JP2004339020A - Method for manufacturing gallium nitride nanotube - Google Patents

Method for manufacturing gallium nitride nanotube Download PDF

Info

Publication number
JP2004339020A
JP2004339020A JP2003138948A JP2003138948A JP2004339020A JP 2004339020 A JP2004339020 A JP 2004339020A JP 2003138948 A JP2003138948 A JP 2003138948A JP 2003138948 A JP2003138948 A JP 2003138948A JP 2004339020 A JP2004339020 A JP 2004339020A
Authority
JP
Japan
Prior art keywords
gallium nitride
gallium
nitride nanotubes
trioxide
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003138948A
Other languages
Japanese (ja)
Other versions
JP3893464B2 (en
Inventor
Yoshio Bando
義雄 板東
Fuu Jintsui
ジンツィ・フウ
Golberg Dmitri
デミトリー・ゴルバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003138948A priority Critical patent/JP3893464B2/en
Publication of JP2004339020A publication Critical patent/JP2004339020A/en
Application granted granted Critical
Publication of JP3893464B2 publication Critical patent/JP3893464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing gallium nitride nanotubes which are expected to be applied in a full color flat display, a device for high electric power, a blue color oscillation laser and the field of optical communications. <P>SOLUTION: After heating gallium trioxide to 1,200-1,300 °C in the stream of gaseous nitrogen, the gaseous nitrogen is switched to gaseous ammonia, and the gallium trioxide is heated to 1,350-1,450 °C in the stream of the gaseous ammonia. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、窒化ガリウムナノチューブの製造方法に関するものである。さらに詳しくは、この出願の発明は、フルカラーの平面ディスプレイ、高電力用デバイス、青色発振レーザー、光通信分野への応用が期待されている窒化ガリウムのナノチューブを製造することのできる窒化ガリウムナノチューブの製造方法に関するものである。
【0002】
【従来の技術】
窒化ガリウム(GaN)は、3.39eVのバンドギャップを有する半導体であり、青色発光や紫外発光を示す材料である。このことから、窒化ガリウムは、フルカラーの平面ディスプレイ、高電力用デバイス、青色発振レーザー、光通信分野への応用が期待されている。このような窒化ガリウムのナノワイヤー若しくはナノロッドは、鋳型を用いた合成法(たとえば、非特許文献1参照)、金属触媒を用いたレーザー加熱法(たとえば、非特許文献2参照)、熱フィラメントの気相−液相−固相成長法(たとえば、非特許文献3参照)、酸化ガリウムとアンモニアとの反応(たとえば、非特許文献4参照)等によって製造されている。
【0003】
【非特許文献1】
W.Q.Hann外,サイエンス(Science),1997年,第277巻,p.1287
【非特許文献2】
X.F.Duan外,ジャーナル・オブ・アメリカン・ケミカル・ソサイエティ(J.Am.Chem.Soc.),2000年,第122巻,p.188
【非特許文献3】
X.Y.Peng外,ケミカル・フィジックス・レターズ(Chem.Phys.Lett.),2000年,第327巻,p.263
【非特許文献4】
C.C.Chen外,アドバンスト・マテリアルズ(Adv.Mater.),2000年,第12巻,p.738
【0004】
【発明が解決しようとする課題】
しかしながら、内部が中空になっている窒化ガリウムナノチューブはまだ製造されていない。
【0005】
この出願の発明は、このような事情に鑑みてなされたものであり、窒化ガリウムのナノチューブを製造することのできる窒化ガリウムナノチューブの製造方法を提供することを解決すべき課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、三酸化ガリウムを窒素ガス気流中で1200〜1300℃に加熱した後、窒素ガスをアンモニアガスに切り替え、アンモニアガス気流中で1350〜1450℃に加熱することを特徴とする窒化ガリウムナノチューブの製造方法(請求項1)を提供する。
【0007】
以下、実施例を示し、この出願の発明の窒化ガリウムナノチューブの製造方法についてさらに詳しく説明する。
【0008】
【発明の実施の形態】
この出願の発明の窒化ガリウムナノチューブの製造方法では、上述のとおり、三酸化ガリウムを窒素ガス気流中で1200〜1300℃に加熱した後、窒素ガスをアンモニアガスに切り替え、アンモニアガス気流中で1350〜1450℃に加熱する。その結果、均一な外径、内径及び肉厚を有する窒化ガリウムナノチューブが得られる。
【0009】
【実施例】
長さ50cm、外径12cm、肉厚0.25cmの透明な縦型石英管の中に、長さ25cm、外径4.5cm、内径3.5cmのグラファイト製の誘導加熱を行う円筒を配置した。なお、円筒は、カーボンファイバー製断熱材で被覆されており、ガス導入管とガス排出管とが取り付けられている。この円筒の中心部に外径2.5cm、肉厚3mm、高さ2cmのグラファイト製るつぼを配置し、その中に2.0gの三酸化ガリウム(Ga)の粉末(純度99.9%)を入れた。
【0010】
石英管に窒素ガスを80sccmの流速で流しながら、三酸化ガリウムを1250℃に加熱し、この温度に1.5時間保持した。次いで、窒素ガスに替え、アンモニアガスを同じ流速で流し、1400℃で1時間加熱した。加熱終了後、室温まで冷却し、カーボンファイバー製断熱材に堆積した灰黒色の生成物を採取した。
【0011】
生成物のX線回折パターンを調べた結果、格子定数a=3.185Å、c=5.177Åの六方晶系のウルツ型構造である窒化ガリウムであることが確認された。生成物の代表的な透過型電子顕微鏡像を図1に示した。外側が暗く、内側が明るいことから中空部が存在し、ナノチューブ構造であることが確認された。ナノチューブは、長さが数マイクロメートルから数十マイクロメートルにわたっていて、均一な外径、内径及び肉厚を有していた。典型的なナノチューブでは、外径が50ナノメートル、肉厚が15ナノメートルであった。また、ナノチューブの約80%は、先端が開口した直線形状を有し、大部分は多結晶であった。
【0012】
一方、少量生成した先端が閉じたナノチューブの壁面の一部分を高分解能透過型電子顕微鏡で観察した結果、単結晶構造を示す格子像が得られた。これは面間距離が0.16ナノメートルであった。さらに電子線回折で調べると、ナノサイズの微結晶であり、完全には配列していないことが分かった。
【0013】
図2は、ナノチューブのX線エネルギー拡散スペクトルを示しているが、ガリウムと窒素の原子比は1:1.10であり、組成がGaNであることが確認された。なお、スペクトル中のCuのシグナルは、透過型電子顕微鏡の銅グリッドに由来するものである。また、Oのシグナルは、窒化ガリウムナノチューブの外側の酸化された薄層のGaOのOに由来するものである。
【0014】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。窒化ガリウムナノチューブの製造に用いた装置の構成及び構造、窒素ガス及びアンモニアガスの流速の諸条件等の細部については様々な態様が可能であることはいうまでもない。
【0015】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、フルカラーの平面ディスプレイ、高電力用デバイス、青色発振レーザー、光通信分野への応用が期待されている窒化ガリウムのナノチューブが製造される。
【図面の簡単な説明】
【図1】実施例で得られた生成物の高倍率透過型電子顕微鏡像である。
【図2】実施例で得られた生成物のX線エネルギー拡散スペクトルである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method for producing gallium nitride nanotubes. More specifically, the invention of this application relates to the production of gallium nitride nanotubes that can produce gallium nitride nanotubes expected to be applied to the field of full-color flat displays, high power devices, blue oscillation lasers, and optical communication fields. It is about the method.
[0002]
[Prior art]
Gallium nitride (GaN) is a semiconductor having a band gap of 3.39 eV, and is a material that emits blue light or ultraviolet light. For this reason, gallium nitride is expected to be applied to full-color flat displays, high-power devices, blue oscillation lasers, and optical communication fields. Such gallium nitride nanowires or nanorods can be obtained by a synthesis method using a template (for example, see Non-Patent Document 1), a laser heating method using a metal catalyst (for example, see Non-Patent Document 2), a hot filament gas. It is manufactured by a phase-liquid-solid growth method (for example, see Non-Patent Document 3), a reaction between gallium oxide and ammonia (for example, see Non-Patent Document 4), and the like.
[0003]
[Non-patent document 1]
W. Q. Hann et al., Science, 1997, Vol. 277, p. 1287
[Non-patent document 2]
X. F. Duan et al., Journal of American Chemical Society (J. Am. Chem. Soc.), 2000, Vol. 122, p. 188
[Non-Patent Document 3]
X. Y. Peng et al., Chemical Physics Letters (Chem. Phys. Lett.), 2000, Vol. 327, p. 263
[Non-patent document 4]
C. C. Chen et al., Advanced Materials (Adv. Mater.), 2000, Vol. 12, p. 738
[0004]
[Problems to be solved by the invention]
However, a gallium nitride nanotube having a hollow inside has not yet been manufactured.
[0005]
The invention of this application has been made in view of such circumstances, and an object of the present invention is to provide a method for producing gallium nitride nanotubes, which can produce gallium nitride nanotubes.
[0006]
[Means for Solving the Problems]
The invention of this application solves the above-mentioned problems by heating gallium trioxide to 1200 to 1300 ° C. in a nitrogen gas stream, then switching the nitrogen gas to ammonia gas, and 1350 to 1450 ° C. in an ammonia gas stream. And a method for producing gallium nitride nanotubes (claim 1).
[0007]
Hereinafter, examples are shown, and the method for producing gallium nitride nanotubes of the present invention will be described in more detail.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for producing gallium nitride nanotubes according to the invention of the present application, as described above, after gallium trioxide is heated to 1200 to 1300 ° C. in a nitrogen gas stream, the nitrogen gas is switched to ammonia gas, and the gallium trioxide is heated to 1350 to 1350 ° C. in an ammonia gas stream. Heat to 1450 ° C. As a result, gallium nitride nanotubes having a uniform outer diameter, inner diameter, and thickness can be obtained.
[0009]
【Example】
In a transparent vertical quartz tube having a length of 50 cm, an outer diameter of 12 cm, and a thickness of 0.25 cm, a graphite cylinder for induction heating having a length of 25 cm, an outer diameter of 4.5 cm, and an inner diameter of 3.5 cm was arranged. . The cylinder is covered with a heat insulating material made of carbon fiber, and a gas introduction pipe and a gas discharge pipe are attached. A graphite crucible having an outer diameter of 2.5 cm, a wall thickness of 3 mm, and a height of 2 cm was placed at the center of the cylinder, and 2.0 g of gallium trioxide (Ga 2 O 3 ) powder (purity 99.9) was placed in the crucible. %).
[0010]
Gallium trioxide was heated to 1250 ° C. while flowing nitrogen gas at a flow rate of 80 sccm through the quartz tube, and kept at this temperature for 1.5 hours. Then, instead of nitrogen gas, ammonia gas was flowed at the same flow rate and heated at 1400 ° C. for 1 hour. After completion of the heating, the mixture was cooled to room temperature, and a gray-black product deposited on the carbon fiber heat insulating material was collected.
[0011]
As a result of examining the X-ray diffraction pattern of the product, it was confirmed that the product was gallium nitride having a hexagonal wurtz-type structure with lattice constants a = 3.185 ° and c = 5.177 °. A representative transmission electron microscope image of the product is shown in FIG. Since the outside was dark and the inside was bright, it was confirmed that a hollow portion was present and the structure was a nanotube. The nanotubes ranged in length from a few micrometers to tens of micrometers and had a uniform outer diameter, inner diameter, and wall thickness. A typical nanotube had an outer diameter of 50 nanometers and a wall thickness of 15 nanometers. About 80% of the nanotubes had a linear shape with an open end, and most were polycrystalline.
[0012]
On the other hand, as a result of observing a part of the wall surface of the nanotube having a small amount and having a closed tip with a high-resolution transmission electron microscope, a lattice image showing a single crystal structure was obtained. This had an inter-plane distance of 0.16 nanometers. Further examination by electron diffraction revealed that the crystals were nano-sized microcrystals and were not perfectly aligned.
[0013]
FIG. 2 shows the X-ray energy diffusion spectrum of the nanotube. It was confirmed that the atomic ratio of gallium to nitrogen was 1: 1.10. And the composition was GaN. The signal of Cu in the spectrum is derived from the copper grid of the transmission electron microscope. Also, the O signal is derived from O in the oxidized thin layer of GaO x outside the gallium nitride nanotube.
[0014]
Of course, the invention of this application is not limited by the above embodiments and examples. It goes without saying that various aspects are possible for details such as the configuration and structure of the apparatus used for the production of gallium nitride nanotubes, and various conditions of the flow rates of nitrogen gas and ammonia gas.
[0015]
【The invention's effect】
As described in detail above, according to the invention of this application, a gallium nitride nanotube expected to be applied to a full-color flat display, a device for high power, a blue oscillation laser, and an optical communication field is manufactured.
[Brief description of the drawings]
FIG. 1 is a high magnification transmission electron microscope image of a product obtained in an example.
FIG. 2 is an X-ray energy diffusion spectrum of a product obtained in an example.

Claims (1)

三酸化ガリウムを窒素ガス気流中で1200〜1300℃に加熱した後、窒素ガスをアンモニアガスに切り替え、アンモニアガス気流中で1350〜1450℃に加熱することを特徴とする窒化ガリウムナノチューブの製造方法。A method for producing gallium nitride nanotubes, comprising heating gallium trioxide to 1200 to 1300 ° C. in a nitrogen gas stream, switching the nitrogen gas to ammonia gas, and heating to 1350 to 1450 ° C. in the ammonia gas stream.
JP2003138948A 2003-05-16 2003-05-16 Method for producing gallium nitride nanotubes Expired - Lifetime JP3893464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138948A JP3893464B2 (en) 2003-05-16 2003-05-16 Method for producing gallium nitride nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138948A JP3893464B2 (en) 2003-05-16 2003-05-16 Method for producing gallium nitride nanotubes

Publications (2)

Publication Number Publication Date
JP2004339020A true JP2004339020A (en) 2004-12-02
JP3893464B2 JP3893464B2 (en) 2007-03-14

Family

ID=33528176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138948A Expired - Lifetime JP3893464B2 (en) 2003-05-16 2003-05-16 Method for producing gallium nitride nanotubes

Country Status (1)

Country Link
JP (1) JP3893464B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176383A (en) * 2004-12-24 2006-07-06 National Institute For Materials Science Method of manufacturing manganese-doped gallium nitride nano-wire
JP2006306680A (en) * 2005-04-28 2006-11-09 National Institute For Materials Science Gallium sulfide submicrometer tube, and method for producing the same
JP2007039277A (en) * 2005-08-03 2007-02-15 National Institute For Materials Science Hollow spherical particle formed from gallium nitride and its production method
CN1319852C (en) * 2005-12-15 2007-06-06 太原理工大学 High purity gallium nitride nanometer line preparation method
JP2013129568A (en) * 2011-12-21 2013-07-04 Tosoh Corp Gallium nitride powder and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176383A (en) * 2004-12-24 2006-07-06 National Institute For Materials Science Method of manufacturing manganese-doped gallium nitride nano-wire
JP4528938B2 (en) * 2004-12-24 2010-08-25 独立行政法人物質・材料研究機構 Manufacturing method of gallium nitride nanowire doped with manganese
JP2006306680A (en) * 2005-04-28 2006-11-09 National Institute For Materials Science Gallium sulfide submicrometer tube, and method for producing the same
JP2007039277A (en) * 2005-08-03 2007-02-15 National Institute For Materials Science Hollow spherical particle formed from gallium nitride and its production method
CN1319852C (en) * 2005-12-15 2007-06-06 太原理工大学 High purity gallium nitride nanometer line preparation method
JP2013129568A (en) * 2011-12-21 2013-07-04 Tosoh Corp Gallium nitride powder and method for producing the same

Also Published As

Publication number Publication date
JP3893464B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
Shi et al. Microstructures of gallium nitride nanowires synthesized by oxide-assisted method
JP5170609B2 (en) Method for producing silicon carbide nanowire
JP3893464B2 (en) Method for producing gallium nitride nanotubes
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
JP2008100863A (en) Silicon carbide nanostructure and its producing method
JP3987932B2 (en) Method for producing indium nitride nanowires coated with indium phosphide
JP2004210562A (en) Silicon carbide nanowire or silicon nitride nanowire coated with boron nitride, and production method therefor
JP3837540B2 (en) Method for producing single crystal tubular zinc oxide whisker
JP4576607B2 (en) Single crystal zinc sulfide nanotube and method for producing the same
Hu et al. The First Template‐Free Growth of Crystalline Silicon Microtubes
JP2004189527A (en) Method of producing boron nitride nanotube filled with nickel or nickel silicide
Huo et al. Field emission and optical properties of ZnO nanowires grown directly on conducting brass substrates
Qin et al. Synthesis and morphology evolution of tubular tetrapod MgO by thermal evaporation
JP2004182547A (en) Galium oxide nanowire and its manufacturing method
JP5196363B2 (en) Ribbon-like β-Ga2O3 tube with cylindrical internal passage filled with tin nanowires
KR100661640B1 (en) PROCESS FOR THE GROWTH IN SiC NANOWIRES DIRECTLY FROM NiO/SI
Wei et al. Large-scale synthesis and photoluminescence properties of SiC networks
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP2004189528A (en) Single crystal indium oxide nanotubes which entails metal indium and its manufacturing method
JP4756239B2 (en) Hollow spherical particles made of gallium nitride and method for producing the same
Xue et al. Growth of GaN nanowires through nitridation Ga2O3 films deposited by electrophoresis
JP4930952B2 (en) Aluminum nitride nanoribbon
JP4576604B2 (en) Method for producing single crystal indium nitride nanotube
JP2006001811A (en) Gallium oxide nanocable coated with carbon film and its manufacturing method
JP4581121B2 (en) Silicon nitride nanowire coated with boron nitride nanosheet and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Ref document number: 3893464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term