JP4016111B2 - Method for producing α-type silicon nitride nanobelt - Google Patents
Method for producing α-type silicon nitride nanobelt Download PDFInfo
- Publication number
- JP4016111B2 JP4016111B2 JP2004088043A JP2004088043A JP4016111B2 JP 4016111 B2 JP4016111 B2 JP 4016111B2 JP 2004088043 A JP2004088043 A JP 2004088043A JP 2004088043 A JP2004088043 A JP 2004088043A JP 4016111 B2 JP4016111 B2 JP 4016111B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- type silicon
- nanobelt
- nitride nanobelt
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims description 26
- 229910052581 Si3N4 Inorganic materials 0.000 title claims description 24
- 239000002127 nanobelt Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 5
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 230000006698 induction Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 238000000103 photoluminescence spectrum Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
この出願の発明は、α型窒化珪素ナノベルトの製造方法に関するものである。さらに詳しくは、この出願の発明は、優れた機械的、化学的、電子的、熱的性質を示す先進材料として、セラミックス分野やマイクロエレクトロニクス分野への応用が期待されているα型窒化珪素ナノベルトの製造方法に関するものである。 The invention of this application relates to a method for producing an α-type silicon nitride nanobelt. More specifically, the invention of this application relates to an α-type silicon nitride nanobelt that is expected to be applied to the ceramics and microelectronics fields as an advanced material exhibiting excellent mechanical, chemical, electronic, and thermal properties. It relates to a manufacturing method.
エルビウムや水素を含む非晶質の窒化珪素の薄膜は、フォトルミネッセンスなどの光学材料として、研究が盛んに行われている。一方、結晶質の窒化珪素ナノベルトの光学的性質に関して、アルミニウムをドーピングしたβ型窒化珪素単結晶に関する報告がある(たとえば、非特許文献1参照。)。
この出願の発明は、アルミニウムなどのドーピング材を含有しない高純度の結晶性のα型窒化珪素ナノベルトを、鋳型や触媒を使用することなく、製造可能とすることを解決すべき課題としている。 The invention of this application has a problem to be solved that it is possible to produce a high-purity crystalline α-type silicon nitride nanobelt that does not contain a doping material such as aluminum without using a template or a catalyst.
この出願の発明は、上記の課題を解決するものとして、長手方向を横断する断面における幅が800〜1200ナノメートル、厚さが20〜30ナノメートル、長さ数十マイクロメートル〜数百マイクロメートルであって、長手方向において全体に同様な断面形状を有するα型窒化珪素ナノベルトの製造方法であって、一酸化ケイ素粉末をアンモニア気流中で、1350〜1450℃に、3.2〜3.7時間加熱することを特徴とするα型窒化珪素ナノベルトの製造方法を提供する。 In order to solve the above problems, the invention of this application has a width of 800 to 1200 nanometers, a thickness of 20 to 30 nanometers, and a length of several tens of micrometers to several hundreds of micrometers in a cross section transverse to the longitudinal direction. A method for producing an α-type silicon nitride nanobelt having the same cross-sectional shape as a whole in the longitudinal direction, wherein the silicon monoxide powder is heated to 1350 to 1450 ° C. in an ammonia stream at 3.2 to 3.7. Provided is a method for producing an α-type silicon nitride nanobelt characterized by heating for a period of time.
この出願の発明のα型窒化珪素ナノベルトによれば、エルビウムやアルミニウムなどのドーピング材を含有しない純粋な結晶性のα型窒化珪素ナノベルトの製造が可能となる。 According to the α-type silicon nitride nanobelt of the invention of this application, it is possible to produce a pure crystalline α-type silicon nitride nanobelt that does not contain a doping material such as erbium or aluminum.
たとえば、アルミナ製るつぼの中に一酸化ケイ素粉末を入れる。このるつぼを縦型高周波誘導加熱炉の中央部に配置する。縦型高周波誘導加熱炉は、上部と下部にガス導入口を有しており、また、下部にガス排出口を有している。このような縦型高周波誘導加熱炉を減圧にした後、下部のガス導入口からアルゴンガスなどの不活性気体を導入し、上部のガス導入口からアンモニアガスを導入する。このときのアンモニアガスの流量は300〜350sccmの範囲が好ましい。300sccm未満では一酸化ケイ素粉末との反応に十分な流量ではなく
、350sccmの流量で十分となるからである。アルゴンガスなどの不活性気体の流量は250〜400sccmの範囲が好ましい。250sccm未満ではアルミナるつぼの中の酸素量が高くなり、400sccmで酸素の除去に十分となるからである。
For example, silicon monoxide powder is placed in an alumina crucible. This crucible is placed in the center of the vertical high frequency induction heating furnace. The vertical high-frequency induction heating furnace has a gas inlet at the upper part and the lower part, and a gas outlet at the lower part. After reducing the pressure of such a vertical high-frequency induction heating furnace, an inert gas such as argon gas is introduced from the lower gas inlet, and ammonia gas is introduced from the upper gas inlet. The flow rate of ammonia gas at this time is preferably in the range of 300 to 350 sccm. This is because if it is less than 300 sccm, a flow rate of 350 sccm is sufficient, not a sufficient flow rate for the reaction with the silicon monoxide powder. The flow rate of an inert gas such as argon gas is preferably in the range of 250 to 400 sccm. If it is less than 250 sccm, the amount of oxygen in the alumina crucible becomes high, and 400 sccm is sufficient for removing oxygen.
そして、るつぼの内容物を1350〜1450℃で3.2〜3.7時間加熱する。1450℃の反応温度において、幅が広く、かつ薄いα型窒化珪素ナノベルトが得られるので、これ以上の温度に上げる必要はない。1350℃未満であると、α型窒化珪素ナノベルトの収量が低下する。反応時間は3.7時間で原料がほとんど消費されてしまうので、これ以上の時間をかける必要
はない。3.2時間未満であると、幅が広く、十分長いα型窒化珪素ナノベルトは得られな
い。
Then, the contents of the crucible are heated at 1350-1450 ° C. for 3.2-3.7 hours. Since a wide and thin α-type silicon nitride nanobelt can be obtained at a reaction temperature of 1450 ° C., it is not necessary to raise the temperature further. When the temperature is lower than 1350 ° C., the yield of α-type silicon nitride nanobelts decreases. Since the reaction time is 3.7 hours and most of the raw materials are consumed, it is not necessary to spend more time. If it is less than 3.2 hours, a wide and sufficiently long α-type silicon nitride nanobelt cannot be obtained.
加熱終了後、るつぼの内壁に白色の綿状の繊維状物が堆積する。この堆積物を分析すると、長さ数十マイクロメートル〜数百マイクロメートル、幅800〜1200ナノメートル、厚
さ20〜30ナノメートルで、格子定数a=7.743Å、c=5.619Åを有する六方晶系のα型窒化珪素ナノベルトであることが確認される。
After the heating, white cotton-like fibrous material is deposited on the inner wall of the crucible. When this deposit is analyzed, the hexagonal crystal has a length of several tens of micrometers to several hundreds of micrometers, a width of 800 to 1200 nanometers, a thickness of 20 to 30 nanometers, and a lattice constant of a = 7.743Å and c = 5.619Å. It is confirmed that this is an α-type silicon nitride nanobelt.
次に、実施例を示し、この出願の発明のα型窒化珪素ナノベルトの製造方法についてさらに具体的に説明する。 Next, an example is shown and the manufacturing method of the alpha silicon nitride nanobelt of the invention of this application is explained more concretely.
和光純薬工業(株)製の一酸化ケイ素粉末(純度99.9%)3gをアルミナ製るつぼの中に入れ
、このるつぼを縦型高周波誘導加熱炉の中央部に設置した。加熱炉を5×10-1Torrの減圧
にした後、加熱炉の上部からアンモニアガスを350sccmの流量で流し、加熱炉の下部から
アルゴンガスを400sccmの流量で流しながら、るつぼを1400℃で3.5時間加熱した。加熱終了後、加熱炉を室温に冷却すると、るつぼの内壁に白色の綿状の繊維状物が約2g堆積した。
3 g of silicon monoxide powder (purity 99.9%) manufactured by Wako Pure Chemical Industries, Ltd. was placed in an alumina crucible, and this crucible was installed in the center of a vertical high frequency induction heating furnace. After reducing the heating furnace to 5 × 10 −1 Torr, ammonia gas is flowed from the upper part of the heating furnace at a flow rate of 350 sccm, and argon gas is flowed from the lower part of the heating furnace at a flow rate of 400 sccm, while the crucible is 3.5 ° C. at 1400 ° C. Heated for hours. After heating, when the heating furnace was cooled to room temperature, about 2 g of white cotton-like fibrous material was deposited on the inner wall of the crucible.
図1に堆積物のX線回折のパターンを示した。この図1から格子定数a=7.743Å、c=5.619Åを有する六方晶系のα型窒化珪素であることが確認される。また、図1に示したピー
クからβ型窒化珪素や他の不純物は存在しないことも確かめられる。
FIG. 1 shows the X-ray diffraction pattern of the deposit. FIG. 1 confirms that it is a hexagonal α-type silicon nitride having lattice constants a = 7.743 Å and c = 5.619 Å. It can also be confirmed from the peak shown in FIG. 1 that β-type silicon nitride and other impurities are not present.
図2に堆積物の走査型電子顕微鏡像の写真を示した。長さが数十マイクロメートル〜数百マイクロメートル、幅が800〜1200ナノメートル、厚さが20〜30ナノメートルを有する
α型窒化珪素ナノベルトが得られていることが確認される。
FIG. 2 shows a photograph of a scanning electron microscope image of the deposit. It is confirmed that an α-type silicon nitride nanobelt having a length of several tens of micrometers to several hundreds of micrometers, a width of 800 to 1200 nanometers, and a thickness of 20 to 30 nanometers is obtained.
図3にX線エネルギー拡散スペクトルを測定した結果を示した。珪素と窒素のピークが
現れており、化学組成は化学量論組成の窒化珪素に近似していることが分かる。なお、図3に現れている銅のピークは、試料を作製する際に用いた銅グリッドに由来するものである。
FIG. 3 shows the result of measuring the X-ray energy diffusion spectrum. The peaks of silicon and nitrogen appear, and it can be seen that the chemical composition approximates to the stoichiometric silicon nitride. Note that the copper peak appearing in FIG. 3 is derived from the copper grid used in preparing the sample.
図4に、励起源として、波長325nmのHe-Cdレーザーを用いて、室温で測定した堆積物のフォトルミネッセンスのスペクトルを示した。400〜750nmにわたって幅の広いスペクトルを有し、575nmに最大の発光強度を示す白色の発光を示すことが分かる。 FIG. 4 shows a photoluminescence spectrum of the deposit measured at room temperature using a He—Cd laser having a wavelength of 325 nm as an excitation source. It can be seen that it has a broad spectrum from 400 to 750 nm and emits white light with the maximum emission intensity at 575 nm.
この出願の発明により、高純度のα型窒化珪素ナノベルトが製造可能となった。したがって、フォトルミネッセンスをはじめとする光学デバイスへの応用が期待される。 The invention of this application made it possible to produce a high-purity α-type silicon nitride nanobelt. Therefore, application to optical devices including photoluminescence is expected.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004088043A JP4016111B2 (en) | 2004-03-24 | 2004-03-24 | Method for producing α-type silicon nitride nanobelt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004088043A JP4016111B2 (en) | 2004-03-24 | 2004-03-24 | Method for producing α-type silicon nitride nanobelt |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005272208A JP2005272208A (en) | 2005-10-06 |
JP4016111B2 true JP4016111B2 (en) | 2007-12-05 |
Family
ID=35172263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004088043A Expired - Lifetime JP4016111B2 (en) | 2004-03-24 | 2004-03-24 | Method for producing α-type silicon nitride nanobelt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4016111B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104891456B (en) * | 2015-06-04 | 2017-06-30 | 中国人民解放军国防科学技术大学 | A kind of one-dimensional α Si3N4Nano material and preparation method thereof |
CN109319750B (en) * | 2018-11-13 | 2020-10-09 | 江西宏柏新材料股份有限公司 | Method for preparing alpha-silicon nitride nanobelt by microwave heating |
CN110931744B (en) * | 2019-11-29 | 2021-03-16 | 深圳技术大学 | Silicon-carbon negative electrode material and preparation method thereof |
-
2004
- 2004-03-24 JP JP2004088043A patent/JP4016111B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005272208A (en) | 2005-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yin et al. | Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si 3 N 4) single-crystalline nanobelts | |
Hu et al. | Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons | |
Cheng et al. | Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition | |
Cheng et al. | Zinc oxide single-crystal microtubes | |
Maestre et al. | Hexagonal boron nitride: a review on selfstanding crystals synthesis towards 2D nanosheets | |
Li et al. | Single crystal growth of monoisotopic hexagonal boron nitride from a Fe–Cr flux | |
Wang et al. | Photoluminescence properties of quasialigned ZnCdO nanorods | |
US20080003162A1 (en) | 3C-SiC nanowhisker and synthesizing method of the same | |
Zhuang et al. | Nanoscale integration of SiC/SiO2 core-shell nanocables in diamond through a simultaneous hybrid structure fabrication | |
Liu et al. | Large scale synthesis of α-Si3N4 nanowires through a kinetically favored chemical vapour deposition process | |
JP4016111B2 (en) | Method for producing α-type silicon nitride nanobelt | |
CN104891456A (en) | One-dimensional alpha-Si3N4 nano material and preparation method thereof | |
JP4431745B2 (en) | Method for producing aluminum nitride nanoribbon | |
JP5120797B2 (en) | Silicon carbide nanostructure and manufacturing method thereof | |
Kim et al. | Temperature-controlled growth and photoluminescence of AlN nanowires | |
Suzuki et al. | Crystal growth of β-Ga2O3 by electric current heating method | |
Mofor et al. | Vapour transport growth of ZnO nanorods | |
JP4930952B2 (en) | Aluminum nitride nanoribbon | |
Zhang et al. | Synthesis and optical properties of single crystalline GaN nanorods with a rectangular cross-section | |
JP4072622B2 (en) | Method for producing single crystal β-type silicon nitride nanoribbon | |
Chen et al. | Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst | |
JP2005349515A (en) | Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof | |
JP3921538B2 (en) | Method for producing single crystal zinc selenide nanowire | |
JP2004339020A (en) | Method for manufacturing gallium nitride nanotube | |
JP4576604B2 (en) | Method for producing single crystal indium nitride nanotube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4016111 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |