JP4072622B2 - Method for producing single crystal β-type silicon nitride nanoribbon - Google Patents

Method for producing single crystal β-type silicon nitride nanoribbon Download PDF

Info

Publication number
JP4072622B2
JP4072622B2 JP2003409759A JP2003409759A JP4072622B2 JP 4072622 B2 JP4072622 B2 JP 4072622B2 JP 2003409759 A JP2003409759 A JP 2003409759A JP 2003409759 A JP2003409759 A JP 2003409759A JP 4072622 B2 JP4072622 B2 JP 4072622B2
Authority
JP
Japan
Prior art keywords
silicon nitride
type silicon
single crystal
nanoribbons
nanoribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003409759A
Other languages
Japanese (ja)
Other versions
JP2005170701A (en
Inventor
義雄 板東
フウ ジンツィ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003409759A priority Critical patent/JP4072622B2/en
Publication of JP2005170701A publication Critical patent/JP2005170701A/en
Application granted granted Critical
Publication of JP4072622B2 publication Critical patent/JP4072622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、セラミックや金属の強化材として有用な単結晶β型窒化珪素ナノリボンの製造方法に関する。

The present invention relates to a process for producing a useful single crystal β-silicon nitride nanoribbon as reinforcement of ceramic or metal.

無機のウィスカーや繊維はセラミックに強靭性を与えるための強化材料として広く利用されている。窒化珪素多結晶体のウィスカーや繊維は、高強度、熱的安定性、化学的安定性などの特徴を有するため、金属をマトリックスとした複合材料の強化材として興味がもたれている(たとえば、非特許文献1参照)。α型窒化珪素ウィスカーおよびβ型窒化珪素ウィスカーは、シリカの炭素による還元法、イミド化合物の分解、直接窒化法などにより製造されている(たとえば、非特許文献2〜4参照)。これらの方法で製造されたα型窒化珪素ウィスカーおよびβ型窒化珪素ウィスカーは、その直径がサブミクロンから10ミクロン程度である。このような非常に細いウイスカーは、アスベスト繊維のように環境的および健康的な問題が懸念される。
H.G.Jeong,ほか、「アクタ・マテリアリア」(ActaMater.)46巻、6009頁、1998年 Y.MiZuhara,ほか、「ジャーナル・オブ・アメリカン・セラミック・ソサイエティ」(J.Am.Ceram.Soc.)78巻、109頁、1995年 Y.L.Li,ほか、「ジャーナル・オブ・マテリアル・サイエンス」(J.Mater.Sci.)31巻、2677頁、1996年 S.Shimada,ほか、「ジャーナル・オブ・セラミック・ソサイエティ・オブ・ジャパン」(J.Ceram.Soc.Jpn.)106巻、935頁、1998年
Inorganic whiskers and fibers are widely used as reinforcing materials for imparting toughness to ceramics. Since silicon nitride polycrystal whiskers and fibers have characteristics such as high strength, thermal stability, and chemical stability, they are of interest as reinforcing materials for composite materials using a metal matrix (for example, (See Patent Document 1). α-type silicon nitride whiskers and β-type silicon nitride whiskers are produced by a method of reducing silica with carbon, decomposition of an imide compound, direct nitriding method, or the like (see, for example, Non-Patent Documents 2 to 4). The α-type silicon nitride whisker and β-type silicon nitride whisker manufactured by these methods have a diameter of about submicron to 10 microns. Such very thin whiskers are concerned with environmental and health problems like asbestos fibers.
HGJeong, et al., Acta Materia. 46, 6009, 1998 Y.MiZuhara, et al., "Journal of American Ceramic Society" (J. Am. Ceram. Soc.) 78, 109, 1995 YLLi, et al., "Journal of Material Science" (J. Mater. Sci.), 31, 2677, 1996 S. Shimada, et al., "Journal of Ceramic Society of Japan" (J.Ceram.Soc.Jpn.) 106, 935, 1998

本発明は、上記の問題のない数百ミクロンからミリメートルオーダーの長さを有する単
晶β型窒化珪素ナノリボンの製造方法を提供することを
解決すべき課題としている。
The present invention has an object to be achieved by providing a method for producing a single <br/> crystal β-silicon nitride nanoribbon having a length of mm order of several hundred microns without the above problems.

窒素気流中で、一酸化ケイ素粉末を150〜1600℃ に1〜 2時間加熱することにより、長さ数百ミクロンから1ミリメートル、幅2〜 3ミクロン、厚さ2 0〜6 0ナノメートルの単結晶β型窒化珪素ナノリボンを製造する。

In a nitrogen stream, by 1 heated 2 hours silicon monoxide powder in 15 5 from 0 to 1,600 ° C., 1 millimeters several hundred microns in length, width 2-3 microns, a thickness of 2 0-6 0 nm The single crystal β-type silicon nitride nanoribbon is manufactured.

窒素気流中で、一酸化ケイ素粉末を高温に加熱することにより、単結晶β型窒化珪素ナノリボンが製造可能となったので、複合材料の強化材としての応用が期待される。
In a nitrogen stream, by heating the silicon monoxide powder in a high temperature, since a single crystal β-silicon nitride nanoribbon becomes possible to manufacture, application as reinforcement of the composite material is expected.

グラファイト製るつぼの中に、一酸化ケイ素粉末を入れ、このるつぼを縦型高周波誘導加熱炉中に設置されているグラファイト製の円筒管の中心部に取り付ける。縦型高周波誘導加熱炉を減圧にした後、窒素ガスを1 0 0〜 2 0 0 s c c mの流量で流す。一酸化ケイ素粉末を1500〜1600℃ に1〜 2時間加熱する。窒化珪素はおおむね1 5 0 0℃ が、α 型からβ 型への相転移温度であるので、たとえば、1 4 0 0℃ で一旦α 型を生成させ、その後1 5 0 0℃ 以上でβ 型に転移させる方法が取れる。この後、縦型高周波誘導加熱炉を室温に冷却すると、グラファイト製円筒管の内壁に灰白色の生成物が堆積する。
Silicon monoxide powder is put into a graphite crucible, and this crucible is attached to the center of a graphite cylindrical tube installed in a vertical high frequency induction heating furnace. After reducing the pressure of the vertical high frequency induction heating furnace, nitrogen gas is flowed at a flow rate of 100 to 200 sccm. Silicon monoxide powder is heated 1-2 hours 1500 to 1600 ° C.. Since silicon nitride generally has a phase transition temperature from α-type to β-type at 1500 ° C, for example, once α-type is generated at 1400 ° C, then β-type is generated at 1550 ° C or higher. The method of transferring to can be taken. Thereafter, when the vertical high frequency induction heating furnace is cooled to room temperature, an off-white product is deposited on the inner wall of the graphite cylindrical tube.

上記において、窒素ガスの流量は1 0 0〜 2 0 0 s c c mの範囲が好ましく、1 0 0 s c c m以下の場合、収率が低下し、2 0 0 s c c m以上では粒子のような別の形状の生成物が出来る。加熱温度は1500〜 1600℃ が好ましく、この範囲以上の温度にしても収率の向上は望めない。この範囲以下の温度では、β 型窒化珪素が生成しない。加熱時間は1〜 2時間の範囲が好ましく、これ以上の時間をかけても収率の向上はない。また、1時間以下では、β 型窒化珪素の生成率が低下する。


In the above, the flow rate of nitrogen gas is preferably in the range of 100-200 sccm, and if it is 10-000 sccm or less, the yield decreases, and if it is 2-200 sccm or more, another shape such as a particle is generated. I can do things. The heating temperature is preferably 1500 to 1600 ° C. Even if the temperature is higher than this range, the yield cannot be improved. At temperatures below this range, β-type silicon nitride is not generated. The heating time is preferably in the range of 1 to 2 hours, and the yield is not improved even if the time is longer than this. In addition, the production rate of β-type silicon nitride is reduced for 1 hour or less.


次に、実施例を示して、本発明の内容をさらに具体的に説明する。   Next, the contents of the present invention will be described more specifically with reference to examples.

グラファイト製るつぼの中に、シグマ・アルドリッチ社製の一酸化ケイ素粉末(純度 99.99%)1.5gを入れ、このるつぼを縦型高周波誘導加熱炉の中のグラフト製円筒管の中心部に取り付けた。縦型高周波誘導加熱炉をおよそ2×10-1Torrの減圧状態にした後、流量150sccmの窒素ガスを流しながら、一酸化ケイ素粉末を1550℃に急速に加熱し、この温度に1.5時間維持した。この後、縦型高周波誘導加熱炉を室温に冷却するとグラファイト製円筒管の内壁に灰白色の生成物が堆積した。 In a graphite crucible, 1.5 g of silicon monoxide powder (purity: 99.99%) manufactured by Sigma-Aldrich was put, and this crucible was attached to the center of a graft cylindrical tube in a vertical high-frequency induction heating furnace. After reducing the vertical high frequency induction furnace to a reduced pressure of approximately 2 × 10 −1 Torr, the silicon monoxide powder was rapidly heated to 1550 ° C. while flowing nitrogen gas at a flow rate of 150 sccm and maintained at this temperature for 1.5 hours. . Thereafter, when the vertical high frequency induction heating furnace was cooled to room temperature, an off-white product was deposited on the inner wall of the graphite cylindrical tube.

図1に、生成物のX線回折のパターンを示した。格子定数a=7.750Å、c=5.620Åを有するα型窒化珪素と格子定数a=7.588Å、c=2.904Åを有するβ型窒化珪素からなる混合結晶相であることが分かった。1550℃の加熱温度ではまずα型が生成し、この一部がβ型に転移したものと解釈される。さらに、このX線回折のパターンからは、珪素や一酸化ケイ素粉末のピークはなく、不純物の存在しない高純度品であることが確認された。   FIG. 1 shows the X-ray diffraction pattern of the product. It was found to be a mixed crystal phase composed of α-type silicon nitride having lattice constants a = 7.750Å and c = 5.620Å and β-type silicon nitride having lattice constants a = 7.5887.5 and c = 2.904 .. At the heating temperature of 1550 ° C, α-type is first produced, and it is interpreted that a part of this is transformed to β-type. Further, from this X-ray diffraction pattern, it was confirmed that there was no peak of silicon or silicon monoxide powder, and that the product was a high-purity product free of impurities.

図2Aに、走査型電子顕微鏡で観察した生成物の低倍率の像を示し、図2Bには高倍率の像を示した。これらの図から、長い直線状で均一な幅を持つナノリボンが形成されていることが確認される。その長さは数百ミクロンからミリメートルのオーダーに達し、幅は2〜3ミクロンであることが分かった。また、図2B中に示した挿入図から、その厚さは20〜30ナノメートルであることが見積もられた。   FIG. 2A shows a low-magnification image of the product observed with a scanning electron microscope, and FIG. 2B shows a high-magnification image. From these figures, it is confirmed that nanoribbons having a long linear shape and a uniform width are formed. It has been found that its length reaches the order of a few hundred microns to millimeters and a width of 2-3 microns. Also, from the inset shown in FIG. 2B, the thickness was estimated to be 20-30 nanometers.

さらに、高分解能透過型電子顕微鏡と電子線回折の結果から、このナノリボンは、α型窒化珪素とβ型窒化珪素の単結晶であることが分かった。また、図3に示したX線エネルギー拡散スペクトルの結果から、このナノリボンの化学組成は珪素と窒素のみからなり、その組成の割合は、珪素が42.43atom%、窒素が57.57atom%であり、化学量論的組成の窒化珪素であることが確かめられた。なお、銅のピークは試料を取り付けるための銅グリッドに由来している。   Furthermore, the results of high resolution transmission electron microscope and electron diffraction revealed that the nanoribbon is a single crystal of α-type silicon nitride and β-type silicon nitride. In addition, from the results of the X-ray energy diffusion spectrum shown in FIG. 3, the chemical composition of this nanoribbon consists only of silicon and nitrogen, and the ratio of the composition is 42.43 atom% for silicon and 57.57 atom% for nitrogen. It was confirmed that the silicon nitride had a stoichiometric composition. In addition, the peak of copper originates in the copper grid for attaching a sample.

図4に、室温で測定した単結晶α型窒化珪素ナノリボンおよびβ型窒化珪素ナノリボンのカソードルミネッセンスの発光スペクトルを示したが、このナノリボンは433nmに強い青色の発光を示すことが分かった。   FIG. 4 shows the cathodoluminescence emission spectra of single-crystal α-type silicon nitride nanoribbons and β-type silicon nitride nanoribbons measured at room temperature. The nanoribbons were found to emit intense blue light at 433 nm.

図1は、単結晶α型窒化珪素ナノリボンおよびβ型窒化珪素ナノリボンのX線回折のパターンである。FIG. 1 shows X-ray diffraction patterns of single crystal α-type silicon nitride nanoribbons and β-type silicon nitride nanoribbons. 図2Aは、単結晶α型窒化珪素ナノリボンおよびβ型窒化珪素ナノリボンの低倍率走査型電子顕微鏡像の図面代用写真である。図2Bは、単結晶α型窒化珪素ナノリボンおよびβ型窒化珪素ナノリボンの高倍率走査型電子顕微鏡像の図面代用写真である。図2B中の挿入図は単結晶α型窒化珪素ナノリボンおよびβ型窒化珪素ナノリボンの端部の高倍率走査型電子顕微鏡像の図面代用写真である。FIG. 2A is a drawing-substituting photograph of low-magnification scanning electron microscope images of single crystal α-type silicon nitride nanoribbons and β-type silicon nitride nanoribbons. FIG. 2B is a drawing-substituting photograph of high-magnification scanning electron microscope images of single crystal α-type silicon nitride nanoribbons and β-type silicon nitride nanoribbons. The inset in FIG. 2B is a drawing-substituting photograph of a high-magnification scanning electron microscope image of the ends of single-crystal α-type silicon nitride nanoribbons and β-type silicon nitride nanoribbons. 図3は、単結晶α型窒化珪素ナノリボンおよびβ型窒化珪素ナノリボンのX線エネルギー拡散スペクトルの図である。FIG. 3 is an X-ray energy diffusion spectrum diagram of single crystal α-type silicon nitride nanoribbons and β-type silicon nitride nanoribbons. 図4は、単結晶α型窒化珪素ナノリボンおよびβ型窒化珪素ナノリボンの室温におけるカソードルミネツセンスの発光スペクトルの図である。FIG. 4 is an emission spectrum of cathodoluminescence at room temperature of single crystal α-type silicon nitride nanoribbons and β-type silicon nitride nanoribbons.

Claims (1)

窒素気流中で、一酸化ケイ素粉末を150〜 1600℃ に、1〜 2時間加熱することを特徴とする単結晶β 型窒化珪素ナノリボンの製造方法。 In a stream of nitrogen, silicon monoxide powder in 15 5 0~ 1600 ℃, 1~ single crystal β-silicon nitride nanoribbon fabrication method, which comprises heating 2 hours.
JP2003409759A 2003-12-09 2003-12-09 Method for producing single crystal β-type silicon nitride nanoribbon Expired - Lifetime JP4072622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409759A JP4072622B2 (en) 2003-12-09 2003-12-09 Method for producing single crystal β-type silicon nitride nanoribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003409759A JP4072622B2 (en) 2003-12-09 2003-12-09 Method for producing single crystal β-type silicon nitride nanoribbon

Publications (2)

Publication Number Publication Date
JP2005170701A JP2005170701A (en) 2005-06-30
JP4072622B2 true JP4072622B2 (en) 2008-04-09

Family

ID=34731008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409759A Expired - Lifetime JP4072622B2 (en) 2003-12-09 2003-12-09 Method for producing single crystal β-type silicon nitride nanoribbon

Country Status (1)

Country Link
JP (1) JP4072622B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753114B1 (en) 2005-07-26 2007-08-29 한국원자력연구원 Method for fabrication of silicon-based ceramic nanowires using thermal reaction of silica powders
CN104891456B (en) * 2015-06-04 2017-06-30 中国人民解放军国防科学技术大学 A kind of one-dimensional α Si3N4Nano material and preparation method thereof
CN112047742B (en) * 2020-09-03 2022-03-15 中钢南京环境工程技术研究院有限公司 Low-cost preparation method of large-size silicon nitride nanobelt aerogel

Also Published As

Publication number Publication date
JP2005170701A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
Yang et al. Synthesis of single‐crystalline silicon nitride nanobelts via catalyst‐assisted pyrolysis of a polysilazane
JP2010143771A (en) METHOD FOR PRODUCING alpha-SILICON CARBIDE PARTICLE
Meng et al. Synthesis and field emission properties of silicon carbide nanobelts with a median ridge
Cui et al. Template-and catalyst-free synthesis, growth mechanism and excellent field emission properties of large scale single-crystalline tubular β-SiC
Choi et al. Synthesis of mullite whiskers
JP5170609B2 (en) Method for producing silicon carbide nanowire
JP6090833B2 (en) AlN whisker and method for producing AlN whisker
Gao et al. Aligned ultra-long single-crystalline α-Si3N4 nanowires
JP4072622B2 (en) Method for producing single crystal β-type silicon nitride nanoribbon
JP5120797B2 (en) Silicon carbide nanostructure and manufacturing method thereof
Hu et al. Two-dimensional extremely thin single-crystalline α-Si3N4 microribbons
US20100179049A1 (en) Silicon carbide-silicon carbide fiber composite and making method
Kim et al. Characteristics of silicon carbide nanowires synthesized on porous body by carbothermal reduction
Zhu et al. Preparation and characterization of bundled one-dimensional Si3N4 single-crystalline nanowires by catalytic pyrolysis of a polymer precursor
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
JP3918060B2 (en) Method for producing single crystal α-type silicon nitride nanoribbon
JP2004210562A (en) Silicon carbide nanowire or silicon nitride nanowire coated with boron nitride, and production method therefor
Yang et al. Simultaneous growth of Si3N4 nanobelts and nanodendrites by catalyst-assisted crystallization of amorphous SiCN
Li et al. In-situ growth and characterization of SiC fibers during Si vapor infiltration process without catalysis
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP3837540B2 (en) Method for producing single crystal tubular zinc oxide whisker
JP4930952B2 (en) Aluminum nitride nanoribbon
JP3921541B2 (en) Boron nitride coated aluminum borate nanocable and method for producing the same
JP4016111B2 (en) Method for producing α-type silicon nitride nanobelt
JP4441617B2 (en) Aluminum nitride nanotube and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Ref document number: 4072622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term