JP2005139044A - Single crystal silicon nanotube and its manufacturing method - Google Patents

Single crystal silicon nanotube and its manufacturing method Download PDF

Info

Publication number
JP2005139044A
JP2005139044A JP2003378931A JP2003378931A JP2005139044A JP 2005139044 A JP2005139044 A JP 2005139044A JP 2003378931 A JP2003378931 A JP 2003378931A JP 2003378931 A JP2003378931 A JP 2003378931A JP 2005139044 A JP2005139044 A JP 2005139044A
Authority
JP
Japan
Prior art keywords
zinc sulfide
silicon
crystal silicon
heated
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003378931A
Other languages
Japanese (ja)
Other versions
JP3985044B2 (en
Inventor
Yoshio Bando
義雄 板東
Fuu Jintsui
フウ ジンツィ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003378931A priority Critical patent/JP3985044B2/en
Publication of JP2005139044A publication Critical patent/JP2005139044A/en
Application granted granted Critical
Publication of JP3985044B2 publication Critical patent/JP3985044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a single crystal silicon nanotube useful as a material for semiconductor devices of nano-scale. <P>SOLUTION: In this method, a powder of zinc sulfide is heated to 1,150-1,250°C in an inactive gas flow and a zinc sulfide nanowire is formed, and in the presence of that, a powder of silicon monoxide is heated at 1,200-1,400°C in an inactive gas flow and a nanowire of zinc sulfide/silicon core/shell structure is formed, then the core/shell nanowire is treated with a hydrochloric acid aqueous solution to manufacture this silicon nanotube. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この出願の発明は、単結晶の珪素ナノチューブとその製造方法に関するもので、さらに詳しくは、ナノスケールの半導体デバイス等に有用な単結晶の珪素ナノチューブの製造方法に関する。   The invention of this application relates to a single crystal silicon nanotube and a method for manufacturing the same, and more particularly to a method for manufacturing a single crystal silicon nanotube useful for a nanoscale semiconductor device or the like.

従来より、珪素ナノワイヤーは、金属触媒を用いたレーザー加熱法(非特許文献1参照)や、珪素と珪素酸化物の加熱による方法(非特許文献2参照)、ジフェニルシランの高温熱分解による方法(非特許文献3参照)などによって製造されることが知られている。
A.M.Morales,ほか、サイエンス(Science) 279 巻、208頁、1998年 N.Wang,ほか、フィジカル・レビューB(Phys.Rev.B)58巻、R16024頁、1998年。 J.D.Holmes,ほか、サイエンス(Science) 287巻、1471頁、2000年
Conventionally, silicon nanowires are manufactured by laser heating using a metal catalyst (see Non-Patent Document 1), a method by heating silicon and silicon oxide (see Non-Patent Document 2), or a method by high-temperature pyrolysis of diphenylsilane. (See Non-Patent Document 3) and the like.
AMMorales, et al., Science 279, 208, 1998 N. Wang, et al., Physical Review B (Phys. Rev. B) 58, R16024, 1998. JDHolmes, et al., Science 287, 1471, 2000

上記のように、珪素ナノワイヤーは、すでにその製造方法が知られているが、珪素ナノチューブについては、そのバンド構造等が計算により予測されているものの、いまだ実際に製造されたことはない。そこで、この出願の発明は、単結晶の珪素ナノチューブとその製造方法を提供することを課題としている。   As described above, the manufacturing method of silicon nanowires is already known, but the silicon nanotube has not been actually manufactured, although the band structure and the like thereof are predicted by calculation. Accordingly, an object of the invention of this application is to provide a single crystal silicon nanotube and a manufacturing method thereof.

この出願の発明は上記の課題を解決するものとして、第1には、外径が120〜180ナノメートル、チューブ壁の厚さが40〜60ナノメートルである単結晶珪素ナノチューブを提供する。   In order to solve the above problems, the invention of this application first provides a single crystal silicon nanotube having an outer diameter of 120 to 180 nanometers and a tube wall thickness of 40 to 60 nanometers.

また、この出願の発明は、第2には、硫化亜鉛粉末を不活性雰囲気で1150〜1250℃に加熱して硫化亜鉛ナノワイヤーを生成させ、この硫化亜鉛ナノワイヤーを不活性雰囲気で一酸化珪素と1200〜1400℃で加熱反応させることを特徴とする単結晶珪素ナノチューブの製造方法を提供する。   In addition, the invention of this application is, secondly, zinc sulfide powder is heated to 1150 to 1250 ° C. in an inert atmosphere to produce zinc sulfide nanowires, and the zinc sulfide nanowires are silicon monoxide in an inert atmosphere. And a method for producing a single crystal silicon nanotube, wherein the reaction is performed at 1200 to 1400 ° C.

さらに具体的には、この出願の発明は、第3には、たとえばグラファイト製るつぼ中に硫化亜鉛粉末を入れ、このるつぼを縦型高周波誘導加熱炉中のグラファイト製加熱円筒管の中央部に設置し、不活性気体を流しながら、1150〜1250℃に1〜2時間加熱して、硫化亜鉛ナノワイヤーを生成させ、次に、グラファイト製るつぼの中に、一酸化ケイ素粉末を入れ、このるつぼを上記の加熱炉中のグライファイト製円筒管の中央部に設置し、不活性気体を流しながら、1200〜1400℃に、1〜2時間加熱し、加熱炉を室温に冷却した後、生成物を加熱炉から取り出し、塩酸で処理することにより、単結晶の珪素ナノチューブを製造する方法を提供する。   More specifically, according to the invention of this application, thirdly, for example, zinc sulfide powder is placed in a graphite crucible, and this crucible is installed at the center of a graphite heated cylindrical tube in a vertical high frequency induction heating furnace. Then, while flowing an inert gas, it is heated to 1150 to 1250 ° C. for 1 to 2 hours to form zinc sulfide nanowires. Next, silicon monoxide powder is put into a graphite crucible, and the crucible is placed in the crucible. Installed in the center of the griffite cylindrical tube in the heating furnace, heated to 1200-1400 ° C for 1-2 hours while flowing an inert gas, cooled the heating furnace to room temperature, Provided is a method for producing single-crystal silicon nanotubes by removing them from a heating furnace and treating with hydrochloric acid.

上記のとおりのこの出願の発明によって、マイクロエレクトロニクス、オプトエレクトロニクス分野において、その応用が期待されている単結晶珪素ナノチューブが提供され、また硫化亜鉛、一酸化ケイ素を原料として加熱することにより単結晶珪素ナノチューブの製造が可能とされている。   According to the invention of this application as described above, single crystal silicon nanotubes that are expected to be applied in the microelectronics and optoelectronic fields are provided, and single crystal silicon is heated by heating using zinc sulfide and silicon monoxide as raw materials. Nanotubes can be manufactured.

この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The invention of this application has the features as described above, and an embodiment thereof will be described below.

より具体的な好適な形態について説明すると、この出願の発明の単結晶珪素ナノチューブの製造方法では、まず、加熱装置として、好適には石英管の内側に断熱材のカーボン繊維で覆われたグラファイト製の誘導加熱円筒管を有する縦型高周波誘導加熱炉を用いて、たとえば好ましくはグラファイト製るつぼの中に、硫化亜鉛粉末を入れ、このるつぼをグラファイト製の誘導加熱円筒管の中央部に設置する。アルゴンガスなどの不活性気体を流しながら、1150〜1250℃に、1〜2時間加熱して硫化亜鉛ナノワイヤーを生成させる。この際、加熱温度は上記の範囲が好ましく、1250℃よりも加熱温度を高くすると、硫化亜鉛ナノワイヤーの直径が太くなり、1150℃よりも低いと、硫化亜鉛ナノワイヤーの収率が低下する。加熱時間は1〜2時間が好ましく、2時間で十分に原料の蒸発が終了する。1時間未満の場合には硫化亜鉛ナノワイヤーの生成量が減少する。   A more specific preferred embodiment will be described. In the method for producing single-crystal silicon nanotubes of the invention of this application, first, as a heating device, preferably made of graphite covered with a carbon fiber of a heat insulating material inside a quartz tube. Using a vertical high-frequency induction heating furnace having an induction heating cylindrical tube, for example, zinc sulfide powder is preferably placed in a graphite crucible, and this crucible is placed at the center of the graphite induction heating cylindrical tube. While flowing an inert gas such as argon gas, it is heated to 1150 to 1250 ° C. for 1 to 2 hours to generate zinc sulfide nanowires. In this case, the heating temperature is preferably within the above range, and if the heating temperature is higher than 1250 ° C., the diameter of the zinc sulfide nanowire becomes thicker, and if it is lower than 1150 ° C., the yield of the zinc sulfide nanowire decreases. The heating time is preferably 1 to 2 hours, and the evaporation of the raw material is completed in 2 hours. In the case of less than 1 hour, the amount of zinc sulfide nanowires produced decreases.

次に、グライファイト製るつぼの中に、一酸化ケイ素粉末を入れ、このるつぼをグラファイト製の誘導加熱円筒管の中央部に取り付け、不活性気体を流しながら、1200〜1400℃に、1〜2時間加熱した後、加熱炉を室温に冷却する。これによりナノワイヤー生成物が得られることになる。このナノワイヤー生成物は、硫化亜鉛・珪素のコア・シェル構造を有するものである。この生成したナノワイヤーを酸水溶液、たとえば塩酸、硫酸、塩素酸等の酸の水溶液、より好適には塩酸水溶液で処理することにより、単結晶の珪素ナノチューブを得ることができる。塩酸水溶液の場合には、その濃度を5〜20%程度、より好適には10%前後とすることが考慮される。   Next, silicon monoxide powder is put into a griffet crucible, this crucible is attached to the center of a graphite induction heating cylindrical tube, and an inert gas is allowed to flow to 1200-1400 ° C. at 1-2. After heating for an hour, the furnace is cooled to room temperature. This will result in a nanowire product. This nanowire product has a core-shell structure of zinc sulfide / silicon. By treating the produced nanowire with an acid aqueous solution, for example, an aqueous solution of an acid such as hydrochloric acid, sulfuric acid, or chloric acid, more preferably an aqueous hydrochloric acid solution, single crystal silicon nanotubes can be obtained. In the case of an aqueous hydrochloric acid solution, the concentration is considered to be about 5 to 20%, more preferably about 10%.

硫化亜鉛ナノワイヤーと一酸化珪素との加熱においては、硫化亜鉛粉末と一酸化ケイ素粉末の重量比は1:1〜2:1が好ましく、これよりも一酸化ケイ素の量が多いと、最終生成物の中に、珪素ナノワイヤーが混入する。加熱温度は、1200〜1400℃が好ましく、これ以上の温度に上げても収量の向上は望めない。また、1200℃よりも加熱温度が低いと、珪素の蒸気の発生が十分でなく、硫化亜鉛・珪素のコア・シェル構造のナノワイヤーが生成しない。加熱時間は1〜2時間が好ましく、2時間以上加熱しても収量の向上は望めないし、さらに長時間加熱すると、硫化亜鉛・珪素コア・シェルナノワイヤーの表面に珪素ナノ粒子が付着してしまう。1時間未満だと硫化亜鉛・珪素コア・シェルナノワイヤーの収量が低下する。不活性ガスの流量は100〜200sccmが好ましく、200sccm以上流す必要はない。100sccm未満だと最終生成物の収量が低下する。   In the heating of zinc sulfide nanowires and silicon monoxide, the weight ratio of zinc sulfide powder to silicon monoxide powder is preferably 1: 1 to 2: 1. If the amount of silicon monoxide is larger than this, the final product Silicon nanowires are mixed in the object. The heating temperature is preferably 1200 to 1400 ° C. Even if the heating temperature is raised beyond this, no improvement in yield can be expected. On the other hand, if the heating temperature is lower than 1200 ° C., the generation of silicon vapor is not sufficient, and nanowires having a core / shell structure of zinc sulfide / silicon are not generated. The heating time is preferably 1 to 2 hours, and improvement in yield cannot be expected even when heated for 2 hours or longer, and when heated for a longer time, silicon nanoparticles adhere to the surface of zinc sulfide / silicon core / shell nanowires . If it is less than 1 hour, the yield of zinc sulfide, silicon core, and shell nanowires will decrease. The flow rate of the inert gas is preferably 100 to 200 sccm, and it is not necessary to flow 200 sccm or more. If it is less than 100 sccm, the yield of the final product decreases.

なお、上記いずれの場合の不活性気流については、アルゴン、ヘリウム等の不活性ガスの流通下であってよい。   Note that the inert airflow in any of the above cases may be under the flow of an inert gas such as argon or helium.

そこで以下に実施例を説明する。もちろん以下の例によって発明が限定されることはない。   Accordingly, examples will be described below. Of course, the invention is not limited by the following examples.

石英管の内側に断熱材のカーボン繊維で覆われたグラファイト製の誘導加熱円筒管を有する縦型高周波誘導加熱炉を反応装置として用い、グラファイト製るつぼの中に、シグマアルドリッチ社製の硫化亜鉛粉末(純度99.99%)1.5gを入れ、このるつぼを前記の誘導加熱円筒管の中央部に設置した。流量120sccmのアルゴンガスを流しながら、1200℃に1.5時間加熱した。加熱炉を室温に冷却すると、カーボン繊維の表面に直径約50ナノメートルの硫化亜鉛ナノワイヤーが成長した。   Zinc sulfide powder made by Sigma-Aldrich Co., Ltd. is used in a graphite crucible using a vertical high frequency induction heating furnace having a graphite induction heating cylindrical tube covered with carbon fiber as a heat insulating material inside the quartz tube. (Purity 99.99%) 1.5 g was added, and this crucible was placed in the center of the induction heating cylindrical tube. While flowing argon gas at a flow rate of 120 sccm, the mixture was heated to 1200 ° C. for 1.5 hours. When the heating furnace was cooled to room temperature, zinc sulfide nanowires having a diameter of about 50 nanometers grew on the surface of the carbon fiber.

次に、グラファイト製るつぼの中に、シグマアルドリッチ社製の一酸化ケイ素粉末(3
25メッシュ)1.0gを入れ、このるつぼを前記の誘導加熱円筒管の中央部に取り付けた。流量120sccmのアルゴンガスを流しながら、1350℃に1時間加熱した。加熱終了後、加熱炉を室温に冷却すると、カーボン繊維の表面に硫化亜鉛・ケイ素のコア・シェル構造のナノワイヤーが生成した。この生成したナノワイヤーを10%塩酸水溶液で処理した後、蒸留水、エタノールで洗浄した。
Next, in a graphite crucible, a silicon monoxide powder (3
(25 mesh) 1.0 g was put, and this crucible was attached to the central portion of the induction heating cylindrical tube. While flowing argon gas at a flow rate of 120 sccm, the mixture was heated to 1350 ° C. for 1 hour. After heating, when the heating furnace was cooled to room temperature, nanowires with a zinc sulfide / silicon core / shell structure formed on the surface of the carbon fiber. The produced nanowire was treated with a 10% aqueous hydrochloric acid solution, and then washed with distilled water and ethanol.

図1に、得られた生成物のX線回折のパターンを示した。この回折図から格子定数a=5.428Åを有する立方晶系の珪素であることが確認された。図2には、このナノチューブの透過型電子顕微鏡像の写真を示した。この写真から、ナノチューブの外径は120〜180ナノメートル、チューブ壁の厚さは40〜60ナノメートルで、ナノチューブの先端は開口していることがわかる。図3は、このナノチューブのX線エネルギー拡散スペクトルを示したものであるが、その化学組成は珪素からなることがわかる。この図3には、少量の酸素と銅のピークが見られるが、酸素は試料を作製するときに酸素に触れたために現れたもので、銅のピークは試料を作製するときに用いた銅グリッドから由来するものである。先のX線回折のパターンと合わせて考えると、このナノチューブは単結晶の珪素で構成されていることが理解される。   FIG. 1 shows an X-ray diffraction pattern of the obtained product. From this diffraction pattern, it was confirmed to be cubic silicon having a lattice constant a = 5.428Å. FIG. 2 shows a photograph of a transmission electron microscope image of the nanotube. From this photograph, it can be seen that the outer diameter of the nanotube is 120 to 180 nm, the thickness of the tube wall is 40 to 60 nm, and the tip of the nanotube is open. FIG. 3 shows the X-ray energy diffusion spectrum of this nanotube, and it can be seen that its chemical composition is made of silicon. In FIG. 3, a small amount of oxygen and copper peaks can be seen. Oxygen appeared because the oxygen was touched when preparing the sample, and the copper peak was the copper grid used when preparing the sample. Is derived from Considering the above X-ray diffraction pattern, it is understood that the nanotube is composed of single crystal silicon.

この出願の発明により、単結晶の珪素ナノチューブの製造が可能となり、ナノスケール領域における半導体デバイスへの応用が期待される。   The invention of this application enables the production of single-crystal silicon nanotubes, and is expected to be applied to semiconductor devices in the nanoscale region.

珪素ナノチューブのX線回折パターンの図である。It is a figure of the X-ray-diffraction pattern of a silicon nanotube. 珪素ナノチューブの透過型電子顕微鏡像の図面代用の写真である。It is the photograph instead of drawing of the transmission electron microscope image of a silicon nanotube. 珪素ナノチューブのX線エネルギー拡散スペクトルの図である。It is a figure of the X-ray energy diffusion spectrum of a silicon nanotube.

Claims (3)

外径が120〜180ナノメートル、チューブ壁の厚さが40〜60ナノメートルである単結晶珪素ナノチューブ。   Single crystal silicon nanotubes having an outer diameter of 120 to 180 nanometers and a tube wall thickness of 40 to 60 nanometers. 硫化亜鉛粉末を不活性雰囲気で1150〜1250℃に加熱して硫化亜鉛ナノワイヤーを生成させ、この硫化亜鉛ナノワイヤーを不活性雰囲気で一酸化珪素と1200〜1400℃で加熱反応させることを特徴とする単結晶珪素ナノチューブの製造方法。   The zinc sulfide powder is heated to 1150 to 1250 ° C. in an inert atmosphere to form zinc sulfide nanowires, and the zinc sulfide nanowire is heated and reacted with silicon monoxide at 1200 to 1400 ° C. in an inert atmosphere. A method for producing single crystal silicon nanotubes. 不活性気体を通じながら、硫化亜鉛粉末を縦型高周波誘導加熱炉中で1150〜1250℃に、1〜2時間加熱して、硫化亜鉛ナノワイヤーを生成させた後、一酸化ケイ素粉末を不活性気流中で、1200〜1400℃に、1〜2時間加熱反応させ、生成物を塩酸水溶液で処理することを特徴とする請求項2の単結晶珪素ナノチューブの製造方法。   While passing an inert gas, the zinc sulfide powder is heated to 1150 to 1250 ° C. in a vertical high-frequency induction heating furnace for 1 to 2 hours to generate zinc sulfide nanowires, and then the silicon monoxide powder is turned into an inert gas stream. The method for producing single-crystal silicon nanotubes according to claim 2, wherein the reaction is carried out at 1200 to 1400 ° C for 1 to 2 hours and the product is treated with an aqueous hydrochloric acid solution.
JP2003378931A 2003-11-07 2003-11-07 Single crystal silicon nanotube and method for producing the same Expired - Lifetime JP3985044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378931A JP3985044B2 (en) 2003-11-07 2003-11-07 Single crystal silicon nanotube and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378931A JP3985044B2 (en) 2003-11-07 2003-11-07 Single crystal silicon nanotube and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007078064A Division JP4556015B2 (en) 2007-03-26 2007-03-26 Zinc sulfide / silicon core / shell nanowire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005139044A true JP2005139044A (en) 2005-06-02
JP3985044B2 JP3985044B2 (en) 2007-10-03

Family

ID=34689167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378931A Expired - Lifetime JP3985044B2 (en) 2003-11-07 2003-11-07 Single crystal silicon nanotube and method for producing the same

Country Status (1)

Country Link
JP (1) JP3985044B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117443A (en) * 2004-10-19 2006-05-11 National Institute For Materials Science Crystalline silicon microtube and its manufacturing method
WO2006057464A2 (en) * 2004-11-29 2006-06-01 Univ Tokyo Nat Univ Corp Process for producing silicon nanofilamentous form
JP2007223896A (en) * 2007-03-26 2007-09-06 National Institute For Materials Science Zinc sulfide/silicon core/shell nanowire and method for producing the same
WO2007145406A1 (en) * 2006-06-15 2007-12-21 Electronics And Telecommunications Research Institute Method of manufacturing silicon nanotubes using doughnut-shaped catalytic metal layer
JP2010018504A (en) * 2008-07-14 2010-01-28 Japan Atomic Energy Agency ONE-DIMENSIONAL NANOSTRUCTURE OF Si(110) SURFACE AND PRODUCTION METHOD OF THE SAME
JP2010192444A (en) * 2009-02-16 2010-09-02 Samsung Electronics Co Ltd Anode containing 14-group metal nanotube, lithium battery in which same is adopted, and its manufacturing method
US8940438B2 (en) 2009-02-16 2015-01-27 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102139876B (en) * 2011-04-30 2012-10-17 南京大学 Method for preparing silicon nanotube

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117443A (en) * 2004-10-19 2006-05-11 National Institute For Materials Science Crystalline silicon microtube and its manufacturing method
JP4674349B2 (en) * 2004-10-19 2011-04-20 独立行政法人物質・材料研究機構 Crystalline silicon microtube and method for manufacturing the same
US7662355B2 (en) 2004-11-29 2010-02-16 National University Corporation Tokyo University Of Agriculture And Technology Silicon nanosized linear body and a method for producing a silicon nanosized linear body
WO2006057464A2 (en) * 2004-11-29 2006-06-01 Univ Tokyo Nat Univ Corp Process for producing silicon nanofilamentous form
WO2006057464A3 (en) * 2004-11-29 2007-01-18 Univ Tokyo Nat Univ Corp Process for producing silicon nanofilamentous form
JP5232991B2 (en) * 2004-11-29 2013-07-10 国立大学法人東京農工大学 Method for producing silicon nanowire and silicon nanowire
JPWO2006057464A1 (en) * 2004-11-29 2008-06-05 国立大学法人東京農工大学 Method for producing silicon nanowire and silicon nanowire
WO2007145406A1 (en) * 2006-06-15 2007-12-21 Electronics And Telecommunications Research Institute Method of manufacturing silicon nanotubes using doughnut-shaped catalytic metal layer
KR100799570B1 (en) 2006-06-15 2008-01-31 한국전자통신연구원 Fabrication method of silicon nanotube using doughnut type catalytic metal layer
JP4866461B2 (en) * 2006-06-15 2012-02-01 韓國電子通信研究院 Method for producing silicon nanotube using donut-like catalytic metal layer
US8414974B2 (en) 2006-06-15 2013-04-09 Electronics And Telecommunications Research Institute Method of manufacturing silicon nanotubes using doughnut-shaped catalytic metal layer
JP4556015B2 (en) * 2007-03-26 2010-10-06 独立行政法人物質・材料研究機構 Zinc sulfide / silicon core / shell nanowire and method for producing the same
JP2007223896A (en) * 2007-03-26 2007-09-06 National Institute For Materials Science Zinc sulfide/silicon core/shell nanowire and method for producing the same
JP2010018504A (en) * 2008-07-14 2010-01-28 Japan Atomic Energy Agency ONE-DIMENSIONAL NANOSTRUCTURE OF Si(110) SURFACE AND PRODUCTION METHOD OF THE SAME
JP2010192444A (en) * 2009-02-16 2010-09-02 Samsung Electronics Co Ltd Anode containing 14-group metal nanotube, lithium battery in which same is adopted, and its manufacturing method
US8940438B2 (en) 2009-02-16 2015-01-27 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
JP2015128075A (en) * 2009-02-16 2015-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. Anode containing 14-group metal nanotube, lithium battery employing anode, and manufacturing method of anode
US9923209B2 (en) 2009-02-16 2018-03-20 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode

Also Published As

Publication number Publication date
JP3985044B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP2006117475A (en) Method for manufacturing silicon nanowire
JP2009256204A (en) Method for making carbon nanotube
JP5170609B2 (en) Method for producing silicon carbide nanowire
JP3985044B2 (en) Single crystal silicon nanotube and method for producing the same
JP4556015B2 (en) Zinc sulfide / silicon core / shell nanowire and method for producing the same
JP4798347B2 (en) TiC ultrafine particles or TiO2 ultrafine particle-supporting carbon nanotubes, TiC nanotubes and methods for producing them
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
CN113979427B (en) Method for preparing single-walled carbon nanotube by using rhenium as catalyst
Qu et al. SiO x Nanowire Assemblies Grown by Floating Catalyst Method
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
JP2005263522A (en) Silicon particles, silicon powder and method for manufacturing silicon particles
JP2008100863A (en) Silicon carbide nanostructure and its producing method
KR100753114B1 (en) Method for fabrication of silicon-based ceramic nanowires using thermal reaction of silica powders
JP2002154819A (en) Method for manufacturing nanowire of silicon oxide
JP2004210562A (en) Silicon carbide nanowire or silicon nitride nanowire coated with boron nitride, and production method therefor
JP4576607B2 (en) Single crystal zinc sulfide nanotube and method for producing the same
JP2004161507A (en) Silicon carbide nanorod and its production process
Yue et al. One-step synthesis of single-crystal Si3N4 nanowires-amorphous SiO2 beads nanochains by chemical vapor deposition
JP4701451B2 (en) Zinc sulfide nanocable coated with silicon carbide film and method for producing the same
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP3834661B2 (en) Method for producing silicon carbide-silicon dioxide-carbon coaxial nanocable and nanochain in which silicon carbide nanorods and carbon nanotubes are alternately joined at the tips
JP4538620B2 (en) Method for producing zinc sulfide nanocable containing zinc
Weipeng et al. Synthesis of β-SiC/SiO2 core-shell nanowires with the assistance of cerium oxide
JP4441617B2 (en) Aluminum nitride nanotube and method for producing the same
JP2004339020A (en) Method for manufacturing gallium nitride nanotube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

R150 Certificate of patent or registration of utility model

Ref document number: 3985044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term