JP5170609B2 - Method for producing silicon carbide nanowire - Google Patents

Method for producing silicon carbide nanowire Download PDF

Info

Publication number
JP5170609B2
JP5170609B2 JP2006047781A JP2006047781A JP5170609B2 JP 5170609 B2 JP5170609 B2 JP 5170609B2 JP 2006047781 A JP2006047781 A JP 2006047781A JP 2006047781 A JP2006047781 A JP 2006047781A JP 5170609 B2 JP5170609 B2 JP 5170609B2
Authority
JP
Japan
Prior art keywords
silicon carbide
powder
range
silicon
nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006047781A
Other languages
Japanese (ja)
Other versions
JP2007223853A (en
Inventor
義雄 板東
グォツェン・シェン
チェンチュン・タン
デミトリー・ゴルバーグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006047781A priority Critical patent/JP5170609B2/en
Publication of JP2007223853A publication Critical patent/JP2007223853A/en
Application granted granted Critical
Publication of JP5170609B2 publication Critical patent/JP5170609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高温における半導体特性や電界電子放出特性の優れた竹状形態を有する炭化珪素ナノワイヤーの製造方法に関する。   The present invention relates to a method for producing silicon carbide nanowires having a bamboo-like morphology with excellent semiconductor characteristics and field electron emission characteristics at high temperatures.

炭化珪素は、高温においても高熱伝導性や硬度を維持することができる広いバンドギャップエネルギーを有する半導体材料である。一次元の炭化珪素のナノ構造体として、例えば、非特許文献1にはナノワイヤーが報告されている。   Silicon carbide is a semiconductor material having a wide band gap energy that can maintain high thermal conductivity and hardness even at high temperatures. As a one-dimensional silicon carbide nanostructure, for example, Non-Patent Document 1 reports nanowires.

非特許文献2, 3などにはナノロッドが報告されている。非特許文献4などにはナノチューブが報告されている。非特許文献5〜7などにはナノケーブルが報告されており、さらには、中空の球状ナノ粒子(例えば、非特許文献8参照)及びナノボックス(例えば、非特許文献9参照)などが知られている。   Non-Patent Documents 2 and 3 report nanorods. Nanotubes are reported in Non-Patent Document 4 and the like. Non-patent documents 5 to 7 report nanocables, and further, hollow spherical nanoparticles (see, for example, non-patent document 8) and nanoboxes (see, for example, non-patent document 9) are known. ing.

Z. W. Pan 他、Adv. Mater. 12巻、1186頁、2000年Z. W. Pan et al., Adv. Mater. Vol. 12, 1186, 2000 H. J. Dai 他、Nature 375巻、769 頁、1995年H. J. Dai et al., Nature 375, 769, 1995 X. T. Zhou 他、Chem. Phys. Lett. 318 巻、58頁、2000年X. T. Zhou et al., Chem. Phys. Lett. 318, 58, 2000 X. H. Sun 他、J. Am. Chem. Soc. 124 巻、14464 頁、2002年X. H. Sun et al., J. Am. Chem. Soc. 124, 14464, 2002 C. C. Tang 他、Adv. Mater. 14巻、1046頁、2002年C. C. Tang et al., Adv. Mater. 14, 1046, 2002 Y. B. Li 他、Adv. Mater. 17巻、545 頁、2005年Y. B. Li et al., Adv. Mater. 17, 545, 2005 Y. B. Li 他、Adv. Mater. 16巻、93頁、2004年Y. B. Li et al., Adv. Mater. 16, 93, 2004 G. Z. Shen 他、Chem. Phys. Lett. 375 巻、177 頁、2003年G. Z. Shen et al., Chem. Phys. Lett. 375, 177, 2003 C. H. Wang 他、Adv. Mater. 17巻、419 頁、2005年C. H. Wang et al., Adv. Mater. 17, 419, 2005

上記のように、各種のナノワイヤー、ナノチューブ、ナノロッド、ナノケーブル、ナノボックスなどが知られてはいるが、現在まで、竹状の形態を有する立方晶系炭化珪素ナノワイヤーは得られていない。   As described above, various nanowires, nanotubes, nanorods, nanocables, nanoboxes, and the like are known, but to date, cubic silicon carbide nanowires having a bamboo-like form have not been obtained.

本発明は、上記課題に鑑み、高温における半導体特性や電界電子放出特性に優れ、竹状の形態を有する、立方晶系炭化珪素ナノワイヤーの新規な製造方法を提供することを目的としている。   In view of the above problems, an object of the present invention is to provide a novel method for producing cubic silicon carbide nanowires having excellent semiconductor characteristics and field electron emission characteristics at high temperatures and having a bamboo-like form.

上記目的を達成するために、本発明は、一酸化ケイ素粉末、グラファイト粉末及び窒化ガリウム粉末の混合物を不活性ガス気流中で、所定温度で所定時間加熱し、炭化珪素ナノワイヤーを合成することを特徴とする。
上記構成において、一酸化ケイ素粉末とグラファイト粉末とのモル比は、好ましくは、1:0.5〜1:0.6の範囲である。この場合、一酸化ケイ素粉末1モルに対し、窒化ガリウム粉末が0.02〜0.07モルの範囲であればさらに好ましい。
加熱温度は、好ましくは、1300〜1400℃の範囲であり、このときの加熱時間は、好ましくは40分〜2時間の範囲である。
不活性ガスは、好ましくはアルゴンガスであり、この不活性ガスの流量は、好ましくは150〜400sccmの範囲である。
上記構成によれば、直径が80〜300nmで、長さが数百μm暗緑色の炭化珪素ナノワイヤーを製造することができる。
In order to achieve the above object, the present invention synthesizes silicon carbide nanowires by heating a mixture of silicon monoxide powder, graphite powder and gallium nitride powder in an inert gas stream at a predetermined temperature for a predetermined time. Features.
In the above configuration, the molar ratio between the silicon monoxide powder and the graphite powder is preferably in the range of 1: 0.5 to 1: 0.6. In this case, it is more preferable that the gallium nitride powder is in the range of 0.02 to 0.07 mol with respect to 1 mol of the silicon monoxide powder.
The heating temperature is preferably in the range of 1300 to 1400 ° C., and the heating time at this time is preferably in the range of 40 minutes to 2 hours.
The inert gas is preferably argon gas, and the flow rate of the inert gas is preferably in the range of 150 to 400 sccm.
According to the above configuration, silicon carbide nanowires having a diameter of 80 to 300 nm and a length of several hundreds of μm dark green can be produced.

本発明によれば、幹並びにそれよりも太い節を有する竹状形態の立方晶系の結晶構造を有する炭化珪素ナノワイヤーの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the silicon carbide nanowire which has a cubic crystal structure of the bamboo-like form which has a trunk | trunk and a node thicker than it can be provided.

以下、本発明の炭化珪素ナノワイヤーの製造方法の好ましい実施の形態を詳細に説明する。
最初に、一酸化ケイ素粉末、グラファイト粉末および窒化ガリウム粉末の混合物をグラファイト製の容器に入れ、この容器を縦型高周波誘導加熱炉の中央部に設置する。
次に、加熱炉内を減圧にした後、不活性ガスを流し、この不活性ガス気流中において、容器の内容物を加熱することで、炭化珪素ナノワイヤーを合成することができる。
Hereinafter, preferred embodiments of the method for producing silicon carbide nanowires of the present invention will be described in detail.
First, a mixture of silicon monoxide powder, graphite powder and gallium nitride powder is placed in a graphite vessel, and this vessel is placed in the center of a vertical high-frequency induction heating furnace.
Next, after depressurizing the inside of the heating furnace, an inert gas is flowed, and the contents of the container are heated in the inert gas stream, whereby silicon carbide nanowires can be synthesized.

上記の原料粉末の内、一酸化ケイ素粉末とグラファイト粉末とのモル比は1:0.5〜1:0.6の範囲が好ましい。一酸化ケイ素粉末のモル比がこの範囲よりも多いと、珪素のナノワイヤーが得られ、目的とする炭化珪素ナノワイヤーが得られないので好ましくない。逆に、一酸化ケイ素粉末のモル比がこの範囲よりも少ないと、上記加熱炉中に多量のグラファイト粉末が残存するので好ましくない。   Among the raw material powders, the molar ratio of the silicon monoxide powder and the graphite powder is preferably in the range of 1: 0.5 to 1: 0.6. When the molar ratio of the silicon monoxide powder is larger than this range, silicon nanowires are obtained, and the intended silicon carbide nanowires cannot be obtained, which is not preferable. Conversely, if the molar ratio of the silicon monoxide powder is less than this range, a large amount of graphite powder remains in the heating furnace, which is not preferable.

窒化ガリウム粉末は、一酸化ケイ素粉末1モルに対し、0.02〜0.07モルの範囲が好ましい。窒化ガリウム粉末が0.07モルよりも多いと最終生成物中に金属ガリウムが共存するので好ましくない。逆に、窒化ガリウム粉末が0.02モルよりも少ないと、直径のより太い炭化珪素ナノロッドが得られ、炭化珪素ナノワイヤーが得られないので好ましくない。   The gallium nitride powder is preferably in the range of 0.02 to 0.07 mol with respect to 1 mol of silicon monoxide powder. If the gallium nitride powder is more than 0.07 mol, metal gallium is present in the final product, which is not preferable. Conversely, when the gallium nitride powder is less than 0.02 mol, a silicon carbide nanorod having a larger diameter is obtained, and a silicon carbide nanowire cannot be obtained, which is not preferable.

上記加熱温度は、1300〜1400℃の範囲が好ましい。加熱温度が1400℃よりも高いと、直径がおおよそ1μmの太いナノロッドが得られるので好ましくない。逆に、加熱温度が1300℃よりも低いと、一酸化ケイ素が分解せず、炭化珪素ナノワイヤーが得られないので好ましくない。   The heating temperature is preferably in the range of 1300 to 1400 ° C. A heating temperature higher than 1400 ° C. is not preferable because a thick nanorod having a diameter of approximately 1 μm can be obtained. Conversely, when the heating temperature is lower than 1300 ° C., silicon monoxide is not decomposed and silicon carbide nanowires cannot be obtained, which is not preferable.

上記加熱時間は、40分〜2時間の範囲が好ましい。加熱時間は2時間以内で反応が完結するので、これ以上の時間をかける必要はない。逆に、加熱時間が40分よりも短いと収量が低下するので好ましくない。   The heating time is preferably in the range of 40 minutes to 2 hours. Since the reaction is completed within 2 hours of heating, it is not necessary to spend more time. On the contrary, if the heating time is shorter than 40 minutes, the yield decreases, which is not preferable.

不活性ガスとしては、アルゴンガスなどを使用することができる。その流量は150〜400sccm(cm3 /分)の範囲が好ましい。不活性ガスの流量が400sccmよりも多いと生成物が反応系の外に飛散してしまうので好ましくない。逆に、不活性ガスの流量が150sccmよりも少ないと、反応性の蒸気の移送が不十分のために炭化珪素ナノワイヤーが得られず、粒子状物質になってしまうので好ましくない。 Argon gas etc. can be used as an inert gas. The flow rate is preferably in the range of 150 to 400 sccm (cm 3 / min). If the flow rate of the inert gas is higher than 400 sccm, the product will be scattered outside the reaction system, which is not preferable. On the other hand, if the flow rate of the inert gas is less than 150 sccm, the reactive vapor is not sufficiently transferred, so that silicon carbide nanowires cannot be obtained and become particulate matter, which is not preferable.

上記のような操作を施すことにより、直径が80〜300nmで、長さが数百μmの暗緑色のウール状物質が加炉中の反応管に堆積する。   By performing the above operation, a dark green wool-like substance having a diameter of 80 to 300 nm and a length of several hundreds of μm is deposited on the reaction tube in the furnace.

次に、実施例を示して、本発明をさらに具体的に説明する。
最初に、一酸化ケイ素粉末(和光純薬工業(株)製、純度99.9%)0.8gと、グラファイト粉末(和光純薬工業(株)製、純度98%)0.1gと、窒化ガリウム粉末(シグマ・アルドリッチ社製、純度99.99%)0.04gと、の混合物をグラファイト製坩堝に入れ、この坩堝を断熱材のカーボンファイバーで覆われたグラファイト製誘導加熱円筒管を有する縦型高周波誘導加熱炉の中央部に設置した。
次に、縦型高周波誘導加熱炉を0.2Torr(26.7Pa)の圧力まで減圧した後、流量200sccmのアルゴンガスを流しながら、1350℃で1時間加熱した。
最後に、縦型高周波誘導加熱炉を室温まで冷却すると、加熱時におおよそ1250℃になっていた断熱材の部分に暗緑色のウール状物質が34.6mg堆積した。
Next, an Example is shown and this invention is demonstrated further more concretely.
First, 0.8 g of silicon monoxide powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9%), 0.1 g of graphite powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 98%), nitriding A mixture of 0.04 g of gallium powder (manufactured by Sigma-Aldrich, purity 99.99%) is placed in a graphite crucible, and the crucible is a vertical pipe having a graphite induction heating cylindrical tube covered with a carbon fiber as a heat insulating material. It was installed in the center of the type high frequency induction heating furnace.
Next, after the vertical high frequency induction heating furnace was depressurized to a pressure of 0.2 Torr (26.7 Pa), it was heated at 1350 ° C. for 1 hour while flowing argon gas at a flow rate of 200 sccm.
Finally, when the vertical high-frequency induction heating furnace was cooled to room temperature, 34.6 mg of dark green wool-like material was deposited on the portion of the heat insulating material that had been approximately 1250 ° C. during heating.

次に、実施例で合成したウール状物質について、さらに詳しく説明する。
図1は、実施例で合成したウール状物質のX線回折像を示す図である。図1において、縦軸はX線回折強度(任意目盛)を示し、横軸は角度(°)、即ち、X線の原子面への入射角θの2倍に相当する角度を示している。
図1から明らかなように、実施例で合成したウール状物質は、立方晶系の炭化珪素(3C−SiC)であることが分かった。なお、図中のsで示す強度が弱い回折ピークは積層欠陥によるものである。
Next, the wool-like material synthesized in the examples will be described in more detail.
FIG. 1 is a diagram showing an X-ray diffraction image of the wool-like material synthesized in the example. In FIG. 1, the vertical axis represents the X-ray diffraction intensity (arbitrary scale), and the horizontal axis represents the angle (°), that is, an angle corresponding to twice the incident angle θ of the X-ray to the atomic plane.
As is clear from FIG. 1, the wool-like material synthesized in the example was found to be cubic silicon carbide (3C—SiC). In addition, the diffraction peak with weak intensity | strength shown by s in a figure is based on a stacking fault.

図2は、実施例で合成したウール状物質の中倍率走査型電子顕微鏡像を示す図である。図2から明らかなように、実施例で得たウール状物質は平均直径が80〜300nmで、長さが数百μmの炭化珪素ナノワイヤーであることが分かった。   FIG. 2 is a diagram showing a medium magnification scanning electron microscope image of the wool-like material synthesized in the example. As is clear from FIG. 2, the wool-like material obtained in the examples was found to be silicon carbide nanowires having an average diameter of 80 to 300 nm and a length of several hundred μm.

図3は、実施例で合成した炭化珪素ナノワイヤーの高倍率走査型電子顕微鏡像を示す図である。図3から明らかなように、実施例で合成した炭化珪素ナノワイヤーは、周期的に節を持つ竹状形態のナノワイヤーであることが分かった。つまり、実施例で合成した炭化珪素ナノワイヤーは、幹とそれよりも太い節からなるナノワイヤーである。   FIG. 3 is a diagram showing a high-magnification scanning electron microscope image of the silicon carbide nanowire synthesized in the example. As apparent from FIG. 3, it was found that the silicon carbide nanowires synthesized in the examples were bamboo-like nanowires having periodic nodes. That is, the silicon carbide nanowire synthesized in the example is a nanowire composed of a trunk and a thicker node.

図4は、実施例で合成した炭化珪素ナノワイヤーの断面の高倍率走査型電子顕微鏡像を示す図である。図4から明らかなように、実施例で合成した炭化珪素ナノワイヤーの断面は、六角形の形状を有することが分かった。   FIG. 4 is a view showing a high-magnification scanning electron microscope image of a cross section of the silicon carbide nanowire synthesized in the example. As is clear from FIG. 4, it was found that the cross section of the silicon carbide nanowire synthesized in the example had a hexagonal shape.

図5は、実施例で合成した炭化珪素ナノワイヤーの電界電子放出特性の測定結果を示す図である。図5において、縦軸は電流密度(μA/cm2 )を示し、横軸は印加した直流電圧(V)を示している。
炭化珪素ナノワイヤーの試料と陽極間の距離は100μmであり、電圧は、0〜1000Vの直流を印加して測定した。このときの真空度は約5×10-7Torr(6.7×10-5Pa)であった。電流密度が10μA/cm2 となるときの電圧を開始電圧、電流密度が10mA/cm2 となるときの電圧を閾値電圧とすると、ターンオン時の開始電界強度(Eto)は、10.1V/μmであった。
なお、図5中の挿入図は、ファウラー−ノルドハイム(Fowler−Nordheim)プロットであり、電流電圧特性が二つの直線部分から成ることを示している。
FIG. 5 is a diagram showing the measurement results of the field electron emission characteristics of the silicon carbide nanowires synthesized in the example. In FIG. 5, the vertical axis indicates the current density (μA / cm 2 ), and the horizontal axis indicates the applied DC voltage (V).
The distance between the silicon carbide nanowire sample and the anode was 100 μm, and the voltage was measured by applying a direct current of 0 to 1000V. The degree of vacuum at this time was about 5 × 10 −7 Torr (6.7 × 10 −5 Pa). Assuming that the voltage when the current density is 10 μA / cm 2 is the starting voltage and the voltage when the current density is 10 mA / cm 2 is the threshold voltage, the starting electric field strength (E to ) at turn-on is 10.1 V / It was μm.
The inset in FIG. 5 is a Fowler-Nordheim plot and shows that the current-voltage characteristic is composed of two linear portions.

本発明は、上記実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、炭化珪素ナノワイヤーの寸法については、所望の寸法が得られるように合成条件を適宜選択すればよいことは勿論である。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the invention described in the claims, and the dimensions of the silicon carbide nanowires can be obtained as desired. Of course, the synthesis conditions may be appropriately selected.

本発明の製造方法により、竹状形態を有する炭化珪素ナノワイヤーが得られたので、電界電子放出デバイスをはじめとして微小エレクトロニクス分野に利用されることが期待される。   Since the silicon carbide nanowire having a bamboo shape is obtained by the manufacturing method of the present invention, it is expected to be used in the field of microelectronics including field electron emission devices.

実施例で合成したウール状物質のX線回折像を示す図である。It is a figure which shows the X-ray-diffraction image of the wool-like substance synthesize | combined in the Example. 実施例で合成したウール状物質の中倍率走査型電子顕微鏡像を示す図である。It is a figure which shows the medium magnification scanning electron microscope image of the wool-like substance synthesize | combined in the Example. 実施例で合成した炭化珪素ナノワイヤーの高倍率走査型電子顕微鏡像を示す図である。It is a figure which shows the high magnification scanning electron microscope image of the silicon carbide nanowire synthesize | combined in the Example. 実施例で合成した炭化珪素ナノワイヤーの断面の高倍率走査型電子顕微鏡像を示す図である。It is a figure which shows the high magnification scanning electron microscope image of the cross section of the silicon carbide nanowire synthesize | combined in the Example. 実施例で合成した炭化珪素ナノワイヤーの電界電子放出特性の測定結果を示す図である。It is a figure which shows the measurement result of the field electron emission characteristic of the silicon carbide nanowire synthesize | combined in the Example.

Claims (2)

一酸化ケイ素粉末とグラファイト粉末とのモル比を1:0.5〜1:0.6の範囲とし、一酸化ケイ素粉末と窒化ガリウム粉末とのモル比を1:0.02〜0.07の範囲とした、一酸化ケイ素粉末、グラファイト粉末及び窒化ガリウム粉末の混合物を150〜400sccmの範囲の流量の不活性ガス気流中で、1300〜1400℃の範囲の温度で40分〜2時間の範囲の時間加熱し、炭化珪素ナノワイヤーを合成することを特徴とする、炭化珪素ナノワイヤーの製造方法。 The molar ratio of the silicon monoxide powder and the graphite powder is in the range of 1: 0.5 to 1: 0.6, and the molar ratio of the silicon monoxide powder and the gallium nitride powder is 1: 0.02 to 0.07. It ranged, silicon powder monoxide, a graphite powder and a mixture of gallium nitride powder flow in the range of 150~400sccm inert gas flow, in the range of 40 minutes to 2 hours at a temperature in the range of 1300-1400 ° C. A method for producing silicon carbide nanowires, characterized in that the silicon carbide nanowires are synthesized by heating for a period of time. 前記不活性ガスが、アルゴンガスであることを特徴とする、請求項1に記載の炭化珪素ナノワイヤーの製造方法。The method for producing silicon carbide nanowires according to claim 1, wherein the inert gas is an argon gas.
JP2006047781A 2006-02-24 2006-02-24 Method for producing silicon carbide nanowire Expired - Fee Related JP5170609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006047781A JP5170609B2 (en) 2006-02-24 2006-02-24 Method for producing silicon carbide nanowire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006047781A JP5170609B2 (en) 2006-02-24 2006-02-24 Method for producing silicon carbide nanowire

Publications (2)

Publication Number Publication Date
JP2007223853A JP2007223853A (en) 2007-09-06
JP5170609B2 true JP5170609B2 (en) 2013-03-27

Family

ID=38546005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006047781A Expired - Fee Related JP5170609B2 (en) 2006-02-24 2006-02-24 Method for producing silicon carbide nanowire

Country Status (1)

Country Link
JP (1) JP5170609B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120797B2 (en) * 2006-10-18 2013-01-16 独立行政法人物質・材料研究機構 Silicon carbide nanostructure and manufacturing method thereof
JP2010241666A (en) * 2009-03-31 2010-10-28 Tokyo Institute Of Technology Core-shell structure-type silicon carbide nanowire and method for producing the same
CN101850971B (en) * 2010-06-04 2012-02-29 浙江理工大学 Method for preparing high-yield SiC nanowire
CN102976324A (en) * 2012-12-05 2013-03-20 哈尔滨工业大学 Synthesis method of beta-SiC nano wire
CN105506579B (en) * 2015-12-15 2018-02-02 南京工程学院 A kind of preparation method of graphene coated silicon carbide nanometer line
CN110872198B (en) * 2018-08-31 2022-02-15 航天特种材料及工艺技术研究所 Nanowire toughened ZrB2Preparation method of-ZrC-SiC oxidation resistant coating
CN115259159B (en) * 2022-07-05 2023-07-07 西北工业大学 Inverted cone-shaped nitrogen doped silicon carbide nanowire with high length-diameter ratio and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227995A (en) * 1985-03-29 1986-10-11 Hajime Saito Production of sic whisker
JPS63159300A (en) * 1986-12-23 1988-07-02 Shin Etsu Chem Co Ltd Production of silicon carbide whisker
JPH04139014A (en) * 1990-09-28 1992-05-13 Toshiba Corp Production of silicon carbide
JPH0693517A (en) * 1992-09-04 1994-04-05 Tokai Carbon Co Ltd Modified section fibrous sic and its production
AU5436596A (en) * 1995-03-31 1996-10-16 Hyperion Catalysis International, Inc. Carbide nanofibrils and method of making same

Also Published As

Publication number Publication date
JP2007223853A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP5170609B2 (en) Method for producing silicon carbide nanowire
Zhang et al. Synthesis of aluminum nitride nanowires from carbon nanotubes
Li et al. Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation
Qi et al. Preparation and characterization of SiC@ CNT coaxial nanocables using CNTs as a template
WO2003010114A1 (en) A method of producing nanometer silicon carbide material
JP5120797B2 (en) Silicon carbide nanostructure and manufacturing method thereof
JP3985044B2 (en) Single crystal silicon nanotube and method for producing the same
JP4556015B2 (en) Zinc sulfide / silicon core / shell nanowire and method for producing the same
Voon et al. Silicon carbide nanomaterials
JP4025873B2 (en) Boron nitride nanowire and manufacturing method thereof
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
JP4452813B2 (en) Method for producing hexagonal zinc sulfide nanotubes
JP3893464B2 (en) Method for producing gallium nitride nanotubes
Yang et al. Formation of β-SiC nanowires by annealing SiC films in hydrogen atmosphere
Kim et al. Simply heating to remove the sacrificial core TeO2 nanowires and to generate tubular nanostructures of metal oxides
JP4590599B2 (en) Boron carbide nanobelt and manufacturing method thereof
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP4930952B2 (en) Aluminum nitride nanoribbon
JP4072622B2 (en) Method for producing single crystal β-type silicon nitride nanoribbon
Mo et al. Growth and characterization of SiC micro-crystals on Si (100) substrate by the chemical vapor deposition method
JP4581121B2 (en) Silicon nitride nanowire coated with boron nitride nanosheet and method for producing the same
JP4538620B2 (en) Method for producing zinc sulfide nanocable containing zinc
Palomino et al. Silicon nanowires as electron field emitters
JP4576604B2 (en) Method for producing single crystal indium nitride nanotube
JP2006045032A (en) Aluminum nitride nanotube covered with boron nitride film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

R150 Certificate of patent or registration of utility model

Ref document number: 5170609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees