JP4016111B2 - Method for producing α-type silicon nitride nanobelt - Google Patents

Method for producing α-type silicon nitride nanobelt Download PDF

Info

Publication number
JP4016111B2
JP4016111B2 JP2004088043A JP2004088043A JP4016111B2 JP 4016111 B2 JP4016111 B2 JP 4016111B2 JP 2004088043 A JP2004088043 A JP 2004088043A JP 2004088043 A JP2004088043 A JP 2004088043A JP 4016111 B2 JP4016111 B2 JP 4016111B2
Authority
JP
Japan
Prior art keywords
silicon nitride
type silicon
nanobelt
nitride nanobelt
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004088043A
Other languages
Japanese (ja)
Other versions
JP2005272208A (en
Inventor
義雄 板東
ウィン・ロンウェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004088043A priority Critical patent/JP4016111B2/en
Publication of JP2005272208A publication Critical patent/JP2005272208A/en
Application granted granted Critical
Publication of JP4016111B2 publication Critical patent/JP4016111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

この出願の発明は、α型窒化珪素ナノベルトの製造方法に関するものである。さらに詳しくは、この出願の発明は、優れた機械的、化学的、電子的、熱的性質を示す先進材料として、セラミックス分野やマイクロエレクトロニクス分野への応用が期待されているα型窒化珪素ナノベルトの製造方法に関するものである。   The invention of this application relates to a method for producing an α-type silicon nitride nanobelt. More specifically, the invention of this application relates to an α-type silicon nitride nanobelt that is expected to be applied to the ceramics and microelectronics fields as an advanced material exhibiting excellent mechanical, chemical, electronic, and thermal properties. It relates to a manufacturing method.

エルビウムや水素を含む非晶質の窒化珪素の薄膜は、フォトルミネッセンスなどの光学材料として、研究が盛んに行われている。一方、結晶質の窒化珪素ナノベルトの光学的性質に関して、アルミニウムをドーピングしたβ型窒化珪素単結晶に関する報告がある(たとえば、非特許文献1参照。)。
F.Munakataほか、アプライド・フィジックス・レターズ(Appl.Phys.Lett.)74巻、3498頁、1999年。
An amorphous silicon nitride thin film containing erbium or hydrogen has been actively studied as an optical material such as photoluminescence. On the other hand, regarding the optical properties of crystalline silicon nitride nanobelts, there are reports on β-type silicon nitride single crystals doped with aluminum (see, for example, Non-Patent Document 1).
F. Munakata et al., Applied Physics Letters (Appl. Phys. Lett.), 74, 3498, 1999.

この出願の発明は、アルミニウムなどのドーピング材を含有しない高純度の結晶性のα型窒化珪素ナノベルトを、鋳型や触媒を使用することなく、製造可能とすることを解決すべき課題としている。   The invention of this application has a problem to be solved that it is possible to produce a high-purity crystalline α-type silicon nitride nanobelt that does not contain a doping material such as aluminum without using a template or a catalyst.

この出願の発明は、上記の課題を解決するものとして、長手方向を横断する断面における幅が800〜1200ナノメートル、厚さが20〜30ナノメートル、長さ数十マイクロメートル〜数百マイクロメートルであって、長手方向において全体に同様な断面形状を有するα型窒化珪素ナノベルトの製造方法であって、一酸化ケイ素粉末をアンモニア気流中で、1350〜1450℃に、3.2〜3.7時間加熱することを特徴とするα型窒化珪素ナノベルトの製造方法を提供する。 In order to solve the above problems, the invention of this application has a width of 800 to 1200 nanometers, a thickness of 20 to 30 nanometers, and a length of several tens of micrometers to several hundreds of micrometers in a cross section transverse to the longitudinal direction. A method for producing an α-type silicon nitride nanobelt having the same cross-sectional shape as a whole in the longitudinal direction, wherein the silicon monoxide powder is heated to 1350 to 1450 ° C. in an ammonia stream at 3.2 to 3.7. Provided is a method for producing an α-type silicon nitride nanobelt characterized by heating for a period of time.

この出願の発明のα型窒化珪素ナノベルトによれば、エルビウムやアルミニウムなどのドーピング材を含有しない純粋な結晶性のα型窒化珪素ナノベルトの製造が可能となる。   According to the α-type silicon nitride nanobelt of the invention of this application, it is possible to produce a pure crystalline α-type silicon nitride nanobelt that does not contain a doping material such as erbium or aluminum.

たとえば、アルミナ製るつぼの中に一酸化ケイ素粉末を入れる。このるつぼを縦型高周波誘導加熱炉の中央部に配置する。縦型高周波誘導加熱炉は、上部と下部にガス導入口を有しており、また、下部にガス排出口を有している。このような縦型高周波誘導加熱炉を減圧にした後、下部のガス導入口からアルゴンガスなどの不活性気体を導入し、上部のガス導入口からアンモニアガスを導入する。このときのアンモニアガスの流量は300〜350sccmの範囲が好ましい。300sccm未満では一酸化ケイ素粉末との反応に十分な流量ではなく
、350sccmの流量で十分となるからである。アルゴンガスなどの不活性気体の流量は250〜400sccmの範囲が好ましい。250sccm未満ではアルミナるつぼの中の酸素量が高くなり、400sccmで酸素の除去に十分となるからである。
For example, silicon monoxide powder is placed in an alumina crucible. This crucible is placed in the center of the vertical high frequency induction heating furnace. The vertical high-frequency induction heating furnace has a gas inlet at the upper part and the lower part, and a gas outlet at the lower part. After reducing the pressure of such a vertical high-frequency induction heating furnace, an inert gas such as argon gas is introduced from the lower gas inlet, and ammonia gas is introduced from the upper gas inlet. The flow rate of ammonia gas at this time is preferably in the range of 300 to 350 sccm. This is because if it is less than 300 sccm, a flow rate of 350 sccm is sufficient, not a sufficient flow rate for the reaction with the silicon monoxide powder. The flow rate of an inert gas such as argon gas is preferably in the range of 250 to 400 sccm. If it is less than 250 sccm, the amount of oxygen in the alumina crucible becomes high, and 400 sccm is sufficient for removing oxygen.

そして、るつぼの内容物を1350〜1450℃で3.2〜3.7時間加熱する。1450℃の反応温度において、幅が広く、かつ薄いα型窒化珪素ナノベルトが得られるので、これ以上の温度に上げる必要はない。1350℃未満であると、α型窒化珪素ナノベルトの収量が低下する。反応時間は3.7時間で原料がほとんど消費されてしまうので、これ以上の時間をかける必要
はない。3.2時間未満であると、幅が広く、十分長いα型窒化珪素ナノベルトは得られな
い。
Then, the contents of the crucible are heated at 1350-1450 ° C. for 3.2-3.7 hours. Since a wide and thin α-type silicon nitride nanobelt can be obtained at a reaction temperature of 1450 ° C., it is not necessary to raise the temperature further. When the temperature is lower than 1350 ° C., the yield of α-type silicon nitride nanobelts decreases. Since the reaction time is 3.7 hours and most of the raw materials are consumed, it is not necessary to spend more time. If it is less than 3.2 hours, a wide and sufficiently long α-type silicon nitride nanobelt cannot be obtained.

加熱終了後、るつぼの内壁に白色の綿状の繊維状物が堆積する。この堆積物を分析すると、長さ数十マイクロメートル〜数百マイクロメートル、幅800〜1200ナノメートル、厚
さ20〜30ナノメートルで、格子定数a=7.743Å、c=5.619Åを有する六方晶系のα型窒化珪素ナノベルトであることが確認される。
After the heating, white cotton-like fibrous material is deposited on the inner wall of the crucible. When this deposit is analyzed, the hexagonal crystal has a length of several tens of micrometers to several hundreds of micrometers, a width of 800 to 1200 nanometers, a thickness of 20 to 30 nanometers, and a lattice constant of a = 7.743Å and c = 5.619Å. It is confirmed that this is an α-type silicon nitride nanobelt.

次に、実施例を示し、この出願の発明のα型窒化珪素ナノベルトの製造方法についてさらに具体的に説明する。   Next, an example is shown and the manufacturing method of the alpha silicon nitride nanobelt of the invention of this application is explained more concretely.

和光純薬工業(株)製の一酸化ケイ素粉末(純度99.9%)3gをアルミナ製るつぼの中に入れ
、このるつぼを縦型高周波誘導加熱炉の中央部に設置した。加熱炉を5×10-1Torrの減圧
にした後、加熱炉の上部からアンモニアガスを350sccmの流量で流し、加熱炉の下部から
アルゴンガスを400sccmの流量で流しながら、るつぼを1400℃で3.5時間加熱した。加熱終了後、加熱炉を室温に冷却すると、るつぼの内壁に白色の綿状の繊維状物が約2g堆積した。
3 g of silicon monoxide powder (purity 99.9%) manufactured by Wako Pure Chemical Industries, Ltd. was placed in an alumina crucible, and this crucible was installed in the center of a vertical high frequency induction heating furnace. After reducing the heating furnace to 5 × 10 −1 Torr, ammonia gas is flowed from the upper part of the heating furnace at a flow rate of 350 sccm, and argon gas is flowed from the lower part of the heating furnace at a flow rate of 400 sccm, while the crucible is 3.5 ° C. at 1400 ° C. Heated for hours. After heating, when the heating furnace was cooled to room temperature, about 2 g of white cotton-like fibrous material was deposited on the inner wall of the crucible.

図1に堆積物のX線回折のパターンを示した。この図1から格子定数a=7.743Å、c=5.619Åを有する六方晶系のα型窒化珪素であることが確認される。また、図1に示したピー
クからβ型窒化珪素や他の不純物は存在しないことも確かめられる。
FIG. 1 shows the X-ray diffraction pattern of the deposit. FIG. 1 confirms that it is a hexagonal α-type silicon nitride having lattice constants a = 7.743 Å and c = 5.619 Å. It can also be confirmed from the peak shown in FIG. 1 that β-type silicon nitride and other impurities are not present.

図2に堆積物の走査型電子顕微鏡像の写真を示した。長さが数十マイクロメートル〜数百マイクロメートル、幅が800〜1200ナノメートル、厚さが20〜30ナノメートルを有する
α型窒化珪素ナノベルトが得られていることが確認される。
FIG. 2 shows a photograph of a scanning electron microscope image of the deposit. It is confirmed that an α-type silicon nitride nanobelt having a length of several tens of micrometers to several hundreds of micrometers, a width of 800 to 1200 nanometers, and a thickness of 20 to 30 nanometers is obtained.

図3にX線エネルギー拡散スペクトルを測定した結果を示した。珪素と窒素のピークが
現れており、化学組成は化学量論組成の窒化珪素に近似していることが分かる。なお、図3に現れている銅のピークは、試料を作製する際に用いた銅グリッドに由来するものである。
FIG. 3 shows the result of measuring the X-ray energy diffusion spectrum. The peaks of silicon and nitrogen appear, and it can be seen that the chemical composition approximates to the stoichiometric silicon nitride. Note that the copper peak appearing in FIG. 3 is derived from the copper grid used in preparing the sample.

図4に、励起源として、波長325nmのHe-Cdレーザーを用いて、室温で測定した堆積物のフォトルミネッセンスのスペクトルを示した。400〜750nmにわたって幅の広いスペクトルを有し、575nmに最大の発光強度を示す白色の発光を示すことが分かる。   FIG. 4 shows a photoluminescence spectrum of the deposit measured at room temperature using a He—Cd laser having a wavelength of 325 nm as an excitation source. It can be seen that it has a broad spectrum from 400 to 750 nm and emits white light with the maximum emission intensity at 575 nm.

この出願の発明により、高純度のα型窒化珪素ナノベルトが製造可能となった。したがって、フォトルミネッセンスをはじめとする光学デバイスへの応用が期待される。   The invention of this application made it possible to produce a high-purity α-type silicon nitride nanobelt. Therefore, application to optical devices including photoluminescence is expected.

実施例で得られたα型窒化珪素ナノベルトのX線回折のパターンである。2 is an X-ray diffraction pattern of an α-type silicon nitride nanobelt obtained in an example. 実施例で得られたα型窒化珪素ナノベルトの走査型電子顕微鏡像の図面代用写真である。It is a drawing substitute photograph of the scanning electron microscope image of the α-type silicon nitride nanobelt obtained in the example. 実施例で得られたα型窒化珪素ナノベルトのX線エネルギー拡散スペクトルの図である。It is a figure of the X-ray energy-diffusion spectrum of the alpha silicon nitride nanobelt obtained in the Example. 実施例で得られたα型窒化珪素ナノベルトの室温におけるフォトルミネッセンススペクトルの図である。It is a figure of the photoluminescence spectrum in the room temperature of the alpha silicon nitride nanobelt obtained in the Example.

Claims (1)

長手方向を横断する断面における幅が800〜1200ナノメートル、厚さが20〜30ナノメートル、長さ数十マイクロメートル〜数百マイクロメートルであって、長手方向において全体に同様な断面形状を有するα型窒化珪素ナノベルトの製造方法であって、一酸化ケイ素粉末をアンモニア気流中で、1350〜1450℃に、3.2〜3.7時間加熱することを特徴とするα型窒化珪素ナノベルトの製造方法。 The cross-section across the longitudinal direction has a width of 800 to 1200 nanometers, a thickness of 20 to 30 nanometers, a length of several tens of micrometers to several hundreds of micrometers , and has a similar cross-sectional shape as a whole in the longitudinal direction. A method for producing an α-type silicon nitride nanobelt, characterized in that silicon monoxide powder is heated to 1350 to 1450 ° C. in an ammonia stream for 3.2 to 3.7 hours. Method.
JP2004088043A 2004-03-24 2004-03-24 Method for producing α-type silicon nitride nanobelt Expired - Lifetime JP4016111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088043A JP4016111B2 (en) 2004-03-24 2004-03-24 Method for producing α-type silicon nitride nanobelt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088043A JP4016111B2 (en) 2004-03-24 2004-03-24 Method for producing α-type silicon nitride nanobelt

Publications (2)

Publication Number Publication Date
JP2005272208A JP2005272208A (en) 2005-10-06
JP4016111B2 true JP4016111B2 (en) 2007-12-05

Family

ID=35172263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088043A Expired - Lifetime JP4016111B2 (en) 2004-03-24 2004-03-24 Method for producing α-type silicon nitride nanobelt

Country Status (1)

Country Link
JP (1) JP4016111B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891456B (en) * 2015-06-04 2017-06-30 中国人民解放军国防科学技术大学 A kind of one-dimensional α Si3N4Nano material and preparation method thereof
CN109319750B (en) * 2018-11-13 2020-10-09 江西宏柏新材料股份有限公司 Method for preparing alpha-silicon nitride nanobelt by microwave heating
CN110931744B (en) * 2019-11-29 2021-03-16 深圳技术大学 Silicon-carbon negative electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP2005272208A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
Yin et al. Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si 3 N 4) single-crystalline nanobelts
Hu et al. Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons
Cheng et al. Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition
Cheng et al. Zinc oxide single-crystal microtubes
Maestre et al. Hexagonal boron nitride: a review on selfstanding crystals synthesis towards 2D nanosheets
Li et al. Single crystal growth of monoisotopic hexagonal boron nitride from a Fe–Cr flux
Wang et al. Photoluminescence properties of quasialigned ZnCdO nanorods
US20080003162A1 (en) 3C-SiC nanowhisker and synthesizing method of the same
Zhuang et al. Nanoscale integration of SiC/SiO2 core-shell nanocables in diamond through a simultaneous hybrid structure fabrication
Liu et al. Large scale synthesis of α-Si3N4 nanowires through a kinetically favored chemical vapour deposition process
JP4016111B2 (en) Method for producing α-type silicon nitride nanobelt
CN104891456A (en) One-dimensional alpha-Si3N4 nano material and preparation method thereof
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
JP5120797B2 (en) Silicon carbide nanostructure and manufacturing method thereof
Kim et al. Temperature-controlled growth and photoluminescence of AlN nanowires
Suzuki et al. Crystal growth of β-Ga2O3 by electric current heating method
Mofor et al. Vapour transport growth of ZnO nanorods
JP4930952B2 (en) Aluminum nitride nanoribbon
Zhang et al. Synthesis and optical properties of single crystalline GaN nanorods with a rectangular cross-section
JP4072622B2 (en) Method for producing single crystal β-type silicon nitride nanoribbon
Chen et al. Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP3921538B2 (en) Method for producing single crystal zinc selenide nanowire
JP2004339020A (en) Method for manufacturing gallium nitride nanotube
JP4576604B2 (en) Method for producing single crystal indium nitride nanotube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Ref document number: 4016111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term