JP4936129B2 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP4936129B2
JP4936129B2 JP2007174904A JP2007174904A JP4936129B2 JP 4936129 B2 JP4936129 B2 JP 4936129B2 JP 2007174904 A JP2007174904 A JP 2007174904A JP 2007174904 A JP2007174904 A JP 2007174904A JP 4936129 B2 JP4936129 B2 JP 4936129B2
Authority
JP
Japan
Prior art keywords
insulating frame
ring
plasma processing
processing apparatus
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007174904A
Other languages
English (en)
Other versions
JP2008038248A (ja
Inventor
崇 大内
均 清水
政和 鷁頭
慎 下沢
祐二 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007174904A priority Critical patent/JP4936129B2/ja
Publication of JP2008038248A publication Critical patent/JP2008038248A/ja
Application granted granted Critical
Publication of JP4936129B2 publication Critical patent/JP4936129B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、プラズマを利用して、基板の表面に薄膜堆積、エッチング等の処理を行うようにしたプラズマ処理装置に関する。
真空容器内の基板に対向して配置される2つの電極の間に電圧を印加するとともにガスを流すことによってプラズマを生成し、このプラズマを利用して薄膜形成やエッチングを行うプラズマ処理技術は、従来から、多くの技術分野で適用されている。
かかるプラズマ処理技術の装置としては、例えば容量結合型の平行平板プラズマCVD装置もしくはエッチング装置等が挙げられる。
この平行平板プラズマCVD装置もしくはエッチング装置においては、基板が配置される真空容器内に流すガスを、例えばSiH4に代表される製膜ガスとすれば、当該基板に薄膜が堆積され、また、例えばCF4に代表されるエッチングガスとすれば、当該基板に対してエッチングが行われることになる。
図4は、SiH4を主体としたガスで基板上にSi系薄膜を形成するプラズマCVD法によって、薄膜太陽電池を作製する容量結合型の平行平板プラズマCVD装置の模式図である。
図4において、真空容器201の内部に形成された真空室202には、外部の高周波電源210から給電線211を通して高周波電力が供給される高周波電極212と、該高周波電極212と対向する位置に接地電極213とが配置されている。真空容器201と給電線211とは、電気的に絶縁されている。なお、接地電極213は必ずしも接地電位である必要はなく、目的に応じて直流、もしくは高周波電力の印加が可能な機構を有していても良い。
上記接地電極213の上部には基板214を設置する機構(図示省略)が設けられ、当該接地電極213内には基板214を加熱する加熱機構が内蔵されている。基板214の設置位置は真空室202内の任意の場所、例えば高周波電極212上でも良い。また、接地電極213内の加熱機構の有無、もしくは加熱機構の設置場所も限定されるものではない。
上記給電線211と上記高周波電極212との接触位置は、通常、高周波電極212の中心にあり、また、これら高周波電極212と給電線211とは垂直に接触しており、高周波電極212側から見て給電線211は対称な配置となっている。
図5及び図6は、上記高周波電極と上記給電線との配置関係の他の例を示すプラズマCVD装置の模式図である。
図5に示されるプラズマCVD装置においては、給電線211と高周波電極212との接触部位が、図4の装置のような高周波電極212の中心部ではなく、高周波電極212の周縁部に配置されている。その他の構成は図4と同様であり、これと同一の部材は同一の符号で示されている。
また、図6に示されるプラズマCVD装置においては、給電線211と高周波電極212との接触部位が高周波電極212の中心部に配置されているとともに(中心部から若干ずれていても良い)、外部の高周波電源210が真空容器201の上部に配置され、高周波電源210から電力を導入する給電線211が真空容器201の上壁から真空室202内に導入するように構成されている。従って、外部の高周波電源210側と高周波電極212とを繋ぐ給電線211は直線状でなく、L字状の形状となり、高周波電極212側から見て非対称な配置となっている。
かかる構造は、例えば装置レイアウト等の問題で外部の高周波電源210からの電力導入形式が図4のような構成を取れない場合に採用されている。
その他の構成は図4と同様であり、これと同一の部材は同一の符号で示されている。
図7に示されるプラズマCVD装置は、真空室202内に複数の高周波電極及び接地電極を設置するように構成されている。
即ち図7において、真空室202内には、2個の高周波電源220a,220bから給電線221a,221bを通して高周波電力が供給される高周波電極222a,222bと、該高周波電極222a,222bとそれぞれ対向する位置に接地電極223a,223b(当該接地電極223a,223bに代えて、目的に応じて直流もしくは高周波電力の印加が可能な機構でも良い)とが設置されている。接地電極223a,223bの上方には基板224a,224bを設置する機構(図示省略)が設けられ、また、接地電極223a,223b内には基板224a,224bを加熱するための加熱機構が設けられている。
かかるプラズマCVD装置においては、真空室202内に、高周波電極222a,222b及び接地電極223a,223bの組が2組設置されており、各々の高周波電極222a,222bに対して配置された高周波電源220a,220bにより、それぞれ独立に電力を印加することが可能となっている。
このような構成を取ることにより、図4〜図6に示すような高周波電極212及び接地電極213が一組設けられるプラズマCVD装置に比べて、処理能力を2倍にすることができる。
図7のようなプラズマCVD装置を用いて、長尺の高分子材料あるいはステンレス鋼などの金属材料からなる可撓性基板上に薄膜太陽電池を製造することにより、薄膜太陽電池の生産性を向上させることが可能となる。
次に、図4〜図7に示されるようなプラズマCVD装置を用いて基板に薄膜を形成する手順を図4の装置を例にとって説明する。
先ず、図示しない排気手段によって、真空室202内を所要の真空度まで真空引きを行う。次いで、必要に応じ接地電極213内のヒータによって基板214の加熱を行う。
真空引き直後においては、真空室202内や基板214の表面等に水分等の不純物が吸着している場合が多く、これらの不純物が十分に脱ガスされない状態で薄膜形成を行うと、薄膜中に大量の不純物が含まれるため膜質の低下につながる。そこで、真空室202内の脱ガスを促進する目的で、薄膜形成前にガス導入ラインからガスを導入し、圧力制御器と製膜ガス排気ラインによって真空室202内を一定の圧力に保持したまま真空室202内の加熱(ベーキング)を行う。
上記ベーキング中に流すガスは、H2等の熱伝導性が比較的良好なガス、He,Ar等の不活性ガス、あるいは製膜を行う際に流す製膜ガス等を採用している。また、ベーキング中の基板温度は、実際に製膜を行う時の基板温度よりも高めに設定する場合がある。これは、ベーキング中の基板温度を製膜時の基板温度よりも高めに設定することにより脱ガスを促進し、製膜時における脱ガス量を低減するためである。
上記脱ガス後、基板温度を製膜する際の基板温度に設定し、必要に応じて数種類の製膜ガスを所定の流量比で混合してなる混合ガスを真空室202内に流して所要圧力に保持し、しかる後、高周波電極212に電圧を印加し、高周波電極212〜接地電極213間にプラズマを発生させて基板214上に薄膜形成を行う。種々の製膜条件で基板214上に多層膜を形成することにより、薄膜太陽電池等を作製することが可能となる。
また、長尺の可撓性基板上に複数の層を成膜する方法として、各成膜室を移動する基板上に成膜するロールツーロール方式と、成膜室内で停止させた基板上に成膜し、成膜後の基板部分を成膜室外へ送り出すステッピングロール方式とがある。
図8は、特許文献1(特開平8−293491号公報)にて提供されているステッピングロール方式による多列基板搬送製膜装置の成膜室周りの断面図である。
図8において、複数の基板224が真空容器201の内部に形成した真空室202内に並行して搬送され、2列の基板224の間には、それぞれ対向配置された電圧を印加する高周波電極(高周波電極支持枠を含む)222及び接地電極223が設けられ、これら高周波電極222及び接地電極223によって、成膜時に気密状態となる成膜室235に電圧が印加され、基板224の表面に薄膜を形成するためのプラズマが成膜室235内に生成されるようになっている。
真空容器201の内側には、アルミニウム等の導電性材料からなるシールド体203が接地電位に保たれて固定されている。このシールド体203は、上記のように対向配置された高周波電極222の間に配置されており、枠状に切り抜いた形状に形成されて、対をなす高周波電極222の内側側面を覆うように配置されている。高周波電極222には給電体221が接続されており、外部に設置された高周波電源からの高周波電流は、給電体221を解して高周波電極222に伝送されるようになっている。
上記シールド体203の側面には、接地電極支持枠226が複数のねじ226aによって固定されている。そして、高周波電極(高周波電極支持枠を含む)222と接地電極支持枠226との間には、絶縁枠230が間隔片226bを介した複数のねじ226cによって挟持固定されている。
また、接地電極支持枠226及び高周波電極222には、シール材のOリング232を嵌挿するOリング溝が設けられており、これら高周波電極222及び接地電極支持枠226にて、Oリング232を介して絶縁枠230を挟持することにより、成膜室235を形成している。
特開平8−293491号公報
上記従来技術で述べたような、プラズマCVD装置を備えた多列基板搬送製膜装置においては、真空室202内に成膜室235を配設したプラズマ処理装置の絶縁構造であることから、高周波電極(高周波電極支持枠を含む)222と接地電極支持枠226との間において高周波電流に対する絶縁を施すこと、及び、内圧が加わる成膜室235からの反応ガスの漏洩を防止することが必要となる。
しかして、近年、大型基板上に薄膜を形成する大面積成膜技術が急速に進歩しており、生産性の向上を目的として、1m級の基板上へ薄膜を形成する大面積成膜の研究もなされている。図8に示されるようなプラズマCVD装置において、幅寸法が1mを超える基板上に薄膜を形成するためには、高周波電極222、接地電極223、これらにより形成される成膜室235及び絶縁枠230も、1mを超える大きさに大型化する必要がある。
一方、良好な膜質を有する薄膜を得るためには、前記成膜室235の温度は200℃超まで昇温する必要がある。前述のような1m超級の大型プラズマCVD設備の場合は、主な構成部材がステンレス材料やアルミ材料で構成されていることから、200Kの温度差では3〜5mm程度の熱膨張量となる。
上記のような高周波電流に対する絶縁材料として石英ガラスが一般的であるが、石英ガラスはステンレス構成材料やアルミ構成材料に比べて線膨張係数が低く、特に大型のプラズマCVD設備の絶縁枠230の材料として石英ガラスを適用した場合には、絶縁枠230と高周波電極222及び接地電極支持枠226との間に大きな熱膨張差を生じ、その結果、石英ガラス製の絶縁枠230にOリング232を介してせん断力等の外力が加わり、絶縁枠230が変形や破損に至るという問題を発生し易い。
また、高スループット化をなす目的で成膜外時間の短縮を図る場合には、成膜室235の昇温速度を高めることによって絶縁枠230の熱応力が高まる結果となり、該絶縁枠230に石英ガラスを適用した場合には、当該熱応力の過大による破損を発生するおそれがある。
かかる絶縁枠230の破損リスクを低減するために、絶縁枠230の材料として当該熱応力では破損し難い耐熱樹脂であるテフロン誘電体を採用する方法もあるが、前述の1m超級大型プラズマCVD設備の場合、200Kの温度差で1m当り20〜30mm程度の熱膨張量となる。
その結果、上記耐熱樹脂製の絶縁枠230が所定の取付け位置から大幅に移動し、あるいは変形して、Oリング232のシール接触部から外れること、該Oリング232が捩れ変形を起こして破断すること、耐熱樹脂製の絶縁枠230がクリープ変形を起こしてOリング232のつぶし量を確保できなくなること等によって、成膜室235のガスシール性を保持することができなくなるなどの問題がある。このため、Oリング232の装着部から成膜室235内のガス洩れが発生し、上記特許文献1のような従来技術にあっては、基板224の成膜機能が大幅に低下するという問題を有している。
一方、Oリング232には、経年劣化に伴う圧縮永久歪が発生した場合でも、シール性能を維持することが要求される。Oリングのつぶし代は、10〜30%とするのが一般的であり、長期間シール性能を維持するためには、初期つぶし代をできるだけ高くした上で、30%を超過しないように制御することが必要となる。1m級基板対応の大型成膜装置では、加工精度の制約から、Oリングのつぶし代を厳密に制御することが困難となる問題がある。Oリングの線径を大きくして対応する方法もあるが、成膜室が大型化するとともに、Oリングコストが増大する問題がある。
また、上記特許文献1のような従来技術にあっては、前述したような絶縁枠230の移動が発生すると、プラズマ発生領域の近傍に取付けられている耐熱樹脂製の絶縁枠230の側面に、薄膜の付着やエッチングが生じる等の不具合を併発し易い。また、電界集中等により短絡状態に至った場合には、耐熱樹脂製の絶縁枠230側面の短絡箇所が炭化して、それ以降トラッキングし易くなるという問題も発生する。
更に、かかる従来技術にあっては、プラズマCVD処理装置での成膜処理において、耐熱樹脂製の絶縁枠230の側面にも成膜物が付着することにより、膜応力が発生して絶縁枠230の変形に繋がり、長期間の良好なシール性が阻害される懸念がある。
本発明は、このような実状に鑑みてなされたものであり、その目的は、大型設備であっても、絶縁構造体の変形、破損の発生を見ることなく、長期間に亘って絶縁性及び気密性を良好に保持することが可能なプラズマ処理装置の絶縁構造を提供することにある。
上記従来技術の有する課題を解決するために、本発明は、真空容器内の基板に対向して配置される2つの電極を備え、前記2つの電極の間に電圧を印加するとともにガスを流すことによってプラズマを生成し、前記基板の表面に製膜、エッチング等のプラズマ処理を行うようにしたプラズマ処理装置において、前記2つの電極を支持する電極支持枠体の側面に角溝をそれぞれ設け、前記各角溝の底面にOリングが嵌挿されるOリング溝を形成し、前記2つの角溝間に絶縁枠を配置して前記絶縁枠の両側面が前記Oリングにシールされた形態で、かつ上下面と前記角溝との間に隙間を形成して前記各角溝の底面に当接させ、前記電極支持枠体にて前記絶縁枠を挟持固定することにより、成膜室を形成している。
本発明において、特に、次のように構成することが好ましい。
(1)前記角溝の成膜室内側の側壁先端部を、丸みを帯びた形状あるいは内面の傾斜が鈍角となるような面取り形状に形成している。
(2)前記2つの電極のうちの一方の電極側における前記角溝の前記成膜室内側の側壁厚さを、他方の電極側における側壁厚さよりも厚く形成するとともに、前記一方の電極側の側壁側面に板状誘電体又は非磁性金属板のいずれかを固定している。
(3)前記絶縁枠を間隔片を介した複数のねじにより前記電極支持枠体間に挟持固定し、前記間隔片の長さを調節することにより、前記Oリングの初期つぶし量を所望のつぶし量に調整している。
(4)前記絶縁枠として耐熱性樹脂を適用している。
本発明によれば、2つの電極を支持する接地電極支持枠体の側面に角溝を設け、各角溝の底面にOリングが嵌挿されるOリング溝を形成し、絶縁枠を、前記角溝の間に配置してこれの両側面がOリングにシールされた形態で各角溝の底面に流体密に当接させ、さらには前記角溝の上下側内面と絶縁枠の上下側面との間に隙間を形成しているので、プラズマの発生に伴い、絶縁枠の材料として耐熱樹脂材料、例えばテフロン(PTFE)、ポリアミドイミド(PAI)等の熱膨張量が大きい材料を適用した場合でも、該絶縁枠の熱膨張に対しては、角溝内に形成された隙間の中で、該絶縁枠が弓形に変形して熱膨張を吸収することができ、更に、該絶縁枠が上下方向に過度に変形あるいは移動するのを、角溝の側壁で拘束することにより阻止できる。
これにより、前記絶縁枠の移動あるいは変形に基因してOリングがシール接触部から外れたり、Oリングが捩れ変形を起こして破断する等を防ぎ、Oリングの装着部からの成膜室内のガス洩れの発生及びこれに伴う基板の成膜機能の低下を防止できる。
また、本発明によれば、上記のような絶縁枠の移動の発生を回避することにより、当該絶縁枠の移動に伴い発生する、プラズマ発生領域の近傍に取付けられている絶縁枠の側面に薄膜の付着やエッチングが生じる等の不具合や、電界集中等により短絡状態に至った場合に絶縁枠側面の短絡箇所が炭化することによるトラッキングの発生等も防止できる。
更に、前記角溝の近傍に設置された間隔片の長さの調整により、Oリングの初期つぶし量を、所要の20〜30%のつぶし量に精密に調整することが可能となるため、テフロン(PTFE)誘電体等の耐熱樹脂や、石英ガラス等からなる絶縁枠に過剰な面圧が加わることを防止できる。前記絶縁枠のOリング加圧方向へのクリープ変形量を抑制することが可能となり、当該絶縁枠の厚さ方向クリープ量を低減できる。
加えて、長さ寸法を精密に加工、製作した間隔片を、Oリング近傍に設置した状態で電極支持枠体同士で挟持固定することにより、Oリングの初期つぶし量を精度良く、かつ最適に制御することが可能となるとともに、高いシール性を長期間維持できる絶縁構造が得られる。
一方、これにより、石英ガラス等の線膨張係数が低い材質の絶縁枠を適用した場合でも、破損リスクを低くすることができ、信頼性を高めることが可能となるが、破損リスクの無いテフロン(PTFE)等の耐熱性樹脂を適用することにより、より信頼性を高めることができる。
一方、上記のごとく構成した絶縁構造において、接地電極支持枠体に角溝を設けた場合、該角溝の側壁の角部が成膜室内側に露出することとなり、該側壁先端コーナー部が電界集中により絶縁破壊の懸念があり、これによって絶縁枠の側面が損傷、炭化して高周波絶縁性能の維持が困難となることが稀に発生することが推測される。
然るに、本発明のように、前記角溝の成膜室内側の側壁先端部を、丸みを帯びた形状あるいは内面の傾斜が鈍角となるような面取り形状に形成した場合は、側壁先端部を上記のような丸みを帯びた形状あるいは面取り形状に形成することにより、電界集中を緩和することができ、絶縁破壊による耐熱樹脂製の絶縁枠表面の損傷、炭化を防止できるとともに、長期間、良好な絶縁性を維持することができる。
また、本発明のように、前記二つの電極のうちの一方の電極側における前記角溝の前記成膜室内側の側壁厚さを、他方の電極側における側壁厚さよりも厚く形成するとともに、前記一方の電極側の側壁側面に板状誘電体又は非磁性金属板のいずれかを固定するように構成すれば、成膜処理時において、プラズマ領域が絶縁枠の近傍まで広がった場合でも、電極支持枠体の角溝部の側壁厚さを厚くした側壁側面に板状誘電体又は非磁性金属板のいずれかを固定することにより、該板状誘電体又は非磁性金属板表面に選択的に成膜されることになり、耐熱樹脂製の絶縁枠側面への成膜物付着量を軽減することができる。その結果、絶縁枠の変形や、付着物による、角溝部の隙間寸法の減少を低減でき、長期間、良好なシール性及び絶縁性を保つことが可能となる。
以下、本発明に係るプラズマ処理装置の絶縁構造について、その実施形態に基づき詳細に説明する。
[第1実施形態]
図1は本発明の第1実施形態に係るプラズマCVD処理装置の成膜室周りの片側半分の断面図(図8の中心線Mよりも左側半分の断面図)である。なお、図示を省略した図8の中心線Mよりも右側半分は、左側半分と対称形状となっている。
図1において、本発明の第1実施形態に係るプラズマCVD処理装置の基本的構成は、図8に示される従来技術と同様であり、対応する同一部材には同じ符号が付されている。本発明の実施形態では、当該プラズマCVD処理装置の絶縁構造に次のような改良が施されている。
即ち、硬質誘電体からなる間隔片226bを介した複数のねじ226cによる締付部に近接し、接地電極支持枠226の一側面及びこれに対向する高周波電極222の側面には、角溝231a及び231bが設けられ、各角溝231a及び231bの底面にはOリング232が嵌挿されるOリング溝が形成されている。
そして、テフロン(PTFE)誘電体、ポリアミドイミド(PAI)等の耐熱樹脂からなる絶縁枠230は、角溝231a及び231bの間に配置されており、これの両側面がOリング232にシールされた形態で、各角溝231a及び231bの底面に密に当接している。しかも、角溝231a及び231bの近傍には、間隔片226bが設置されており、絶縁枠230は、当該間隔片226bを介して接地電極支持枠226間に挟持固定され、当該間隔片226bの長さの調整により、Oリング232の初期つぶし量を、所要の20〜30%のつぶし量に精密に調整することが可能となっている。
また、上記角溝231a及び231bは、これらの上下側内面と前記絶縁枠230の上下側面との間に隙間231c及び231dが形成されるように、該角溝231a及び231bの幅寸法B1が当該絶縁枠230の幅寸法B2よりも大きく設定されている。
次に、本発明の第1実施形態に係るプラズマCVD処理装置での成膜時の作用について、その概略を説明する。
図1において、成膜時には、図示しないアクチュエータによって、真空容器201の真空室202内に搬送され、各接地電極223及び成膜室235で停止された基板224が接地電極支持枠226に向かって移動し、接地電極支持枠226と基板224とがOリング226eを介して密着する。これにより、気密状態の成膜室235が高周波電極222と基板224との間に形成される。
そして、図示しない高周波電源の出力電圧が給電体221を介して高周波電極222の中央部に給電され、これら高周波電極222及び接地電極223の間に高周波電圧が印加される。これによって、各成膜室235内にプラズマが発生し、図示しない導入管から導入された反応ガスが分解され、接地電極223に内蔵されたヒータ223aによって加熱された基板224の表面上に薄膜が形成されることになる。
このように、本発明の第1実施形態によれば、接地電極支持枠226及び高周波電極222の側面に角溝231a,231bを設け、各角溝231a,231bの底面にOリング232が嵌挿されるOリング溝を形成し、絶縁枠230を、角溝231a及び231bの間に配置して、これの両側面がOリング232にシールされた形態で各角溝231a及び231bの底面に流体密に当接させ、さらには角溝231a及び231bの上下側内面と接地電極支持枠226の上下側面との間に隙間231c及び231dを形成しているので、上記のようなプラズマの発生に伴い絶縁枠230が熱膨張した際においても、角溝231a及び231b内に形成された隙間231c及び231dの中で、絶縁枠230が弓形に変形して熱膨張を吸収することができ、更に、絶縁枠230が上下方向に過度に変形あるいは移動するのを、角溝231a,231bの側壁で拘束して阻止できる。
これにより、耐熱樹脂製の絶縁枠230の移動あるいは変形によりOリング232がシール接触部から外れ、Oリング232が捩れ変形を起こして破断する等によって、Oリング232の装着部からの成膜室235内のガス洩れの発生及びこれに伴う基板224の成膜機能の低下を防止できる。
また、この第1実施形態によれば、上記のような絶縁枠230の移動の発生を回避することにより、絶縁枠230の移動に伴い発生するプラズマ発生領域の近傍に取付けられている当該絶縁枠230の側面に薄膜の付着やエッチングが生じる等の不具合や、電界集中等により短絡状態に至った場合に絶縁枠230の側面の短絡箇所が炭化することによるトラッキングの発生等も防止できる。
更に、角溝231a及び231bの近傍に設置された間隔片226bの長さの調整により、Oリング232の初期つぶし量を、所要の20〜30%のつぶし量に精密に調整することが可能となるため、テフロン(PTFE)誘電体等の耐熱樹脂からなる絶縁枠230に過剰な面圧が加わることを防止できる。
これにより、絶縁枠230のOリング232の加圧方向へのクリープ変形量を抑制することが可能となり、絶縁枠230の厚さ方向クリープ量の低減、及びOリング232の初期つぶし量の最適化によって、高いシール性を長期間維持できる絶縁構造が得られる。
[第2実施形態]
図2は本発明の第2実施形態を示し、(A)は図1に対応した図、(B)及び(C)は(A)におけるZ部拡大図である。
本発明の第2実施形態においては、接地電極支持枠226及び高周波電極222に形成される角溝231a,231bの側壁231fの先端部が、図2(B)に示すように丸みを帯びたR形状、あるいは図2(C)のように内面の傾斜が垂直面231hに対して面取り形状となっている。
かかる第2実施形態によれば、角溝231a,231bの側壁231fの先端部を上記のような丸みを帯びたR形状、あるいは面取り形状とすることにより、電界集中を緩和することができ、絶縁破壊、異常放電による耐熱樹脂製絶縁枠230の表面の損傷、炭化を防止でき、良好な絶縁性を長期間維持できる。
その他の構成及び効果は図1に示す第1実施形態と同様であり、これと同一の部材は同一の符号で示されている。
[第3実施形態]
図3は本発明の第3実施形態を示し、図1に対応した図である。
本発明の第3実施形態においては、接地電極支持枠226及び高周波電極222に形成される角溝231a,231bの側壁231fのうち、接地電極支持枠226側の角溝231aの厚さを高周波電極222側の角溝231bの側壁231fよりも厚くするとともに、接地電極支持枠226側の角溝231aの側壁231fの下側側面に板状誘電体又は非磁性金属板234をねじ231gによって固定している。
この第3実施形態によれば、プラズマ領域が絶縁枠230の近傍まで広がった場合でも、接地電極支持枠226側の角溝231aの側壁231fの下側側面に板状誘電体又は非磁性金属板234を固定することにより、板状誘電体又は非磁性金属板224の表面に選択的に成膜されることにより、耐熱樹脂製の絶縁枠230の側面への成膜物付着量を軽減することができる。その結果、絶縁枠230の変形や、付着物による、角溝部231a,231bの隙間寸法の減少を低減でき、長期間、良好なシール性及び絶縁性を保つことが可能となる。
その他の構成及び効果は図1に示す第1実施形態と同様であり、これと同一の部材は同一の符号で示されている。
以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。
本発明の第1実施形態に係るプラズマCVD処理装置の成膜室周りの片側半分を示す断面図(図8の中心線Mよりも左側半分の断面図)である。 本発明の第2実施形態を示し、(A)は図1に対応した図、(B)及び(C)は(A)におけるZ部拡大図である。 本発明の第3実施形態を示す図1に対応した図である。 従来技術に係る平行平板プラズマCVD装置の第1例を示す模式図である。 従来技術に係る平行平板プラズマCVD装置の第2例を示す模式図である。 従来技術に係る平行平板プラズマCVD装置の第3例を示す模式図である。 従来技術に係る平行平板プラズマCVD装置の第4例を示す模式図である。 従来例にて提供されているステッピングロール方式による多列基板搬送製膜装置の成膜室周りの断面図である。
符号の説明
201 真空容器
202 真空室
203 シールド体
221 給電線
222 高周波電極(高周波電極支持枠)
223 接地電極
224 基板
226 接地電極支持枠
226a ねじ
226b 間隔片
226c ねじ
230 絶縁枠
231a,231b 角溝
231c,231d 隙間
231f 側壁
232 Oリング
234 板状誘電体(非磁性金属板)
235 成膜室

Claims (5)

  1. 真空容器内の基板に対向して配置される2つの電極を備え、前記2つの電極の間に電圧を印加するとともにガスを流すことによってプラズマを生成し、前記基板の表面に製膜、エッチング等のプラズマ処理を行うようにしたプラズマ処理装置において、前記2つの電極を支持する電極支持枠体の側面に角溝をそれぞれ設け、前記各角溝の底面にOリングが嵌挿されるOリング溝を形成し、前記2つの角溝間に絶縁枠を配置して前記絶縁枠の両側面が前記Oリングにシールされた形態で、かつ上下面と前記角溝との間に隙間を形成して前記各角溝の底面に当接させ、前記電極支持枠体にて前記絶縁枠を挟持固定することにより、成膜室を形成したことを特徴とするプラズマ処理装置。
  2. 前記角溝の成膜室内側の側壁先端部を、丸みを帯びた形状あるいは内面の傾斜が鈍角となるような面取り形状に形成したことを特徴とする請求項1に記載のプラズマ処理装置。
  3. 前記2つの電極のうちの一方の電極側における前記角溝の前記成膜室内側の側壁厚さを、他方の電極側における側壁厚さよりも厚く形成するとともに、前記一方の電極側の側壁側面に板状誘電体又は非磁性金属板のいずれかを固定したことを特徴とする請求項1に記載のプラズマ処理装置。
  4. 前記絶縁枠を間隔片を介した複数のねじにより前記電極支持枠体間に挟持固定し、前記間隔片の長さを調節することにより、前記Oリングの初期つぶし量を所望のつぶし量に調整していることを特徴とする請求項1に記載のプラズマ処理装置。
  5. 前記絶縁枠として耐熱性樹脂を適用していることを特徴とする請求項1に記載のプラズマ処理装置。
JP2007174904A 2006-07-12 2007-07-03 プラズマ処理装置 Expired - Fee Related JP4936129B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174904A JP4936129B2 (ja) 2006-07-12 2007-07-03 プラズマ処理装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006191150 2006-07-12
JP2006191150 2006-07-12
JP2007174904A JP4936129B2 (ja) 2006-07-12 2007-07-03 プラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2008038248A JP2008038248A (ja) 2008-02-21
JP4936129B2 true JP4936129B2 (ja) 2012-05-23

Family

ID=39173613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174904A Expired - Fee Related JP4936129B2 (ja) 2006-07-12 2007-07-03 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP4936129B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150603A (ja) * 2008-12-25 2010-07-08 Fuji Electric Systems Co Ltd 薄膜形成装置
WO2018062710A1 (ko) * 2016-09-28 2018-04-05 주식회사 미코 접지 클램핑 유닛 및 이를 포함하는 기판 지지 어셈블리
JP6937806B2 (ja) * 2019-09-25 2021-09-22 株式会社Kokusai Electric 基板処理装置、及び半導体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120331A (ja) * 1986-11-10 1988-05-24 Pfu Ltd ウインドウ開設制御方式
JP3278011B2 (ja) * 1993-08-19 2002-04-30 東京エレクトロン株式会社 熱処理装置
US5736021A (en) * 1996-07-10 1998-04-07 Applied Materials, Inc. Electrically floating shield in a plasma reactor
JPH11189875A (ja) * 1997-12-25 1999-07-13 Ebara Corp 気相成長装置
JPH11315371A (ja) * 1998-05-07 1999-11-16 Sumitomo Heavy Ind Ltd 真空成膜装置のプラズマ源
JP2000173930A (ja) * 1998-12-07 2000-06-23 Hitachi Ltd 半導体素子の製造方法
JP2003038949A (ja) * 2001-07-30 2003-02-12 Ulvac Japan Ltd 真空処理装置
JP4158726B2 (ja) * 2004-03-12 2008-10-01 富士電機ホールディングス株式会社 薄膜製造装置
JP4788504B2 (ja) * 2006-07-12 2011-10-05 富士電機株式会社 プラズマ処理装置の給電構造

Also Published As

Publication number Publication date
JP2008038248A (ja) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4788504B2 (ja) プラズマ処理装置の給電構造
JP4584722B2 (ja) プラズマ処理装置および同装置により製造された半導体素子
KR101593460B1 (ko) 플라즈마 프로세스를 위한 접지 귀환
TWI753457B (zh) 電漿處理裝置及電漿處理方法
KR101176745B1 (ko) 플라즈마 처리 장치
JP2006152416A (ja) プラズマcvd装置
JP4936129B2 (ja) プラズマ処理装置
US7722738B2 (en) Semiconductor device manufacturing unit and semiconductor device manufacturing method
JP5119830B2 (ja) プラズマ装置
JP4936297B2 (ja) プラズマ処理装置およびプラズマ処理方法ならびに半導体素子
US11368003B2 (en) Seamless electrical conduit
JP2008059918A (ja) プラズマプロセス装置
JP2006319192A (ja) 電極および該電極を用いたプラズマプロセス装置
JP7101335B2 (ja) アンテナ及びプラズマ処理装置
WO2020086173A2 (en) Heat conductive spacer for plasma processing chamber
JP4890313B2 (ja) プラズマcvd装置
JP5286733B2 (ja) プラズマ処理装置
WO2010016423A1 (ja) 誘電体窓、誘電体窓の製造方法、およびプラズマ処理装置
JP6473332B2 (ja) セグメント化されたアンテナアセンブリおよびプラズマ発生装置
JP5262501B2 (ja) 基板処理装置及び基板処理方法
JP2012004495A (ja) 電力導入端子およびそれを備えたプラズマ処理装置
JP2007142175A (ja) プラズマプロセス方法およびプラズマプロセス装置
JP2017010820A (ja) プラズマ処理装置
JP4290207B2 (ja) 半導体素子製造装置および半導体素子製造方法
JP5324859B2 (ja) 真空処理装置およびそれを用いた製膜方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees