for coating copper or nickel, a method in which zinc is mixed in a weak acid or weak alkali aqueous solution and zinc oxide on the zinc surface is removed, and then a copper or nickel salt aqueous solution is dropped.

負極活物質は黒鉛をさらに含むことが好ましい。また、黒鉛が負極活物質の総量に対し10〜90質量%含まれていることが好ましい。   The negative electrode active material preferably further contains graphite. Moreover, it is preferable that 10 to 90 mass% of graphite is contained with respect to the total amount of a negative electrode active material.

本願発明で用いられる正極活物質には、非水電解質二次電池に従来使用されている正極活物質を用いることができる。その例として、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物及びリン酸鉄リチウムが挙げられる。   As the positive electrode active material used in the present invention, a positive electrode active material conventionally used in non-aqueous electrolyte secondary batteries can be used. Examples thereof include lithium cobalt composite oxide, lithium manganese composite oxide, lithium nickel composite oxide, and lithium iron phosphate.

本願発明で用いられる非水電解質には、非水電解質二次電池に従来使用されている非水電解質を用いることができる。その例として、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート及びジエチルカーボネートが挙げられる。   As the non-aqueous electrolyte used in the present invention, a non-aqueous electrolyte conventionally used in non-aqueous electrolyte secondary batteries can be used. Examples thereof include ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate.

本願発明で用いられる非水電解質には、非水電解質二次電池に従来使用されているリチウム塩が含まれる。その例として、ヘキサフルオロリン酸リチウム及びテトラフルオロホウ酸リチウムが挙げられる。   The non-aqueous electrolyte used in the present invention includes lithium salts conventionally used in non-aqueous electrolyte secondary batteries. Examples thereof include lithium hexafluorophosphate and lithium tetrafluoroborate.

ここで、非水電解質とは、非水溶媒に支持塩を溶解させた電解液、又は固体電解質に前記電解液を含有させたものを含む。   Here, the non-aqueous electrolyte includes an electrolytic solution obtained by dissolving a supporting salt in a non-aqueous solvent, or a solid electrolyte containing the electrolytic solution.

本願発明の非水電解質二次電池には、必要に応じて従来の非水電解質二次電池に使用されている電池構成部材を使用することができる。   In the nonaqueous electrolyte secondary battery of the present invention, battery constituent members used in conventional nonaqueous electrolyte secondary batteries can be used as necessary.

以下、本願発明を実施例に基づいてさらに詳細に説明する。ただし、本願発明は以下の実施例により何ら限定されるものではない。また、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. In addition, the present invention can be appropriately changed and implemented without changing the gist.

(実施例1)
[亜鉛粒子の被覆処理]
亜鉛粒子の表面の酸化亜鉛を除去するため、水1Lに酢酸を0.5ml添加した水溶液Aに平均粒径が約20μmの亜鉛粒子を35g投入し、1分間混合した。その後、50mlの水にCuSOを1.76g溶解させた水溶液Bを水溶液Aに滴下し2分間混合することで、銅で被覆された亜鉛粒子を得た。亜鉛粒子を被覆している銅の量を定量した結果、亜鉛の総量に対し銅が2質量%含まれていた。このとき銅は亜鉛と固溶体を形成していない。
Example 1
[Coating of zinc particles]
In order to remove zinc oxide on the surface of the zinc particles, 35 g of zinc particles having an average particle diameter of about 20 μm were added to an aqueous solution A in which 0.5 ml of acetic acid was added to 1 L of water, and mixed for 1 minute. Thereafter, an aqueous solution B in which 1.76 g of CuSO 4 was dissolved in 50 ml of water was dropped into the aqueous solution A and mixed for 2 minutes to obtain zinc particles coated with copper. As a result of quantifying the amount of copper covering the zinc particles, 2% by mass of copper was contained with respect to the total amount of zinc. At this time, copper does not form a solid solution with zinc.

なお、本願では、平均粒子径の測定にレーザー回折式粒度分布測定装置(島津製作所社製SALAD−2000)を、被覆量の測定に原子吸光法(島津製作所製AA−640−13)を用いた。   In the present application, a laser diffraction particle size distribution measuring device (SALAD-2000 manufactured by Shimadzu Corporation) was used for measuring the average particle diameter, and an atomic absorption method (AA-640-13 manufactured by Shimadzu Corporation) was used for measuring the coating amount. .

[負極の作製]
得られた亜鉛粒子と、平均粒子径25μmの黒鉛粒子とを、質量比が30:70となるように乳鉢を用いて混合して負極活物質を作製した。得られた負極活物質と、結着剤としてのポリフッ化ビニリデンとを、質量比が90:10となるように混合した。その後、この混合物にN−メチル−2−ピロリドンを加えて混練し、負極合剤スラリーを作製した。
[Production of negative electrode]
The obtained zinc particles and graphite particles having an average particle diameter of 25 μm were mixed using a mortar so that the mass ratio was 30:70 to prepare a negative electrode active material. The obtained negative electrode active material and polyvinylidene fluoride as a binder were mixed so that the mass ratio was 90:10. Thereafter, N-methyl-2-pyrrolidone was added to the mixture and kneaded to prepare a negative electrode mixture slurry.

得られた負極合剤スラリーを、厚さ10μmの銅箔からなる負極集電体の上に塗布し、これを80℃で乾燥させて電極を作製した。得られた電極を圧延ローラーを用いて圧延した後、切り出し、作用極1を作製した。   The obtained negative electrode mixture slurry was applied onto a negative electrode current collector made of a copper foil having a thickness of 10 μm, and dried at 80 ° C. to produce an electrode. After rolling the obtained electrode using a rolling roller, it cut out and produced the working electrode 1. FIG.

[セルの作製]
アルゴン雰囲気下で、作用極1、対極2、参照極3、セパレーター4、非水電解液5、及び容器6を用いて図1に示すセルA1を作製した。尚、対極2及び参照極3にはリチウム金属を用いた。セパレーター4には、ポリエチレン製セパレーターを用いた。非水電解液5には、エチレンカーボネートとエチルメチルカーボネートとを3:7の体積比で混合させた溶媒に、ヘキサフルオロリン酸リチウムを濃度が1モル/リットルとなるように溶解させたものを用いた。容器6にはアルミニウム製ラミネート容器を用いた。なお、作用極1、対極2及び参照極3には、それぞれ集電タブ7が取り付けられている。
[Production of cell]
A cell A1 shown in FIG. 1 was produced using the working electrode 1, the counter electrode 2, the reference electrode 3, the separator 4, the nonaqueous electrolytic solution 5, and the container 6 under an argon atmosphere. Note that lithium metal was used for the counter electrode 2 and the reference electrode 3. As the separator 4, a polyethylene separator was used. Non-aqueous electrolyte 5 is prepared by dissolving lithium hexafluorophosphate so as to have a concentration of 1 mol / liter in a solvent in which ethylene carbonate and ethyl methyl carbonate are mixed in a volume ratio of 3: 7. Using. The container 6 was an aluminum laminate container. A current collecting tab 7 is attached to each of the working electrode 1, the counter electrode 2 and the reference electrode 3.

(実施例2)
CuSOの代わりにNiSOを1.85g用いたこと以外は実施例1と同様にしてセルA2を作製した。なお、被覆処理後の亜鉛粒子を被覆しているニッケルの量を定量した結果、亜鉛の総量に対しニッケルが2質量%含まれていた。
(Example 2)
Except for using 1.85g of NiSO 4 instead of CuSO 4 was prepared cell A2 in the same manner as in Example 1. In addition, as a result of quantifying the amount of nickel coating the zinc particles after the coating treatment, 2% by mass of nickel was included with respect to the total amount of zinc.

(比較例1)
被覆処理がされていない亜鉛粒子を用いたこと以外は、実施例1と同様にしてセルXを作製した。
(Comparative Example 1)
A cell X was produced in the same manner as in Example 1 except that zinc particles that were not coated were used.

(比較例2)
黒鉛粒子のみを負極活物質として用いたこと以外は、実施例1と同様にしてセルYを作製した。
(Comparative Example 2)
A cell Y was produced in the same manner as in Example 1 except that only graphite particles were used as the negative electrode active material.

[充放電試験]
セルA1、A2、X及びYについて、室温で以下の充放電試験を行った。0.75mA/cmの定電流で0V(リチウム金属基準)に達するまで充電した後、1分間休止し、0.25mA/cmの定電流で再度0V(リチウム金属基準)に達するまで充電し、1分間休止し、0.1mA/cmの定電流で再度0V(リチウム金属基準)に達するまで充電した。その後、0.25mA/cmの定電流で1.0V(リチウム金属基準)に達するまで放電した。このときの各セルの初期放電容量を表1に示す。
[Charge / discharge test]
For the cells A1, A2, X, and Y, the following charge / discharge test was performed at room temperature. After charging at a constant current of 0.75 mA / cm 2 until reaching 0V (lithium metal standard), resting 1 minute, then charged until reaching again 0V (lithium metal standard) with a constant current of 0.25 mA / cm 2 The battery was rested for 1 minute and charged at a constant current of 0.1 mA / cm 2 until it reached 0 V (lithium metal reference) again. Thereafter, the battery was discharged at a constant current of 0.25 mA / cm 2 until reaching 1.0 V (lithium metal reference). Table 1 shows the initial discharge capacity of each cell at this time.

表1より、リチウムと反応しない金属で被覆した亜鉛を含む負極活物質を備えたセルA1及びA2では、リチウムと反応しない金属で被覆されていない亜鉛を含む負極活物質を備えたセルXと比較して、初期放電容量が高いことが分かる。   From Table 1, the cells A1 and A2 including the negative electrode active material containing zinc coated with a metal that does not react with lithium are compared with the cell X including a negative electrode active material including zinc that is not coated with a metal that does not react with lithium. Thus, it can be seen that the initial discharge capacity is high.

この理由は以下のように考えられる。リチウムと反応しない金属で亜鉛を被覆していない場合、空気中の酸素により亜鉛粒子の表面に酸化亜鉛が生成する。この酸化亜鉛に含まれる酸素は充放電時にO+2Li→LiOの反応を生じさせ、この反応が不可逆なため亜鉛粒子の初期放電容量が減少する。一方、リチウムと反応しない金属で亜鉛を被覆している場合、亜鉛粒子の表面は酸化されず、上記の不可逆な反応が起こらない。このため、高い初期放電容量が得られる。また、リチウムと反応しない金属が銅又はニッケルである場合、これらの金属は酸化されにくく、また、酸化された場合でも導電性を有することから、負極活物質粒子間および負極活物質粒子と集電体との間の接触抵抗が低減される。このため、高い初期放電容量が得られる。なお、銅又はニッケルが酸化された場合でも、上述の不可逆な反応は起こらない。 The reason is considered as follows. When zinc is not coated with a metal that does not react with lithium, zinc oxide is generated on the surface of the zinc particles by oxygen in the air. Oxygen contained in the zinc oxide causes a reaction of O + 2Li → Li 2 O during charge / discharge, and this reaction is irreversible, so that the initial discharge capacity of the zinc particles is reduced. On the other hand, when zinc is coated with a metal that does not react with lithium, the surface of the zinc particles is not oxidized, and the above irreversible reaction does not occur. For this reason, a high initial discharge capacity is obtained. In addition, when the metal that does not react with lithium is copper or nickel, these metals are difficult to oxidize, and even when oxidized, the metal has conductivity, and therefore, between the negative electrode active material particles and between the negative electrode active material particles and the current collector. Contact resistance with the body is reduced. For this reason, a high initial discharge capacity is obtained. Even when copper or nickel is oxidized, the above irreversible reaction does not occur.

銅で被覆した亜鉛を含む負極活物質を備えたセルA1は、ニッケルで被覆した亜鉛を含む負極活物質を備えたセルA2と比較して、初期放電容量がさらに高いことが分かる。これは銅の方がニッケルよりも導電性が高いためと考えられる。   It can be seen that the cell A1 including the negative electrode active material containing zinc coated with copper has a higher initial discharge capacity than the cell A2 including the negative electrode active material including zinc coated with nickel. This is probably because copper has higher conductivity than nickel.

また、表1より、リチウムと反応しない金属で被覆した亜鉛を含む負極活物質を備えたセルA1及びA2では、黒鉛のみを負極活物質として用いたセルYと比較して、初期放電容量が高いことが分かる。   Further, from Table 1, the cells A1 and A2 provided with the negative electrode active material containing zinc coated with a metal that does not react with lithium have a higher initial discharge capacity than the cell Y using only graphite as the negative electrode active material. I understand that.

(実施例3〜9)
CuSOの量を0.044g、0.088g、0.44g、0.88g、3.52g、5.28g及び7.04gとしたこと以外は実施例1と同様にしてセルB1〜B7を作製した。なお、被覆処理後の亜鉛粒子を被覆している銅の量を定量した結果、亜鉛の総量に対し銅がそれぞれ0.05,0.1、0.5、1.0、5.0、7.5、10.0質量%含まれていた。
(Examples 3 to 9)
Cells B1 to B7 were produced in the same manner as in Example 1 except that the amount of CuSO 4 was 0.044 g, 0.088 g, 0.44 g, 0.88 g, 3.52 g, 5.28 g, and 7.04 g. did. In addition, as a result of quantifying the amount of copper coating the zinc particles after the coating treatment, copper was 0.05, 0.1, 0.5, 1.0, 5.0, 7 with respect to the total amount of zinc, respectively. And 10.0% by mass.

セルB1〜B7を用いて上記と同様に充放電試験を行った。その結果を表2に示す。   A charge / discharge test was performed in the same manner as described above using the cells B1 to B7. The results are shown in Table 2.

表2より、銅の被覆量が亜鉛の総量に対し0.05〜10.0質量%であるとき、初期放電容量が高くなることが分かる。また、銅の被覆量が亜鉛の総量に対し0.10〜7.50質量%であるとき、初期放電容量が特に高くなることが分かる。   From Table 2, it can be seen that the initial discharge capacity is increased when the copper coating amount is 0.05 to 10.0% by mass with respect to the total amount of zinc. It can also be seen that the initial discharge capacity is particularly high when the copper coating amount is 0.10 to 7.50 mass% with respect to the total amount of zinc.

(実施例10〜14)
亜鉛粒子と黒鉛粒子との混合比を質量比で10:90、50:50、65:35、80:20、90:10としたこと以外は実施例1と同様にして試験セルC1〜C5を作製した。
(Examples 10 to 14)
Test cells C1 to C5 were prepared in the same manner as in Example 1 except that the mixing ratio of zinc particles and graphite particles was 10:90, 50:50, 65:35, 80:20, and 90:10. Produced.

セルC1〜C5を用いて上記と同様に充放電試験を行った。その結果を表3に示す。   A charge / discharge test was performed in the same manner as described above using the cells C1 to C5. The results are shown in Table 3.

表3より、負極活物質中に黒鉛が10〜90質量%含まれるとき、初期放電容量が高くなることが分かる。また、負極活物質中に黒鉛が35〜90質量%含まれるとき、初期放電容量が特に高くなることが分かる。   From Table 3, it can be seen that the initial discharge capacity increases when the negative electrode active material contains 10 to 90 mass% of graphite. It can also be seen that the initial discharge capacity is particularly high when the negative electrode active material contains 35 to 90 mass% of graphite.

1・・・作用極
2・・・対極
3・・・参照極
4・・・セパレーター
5・・・非水電解液
6・・・容器
7・・・集電タブ
DESCRIPTION OF SYMBOLS 1 ... Working electrode 2 ... Counter electrode 3 ... Reference electrode 4 ... Separator 5 ... Non-aqueous electrolyte 6 ... Container 7 ... Current collection tab

Claims (6)

リチウムと反応しない金属で被覆した亜鉛を含むことを特徴とする非水電解質二次電池用負極活物質。   A negative electrode active material for a non-aqueous electrolyte secondary battery, comprising zinc coated with a metal that does not react with lithium. 前記金属が銅又はニッケルであることを特徴とする請求項1に記載の非水電解質二次電池用負極活物質。   The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the metal is copper or nickel. 前記金属が前記亜鉛の総量に対して0.05〜10.0質量%含まれていることを特徴とする請求項1又は2に記載の非水電解質二次電池用負極活物質。   The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the metal is contained in an amount of 0.05 to 10.0% by mass with respect to the total amount of the zinc. 黒鉛をさらに含むことを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池用負極活物質。   The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, further comprising graphite. 前記黒鉛が前記負極活物質の総量に対し10〜90質量%含まれていることを特徴とする請求項1〜4のいずれか1項に記載の非水電解質二次電池用負極活物質。   5. The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite is contained in an amount of 10 to 90% by mass with respect to the total amount of the negative electrode active material. 正極と、負極と、非水電解質とを備え、前記負極が請求項1〜5のいずれか1項に記載の負極活物質を備えることを特徴とする非水電解質二次電池。
A nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, wherein the negative electrode comprises the negative electrode active material according to claim 1.
JP2011189065A 2011-08-31 2011-08-31 Negative electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery using the same Withdrawn JP2013051148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011189065A JP2013051148A (en) 2011-08-31 2011-08-31 Negative electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189065A JP2013051148A (en) 2011-08-31 2011-08-31 Negative electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2013051148A true JP2013051148A (en) 2013-03-14

Family

ID=48013033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189065A Withdrawn JP2013051148A (en) 2011-08-31 2011-08-31 Negative electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2013051148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2777483A2 (en) 2013-03-14 2014-09-17 Tanita Corporation Motor function evaluation device and motor function evaluation method
WO2021241001A1 (en) * 2020-05-28 2021-12-02 パナソニックIpマネジメント株式会社 Battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2777483A2 (en) 2013-03-14 2014-09-17 Tanita Corporation Motor function evaluation device and motor function evaluation method
WO2021241001A1 (en) * 2020-05-28 2021-12-02 パナソニックIpマネジメント株式会社 Battery

Similar Documents

Publication Publication Date Title
JP4785482B2 (en) Nonaqueous electrolyte secondary battery
JP6756279B2 (en) Manufacturing method of positive electrode active material
JP2015133318A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
TW201034277A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2013084395A (en) Lithium ion secondary battery manufacturing method
JP2021048137A (en) Cathode active material for lithium secondary battery
TW201640724A (en) Lithium-cobalt composite oxide, production method therefor, electrochemical device, and lithium ion secondary battery
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
JP5966028B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery
WO2023087209A1 (en) Electrochemical device and electronic device
CN108110254B (en) Application of iron phosphate and iron phosphate composite material as negative electrode in lithium ion battery
CN116845235B (en) Positive electrode material, positive electrode sheet and battery
US10873085B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP4677049B1 (en) Negative electrode plate for lithium ion secondary battery and lithium ion secondary battery
JP2011071064A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery equipped with the negative electrode
TWI676317B (en) Lithium-phosphorus composite oxide carbon composite and method for producing same, and electrochemical element and lithium ion secondary battery
JP2013051148A (en) Negative electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery using the same
JP2016009564A (en) Lithium ion battery electrode slurry, lithium ion battery electrode, and method for manufacturing lithium ion battery
JP2014167909A (en) Negative electrode active material for electricity storage device and method for producing the same
CN103151496A (en) Preparation method of negative electrode of lithium battery for handheld electronic game machine
JP4924763B1 (en) Non-aqueous electrolyte secondary battery positive plate, non-aqueous electrolyte secondary battery, method for producing positive electrode plate for non-aqueous electrolyte secondary battery, and battery pack
JP2012094351A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method of manufacturing positive electrode plate for nonaqueous electrolyte secondary battery, and battery pack
JP2011187178A (en) Cathode for lithium ion battery and its manufacturing method
JP2017183079A (en) Method for manufacturing lithium ion secondary battery
JP5368908B2 (en) Storage device processing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104