JP4930952B2 - Aluminum nitride nanoribbon - Google Patents

Aluminum nitride nanoribbon Download PDF

Info

Publication number
JP4930952B2
JP4930952B2 JP2009195249A JP2009195249A JP4930952B2 JP 4930952 B2 JP4930952 B2 JP 4930952B2 JP 2009195249 A JP2009195249 A JP 2009195249A JP 2009195249 A JP2009195249 A JP 2009195249A JP 4930952 B2 JP4930952 B2 JP 4930952B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
nanoribbon
nanometers
sccm
nitride nanoribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009195249A
Other languages
Japanese (ja)
Other versions
JP2009280497A (en
Inventor
義雄 板東
ウィン・ロンウェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009195249A priority Critical patent/JP4930952B2/en
Publication of JP2009280497A publication Critical patent/JP2009280497A/en
Application granted granted Critical
Publication of JP4930952B2 publication Critical patent/JP4930952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

この出願の発明は、窒化アルミニウムナノリボンに関するものである。 The invention of this application relates to aluminum nitride nanoribbons.

窒化アルミニウムは、約6.2eVの光学的バンドギャップエネルギーを有するIII−V族化合物であり、耐熱性や耐薬品性の優れた化合物である。このため、電子用基板、パッケージング材料、高温用材料、構造材料としての応用が見込まれている。また、窒化アルミニウムは、窒化ガリウムと格子定数が近似しているため、窒化ガリウムのエピタキシャル成長用の基板として有望でもある。 Aluminum nitride is a III-V group compound having an optical band gap energy of about 6.2 eV, and is a compound having excellent heat resistance and chemical resistance. For this reason, application as an electronic substrate, packaging material, high temperature material, and structural material is expected. Aluminum nitride is also promising as a substrate for epitaxial growth of gallium nitride because it has a lattice constant close to that of gallium nitride.

このような窒化アルミニウムについては、これまでに、窒化アルミニウム薄膜(たとえば、非特許文献1、2参照)や一次元の窒化アルミニウムナノワイヤー(たとえば、非特許文献3、4参照)を製造する方法が知られていた。 With respect to such aluminum nitride, methods for producing an aluminum nitride thin film (for example, see Non-Patent Documents 1 and 2) and one-dimensional aluminum nitride nanowires (for example, Non-Patent Documents 3 and 4) have been proposed so far. It was known.

C.T.M.Ribeiro外,アドバンスト・マテリアルズ(Adv.Mater.),2002年,第14巻,p.1154C.T.M.Ribeiro et al., Advanced Materials (Adv. Mater.), 2002, Vol. 14, p. 1154 E.Kuokstis外,アプライド・フィジックス・レターズ(Appl.Phys.Lett.),2002年,第81巻,p.2755E. Kuokstis et al., Applied Physics Letters, 2002, Vol. 81, p. 2755 Y.Zhang外,ケミストリー・オブ・マテリアルズ(Chem.Mater.),2001年,第13巻,p.3899Y. Zhang et al., Chemistry of Materials (Chem. Mater.), 2001, Vol. 13, p. 3899 C.Xu外,フィジカ・スタツス・ソリディA(Phys.Stat.Sol.A),2003年,第198巻,p.329C.Xu, Phys. Stat. Sol. A, 2003, Vol. 198, p. 329

しかしながら、これまでの窒化アルミニウムナノワイヤーやナノ繊維は、硬くてもろいため、伸長状態や曲げた状態では、その性能が十分に発揮されなかった。 However, since the conventional aluminum nitride nanowires and nanofibers are brittle and brittle, their performance has not been sufficiently exhibited in the stretched state or the bent state.

そこで、この出願の発明は、柔軟性に富んだ、厚さの非常に薄い窒化アルミニウムナノリボンを提供することを解決すべき課題としている。 Accordingly, the invention of this application has an object to be solved to provide an aluminum nitride nanoribbon that is very flexible and has a very small thickness.

この出願の発明は、上記の課題を解決するものとして、幅800〜900ナノメートルおよび厚さ20〜30ナノメートルからなる窒化アルミニウムナノリボンを提供する。 The invention of this application provides an aluminum nitride nanoribbon having a width of 800 to 900 nanometers and a thickness of 20 to 30 nanometers as a solution to the above problems.

この出願の発明によれば、セラミック複合材料の強化材や電子用基板、パッケージング材料、高温用材料、構造材料などに有望な、柔軟性に富んだ窒化アルミニウムナノリボンを提供することが可能となる。 According to the invention of this application, it is possible to provide a flexible aluminum nitride nanoribbon that is promising as a reinforcing material for ceramic composite materials, electronic substrates, packaging materials, high-temperature materials, structural materials, and the like. .

この出願の発明の幅800〜900ナノメートル、厚さ20〜30ナノメートルの窒化アルミニウムナノリボンは、アルミナ粉末とグラファイト粉末の混合物を不活性ガスを流しながら加熱した後、不活性ガスをアンモニアガスに切り替えて加熱することにより得られる。 The aluminum nitride nanoribbon having a width of 800 to 900 nanometers and a thickness of 20 to 30 nanometers according to the invention of this application is obtained by heating a mixture of alumina powder and graphite powder while flowing an inert gas and then converting the inert gas to ammonia gas. It is obtained by switching and heating.

具体的には、アルミナ粉末とグラファイト粉末の混合物をグラファイト製のるつぼに入れ、このるつぼを断熱材の炭素繊維で覆われたグラファイト誘導加熱円筒管の付いた縦型高周波誘導加熱炉の中央部に配置する。縦型高周波誘導加熱炉の内部を減圧した後、不活性ガスを流しながら加熱し、次いで、不活性ガスをアンモニアガスに切り替えて加熱を続ける。すると、るつぼの内壁に灰色のウール状物質が堆積する。この灰色堆積物が窒化アルミニウムナノリボンの集合体である。窒化アルミニウムナノリボンは、幅800〜900ナノメートル、厚さ20〜30ナノメートルの幅広で非常に薄いものである。 Specifically, a mixture of alumina powder and graphite powder is placed in a graphite crucible, and this crucible is placed in the center of a vertical high frequency induction heating furnace with a graphite induction heating cylindrical tube covered with carbon fiber as a heat insulating material. Deploy. After depressurizing the inside of the vertical high frequency induction heating furnace, heating is performed while flowing an inert gas, and then the inert gas is switched to ammonia gas and heating is continued. Then, a gray wool-like substance accumulates on the inner wall of the crucible. This gray deposit is an aggregate of aluminum nitride nanoribbons. Aluminum nitride nanoribbons are wide and very thin with a width of 800-900 nanometers and a thickness of 20-30 nanometers.

この窒化アルミニウムナノリボンにおいて、製法については上述したとおりであるが、より詳しくはアルミナ粉末とグラファイト粉末のモル比は1:1.5〜1:2の範囲が好ましい。グラファイト粉末の
モル数はアルミナ粉末1モルに対して2モルで十分である。グラファイト粉末の量が上記の範囲より少ないと、アルミナ粉末が未反応のまま残存するようになる。
In this aluminum nitride nanoribbon, the production method is as described above. More specifically, the molar ratio of the alumina powder to the graphite powder is preferably in the range of 1: 1.5 to 1: 2. As for the number of moles of graphite powder, 2 moles per mole of alumina powder is sufficient. When the amount of the graphite powder is less than the above range, the alumina powder remains unreacted.

不活性ガスの流量は150〜200sccmの範囲が好ましい。200sccmの流量で十分に不活性雰囲気を保つことができ、150sccmより流量が少ないと、十分な不活性雰囲気に保つことが難しく、酸素などの物質が含まれる可能性がある。不活性雰囲気中での加熱温度は1350〜1600℃の範囲が好ましい。1600℃で十分に反応性ガスの生成が生じる。1350℃より低いと、反応性ガスの生成が十分でない。不活性ガス雰囲気中での加熱時間は0.4〜0.5時間の範囲が好ましい。0.5時間で十分に反応性ガスが生成し、0.4時間以下では未反応のアルミナ粉末が残存するようになる。不活性ガスとしては、アルゴンまたはヘリウムが好適に例示される。 The flow rate of the inert gas is preferably in the range of 150 to 200 sccm. A sufficiently inert atmosphere can be maintained at a flow rate of 200 sccm. If the flow rate is less than 150 sccm, it is difficult to maintain a sufficiently inert atmosphere, and substances such as oxygen may be contained. The heating temperature in the inert atmosphere is preferably in the range of 1350 to 1600 ° C. Reactive gas production occurs sufficiently at 1600 ° C. If it is lower than 1350 ° C., the generation of reactive gas is not sufficient. The heating time in the inert gas atmosphere is preferably in the range of 0.4 to 0.5 hours. Reactive gas is sufficiently generated in 0.5 hours, and unreacted alumina powder remains in 0.4 hours or less. Preferable examples of the inert gas include argon or helium.

アンモニアガスの流量は、200〜250sccmの範囲が好ましく、250sccmより流量が多いと、窒化アルミニウムの結晶成長が平衡状態からはずれるため、二次元のナノリボンが得られず、三次元のナノ構造物になりやすい。200sccm未満の流量は、窒化アルミニウムナノリボンを生成させるのに十分な流量ではない。アンモニア雰囲気中での加熱温度は1400〜1500℃の範囲が好ましい。1500℃を超える温度では、窒化アルミニウム結晶の成長が非平衡状態となるため、櫛状、三次元構造、デンドライト状などの種々の形態のナノ構造物が形成され、均一なナノリボン構造が形成されない。1400℃未満の加熱温度では、ナノリボンが形成されず、ナノワイヤーが形成される。アンモニア雰囲気中での加熱時間は2.5〜3時間の範囲が好ましい。3時間で十分に薄く幅の広い窒化アルミニウムナノリボンが得られる。2.5時間未満の加熱時間では、幅の広い窒化アルミニウムナノリボンの成長に不十分である。 The flow rate of ammonia gas is preferably in the range of 200 to 250 sccm. If the flow rate is higher than 250 sccm, the crystal growth of aluminum nitride deviates from the equilibrium state. Cheap. A flow rate of less than 200 sccm is not sufficient to produce aluminum nitride nanoribbons. The heating temperature in the ammonia atmosphere is preferably in the range of 1400-1500 ° C. When the temperature exceeds 1500 ° C., the growth of the aluminum nitride crystal is in a non-equilibrium state, so that nanostructures of various forms such as a comb shape, a three-dimensional structure and a dendrite shape are formed, and a uniform nanoribbon structure is not formed. At a heating temperature of less than 1400 ° C., nanoribbons are not formed and nanowires are formed. The heating time in the ammonia atmosphere is preferably in the range of 2.5 to 3 hours. A sufficiently thin and wide aluminum nitride nanoribbon is obtained in 3 hours. A heating time of less than 2.5 hours is insufficient for the growth of wide aluminum nitride nanoribbons.

次に実施例を示し、この出願の発明の窒化アルミニウムナノリボンについてさらに詳しく説明する。 Next, an Example is shown and it demonstrates in more detail about the aluminum nitride nanoribbon of invention of this application.

和光純薬工業(株)製のアルミナ粉末(純度99.9%)2.5gと和光純薬工業(株)製のグラファイト粉末(純度99.9%)0.5gの混合物をグラファイト製のるつぼに入れ、このグラファイト製のるつぼを、断熱材である炭素繊維で覆われたグラファイト誘導加熱円筒管の付いた縦型高周波誘導加熱炉の中央部に配置した。縦型高周波誘導加熱炉の内部を1〜2Torrに減圧した後、アルゴンガスを200sccmの流量で流しながら、るつぼ内の混合物を1500℃で30分間加熱した。次いで、アルゴンガスをアンモニアガスに切り替え、流量250sccmとし、1500℃で3時間加熱した。グラファイト製るつぼの内壁に灰色のウール状物質が0.7g堆積した。 A mixture of 2.5 g of alumina powder (purity 99.9%) manufactured by Wako Pure Chemical Industries, Ltd. and 0.5 g of graphite powder (purity 99.9%) manufactured by Wako Pure Chemical Industries, Ltd. is placed in a graphite crucible. The crucible was placed in the center of a vertical high-frequency induction heating furnace with a graphite induction heating cylindrical tube covered with carbon fiber as a heat insulating material. After reducing the pressure inside the vertical high frequency induction heating furnace to 1 to 2 Torr, the mixture in the crucible was heated at 1500 ° C. for 30 minutes while flowing argon gas at a flow rate of 200 sccm. Subsequently, the argon gas was switched to ammonia gas, the flow rate was 250 sccm, and heating was performed at 1500 ° C. for 3 hours. 0.7 g of gray wool-like material was deposited on the inner wall of the graphite crucible.

図1は、得られた灰色のウール状物質の走査型電子顕微鏡像の写真であり、図2は、低倍率透過型電子顕微鏡像の写真である。これらの写真から、長さ数十マイクロメートル、幅800〜900ナノメートル、厚さ20〜30ナノメートルの幅が広く、厚さの非常に薄いナノリボンが形成されていることが確認される。 FIG. 1 is a photograph of a scanning electron microscope image of the obtained gray wool-like substance, and FIG. 2 is a photograph of a low-magnification transmission electron microscope image. From these photographs, it is confirmed that nanoribbons having a width of several tens of micrometers, a width of 800 to 900 nanometers, a width of 20 to 30 nanometers and a very thin thickness are formed.

図3に、得られた灰色堆積物のX線回折のパターンを示した。格子定数がa=3.114Å、c=4.986Åである六方晶系の窒化アルミニウムであることが分かった。 FIG. 3 shows an X-ray diffraction pattern of the obtained gray deposit. It was found to be hexagonal aluminum nitride having a lattice constant of a = 3.114Å and c = 4.986Å.

図4に、1本のナノリボンのX線エネルギー分散スペクトルを示した。アルミニウムと窒素の原子比が1:0.99の化学量論組成の窒化アルミニウムであることが分かった。なお、図4図中に銅のシグナルが現れているが、この銅のシグナルは、試料を観察する際に用いた銅グリッドに由来するものである。 FIG. 4 shows an X-ray energy dispersion spectrum of one nanoribbon. It was found to be aluminum nitride with a stoichiometric composition with an atomic ratio of aluminum to nitrogen of 1: 0.99. In addition, although the copper signal has appeared in FIG. 4, this copper signal originates in the copper grid used when observing a sample.

そして、電子線回折の結果から、得られた窒化アルミニウムナノリボンは単結晶であり、結晶欠陥や転位のないことが確認された。 From the results of electron beam diffraction, it was confirmed that the obtained aluminum nitride nanoribbon was a single crystal and had no crystal defects or dislocations.

図5に、励起光源として325nmのHe−Cdレーザーを用いて測定した室温におけるフォトルミネッセンススペクトルを示した。得られた窒化アルミニウムナノリボンは、430nmに発光ピークの中心を持ち、300nmから600nmまでの幅の広い発光バンドの青色発光を示す。 FIG. 5 shows a photoluminescence spectrum at room temperature measured using a 325 nm He—Cd laser as an excitation light source. The obtained aluminum nitride nanoribbon has a center of emission peak at 430 nm and exhibits blue emission of a broad emission band from 300 nm to 600 nm.

もちろん、この出願の発明は、以上の実施例によって限定されるものではない。 Of course, the invention of this application is not limited by the above embodiments.

以上詳しく説明したとおり、この出願の発明によって、幅が広く、厚さの非常に薄い柔軟性のある窒化アルミニウムナノリボンを提供することが可能となる。この窒化アルミニウムナノリボンは、セラミック複合材料の強化材、電子デバイス、光学デバイス用材料などとして使用されることが期待される。 As described in detail above, the invention of this application makes it possible to provide a flexible aluminum nitride nanoribbon having a wide width and a very small thickness. This aluminum nitride nanoribbon is expected to be used as a reinforcing material for ceramic composite materials, materials for electronic devices, optical devices, and the like.

実施例で得られた灰色堆積物の走査型電子顕微鏡像の写真である。It is a photograph of the scanning electron microscope image of the gray deposit obtained in the Example. 実施例で得られた灰色堆積物の低倍率透過型電子顕微鏡像の写真である。It is a photograph of the low magnification transmission electron microscope image of the gray deposit obtained in the Example. 実施例で得られた灰色堆積物のX線回折のパターンの図である。It is a figure of the pattern of the X-ray diffraction of the gray deposit obtained in the Example. 実施例で得られた窒化アルミニウムナノリボンのX線エネルギー分散スペクトルの図である。It is a figure of the X-ray energy dispersion spectrum of the aluminum nitride nanoribbon obtained in the Example. 実施例で得られた単結晶窒化アルミニウムナノリボンのフォトルミネッセンススペクトルの図である。It is a figure of the photoluminescence spectrum of the single crystal aluminum nitride nanoribbon obtained in the Example.

Claims (2)

幅800〜900ナノメートルおよび厚さ20〜30ナノメートルである窒化アルミニウムナノリボン。 Aluminum nitride nanoribbons that are 800-900 nanometers wide and 20-30 nanometers thick. 窒素とアルミニウムとより成る請求項1に記載の窒化アルミニウムナノリボン。The aluminum nitride nanoribbon according to claim 1, comprising nitrogen and aluminum.
JP2009195249A 2009-08-26 2009-08-26 Aluminum nitride nanoribbon Expired - Fee Related JP4930952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195249A JP4930952B2 (en) 2009-08-26 2009-08-26 Aluminum nitride nanoribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195249A JP4930952B2 (en) 2009-08-26 2009-08-26 Aluminum nitride nanoribbon

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004171968A Division JP4431745B2 (en) 2004-06-10 2004-06-10 Method for producing aluminum nitride nanoribbon

Publications (2)

Publication Number Publication Date
JP2009280497A JP2009280497A (en) 2009-12-03
JP4930952B2 true JP4930952B2 (en) 2012-05-16

Family

ID=41451360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195249A Expired - Fee Related JP4930952B2 (en) 2009-08-26 2009-08-26 Aluminum nitride nanoribbon

Country Status (1)

Country Link
JP (1) JP4930952B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377400B (en) * 2022-10-26 2022-12-27 星恒电源股份有限公司 Sodium-ion battery positive electrode material, preparation method thereof, positive electrode piece and sodium-ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321511A (en) * 1993-03-16 1994-11-22 Takeshi Masumoto Ultrafine aluminum nitride particle, its production and ultrafine particulate sintered compact
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JP2005349515A (en) * 2004-06-10 2005-12-22 National Institute For Materials Science Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009280497A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
Fan et al. Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals
Xu et al. Fabrication and optical properties of highly ordered ZnO nanodot arrays
JP5170609B2 (en) Method for producing silicon carbide nanowire
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
JP4930952B2 (en) Aluminum nitride nanoribbon
JP5120797B2 (en) Silicon carbide nanostructure and manufacturing method thereof
Umar et al. Growth and optical properties of large-quantity single-crystalline ZnO rods by thermal evaporation
Fan et al. A low-temperature evaporation route for ZnO nanoneedles and nanosaws
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
Umar et al. Structural and optical properties of single-crystalline ultraviolet-emitting needle-shaped ZnO nanowires
JP4025873B2 (en) Boron nitride nanowire and manufacturing method thereof
Zhang et al. Synthesis and optical properties of single crystalline GaN nanorods with a rectangular cross-section
JP3893464B2 (en) Method for producing gallium nitride nanotubes
JP4441617B2 (en) Aluminum nitride nanotube and method for producing the same
JP2011051868A (en) p-TYPE ZnO NANOSTRUCTURE, ULTRAVIOLET SENSOR PROVIDED WITH THE p-TYPE ZnO NANOSTRUCTURE, AND METHOD FOR PRODUCING p-TYPE ZnO NANOSTRUCTURE
JP2004283961A (en) Zinc sulfide nano belt and its manufacturing method
Song et al. Low-temperature synthesis of ZnO nanonails
CN115287595B (en) Preparation method of vanadium doped single-layer tungsten disulfide film
Hu et al. The First Template‐Free Growth of Crystalline Silicon Microtubes
JP4072622B2 (en) Method for producing single crystal β-type silicon nitride nanoribbon
CN116022747B (en) Method for preparing boron nitride nanotube, nanomaterial, semiconductor device and device
CN113443631B (en) Method for preparing wurtzite structure silicon nanowire by using bimetallic catalyst
JP3987935B2 (en) Single crystal cubic gallium nitride nanotube and method for producing the same
Lu et al. Modified chemical vapor deposition synthesis of ultralong V2O5 nanobelt and its electronic properties
JP4581121B2 (en) Silicon nitride nanowire coated with boron nitride nanosheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees