JP4072622B2 - Method for producing single crystal β-type silicon nitride nanoribbon - Google Patents
Method for producing single crystal β-type silicon nitride nanoribbon Download PDFInfo
- Publication number
- JP4072622B2 JP4072622B2 JP2003409759A JP2003409759A JP4072622B2 JP 4072622 B2 JP4072622 B2 JP 4072622B2 JP 2003409759 A JP2003409759 A JP 2003409759A JP 2003409759 A JP2003409759 A JP 2003409759A JP 4072622 B2 JP4072622 B2 JP 4072622B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- type silicon
- single crystal
- nanoribbons
- nanoribbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims description 33
- 239000002074 nanoribbon Substances 0.000 title claims description 24
- 239000013078 crystal Substances 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title description 29
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 239000010439 graphite Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005136 cathodoluminescence Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- -1 imide compound Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、セラミックや金属の強化材として有用な単結晶β型窒化珪素ナノリボンの製造方法に関する。
The present invention relates to a process for producing a useful single crystal β-silicon nitride nanoribbon as reinforcement of ceramic or metal.
無機のウィスカーや繊維はセラミックに強靭性を与えるための強化材料として広く利用されている。窒化珪素多結晶体のウィスカーや繊維は、高強度、熱的安定性、化学的安定性などの特徴を有するため、金属をマトリックスとした複合材料の強化材として興味がもたれている(たとえば、非特許文献1参照)。α型窒化珪素ウィスカーおよびβ型窒化珪素ウィスカーは、シリカの炭素による還元法、イミド化合物の分解、直接窒化法などにより製造されている(たとえば、非特許文献2〜4参照)。これらの方法で製造されたα型窒化珪素ウィスカーおよびβ型窒化珪素ウィスカーは、その直径がサブミクロンから10ミクロン程度である。このような非常に細いウイスカーは、アスベスト繊維のように環境的および健康的な問題が懸念される。
本発明は、上記の問題のない数百ミクロンからミリメートルオーダーの長さを有する単
結晶β型窒化珪素ナノリボンの製造方法を提供することを
解決すべき課題としている。
The present invention has an object to be achieved by providing a method for producing a single <br/> crystal β-silicon nitride nanoribbon having a length of mm order of several hundred microns without the above problems.
窒素気流中で、一酸化ケイ素粉末を1550〜1600℃ に1〜 2時間加熱することにより、長さ数百ミクロンから1ミリメートル、幅2〜 3ミクロン、厚さ2 0〜6 0ナノメートルの単結晶β型窒化珪素ナノリボンを製造する。
In a nitrogen stream, by 1 heated 2 hours silicon monoxide powder in 15 5 from 0 to 1,600 ° C., 1 millimeters several hundred microns in length, width 2-3 microns, a thickness of 2 0-6 0 nm The single crystal β-type silicon nitride nanoribbon is manufactured.
窒素気流中で、一酸化ケイ素粉末を高温に加熱することにより、単結晶β型窒化珪素ナノリボンが製造可能となったので、複合材料の強化材としての応用が期待される。
In a nitrogen stream, by heating the silicon monoxide powder in a high temperature, since a single crystal β-silicon nitride nanoribbon becomes possible to manufacture, application as reinforcement of the composite material is expected.
グラファイト製るつぼの中に、一酸化ケイ素粉末を入れ、このるつぼを縦型高周波誘導加熱炉中に設置されているグラファイト製の円筒管の中心部に取り付ける。縦型高周波誘導加熱炉を減圧にした後、窒素ガスを1 0 0〜 2 0 0 s c c mの流量で流す。一酸化ケイ素粉末を1500〜1600℃ に1〜 2時間加熱する。窒化珪素はおおむね1 5 0 0℃ が、α 型からβ 型への相転移温度であるので、たとえば、1 4 0 0℃ で一旦α 型を生成させ、その後1 5 0 0℃ 以上でβ 型に転移させる方法が取れる。この後、縦型高周波誘導加熱炉を室温に冷却すると、グラファイト製円筒管の内壁に灰白色の生成物が堆積する。
Silicon monoxide powder is put into a graphite crucible, and this crucible is attached to the center of a graphite cylindrical tube installed in a vertical high frequency induction heating furnace. After reducing the pressure of the vertical high frequency induction heating furnace, nitrogen gas is flowed at a flow rate of 100 to 200 sccm. Silicon monoxide powder is heated 1-2 hours 1500 to 1600 ° C.. Since silicon nitride generally has a phase transition temperature from α-type to β-type at 1500 ° C, for example, once α-type is generated at 1400 ° C, then β-type is generated at 1550 ° C or higher. The method of transferring to can be taken. Thereafter, when the vertical high frequency induction heating furnace is cooled to room temperature, an off-white product is deposited on the inner wall of the graphite cylindrical tube.
上記において、窒素ガスの流量は1 0 0〜 2 0 0 s c c mの範囲が好ましく、1 0 0 s c c m以下の場合、収率が低下し、2 0 0 s c c m以上では粒子のような別の形状の生成物が出来る。加熱温度は1500〜 1600℃ が好ましく、この範囲以上の温度にしても収率の向上は望めない。この範囲以下の温度では、β 型窒化珪素が生成しない。加熱時間は1〜 2時間の範囲が好ましく、これ以上の時間をかけても収率の向上はない。また、1時間以下では、β 型窒化珪素の生成率が低下する。
In the above, the flow rate of nitrogen gas is preferably in the range of 100-200 sccm, and if it is 10-000 sccm or less, the yield decreases, and if it is 2-200 sccm or more, another shape such as a particle is generated. I can do things. The heating temperature is preferably 1500 to 1600 ° C. Even if the temperature is higher than this range, the yield cannot be improved. At temperatures below this range, β-type silicon nitride is not generated. The heating time is preferably in the range of 1 to 2 hours, and the yield is not improved even if the time is longer than this. In addition, the production rate of β-type silicon nitride is reduced for 1 hour or less.
次に、実施例を示して、本発明の内容をさらに具体的に説明する。 Next, the contents of the present invention will be described more specifically with reference to examples.
グラファイト製るつぼの中に、シグマ・アルドリッチ社製の一酸化ケイ素粉末(純度 99.99%)1.5gを入れ、このるつぼを縦型高周波誘導加熱炉の中のグラフト製円筒管の中心部に取り付けた。縦型高周波誘導加熱炉をおよそ2×10-1Torrの減圧状態にした後、流量150sccmの窒素ガスを流しながら、一酸化ケイ素粉末を1550℃に急速に加熱し、この温度に1.5時間維持した。この後、縦型高周波誘導加熱炉を室温に冷却するとグラファイト製円筒管の内壁に灰白色の生成物が堆積した。 In a graphite crucible, 1.5 g of silicon monoxide powder (purity: 99.99%) manufactured by Sigma-Aldrich was put, and this crucible was attached to the center of a graft cylindrical tube in a vertical high-frequency induction heating furnace. After reducing the vertical high frequency induction furnace to a reduced pressure of approximately 2 × 10 −1 Torr, the silicon monoxide powder was rapidly heated to 1550 ° C. while flowing nitrogen gas at a flow rate of 150 sccm and maintained at this temperature for 1.5 hours. . Thereafter, when the vertical high frequency induction heating furnace was cooled to room temperature, an off-white product was deposited on the inner wall of the graphite cylindrical tube.
図1に、生成物のX線回折のパターンを示した。格子定数a=7.750Å、c=5.620Åを有するα型窒化珪素と格子定数a=7.588Å、c=2.904Åを有するβ型窒化珪素からなる混合結晶相であることが分かった。1550℃の加熱温度ではまずα型が生成し、この一部がβ型に転移したものと解釈される。さらに、このX線回折のパターンからは、珪素や一酸化ケイ素粉末のピークはなく、不純物の存在しない高純度品であることが確認された。 FIG. 1 shows the X-ray diffraction pattern of the product. It was found to be a mixed crystal phase composed of α-type silicon nitride having lattice constants a = 7.750Å and c = 5.620Å and β-type silicon nitride having lattice constants a = 7.5887.5 and c = 2.904 .. At the heating temperature of 1550 ° C, α-type is first produced, and it is interpreted that a part of this is transformed to β-type. Further, from this X-ray diffraction pattern, it was confirmed that there was no peak of silicon or silicon monoxide powder, and that the product was a high-purity product free of impurities.
図2Aに、走査型電子顕微鏡で観察した生成物の低倍率の像を示し、図2Bには高倍率の像を示した。これらの図から、長い直線状で均一な幅を持つナノリボンが形成されていることが確認される。その長さは数百ミクロンからミリメートルのオーダーに達し、幅は2〜3ミクロンであることが分かった。また、図2B中に示した挿入図から、その厚さは20〜30ナノメートルであることが見積もられた。 FIG. 2A shows a low-magnification image of the product observed with a scanning electron microscope, and FIG. 2B shows a high-magnification image. From these figures, it is confirmed that nanoribbons having a long linear shape and a uniform width are formed. It has been found that its length reaches the order of a few hundred microns to millimeters and a width of 2-3 microns. Also, from the inset shown in FIG. 2B, the thickness was estimated to be 20-30 nanometers.
さらに、高分解能透過型電子顕微鏡と電子線回折の結果から、このナノリボンは、α型窒化珪素とβ型窒化珪素の単結晶であることが分かった。また、図3に示したX線エネルギー拡散スペクトルの結果から、このナノリボンの化学組成は珪素と窒素のみからなり、その組成の割合は、珪素が42.43atom%、窒素が57.57atom%であり、化学量論的組成の窒化珪素であることが確かめられた。なお、銅のピークは試料を取り付けるための銅グリッドに由来している。 Furthermore, the results of high resolution transmission electron microscope and electron diffraction revealed that the nanoribbon is a single crystal of α-type silicon nitride and β-type silicon nitride. In addition, from the results of the X-ray energy diffusion spectrum shown in FIG. 3, the chemical composition of this nanoribbon consists only of silicon and nitrogen, and the ratio of the composition is 42.43 atom% for silicon and 57.57 atom% for nitrogen. It was confirmed that the silicon nitride had a stoichiometric composition. In addition, the peak of copper originates in the copper grid for attaching a sample.
図4に、室温で測定した単結晶α型窒化珪素ナノリボンおよびβ型窒化珪素ナノリボンのカソードルミネッセンスの発光スペクトルを示したが、このナノリボンは433nmに強い青色の発光を示すことが分かった。 FIG. 4 shows the cathodoluminescence emission spectra of single-crystal α-type silicon nitride nanoribbons and β-type silicon nitride nanoribbons measured at room temperature. The nanoribbons were found to emit intense blue light at 433 nm.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003409759A JP4072622B2 (en) | 2003-12-09 | 2003-12-09 | Method for producing single crystal β-type silicon nitride nanoribbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003409759A JP4072622B2 (en) | 2003-12-09 | 2003-12-09 | Method for producing single crystal β-type silicon nitride nanoribbon |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005170701A JP2005170701A (en) | 2005-06-30 |
JP4072622B2 true JP4072622B2 (en) | 2008-04-09 |
Family
ID=34731008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003409759A Expired - Lifetime JP4072622B2 (en) | 2003-12-09 | 2003-12-09 | Method for producing single crystal β-type silicon nitride nanoribbon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4072622B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100753114B1 (en) | 2005-07-26 | 2007-08-29 | 한국원자력연구원 | Method for fabrication of silicon-based ceramic nanowires using thermal reaction of silica powders |
CN104891456B (en) * | 2015-06-04 | 2017-06-30 | 中国人民解放军国防科学技术大学 | A kind of one-dimensional α Si3N4Nano material and preparation method thereof |
CN112047742B (en) * | 2020-09-03 | 2022-03-15 | 中钢南京环境工程技术研究院有限公司 | Low-cost preparation method of large-size silicon nitride nanobelt aerogel |
-
2003
- 2003-12-09 JP JP2003409759A patent/JP4072622B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005170701A (en) | 2005-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Synthesis of single‐crystalline silicon nitride nanobelts via catalyst‐assisted pyrolysis of a polysilazane | |
JP2010143771A (en) | METHOD FOR PRODUCING alpha-SILICON CARBIDE PARTICLE | |
Meng et al. | Synthesis and field emission properties of silicon carbide nanobelts with a median ridge | |
Cui et al. | Template-and catalyst-free synthesis, growth mechanism and excellent field emission properties of large scale single-crystalline tubular β-SiC | |
Choi et al. | Synthesis of mullite whiskers | |
JP5170609B2 (en) | Method for producing silicon carbide nanowire | |
JP6090833B2 (en) | AlN whisker and method for producing AlN whisker | |
Gao et al. | Aligned ultra-long single-crystalline α-Si3N4 nanowires | |
JP4072622B2 (en) | Method for producing single crystal β-type silicon nitride nanoribbon | |
JP5120797B2 (en) | Silicon carbide nanostructure and manufacturing method thereof | |
Hu et al. | Two-dimensional extremely thin single-crystalline α-Si3N4 microribbons | |
US20100179049A1 (en) | Silicon carbide-silicon carbide fiber composite and making method | |
Kim et al. | Characteristics of silicon carbide nanowires synthesized on porous body by carbothermal reduction | |
Zhu et al. | Preparation and characterization of bundled one-dimensional Si3N4 single-crystalline nanowires by catalytic pyrolysis of a polymer precursor | |
JP4431745B2 (en) | Method for producing aluminum nitride nanoribbon | |
JP3918060B2 (en) | Method for producing single crystal α-type silicon nitride nanoribbon | |
JP2004210562A (en) | Silicon carbide nanowire or silicon nitride nanowire coated with boron nitride, and production method therefor | |
Yang et al. | Simultaneous growth of Si3N4 nanobelts and nanodendrites by catalyst-assisted crystallization of amorphous SiCN | |
Li et al. | In-situ growth and characterization of SiC fibers during Si vapor infiltration process without catalysis | |
JP2005349515A (en) | Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof | |
JP3837540B2 (en) | Method for producing single crystal tubular zinc oxide whisker | |
JP4930952B2 (en) | Aluminum nitride nanoribbon | |
JP3921541B2 (en) | Boron nitride coated aluminum borate nanocable and method for producing the same | |
JP4016111B2 (en) | Method for producing α-type silicon nitride nanobelt | |
JP4441617B2 (en) | Aluminum nitride nanotube and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4072622 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |