JP2005349515A - Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof - Google Patents

Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof Download PDF

Info

Publication number
JP2005349515A
JP2005349515A JP2004171967A JP2004171967A JP2005349515A JP 2005349515 A JP2005349515 A JP 2005349515A JP 2004171967 A JP2004171967 A JP 2004171967A JP 2004171967 A JP2004171967 A JP 2004171967A JP 2005349515 A JP2005349515 A JP 2005349515A
Authority
JP
Japan
Prior art keywords
wall
aluminum nitride
carbon film
covered
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004171967A
Other languages
Japanese (ja)
Inventor
Yoshio Bando
義雄 板東
Ronwei Win
ウィン・ロンウェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004171967A priority Critical patent/JP2005349515A/en
Publication of JP2005349515A publication Critical patent/JP2005349515A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum nitride nano tube whose outer wall and inner wall are covered with a carbon film and a manufacturing method thereof, by growth of a carbon film on the outer wall and the inner wall of the aluminum nitride nano tube, which is expected for application to the field of optoelectronics or electric field discharge material. <P>SOLUTION: A mixture of alumina powder and carbon nano-tube is heated for 0.4 to 1 hour to 1450 to 1600°C in an atmosphere of inert gas, and after that, inert bas is switched to ammonia gas to continuously heat the same for 0.5 to 1.2 hour to 1300 to 1600°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明は、外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブとその製造方法に関する。   The invention of this application relates to an aluminum nitride nanotube whose outer wall and inner wall are covered with a carbon film, and a method for producing the same.

一次元の窒化アルミニウムナノワイヤー(たとえば、非特許文献1〜3参照)や窒化アルミニウムナノチューブ(たとえば、非特許文献4、5参照)を製造する方法はこれまでに知られている。このうち、窒化アルミニウムナノチューブは、アルミニウムをターゲット材とするアーク放電法やアルミニウム粉をアンモニアと反応させる方法で製造されている。
Y.Zhang外,ケミストリー・オブ・マテリアルズ(Chem.Mater.),2001年,第13巻,p.3899 C.Xu外,フィジカ・スタツス・ソリディA(Phys.Stat.Sol.A),2003年,第198巻,p.329 X.P.Hao外,ジャーナル・オブ・クリスタル・グロース(J.Cryst.Growth),2002年,第242巻,p.229 V.N.Tondare外,アプライド・フィジックス・レターズ(Appl.Phys.Lett.),2002年,第80巻,p.4813 Q.Wu外,ジャーナル・オブ・アメリカン・ケミカル・ソサイエティ(J.Am.Chem.Soc.),2003年,第125巻,p.10176
Methods for producing one-dimensional aluminum nitride nanowires (for example, see Non-Patent Documents 1 to 3) and aluminum nitride nanotubes (for example, Non-Patent Documents 4 and 5) are known so far. Among these, aluminum nitride nanotubes are manufactured by an arc discharge method using aluminum as a target material or a method of reacting aluminum powder with ammonia.
Y. Zhang et al., Chemistry of Materials (Chem. Mater.), 2001, Vol. 13, p. 3899 C.Xu, Phys. Stat. Sol. A, 2003, Vol. 198, p. 329 XPHao et al., Journal of Crystal Growth (J.Cryst.Growth), 2002, Vol.242, p. 229 Outside VNTondare, Applied Physics Letters (Appl. Phys. Lett.), 2002, 80, p. 4813 Q. Wu et al., Journal of American Chemical Society (J. Am. Chem. Soc.), 2003, Vol. 125, p. 10176

この出願の発明は、窒化アルミニウムナノチューブの外壁と内壁に炭素膜を成長させた、新規で、オプトエレクトロニクス、電界放出材料などの分野への応用が期待される、外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブとその製造方法を提供することを解決すべき課題としている。   The invention of this application is a new, carbon film grown on the outer and inner walls of aluminum nitride nanotubes, and is expected to be applied to fields such as optoelectronics and field emission materials. The outer and inner walls are covered with a carbon film. It is a problem to be solved to provide an aluminum nitride nanotube and a method for producing the same.

この出願の発明は、上記の課題を解決するものとして、第1には、窒化アルミニウムナノチューブの外壁と内壁がともに炭素膜で覆われ、外径が45〜50ナノメートル、炭素膜の厚さが2〜3ナノメートル、壁の厚さが10〜15ナノメートルであることを特徴とする外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブを提供する。   In order to solve the above problems, the invention of this application is as follows. First, both the outer wall and the inner wall of the aluminum nitride nanotube are covered with a carbon film, the outer diameter is 45 to 50 nanometers, and the thickness of the carbon film is Provided is an aluminum nitride nanotube having an outer wall and an inner wall covered with a carbon film, wherein the outer wall and the inner wall have a thickness of 2 to 3 nm and a wall thickness of 10 to 15 nm.

この出願の発明は、第2には、アルミナ粉末とカーボンナノチューブの混合物を不活性ガス気流中で加熱した後、不活性ガスをアンモニアガスに切り替えて引き続き加熱することを特徴とする外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法を提供する。   The invention of this application is characterized in that, secondly, an outer wall and an inner wall are characterized in that a mixture of alumina powder and carbon nanotubes is heated in an inert gas stream, and then the inert gas is switched to ammonia gas and subsequently heated. A method for producing an aluminum nitride nanotube covered with a carbon film is provided.

この出願の発明は、第3には、上記第2の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法において、アルミナ粉末とカーボンナノチューブの重量比が4:1〜3:1の範囲である外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法を提供する。   Thirdly, in the method of manufacturing an aluminum nitride nanotube in which the second outer wall and the inner wall are covered with a carbon film, the weight ratio of the alumina powder to the carbon nanotube is 4: 1 to 3: 1. Provided is a method for producing an aluminum nitride nanotube in which an outer wall and an inner wall which are ranges are covered with a carbon film.

この出願の発明は、第4には、上記第2または第3の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法において、不活性ガス気流中、1450〜1600℃
の範囲の温度で加熱する窒化アルミニウムナノチューブの製造方法を提供する。
The invention of this application is, fourthly, in the method for producing an aluminum nitride nanotube in which the second or third outer wall and the inner wall are covered with a carbon film, in an inert gas stream, at 1450 to 1600 ° C.
The manufacturing method of the aluminum nitride nanotube heated at the temperature of the range is provided.

この出願の発明は、第5には、上記第4の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法において、不活性ガス気流中で0.4〜1時間加熱する窒
化アルミニウムナノチューブの製造方法を提供する。
The fifth aspect of the invention of this application is that, in the fourth method for producing an aluminum nitride nanotube in which the outer wall and the inner wall are covered with a carbon film, the aluminum nitride nanotube is heated in an inert gas stream for 0.4 to 1 hour. Provide a method.

この出願の発明は、第6には、上記第2ないし第5のいずれか1つの外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法において、アンモニアガス気流中、1300〜1600℃の範囲の温度で加熱する窒化アルミニウムナノチューブの製造方法を提供する。   The invention of this application is sixthly, in the method for producing an aluminum nitride nanotube in which the outer wall and the inner wall of any one of the second to fifth are covered with a carbon film, in an ammonia gas stream, the temperature is 1300 to 1600 ° C. Provided is a method for producing aluminum nitride nanotubes that is heated at a range of temperatures.

この出願の発明は、第7には、上記第6の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法において、アンモニアガス気流中で0.5〜1.2時間加熱する窒化アルミニウムナノチューブの製造方法を提供する。   Seventhly, the invention of this application is the method for producing aluminum nitride nanotubes, wherein the sixth outer wall and the inner wall are covered with a carbon film, wherein the aluminum nitride nanotubes are heated in an ammonia gas stream for 0.5 to 1.2 hours. I will provide a.

この出願の発明は、第8には、上記第2ないし第7いずれか1つの外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法において、不活性ガスの流量が80〜150sccmの範囲である窒化アルミニウムナノチューブの製造方法を提供する。   The invention of this application is, in the eighth aspect, in the method of manufacturing an aluminum nitride nanotube in which the outer wall and the inner wall of any one of the second to seventh are covered with a carbon film, and the flow rate of the inert gas is in the range of 80 to 150 sccm. A method for producing an aluminum nitride nanotube is provided.

この出願の発明は、第9には、上記第2ないし第8いずれか1つの外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法において、アンモニアガスの流量が150〜250sccmの範囲である窒化アルミニウムナノチューブの製造方法を提供する。   The ninth aspect of the invention of this application is the method for producing an aluminum nitride nanotube in which the outer wall and the inner wall of any one of the second to eighth aspects are covered with a carbon film, wherein the flow rate of ammonia gas is in the range of 150 to 250 sccm. A method for producing an aluminum nitride nanotube is provided.

この出願の発明によれば、窒化アルミニウムナノチューブの外壁と内壁に炭素膜を成長させた、新規で、オプトエレクトロニクス、電界放出材料などの分野への応用が期待される、外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブが得られる。   According to the invention of this application, a carbon film is grown on an outer wall and an inner wall of an aluminum nitride nanotube, and the outer wall and the inner wall are carbon films that are expected to be applied to fields such as new optoelectronics and field emission materials. Covered aluminum nitride nanotubes are obtained.

この出願の発明の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブは、窒化アルミニウムナノチューブの外壁と内壁がともに炭素膜で覆われ、外径が45〜50ナノメートル、炭素膜の厚さが2〜3ナノメートル、壁の厚さが10〜15ナノメートルのものである。   The aluminum nitride nanotubes whose outer wall and inner wall of the invention of this application are covered with a carbon film are both covered with a carbon film, the outer diameter is 45 to 50 nanometers, and the thickness of the carbon film is It has a thickness of 2 to 3 nanometers and a wall thickness of 10 to 15 nanometers.

この外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブは、アルミナ粉末とカーボンナノチューブの混合物を不活性ガス気流中で加熱した後、不活性ガスをアンモニアガスに切り替えて引き続き加熱することにより製造される。   The aluminum nitride nanotubes whose outer wall and inner wall are covered with a carbon film are manufactured by heating a mixture of alumina powder and carbon nanotubes in an inert gas stream, then switching the inert gas to ammonia gas and continuing heating. The

具体的には、アルミナ粉末とカーボンナノチューブの混合物をグラファイトるつぼに入れ、このグラファイトるつぼを縦型高周波誘導加熱炉の中に配置し、2〜3Torrに減圧した後、アルゴンガスなどの不活性ガスを流しながら、るつぼの内容物を加熱する。この後、不活性ガスをアンモニアガスに切り替え、引き続き加熱する。この一連の加熱により、グラファイトるつぼの内壁には黒色のウール状物質が堆積する。この黒色のウール状物質が、外径45〜50ナノメートル、炭素膜の厚さ2〜3ナノメートル、壁の厚さ10〜15ナノメートルの外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブである。   Specifically, a mixture of alumina powder and carbon nanotubes is put into a graphite crucible, this graphite crucible is placed in a vertical high frequency induction heating furnace, and the pressure is reduced to 2 to 3 Torr, and then an inert gas such as argon gas is introduced. While flowing, heat the contents of the crucible. After this, the inert gas is switched to ammonia gas and heating is continued. By this series of heating, black wool-like substances are deposited on the inner wall of the graphite crucible. This black wool-like material has an outer diameter of 45 to 50 nanometers, a carbon film thickness of 2 to 3 nanometers, and a wall thickness of 10 to 15 nanometers of aluminum nitride nanotubes whose outer and inner walls are covered with a carbon film. It is.

以上の外壁および内壁が炭素幕で覆われた窒化アルミニウムナノチューブの製造において、この出願の発明では、アルミナ粉末とカーボンナノチューブの重量比は4:1〜3:1の範囲が好ましい。アルミナ粉末が上記範囲より多いと、アルミナ粉末の一部が還元さ
れずに未反応のまま残存することになる。アルミナ粉末が上記範囲より少ないと、未反応の炭素が生成物中に混入する。
In the production of the aluminum nitride nanotubes whose outer wall and inner wall are covered with the carbon screen, the weight ratio of the alumina powder to the carbon nanotubes is preferably in the range of 4: 1 to 3: 1. If the alumina powder is more than the above range, a part of the alumina powder remains unreacted without being reduced. If the alumina powder is less than the above range, unreacted carbon is mixed in the product.

アルゴンガスなどの不活性ガスの流量は、80〜150sccmの範囲が好ましい。150sccmで十分に不活性雰囲気が保たれる。80sccm未満では、不活性雰囲気を保持するのに十分ではない。不活性ガス気流中における加熱温度は1450〜1600℃の範囲が好ましい。1600℃で十分にアルミナの還元反応が進行する。1450℃未満では反応が十分に進行しない。不活性ガス気流中での加熱時間は0.4〜1時間の範囲が好ましい。1時間でアルミナの還元反応
は十分に進行する。0.4時間未満の加熱時間では反応が十分に完結しない。
The flow rate of an inert gas such as argon gas is preferably in the range of 80 to 150 sccm. A sufficiently inert atmosphere is maintained at 150 sccm. Below 80 sccm, it is not sufficient to maintain an inert atmosphere. The heating temperature in the inert gas stream is preferably in the range of 1450 to 1600 ° C. The reduction reaction of alumina proceeds sufficiently at 1600 ° C. The reaction does not proceed sufficiently at temperatures below 1450 ° C. The heating time in the inert gas stream is preferably in the range of 0.4 to 1 hour. In 1 hour, the reduction reaction of alumina proceeds sufficiently. If the heating time is less than 0.4 hours, the reaction is not completely completed.

アンモニアガスの流量は150〜250sccmの範囲が好ましい。250sccmを超える流量では、
窒化アルミニウムナノチューブの形成と成長が非平衡状態となり、成長後の窒化アルミニウムナノチューブ中に結晶欠陥を生じる。150sccmより流量が少ないと、アンモニア蒸気
の量が十分でないため窒化アルミニウムナノチューブの形成と成長が十分に行われない。アンモニアガス気流中での加熱温度は1300〜1600℃の範囲が好ましい。1600℃で最終生成物が十分に形成される。1300℃より温度が低いと、窒化アルミニウムの形成のための反応速度および炭素膜で覆われた窒化アルミニウムナノチューブの結晶成長速度が遅くなる。アンモニア気流中での加熱時間は0.5〜1.2時間の範囲が好ましい。1.2時間で最終の複合
ナノチューブの形成と成長が十分に進行する。0.5時間未満では複合ナノチューブの成長
が完結しない。
The flow rate of ammonia gas is preferably in the range of 150 to 250 sccm. For flow rates over 250sccm,
Formation and growth of the aluminum nitride nanotubes are in a non-equilibrium state, and crystal defects are generated in the grown aluminum nitride nanotubes. If the flow rate is lower than 150 sccm, the amount of ammonia vapor is not sufficient, so that formation and growth of aluminum nitride nanotubes are not performed sufficiently. The heating temperature in the ammonia gas stream is preferably in the range of 1300 to 1600 ° C. The final product is fully formed at 1600 ° C. When the temperature is lower than 1300 ° C., the reaction rate for forming aluminum nitride and the crystal growth rate of the aluminum nitride nanotubes covered with the carbon film become slow. The heating time in the ammonia stream is preferably in the range of 0.5 to 1.2 hours. The formation and growth of the final composite nanotube proceeds sufficiently in 1.2 hours. In less than 0.5 hour, the growth of the composite nanotube is not completed.

和光純薬工業(株)製のアルミナ粉末(純度99.9%)3gと既知の方法(Cheng C.Tang,et al.;Carbon, 2002年,第40巻、p.2497〜2502に記載)で作製したカーボンナノチューブ(長さ数マイクロメートル、直径40〜55ナノメートル)0.5gの混合物をグラ
ファイトるつぼに入れた。このグラファイトるつぼを縦型高周波誘導加熱炉の中央部に配置し、縦型高周波誘導加熱炉の内部を2〜3Torrに減圧した後、アルゴンガスを100sccm
の流量で流しながらるつぼの内容物を1600℃に1時間加熱した。その後、アルゴンガスを
アンモニアガスに切り替え、流量200sccmで流しながら1600℃に1時間加熱した。グラファイトるつぼの内壁に黒色のウール状物質が0.4g堆積した。
Wako Pure Chemical Industries, Ltd. 3g alumina powder (purity 99.9%) and known method (Cheng C. Tang, et al .; Carbon, 2002, Vol. 40, p. 2497 to 2502) A mixture of 0.5 g of the carbon nanotubes (a few micrometers long, 40-55 nanometers in diameter) was placed in a graphite crucible. This graphite crucible is placed in the center of the vertical high frequency induction heating furnace, the inside of the vertical high frequency induction heating furnace is depressurized to 2-3 Torr, and then argon gas is added at 100 sccm.
The contents of the crucible were heated to 1600 ° C. for 1 hour while flowing at a flow rate of. Thereafter, the argon gas was switched to ammonia gas and heated to 1600 ° C. for 1 hour while flowing at a flow rate of 200 sccm. 0.4 g of a black wool-like substance was deposited on the inner wall of the graphite crucible.

図1に、黒色堆積物のX線回折のパターンを示した。黒色堆積物は、格子定数がa=3.114Å、c=4.986Åである六方晶系の窒化アルミニウムであることが確認された。   FIG. 1 shows the X-ray diffraction pattern of the black deposit. The black deposit was confirmed to be hexagonal aluminum nitride having lattice constants a = 3.114 Å and c = 4.986 Å.

図2に、黒色堆積物の低倍率透過型電子顕微鏡像の写真を示した。長さ数マイクロメートル以上で、外径45〜50ナノメートル、壁の厚さ13ナノメートルのナノチューブが形成されているのが分かる。   FIG. 2 shows a photograph of a low magnification transmission electron microscope image of the black deposit. It can be seen that nanotubes having a length of several micrometers or more, an outer diameter of 45 to 50 nanometers, and a wall thickness of 13 nanometers are formed.

図3に、黒色堆積物の高分解能透過型電子顕微鏡像の写真を示した。この写真からチューブの外壁と内壁に2〜3ナノメートルの薄い層が形成されていることが分かる。   FIG. 3 shows a photograph of a high-resolution transmission electron microscope image of the black deposit. It can be seen from this photograph that a thin layer of 2 to 3 nanometers is formed on the outer wall and the inner wall of the tube.

図4に、黒色堆積物のX線エネルギー拡散スペクトルを示した。化学組成は、アルミニウム48.1atom%、窒素46.3atom%、炭素4.6atom%、酸素1atom%であった。アルミニウ
ムと窒素の原子比は1:0.97であり、化学量論組成の窒化アルミニウムであることが確認された。検出された4.6atom%の炭素が、ナノチューブの外壁と内壁の薄い膜の層に相当
する。
FIG. 4 shows the X-ray energy diffusion spectrum of the black deposit. The chemical composition was 48.1 atom% aluminum, 46.3 atom% nitrogen, 4.6 atom% carbon, and 1 atom% oxygen. The atomic ratio of aluminum to nitrogen was 1: 0.97, confirming that the aluminum nitride had a stoichiometric composition. The detected 4.6 atom% of carbon corresponds to a thin film layer on the outer wall and inner wall of the nanotube.

図5に、励起光源として325nmのHe−Cdレーザーを用いて測定した黒色堆積物の室
温におけるフォトルミネッセンススペクトルを示した。350nmから550nmまでの発光バンドを有し、中心バンドが412nmである青色発光を示す。
FIG. 5 shows a photoluminescence spectrum of a black deposit measured at room temperature using a 325 nm He—Cd laser as an excitation light source. Blue light emission having an emission band from 350 nm to 550 nm and a central band of 412 nm is exhibited.

以上詳しく説明したとおり、この出願の発明によって、新規な外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブが実現され、このナノチューブは、オプトエレクトロニクス、電界放出材料などの分野への応用が期待される。   As described in detail above, the invention of this application has realized a novel aluminum nitride nanotube whose outer wall and inner wall are covered with a carbon film. This nanotube is expected to be applied to fields such as optoelectronics and field emission materials. The

実施例で得られた黒色堆積物のX線回折のパターンである。It is a pattern of the X-ray diffraction of the black deposit obtained in the Example. 実施例で得られた黒色堆積物の低倍率透過型電子顕微鏡像の写真である。It is a photograph of the low magnification transmission electron microscope image of the black deposit obtained in the Example. 実施例で得られた黒色堆積物の高分解能透過型電子顕微鏡像の写真である。It is a photograph of the high resolution transmission electron microscope image of the black deposit obtained in the Example. 実施例で得られた黒色堆積物のX線エネルギー拡散スペクトルの図である。It is a figure of the X-ray energy-diffusion spectrum of the black deposit obtained in the Example. 実施例で得られた黒色堆積物の室温におけるフォトルミネッセンススペクトルの図である。It is a figure of the photoluminescence spectrum in room temperature of the black deposit obtained in the Example.

Claims (9)

窒化アルミニウムナノチューブの外壁と内壁がともに炭素膜で覆われ、外径が45〜50ナノメートル、炭素膜の厚さが2〜3ナノメートル、壁の厚さが10〜15ナノメートルであることを特徴とする外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブ。   Both the outer wall and inner wall of the aluminum nitride nanotube are covered with a carbon film, the outer diameter is 45-50 nanometers, the carbon film thickness is 2-3 nanometers, and the wall thickness is 10-15 nanometers. An aluminum nitride nanotube whose outer and inner walls are covered with a carbon film. アルミナ粉末とカーボンナノチューブの混合物を不活性ガス気流中で加熱した後、不活性ガスをアンモニアガスに切り替えて引き続き加熱することを特徴とする外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法。   Production of aluminum nitride nanotubes whose outer and inner walls are covered with a carbon film, wherein a mixture of alumina powder and carbon nanotubes is heated in an inert gas stream and then the inert gas is switched to ammonia gas and then heated. Method. アルミナ粉末とカーボンナノチューブの重量比が4:1〜3:1の範囲である請求項2記載の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法。   The method for producing aluminum nitride nanotubes, wherein the outer wall and the inner wall are covered with a carbon film, wherein the weight ratio of the alumina powder and the carbon nanotube is in the range of 4: 1 to 3: 1. 不活性ガス気流中、1450〜1600℃の範囲の温度で加熱する請求項2または3記載の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法。   The method for producing aluminum nitride nanotubes, wherein the outer wall and the inner wall are covered with a carbon film, which is heated at a temperature in the range of 1450 to 1600 ° C in an inert gas stream. 不活性ガス気流中で0.4〜1時間加熱する請求項4記載の外壁および内壁が炭素膜で覆
われた窒化アルミニウムナノチューブの製造方法。
The manufacturing method of the aluminum nitride nanotube by which the outer wall and inner wall were covered with the carbon film of Claim 4 heated for 0.4 to 1 hour in inert gas stream.
アンモニアガス気流中、1300〜1600℃の範囲の温度で加熱する請求項2ないし5いずれか1項に記載の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法。   The method for producing aluminum nitride nanotubes, wherein the outer wall and the inner wall are covered with a carbon film according to any one of claims 2 to 5, wherein heating is performed at a temperature in the range of 1300 to 1600 ° C in an ammonia gas stream. アンモニアガス気流中で0.5〜1.2時間加熱する請求項6記載の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法。   The method for producing aluminum nitride nanotubes, wherein the outer wall and the inner wall are covered with a carbon film, which is heated in an ammonia gas stream for 0.5 to 1.2 hours. 不活性ガスの流量が80〜150sccmの範囲である請求項2ないし7いずれか1項に記載
の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法。
The method for producing aluminum nitride nanotubes, wherein the outer wall and the inner wall are covered with a carbon film according to any one of claims 2 to 7, wherein the flow rate of the inert gas is in the range of 80 to 150 sccm.
アンモニアガスの流量が150〜250sccmの範囲である請求項2ないし8いずれか1項に記載の外壁および内壁が炭素膜で覆われた窒化アルミニウムナノチューブの製造方法。

The method for producing aluminum nitride nanotubes, wherein the outer wall and the inner wall are covered with a carbon film according to any one of claims 2 to 8, wherein the flow rate of ammonia gas is in the range of 150 to 250 sccm.

JP2004171967A 2004-06-10 2004-06-10 Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof Pending JP2005349515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171967A JP2005349515A (en) 2004-06-10 2004-06-10 Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171967A JP2005349515A (en) 2004-06-10 2004-06-10 Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005349515A true JP2005349515A (en) 2005-12-22

Family

ID=35584390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171967A Pending JP2005349515A (en) 2004-06-10 2004-06-10 Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005349515A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280497A (en) * 2009-08-26 2009-12-03 National Institute For Materials Science Aluminum nitride nanoribbon
JP2012041255A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride particle, method for producing the same, and apparatus for producing aluminum nitride particle
JP2012041254A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride wire, method for producing the same, and apparatus for producing aluminum nitride wire
JP2012041253A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride-based particle, method for producing the same, and apparatus for producing aluminum nitride-based particle
CN101580224B (en) * 2009-06-01 2012-09-05 南京大学 Patterning preparation method for nano array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191807A (en) * 1992-12-28 1994-07-12 Tokuyama Soda Co Ltd Production of aluminum nitride powder
JP2002097004A (en) * 2000-09-21 2002-04-02 National Institute For Materials Science Method for manufacturing boron nitride nanotube by using oxide catalyst
WO2004007353A2 (en) * 2002-07-17 2004-01-22 Hitco Carbon Composites, Inc. Continuous chemical vapor deposition process and process furnace
JP2004250281A (en) * 2003-02-19 2004-09-09 National Institute Of Advanced Industrial & Technology Method for producing waterproof aluminum nitride powder coated with carbonaceous film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191807A (en) * 1992-12-28 1994-07-12 Tokuyama Soda Co Ltd Production of aluminum nitride powder
JP2002097004A (en) * 2000-09-21 2002-04-02 National Institute For Materials Science Method for manufacturing boron nitride nanotube by using oxide catalyst
WO2004007353A2 (en) * 2002-07-17 2004-01-22 Hitco Carbon Composites, Inc. Continuous chemical vapor deposition process and process furnace
JP2004250281A (en) * 2003-02-19 2004-09-09 National Institute Of Advanced Industrial & Technology Method for producing waterproof aluminum nitride powder coated with carbonaceous film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580224B (en) * 2009-06-01 2012-09-05 南京大学 Patterning preparation method for nano array
JP2009280497A (en) * 2009-08-26 2009-12-03 National Institute For Materials Science Aluminum nitride nanoribbon
JP2012041255A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride particle, method for producing the same, and apparatus for producing aluminum nitride particle
JP2012041254A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride wire, method for producing the same, and apparatus for producing aluminum nitride wire
JP2012041253A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride-based particle, method for producing the same, and apparatus for producing aluminum nitride-based particle

Similar Documents

Publication Publication Date Title
Cheng et al. Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes
Chen et al. Synthesis of blue-green photoluminescent β-SiC nanowires via a simple catalyst-free CVD technique
Zhang et al. ZnO microrod arrays grown on a curved sphere surface and their optical properties
Xu et al. Low-temperature growth and optical properties of radial ZnO nanowires
JP2007223853A (en) Manufacturing method of silicon carbide nanowire
Liang et al. Synthesis and photoluminescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors
Khan et al. Large-scale fabrication of metallic Zn nanowires by thermal evaporation
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP3918073B2 (en) Method for synthesizing 3C-SiC nanowhiskers and 3C-SiC nanowhiskers
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
JP4025873B2 (en) Boron nitride nanowire and manufacturing method thereof
JP2005139044A (en) Single crystal silicon nanotube and its manufacturing method
JP2008100863A (en) Silicon carbide nanostructure and its producing method
Chen et al. Fabrication and characterization of hexagonal wire-like ZnO
JP4441617B2 (en) Aluminum nitride nanotube and method for producing the same
JP4930952B2 (en) Aluminum nitride nanoribbon
JP2004210562A (en) Silicon carbide nanowire or silicon nitride nanowire coated with boron nitride, and production method therefor
Zhang et al. Intensive blue-light emission from semiconductor GaN nanowires sheathed with BN layers
JP3837540B2 (en) Method for producing single crystal tubular zinc oxide whisker
Hu et al. The First Template‐Free Growth of Crystalline Silicon Microtubes
JP2004190183A (en) Boron nitride nanofiber having long period structure and method for producing the same
JP4072622B2 (en) Method for producing single crystal β-type silicon nitride nanoribbon
JP2004189528A (en) Single crystal indium oxide nanotubes which entails metal indium and its manufacturing method
JP2004339020A (en) Method for manufacturing gallium nitride nanotube
JP4756239B2 (en) Hollow spherical particles made of gallium nitride and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601