JP5368908B2 - Storage device processing method - Google Patents

Storage device processing method Download PDF

Info

Publication number
JP5368908B2
JP5368908B2 JP2009187190A JP2009187190A JP5368908B2 JP 5368908 B2 JP5368908 B2 JP 5368908B2 JP 2009187190 A JP2009187190 A JP 2009187190A JP 2009187190 A JP2009187190 A JP 2009187190A JP 5368908 B2 JP5368908 B2 JP 5368908B2
Authority
JP
Japan
Prior art keywords
storage device
positive electrode
lithium
potential
electricity storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009187190A
Other languages
Japanese (ja)
Other versions
JP2011040294A (en
Inventor
陽一 高岡
徳雄 吹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2009187190A priority Critical patent/JP5368908B2/en
Publication of JP2011040294A publication Critical patent/JP2011040294A/en
Application granted granted Critical
Publication of JP5368908B2 publication Critical patent/JP5368908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、HTi1225で表されるチタン酸化合物を電極活物質に用いた蓄電デバイスにおいて、サイクル特性を、特に高温サイクル特性を改良することができる処理方法に関する。 The present invention relates to a treatment method capable of improving cycle characteristics, particularly high-temperature cycle characteristics, in an electricity storage device using a titanate compound represented by H 2 Ti 12 O 25 as an electrode active material.

リチウム二次電池は、サイクル特性に優れていることから、近年急速に普及している。リチウム二次電池の負極活物質には、従来、炭素材料が用いられていたが、充放電電位が高く、安全性に優れたチタン酸化合物が注目されており、例えば、HTi1225で表されるチタン酸化合物を用いた電極活物質(特許文献1)が知られている。ところが、前記チタン酸化合物は高温で電解液を分解させ易いため、高温サイクル特性に劣り、例えば、高温下で使用される二輪・四輪車用、発電用等の大型蓄電デバイスには使い難いという問題がある。 Lithium secondary batteries have been rapidly spreading in recent years because of their excellent cycle characteristics. Conventionally, a carbon material has been used as a negative electrode active material for a lithium secondary battery. However, a titanate compound having a high charge / discharge potential and an excellent safety has attracted attention. For example, H 2 Ti 12 O 25 The electrode active material (patent document 1) using the titanic acid compound represented by these is known. However, since the titanic acid compound easily decomposes the electrolyte solution at high temperatures, it is inferior in high-temperature cycle characteristics, for example, it is difficult to use for large power storage devices such as motorcycles and automobiles used at high temperatures, and for power generation. There's a problem.

国際公開WO2008/111465号パンフレットInternational Publication WO2008 / 111465 Pamphlet

本発明は、前記チタン酸化合物を用いた蓄電デバイスの電池特性を、特に高温サイクル特性を改良する方法を提供する。   The present invention provides a method for improving battery characteristics, particularly high-temperature cycle characteristics, of an electricity storage device using the titanate compound.

本発明者らは、鋭意研究を重ねた結果、前記チタン酸化合物を電極に用いた蓄電デバイスを作製した直後に、特定の方法で初期的な処理を施すと、この蓄電デバイスの電池特性を改良できることを見出し、本発明を完成させた。   As a result of intensive studies, the present inventors improved the battery characteristics of this electricity storage device by performing an initial treatment by a specific method immediately after producing the electricity storage device using the titanate compound as an electrode. The present invention has been completed by finding out what can be done.

即ち、本発明は、(1)正極活物質を含む正極と、HTi1225で表されるチタン酸化合物を含む負極と、リチウムイオンを含む電解液とから少なくとも構成された蓄電デバイスを、前記負極の電位が金属リチウムの電位に対し0.1〜1.3Vの範囲になるように初期充電した後、その充電状態で保持する蓄電デバイスの処理方法である。あるいは、(2)HTi1225で表されるチタン酸化合物を含む正極と、リチウム又はその合金を含む負極と、リチウムイオンを含む電解液とから少なくとも構成された蓄電デバイスを、前記正極の電位が金属リチウムの電位に対し0.1〜1.3Vの範囲になるように初期放電した後、その放電状態で保持する蓄電デバイスの処理方法である。 That is, the present invention provides (1) an electricity storage device comprising at least a positive electrode containing a positive electrode active material, a negative electrode containing a titanate compound represented by H 2 Ti 12 O 25 , and an electrolyte containing lithium ions. This is a method for treating an electricity storage device in which the negative electrode is initially charged so that the potential of the negative electrode is in the range of 0.1 to 1.3 V with respect to the potential of metallic lithium and then held in the charged state. Alternatively, (2) an electricity storage device including at least a positive electrode containing a titanate compound represented by H 2 Ti 12 O 25 , a negative electrode containing lithium or an alloy thereof, and an electrolytic solution containing lithium ions is used as the positive electrode This is a method for treating an electricity storage device that is initially discharged so that its potential is in a range of 0.1 to 1.3 V with respect to the potential of metallic lithium and then held in the discharged state.

本発明によって処理された蓄電デバイスは、電池特性、特に高温サイクル特性に優れている。   The electricity storage device treated according to the present invention has excellent battery characteristics, particularly high temperature cycle characteristics.

図1は実施例1、2及び比較例1(試料A、B、a)の高温サイクル特性である。FIG. 1 shows high-temperature cycle characteristics of Examples 1 and 2 and Comparative Example 1 (Samples A, B, and a).

本発明は、蓄電デバイスの処理方法であって、第一の発明は、正極活物質を含む正極と、HTi1225で表されるチタン酸化合物を含む負極と、リチウムイオンを含む電解液とから少なくとも構成された蓄電デバイスを、前記負極の電位が金属リチウムの電位に対し0.1〜1.3Vの範囲になるように初期充電した後、その充電状態で保持することを特徴とする。また、第二の発明は、HTi1225で表されるチタン酸化合物を含む正極と、リチウム又はその合金を含む負極と、リチウムイオンを含む電解液とから少なくとも構成された蓄電デバイスを、前記正極の電位が金属リチウムの電位に対し0.1〜1.3Vの範囲になるように初期放電した後、その放電状態で保持することを特徴とする。第一の発明では、前記範囲の電圧で初期充電することにより、第二の発明では、前記範囲の電圧で初期放電することで、おそらくは、前記チタン酸化合物を含む正極又は負極表面に、電解液成分に由来する安定な皮膜が形成されるものと考えられる。この皮膜の形成により、前記正・負極へのリチウムイオンの挿入脱離が阻害されることなく、前記正・負極が電解液と直接接触し難くなるので、電解液の分解が抑制されて、電池特性が向上すると推測される。特に、高温度下での電解液の分解抑制効果が高く、高温サイクル特性が改良されると考えられる。 The present invention is a method for treating an electricity storage device, wherein the first invention is a positive electrode including a positive electrode active material, a negative electrode including a titanate compound represented by H 2 Ti 12 O 25 , and an electrolysis including lithium ions. An electrical storage device comprising at least a liquid is initially charged so that the potential of the negative electrode is in a range of 0.1 to 1.3 V with respect to the potential of metallic lithium, and then held in the charged state. To do. According to a second aspect of the present invention, there is provided an electricity storage device including at least a positive electrode including a titanate compound represented by H 2 Ti 12 O 25 , a negative electrode including lithium or an alloy thereof, and an electrolytic solution including lithium ions. The initial discharge is performed so that the potential of the positive electrode is in the range of 0.1 to 1.3 V with respect to the potential of the metallic lithium, and then the discharge state is maintained. In the first invention, an initial charge is performed at a voltage in the above range, and in the second invention, an initial discharge is performed at a voltage in the above range. It is considered that a stable film derived from the components is formed. Since the formation of this film does not hinder the insertion / extraction of lithium ions into the positive / negative electrode and the positive / negative electrode is difficult to directly contact with the electrolyte, the decomposition of the electrolyte is suppressed, and the battery It is estimated that the characteristics are improved. In particular, the effect of suppressing the decomposition of the electrolytic solution at a high temperature is high, and the high-temperature cycle characteristics are considered to be improved.

いずれの発明においても、初期充電後又は初期放電後の保持温度は40℃未満にするのが好ましく、常温下、即ち、20〜30℃の範囲とするのが更に好ましい。また、保持期間が少なくとも1週間であれば、所望の効果が得られ易いので好ましく、1ヶ月を超えて行なっても更なる効果が得られ難いので、1ヶ月以下とするのが好ましい。   In any of the inventions, the holding temperature after the initial charge or after the initial discharge is preferably less than 40 ° C., more preferably at room temperature, that is, in the range of 20 to 30 ° C. In addition, if the holding period is at least 1 week, the desired effect can be easily obtained, and it is difficult to obtain a further effect even if performed for more than 1 month.

前記チタン酸化合物は、公知の方法、例えば、前記特許文献1記載の方法に従って調製できる。即ち、ナトリウム化合物と酸化チタンの混合物を空気中600℃以上の温度で焼成して、組成式:NaTiで表されるチタン酸ナトリウムを得た後、このチタン酸ナトリウムを酸性溶液を用いてプロトン交換して、組成式:HTiで表されるチタン酸化合物とし、得られたHTiを150℃以上280℃未満の範囲の温度で加熱脱水することで得られる。 The titanic acid compound can be prepared according to a known method, for example, the method described in Patent Document 1. That is, a mixture of a sodium compound and titanium oxide is baked in air at a temperature of 600 ° C. or higher to obtain sodium titanate represented by the composition formula: Na 2 Ti 3 O 7. To obtain a titanic acid compound represented by the composition formula: H 2 Ti 3 O 7 , and the obtained H 2 Ti 3 O 7 is dehydrated by heating at a temperature in the range of 150 ° C. or higher and lower than 280 ° C. Can be obtained.

第一の発明では、正極、負極は、正極活物質又は前記チタン酸化合物に、導電剤、結着剤を加え、必要に応じて更に溶剤を加えて混合し、得られた混合物を集電体の表面に担持させて活物質層を形成することで得られる。正極活物質には、リチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・バナジン複合酸化物等のリチウム・遷移金属複合酸化物、リチウム・鉄・複合リン酸化合物等のオリビン型化合物等から選ばれる少なくとも1種のリチウム含有複合酸化物を用いるのが好ましい。   In the first invention, the positive electrode and the negative electrode are mixed with a positive electrode active material or the titanic acid compound with a conductive agent and a binder, and further added with a solvent as necessary. It is obtained by forming the active material layer on the surface of the substrate. Examples of positive electrode active materials include lithium / manganese composite oxides, lithium / cobalt composite oxides, lithium / nickel composite oxides, lithium / transition metal composite oxides such as lithium / vanadine composite oxides, and lithium / iron / composite phosphates. It is preferable to use at least one lithium-containing composite oxide selected from olivine type compounds such as compounds.

第二の発明では、正極に前記チタン酸化合物を第一の発明と同様に、導電剤、結着剤
と、適宜溶剤を加えた混合物を、活物質層として集電体の表面に担持させる。
In the second invention, as in the first invention, a mixture obtained by adding the titanic acid compound to the positive electrode and a conductive agent, a binder, and an appropriate solvent is supported on the surface of the current collector as an active material layer.

第一及び第二の発明では、活物質層に含まれる前記チタン酸化合物、あるいは、これの対極に用いられる正極活物質や金属リチウム又はその合金は、活物質層100重量部に対し、40〜95重量部の範囲が好ましい。   In 1st and 2nd invention, the said titanic acid compound contained in an active material layer, or the positive electrode active material used for this counter electrode, metallic lithium, or its alloy is 40-about with respect to 100 weight part of active material layers. A range of 95 parts by weight is preferred.

導電剤としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等が挙げられる。バインダには、フッ素樹脂(ポリフルオロエチレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等)、ビニル樹脂(ポリビニルアルコール、ポリビニルピロリドン等)、セルロース樹脂(ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等)、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)が挙げられ、中でもフッ素樹脂が好ましい。   Examples of the conductive agent include carbon black, acetylene black, ketjen black, and graphite. The binder includes fluorine resin (polyfluoroethylene, polytetrafluoroethylene, polyvinylidene fluoride, etc.), vinyl resin (polyvinyl alcohol, polyvinylpyrrolidone, etc.), cellulose resin (hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, ethylcellulose, etc.), polyolefin resin (Polyethylene, polypropylene, etc.) are mentioned, and among them, a fluororesin is preferable.

集電体には、銅、ニッケル等あるいはそれらの合金を用いることができる。また、集電体の形状は、メッシュ状、シート状等を用いることができる。   For the current collector, copper, nickel, or the like or an alloy thereof can be used. Further, the current collector may be mesh, sheet or the like.

前記電解液は、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22、LiBF4等のリチウム塩を溶媒に溶解して調製する。溶媒には、カーボネート系溶媒(プロピレンカーボネート、エチレンカーボネート等)、エーテル系溶媒(1,2−ジメトキシエタン、テトラヒドロフラン等)及びそれらの混合溶媒が挙げられる。電解液中の前記電解質の濃度は、0.1〜10モル/リットルの範囲が好ましく、0.1〜5モル/リットルの範囲が更に好ましい。 The electrolytic solution is prepared by dissolving a lithium salt such as LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 in a solvent. Examples of the solvent include carbonate solvents (propylene carbonate, ethylene carbonate, etc.), ether solvents (1,2-dimethoxyethane, tetrahydrofuran, etc.), and mixed solvents thereof. The concentration of the electrolyte in the electrolytic solution is preferably in the range of 0.1 to 10 mol / liter, more preferably in the range of 0.1 to 5 mol / liter.

蓄電デバイスは、前記の正極と負極との間にセパレーターを挟み、電池ケースに収納し、リチウムイオンを含む電解液を充填した後、電池ケースを密封して作製できる。   An electricity storage device can be manufactured by sandwiching a separator between the positive electrode and the negative electrode, storing the separator in a battery case, filling an electrolyte containing lithium ions, and then sealing the battery case.

セパレーターには、ポリエチレン、ポリプロピレン及びそれらの共重合体等のポリオレフィンフィルムが好ましく、特に多孔性のポリオレフィンフィルムが好ましい。   For the separator, polyolefin films such as polyethylene, polypropylene, and copolymers thereof are preferable, and porous polyolefin films are particularly preferable.

電池ケースは、ステンレス、アルミニウム等の金属製のものやラミネートフィルムを適宜選択する。また、蓄電デバイスの形態としては、ボタン型、コイン型、円筒型、角型、シート型、ラミネート型等のいずれでも良く、特に制限は受けない。 As the battery case, a metal case such as stainless steel or aluminum or a laminate film is appropriately selected. Further, the form of the electricity storage device may be any of a button type, a coin type, a cylindrical type, a square type, a sheet type, a laminate type, and the like, and is not particularly limited.

以下に本発明の実施例を示すが、これらは本発明を限定するものではない。   Examples of the present invention are shown below, but these do not limit the present invention.

実施例1(第二の発明)
組成式:HTi1225で表されるチタン酸化合物と、導電剤としてのアセチレンブラック粉末、及び結着剤としてのポリテトラフルオロエチレン樹脂を重量比で50:40:10で混合し、溶媒としてN‐メチル‐2‐ピロリドンを添加して、乳鉢で練り合わせ、ペーストを調製した。このペーストを銅箔上に塗布し、120℃の温度で10分乾燥した後、直径12mmの円形に打ち抜き、17MPaでプレスして正極を作製した。
Example 1 (second invention)
A titanic acid compound represented by a composition formula: H 2 Ti 12 O 25 , acetylene black powder as a conductive agent, and polytetrafluoroethylene resin as a binder are mixed at a weight ratio of 50:40:10, N-methyl-2-pyrrolidone was added as a solvent and kneaded in a mortar to prepare a paste. This paste was applied on a copper foil, dried at a temperature of 120 ° C. for 10 minutes, punched into a circle having a diameter of 12 mm, and pressed at 17 MPa to produce a positive electrode.

この正極を120℃の温度で4時間真空乾燥した後、露点−70℃以下のグローブボックス中で、密閉可能なコイン型セルに組み込んだ。コイン型セルには材質がステンレス製(SUS316)で外径20mm、高さ3.2mmのものを用いた。負極には厚み0.5mmの金属リチウムを直径12mmの円形に成形したものを用いた。非水電解液として1モル/リットルとなる濃度でLiPFを溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を用いた。 This positive electrode was vacuum-dried at a temperature of 120 ° C. for 4 hours, and then incorporated in a sealable coin-type cell in a glove box having a dew point of −70 ° C. or less. A coin type cell made of stainless steel (SUS316), having an outer diameter of 20 mm and a height of 3.2 mm was used. As the negative electrode, a metal lithium having a thickness of 0.5 mm formed into a circle having a diameter of 12 mm was used. As the non-aqueous electrolyte, a mixed solution of ethylene carbonate and dimethyl carbonate (mixed in a volume ratio of 1: 2) in which LiPF 6 was dissolved at a concentration of 1 mol / liter was used.

正極はコイン型セルの下部缶に置き、その上にセパレーターとして多孔性ポリプロピレンフィルムを置き、その上から非水電解液を滴下した。さらにその上に負極と、厚み調整用の0.5mm厚スペーサー及びスプリング(いずれもSUS316製)をのせ、プロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封した。(試料a)。   The positive electrode was placed in a lower can of a coin-type cell, a porous polypropylene film was placed thereon as a separator, and a nonaqueous electrolyte was dropped from above. Further, a negative electrode, a 0.5 mm-thickness spacer for adjusting the thickness, and a spring (all made of SUS316) were placed thereon, and an upper can with a propylene gasket was put on and the outer peripheral edge portion was caulked and sealed. (Sample a).

前記のコイン型セルを、25℃の温度下で、放電電流を0.2mAに設定して、定電流で、負正極の電位が金属リチウムの電位に対し0.7Vになるまで初期放電させた。その放電状態で25±5℃に設定した恒温室中で1週間保持して蓄電デバイスを処理した(試料A)。   The coin-type cell was initially discharged at a constant current at a temperature of 25 ° C. with a discharge current set to 0.2 mA until the potential of the negative electrode was 0.7 V with respect to the potential of metallic lithium. . In this discharge state, the electricity storage device was processed by holding it in a thermostatic chamber set at 25 ± 5 ° C. for 1 week (sample A).

実施例2(第二の発明)
実施例1において、保持期間を2週間とした以外は実施例1と同様にして処理した(試料B)。
Example 2 (second invention)
In Example 1, the treatment was performed in the same manner as in Example 1 except that the holding period was 2 weeks (Sample B).

比較例1
試料aを比較例1とした。
Comparative Example 1
Sample a was set as Comparative Example 1.

評価:高温サイクル特性の評価
実施例1、2及び比較例1の蓄電デバイス(試料A、B、a)を、60℃の高温槽中で、充放電電流を0.2mA、カットオフ電位1.0V〜2.5V、で50サイクル充放電させた。2サイクル目と50サイクル目の放電容量をそれぞれの蓄電容量として、(50サイクル目の電気容量/2サイクル目の電気容量)×100を高温サイクル特性とした。結果を表1に示す。また、それぞれの容量維持率の推移を図1に示す。本発明が、高温サイクル特性に優れていることが判る。
Evaluation: Evaluation of high-temperature cycle characteristics The power storage devices of Examples 1 and 2 and Comparative Example 1 (samples A, B, and a) were charged in a high-temperature bath at 60 ° C. with a charge / discharge current of 0.2 mA and a cut-off potential of 1. The battery was charged and discharged for 50 cycles at 0V to 2.5V. The discharge capacities at the second cycle and the 50th cycle were taken as the respective storage capacities, and (the electric capacity at the 50th cycle / the electric capacity at the second cycle) × 100 was taken as the high temperature cycle characteristics. The results are shown in Table 1. Moreover, transition of each capacity maintenance rate is shown in FIG. It can be seen that the present invention is excellent in high-temperature cycle characteristics.

Figure 0005368908
Figure 0005368908

本発明で処理した蓄電デバイスは、放電電位が高く、安全性に優れ、しかも高温サイクル特性も優れているので、携帯電話用、ノート型用パソコン等の小型蓄電デバイスばかりでなく、二輪・四輪車用、発電用等の大型蓄電デバイスとしても有用である。   The electricity storage device treated in the present invention has a high discharge potential, excellent safety, and excellent high-temperature cycle characteristics, so that it is not only a small electricity storage device for mobile phones, notebook computers, etc. It is also useful as a large power storage device for cars and power generation.

Claims (2)

Ti1225で表されるチタン酸化合物を含む正極と、リチウム又はその合金を含む負極と、リチウムイオンを含む電解液とから少なくとも構成された蓄電デバイスを、前記正極の電位が金属リチウムの電位に対し0.1〜1.3Vの範囲になるように初期放電した後、その放電状態で少なくとも1週間保持する蓄電デバイスの処理方法。 An electric storage device comprising at least a positive electrode containing a titanate compound represented by H 2 Ti 12 O 25 , a negative electrode containing lithium or an alloy thereof, and an electrolytic solution containing lithium ions, and the potential of the positive electrode is metallic lithium A method for treating an electricity storage device in which initial discharge is performed so as to be in a range of 0.1 to 1.3 V with respect to the potential of the battery, and then held in the discharged state for at least one week . 前記の放電状態での保持を40℃未満の温度下にて行なう請求項記載の蓄電デバイスの処理方法。 Processing method of an electric storage device according to claim 1, wherein performing holding in the discharge state of the at a temperature below 40 ° C..
JP2009187190A 2009-08-12 2009-08-12 Storage device processing method Expired - Fee Related JP5368908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187190A JP5368908B2 (en) 2009-08-12 2009-08-12 Storage device processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009187190A JP5368908B2 (en) 2009-08-12 2009-08-12 Storage device processing method

Publications (2)

Publication Number Publication Date
JP2011040294A JP2011040294A (en) 2011-02-24
JP5368908B2 true JP5368908B2 (en) 2013-12-18

Family

ID=43767848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187190A Expired - Fee Related JP5368908B2 (en) 2009-08-12 2009-08-12 Storage device processing method

Country Status (1)

Country Link
JP (1) JP5368908B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066831B2 (en) * 2006-05-12 2012-11-07 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP5158787B2 (en) * 2007-03-13 2013-03-06 独立行政法人産業技術総合研究所 NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL

Also Published As

Publication number Publication date
JP2011040294A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
WO2019135321A1 (en) Solid electrolyte material and battery
JP6168603B2 (en) Cathode active material for lithium ion battery and method for producing the same
WO2019135336A1 (en) Solid electrolyte material and battery
JPWO2017047015A1 (en) battery
JP2010062113A (en) Lithium ion secondary battery
WO2013151209A1 (en) Cathode active material for lithium ion capacitor and method for manufacturing same
JP6733140B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2018085324A (en) Cathode active material for battery, and battery using cathode active material
JP2018116927A (en) Positive electrode active material and battery
Chauque et al. Comparative study of different alkali (Na, Li) titanate substrates as active materials for anodes of lithium-ion batteries
JP6273584B2 (en) Composite metal oxide, method for producing composite metal oxide, and sodium secondary battery
JP2007052935A (en) Nonaqueous electrolyte battery
JP5596726B2 (en) Magnesium battery
CN106104860B (en) Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
JP2015115283A (en) Sodium secondary battery, and method for manufacturing positive electrode material used therefor
JP2015022983A (en) Sodium secondary battery
JP2014220115A (en) Sodium secondary battery
JP6046995B2 (en) Method for manufacturing sodium secondary battery
JP2013191484A (en) Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell
JP6102615B2 (en) Negative electrode active material and secondary battery using the same
JP5454265B2 (en) Pseudo capacitance capacitor
JP2014056663A (en) Sodium secondary battery
JP5368908B2 (en) Storage device processing method
JP7117539B2 (en) Negative electrode active material and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R151 Written notification of patent or utility model registration

Ref document number: 5368908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees