JP4927849B2 - スペクトル拡散無線通信に関する分数的に間隔を隔てられた等化器 - Google Patents

スペクトル拡散無線通信に関する分数的に間隔を隔てられた等化器 Download PDF

Info

Publication number
JP4927849B2
JP4927849B2 JP2008531385A JP2008531385A JP4927849B2 JP 4927849 B2 JP4927849 B2 JP 4927849B2 JP 2008531385 A JP2008531385 A JP 2008531385A JP 2008531385 A JP2008531385 A JP 2008531385A JP 4927849 B2 JP4927849 B2 JP 4927849B2
Authority
JP
Japan
Prior art keywords
equalizer
diversity
outputs
equalization
estimated channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008531385A
Other languages
English (en)
Other versions
JP2009509420A (ja
Inventor
サブラーマンヤ、パーバサナサン
カン、インユプ
フェイ、ジャ
サンダレサン、ラジェシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2009509420A publication Critical patent/JP2009509420A/ja
Application granted granted Critical
Publication of JP4927849B2 publication Critical patent/JP4927849B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7105Joint detection techniques, e.g. linear detectors
    • H04B1/71057Joint detection techniques, e.g. linear detectors using maximum-likelihood sequence estimation [MLSE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0845Weighted combining per branch equalization, e.g. by an FIR-filter or RAKE receiver per antenna branch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure
    • H04L25/03044Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure using fractionally spaced delay lines or combinations of fractionally integrally spaced taps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0673Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03509Tapped delay lines fractionally spaced
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03292Arrangements for operating in conjunction with other apparatus with channel estimation circuitry

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Transmission System (AREA)

Description

米国特許法第119条(35U.S.C.§119)に基づく優先権の主張
本特許出願は、本出願の譲渡人に譲渡され、かつここにその全体が参照によって本明細書に明白に組み込まれる、2005年9月15日に出願された「FRACTIONALLY−SPACED EQUALIZERS FOR SPREAD SPECTRUM WIRELESS COMMUNICATION」と題する米国特許仮出願第60/717785号に基づいて優先権を主張する。
いくつかのスペクトル拡散無線通信技法が開発されている。例えば、無線通信において使用される1つの一般的なスペクトル拡散技法は、符号分割多元接続(CDMA)信号変調である。CDMA信号変調において、複数の通信が、共通のスペクトル拡散無線(RF)チャネルにわたっていくつかの送信デバイスによって同時に送信されることができる。異なる受信デバイスが、CDMA符号を使用してスペクトル拡散RFチャネルから異なる信号を抽出することができる。
CDMA信号変調に関して、各送信デバイスは、情報の各ビットを「チップ(chips)」と呼ばれる2進単位の流れへ拡散するために独特な直交符号を使用する。チップは、一般にアナログベースバンド信号に変換され、アナログベースバンド信号は、次に、例えば搬送波形上のベースバンド信号の変調および恐らく送信周波数へのアップコンバージョン(upconversion)によって、無線送信されることができる。従来CDMA拡散技法において、チップは、一般に、直交「ウォルッシュ(Walsh)符号」および擬似雑音(pseudo−noise)(PN)符号を使用して生成される。他の拡散技法は、チップへのビットの拡散を容易にするために、直交可変拡散要因(OVSF)符号を使用することができる。
受信デバイスは、搬送波形を受信し、搬送波形は、送信されたチップを含むが、例えば他の送信デバイスまたは非CDMA送信機からのチャネル雑音も含む。受信デバイスは、ベースバンド周波数に受信した信号をダウンコンバート(downconvert)し、搬送波形からベースバンド信号を抽出し、かつベースバンド信号を、チップを表すデジタルサンプルに変換する。受信デバイスは、次にチップから情報ビットを抽出するために知られている符号を使用する。例えば、受信デバイスは、チップを符号化された情報をからなるビットに逆拡散(despread)するために、逆拡散およびデカバリング(decovering)技法を実施することができる。復調技法が、次にビットから符号化された情報を抽出するために使用される。
マルチパス(multi-path)現象を取り扱うために、CDMA受信機アーキテクチャは、一般的に「RAKE」受信機と呼ばれるものを実装する。RAKE受信機は、いくつかの異なる時間遅延で同一の信号を抽出する複数の「フィンガ(fingers)」を含む受信機と考えられることができる。送信される信号は、例えば、受信デバイスへのマルチプル(multiple)経路をたどることができ、異なる経路は、異なる時間遅延を導入することがある。さらに、マルチパス信号の異なる経路は、マルチパス信号の他の経路に対して雑音を生成する。異なる時間遅延でRAKEフィンガを規定することによって、RAKE受信機は、同一の信号のマルチプル例を抽出し、かつ復調に関して最も強力な経路を選択し、または復調に関して信号を規定するためにマルチプル経路を結合することができる。
マルチパス雑音および他のシステム雑音を取り扱うために、等化技法が開発された。等化器は、受信信号からシステム雑音をフィルタ(filter)するために、受信デバイスで一般に実装される。等化器は、本質的に、望ましくないチャネル雑音を取り除くために受信した信号をフィルタする可変および適応フィルタである。等化器で行われるフィルタリング(filtering)は、典型的に、チャネル雑音が変化するにつれ、時間にわたって変化する。さらに、等化器は、受信した信号の復調において不可欠な役割を果たすことができる。
CDMA通信に使用されてきた1つのタイプの等化設計は、ゼロ強制等化器(zero forcing equalizer)である。ゼロ強制等化器は、送信デバイスに関連するチャネル応答を取り除くために、予想されるチャネル雑音を反転させる。特に、ゼロ強制等化器は、
1/(チャネルの周波数応答)
に従って適応フィルタリングを規定することができる。このアプローチは、マルチパス現象から結果的に生じる雑音および干渉を適切に考慮できるが、、同一のチャネルで通信する他のデバイス(基地局など)からのシステム雑音は適切に考慮しない。この理由のために、ゼロ強制等化技法は、特にチャネルが非常に低い利得を有するときに、有効ではないことがある。そのような場合、他の基地局からのシステム雑音は、ゼロ強制等化器によって実際に増幅されることがあり、非常に望ましくない。
CDMA受信機に使用される他のタイプの等化器は、最小2乗平均誤差(MMSE)等化器と呼ばれる。ゼロ強制等化器と同様に、MMSE等化器は、送信基地局に関連するチャネル応答を取り除くためにチャネルを反転する。しかしながら、ゼロ強制等化器とは異なり、MMSE等化器は、無線チャネルにわたって通信する他の源からの雑音の望ましくない増幅を低減または避けるために、チャネル分散も考慮する。
MMSE等化器は、一般に、チャネルインパルス応答を推定し、かつチャネル分散を推定する。MMSE等化器は、次に、推定されたチャネルインパルス応答およびチャネル分散に基づいて等化に関するフィルタ係数(フィルタタップ)を選択する。従来のMMSE等化器は、フィルタ係数が、RAKE受信機の時間遅延の整数倍数(multiples)であることを一般に想定する。時間遅延は、チップ間隔で規定され、したがって従来のMMSE等化器におけるフィルタ係数は、整数のチップ数で規定される。
[発明の概要]
一般に、本開示は、スペクトル拡散無線通信のための等化技法を説明する。本技法は、チャネルインパルス応答を推定することと、チャネル分散を推定することと、推定されたチャネルインパルス応答および推定されたチャネル分散に基づいて等化器に関するフィルタ係数を選択することとを含むことができる。本開示によれば、チャネル分散推定は、異なる受信サンプルに関する2つ以上の共分散の推定を含む。
特に、等化器は、「分数的に間隔を隔てられ(fractionally spaced)」、それは、フィルタリング係数が整数チップ間隔で規定されると想定される従来の等化器とは異なり、等化器が、分数フィルタリング係数(フィルタタップ)を規定することを意味する。本技法は、等化器が、受信ダイバシティ、送信ダイバシティ、または場合によっては両方などのアンテナダイバシティを考慮することを可能にすることもできる。
一実施形態において、本開示は、スペクトル拡散無線通信システムにおける等化の方法を説明し、方法は、チャネルインパルス応答を推定することと、異なる受信サンプルに関する2つ以上の共分散を計算することによってチャネル分散を推定することと、推定されたチャネルインパルス応答および推定されたチャネル分散に基づいて、等化器に関するフィルタ係数を選択することとを含む。
他の実施形態において、本開示は、スペクトル拡散無線通信に関する等化の方法を説明し、方法は、推定されたチャネルインパルス応答および推定されたチャネル分散に基づいて、2つ以上の等化フィルタに関するフィルタリング係数を選択することと、アンテナダイバシティに基づき2つ以上の等化フィルタの出力を結合することとを含む。
他の実施形態において、本開示は、スペクトル拡散無線通信デバイスを説明し、スペクトル拡散無線通信デバイスは、無線信号を受信する受信機と、等化器であって、チャネルインパルス応答を推定し、信号の異なる受信サンプルに関する2つ以上の共分散を計算することによってチャネル分散を推定し、かつ推定されたチャネルインパルス応答および推定されたチャネル分散に基づいて、等化器に関するフィルタ係数を選択する等化器とを備える。
他の実施形態において、本開示は、スペクトル拡散無線通信デバイスのための等化器を説明し、等化器は、推定されたチャネルインパルス応答および推定されたチャネル分散に基づいて、2つ以上の等化フィルタに関するフィルリング係数を選択し、かつアンテナダイバシティに基づき2つ以上の等化フィルタの出力を結合するように構成される。
本明細書に説明される技法は、ハードウエア、ソフトウエア、ファームウエア、または任意のその組合せにおいて実施されることができる。ソフトウエアにおいて実施される場合、該技法はコンピュータ可読媒体において実現されることができ、該コンピュータ可読媒体は、スペクトル拡散無線通信デバイスで実行されると、本明細書に説明される1つ以上の技法にしたがって等化をデバイスに実行させるプログラムコードを具備する。
これらおよび他の実施形態のさらなる詳細は、添付の図面および以下の説明に示される。他の特徴、目的、および利点は、説明および図面、ならびに特許請求の範囲から明らかになる。
[詳細な説明]
一般に、本開示は、スペクトル拡散無線通信に関する等化技法を説明する。説明された等化技法は、従来の最小2乗平均誤差(MMSE)等化技法に関して等化フィルタリングを改善することができる。技法は、チャネルインパルス応答を推定することと、チャネル分散を推定することと、推定されたチャネルインパルス応答および推定されたチャネル分散に基づいて、等化器に関するフィルタ係数を選択することとを含む。
本開示の教示によれば、等化器は、「分数的に間隔を隔てられ」、それは、等化器が、分数フィルタリング係数(フィルタタップ)を規定することを意味する。そのような分数的に間隔を隔てられた等化器は、フィルタ係数が、マルチパス信号の時間遅延の整数倍数であると想定される従来の等化器とは対照的である。特に、従来のMMSE等化技法は、整数のチップ数に対応する間隔を有するフィルタ係数を規定する。
分数的に間隔を隔てられた等化に関するチャネル分散を計算するために、異なる受信サンプルから2つ以上の共分散が必要とされ得る。例えば、共分散は、受信信号の奇数および偶数のサンプルに関して決定されることができる。等化器に関するフィルタ係数は、次に、推定されたチャネルインパルス応答、ならびに奇数および偶数のサンプルに関して決定された共分散に基づき規定されることができる。
本明細書に説明される技法は、等化器が、受信ダイバシティ、送信ダイバシティ、または場合によっては両方などのアンテナダイバシティを考慮することを可能にすることもできる。アンテナダイバシティとは、送信または受信デバイスが、無線信号の送信または受信のためのマルチプルアンテナを実装する無線通信のことである。送信ダイバシティは、マルチプル送信アンテナからの信号送信を含む。受信ダイバシティは、マルチプル受信アンテナを使用する信号の受信を含む。
図1は、通信チャネル15にわたって受信デバイス14へスペクトル拡散無線通信を送信する送信デバイス12を含む無線通信システム10を示すブロック図である。送信デバイス12は、基地局を備えることができ、かつ受信デバイス14は、移動体ハンドセットを備えることができる。代わりに、送信デバイス12は、移動体ハンドセットを備えることができ、かつ受信デバイスは、基地局を備えることができる。いずれの場合も、受信デバイス14は、本明細書に説明されるように等化技法を実行する等化器16を含む。
例えば、以下に概説されるように、等化器16は分数的に間隔を隔てられる。したがって、等化器16は、分数フィルタリング係数(フィルタタップ)を規定する。等化器16は、チャネル分散を計算するために、異なる受信サンプルからの2つ以上の共分散を決定することができる。共分散は、受信信号の奇数および偶数サンプルに関して決定されることができる。等化器16に関するフィルタ係数は、次に、奇数および偶数のサンプルに関して決定された共分散ならびに推定されたチャネルインパルス応答に基づき規定されることができる。
図2は、図1のシステム10に対応することができるシステム20のより詳細なブロック図である。図2のシステム20は、スペクトル拡散無線通信を通信チャネル25にわたって受信デバイス24に送信する送信デバイス22を含む。
図2に示されるように、送信デバイス22は、パルス成形器(shaper)31を含むことができる。パルス成形器31は、一般に、スペクトル拡散無線通信基準に従って搬送波形へのベースバンドチップの変調を行う様々なユニットまたはコンポーネント(components)を表す。送信デバイス22はまた、送信フィルタ32を含む。情報は、通信チャネル25を介して受信デバイス24へ送信デバイス22から送信される。
受信デバイス24は、加算器35および受信フィルタ36などの様々なRF処理コンポーネントを含む。加算器への示される入力「N(0、sigma)」は、平均ゼロおよび2乗分散シグマを有する雑音を表す。等化器38は、分数チップ値で入力を扱うことができるプログラム可能なタップを有する。受信デバイス24は、成形解除器(de−shaper)39も含み、成形解除器39は、一般に、スペクトル拡散無線通信基準に従って搬送波形からベースバンドチップを取り除くために、ダウンコンバージョンを実行するユニットまたはコンポーネントを表す。送信デバイス22でのデジタルアナログ変換および受信デバイス24でのアナログデジタル変換が、図2に示されていないことに留意すべきである。送信デバイス22でのデジタルアナログ変換は、典型的に、送信フィルタ32によるフィルタリングの前に生じ、一方、アナログデジタル変換は、典型的に、受信フィルタ36によるフィルタリングの前に生じる。
図2の表記は、複素数値のチップを考慮する。送信機および受信機でのフィルタリングは、典型的に、チップレートのM倍で行われ、ここで、Mは、チップ毎のサンプルの数を表す。しかしながら、他のフィルタリングレートが使用されることもできる。チャネルインパルス応答は、チップレート間隔のM倍に対応することができる。等化器38は、Tc/Mだけ間隔を隔てられたタップを有し、ここで、Tcは秒単位のチップ期間を表し、Mはチップ毎のサンプルの数を表す。
以下の表1は、本開示で使用される様々な記号、およびそのような記号の対応する説明を概説する:
Figure 0004927849
再び図1を参照すると、等化器16への入力は、
Figure 0004927849
として表されることができ、一般的に以下の式によって与えられることができる。
Figure 0004927849
送信されたチップx(tT)の線形表現を達成するMMSEを識別することが望ましく、ここで、tは受信されたyストリームの有限数の記号に基づく整数である。これは、結果として以下の式になる:
Figure 0004927849
フィルタリングのエンドポイント(end points)は、両方のエンドが含まれる時間インスタンス(time instance)aT/MおよびbT/Mであり得る。フィルタ間隔Lタップに関して、量aおよびbは、例えば、a=−L/2+1およびb=L/2であり得る。量c(kT/M)は、等化器フィルタ係数を構成する。
本開示による1つのゴールは、以下によって表される平均2乗誤差を最小化することである:
Figure 0004927849
この最小化の実行において、等化器のチップ間隔を隔てられた出力は、非常に重要であり、したがってターゲット時間インスタンスtTは、また非常に重要であり、ここでtは整数である。
Figure 0004927849
によって与えられる誤差は、推定を生成する観察(observations)に直交であるべきである。換言すれば、固定された
Figure 0004927849
について、以下の式が成り立つ:
Figure 0004927849
この予測は、入力(IORに向かって寄与する)の全てのコンポーネントの統計、スクランブル(scrambling)シーケンスの統計、および雑音の統計に関して適用される。IORは、全基地局パワーを表す。式の上記組は、固定された
Figure 0004927849
について
Figure 0004927849
として書き直されることができる。
交差相関(cross correlation)項は、式1を使用して決定されることができ、以下のようである:
Figure 0004927849
式5を生じる上記一連の等式において、式1を使用することにより、第1の等式が続き、kがtM−jによって置換される。送信された記号x(tT)が、雑音シーケンスwに無関係であり、かつ、スクランブルシーケンスは、ゼロ平均を有するi.i.d.(独立同一分布)シーケンスであるので、nがtに等しくないときに、x(nT)に相関されていないので、第2の等式が続く。送信された記号x(tT)が、異なる直交可変拡散係数(OVSF)符号に無関係のゼロ平均データを含むので、第3の等式が続く。さらに、
Figure 0004927849
自動相関 (auto-correlation)項は、以下のように評価されることができる:
Figure 0004927849
式6を導く上記一連の式は、以下のように得られることができる。第1の等式は、第1のy項におけるtM−kおよび第2のy項におけるtM−jによって置き換えられたkで式1の置き換えに続く。パルス成形フィルタの入力での信号x(tT)が、チャネルによって追加された雑音に無関係であるので、第2の式が続く。スクランブルシーケンスは0平均を有するi.i.d.であるので、第3の式における第1の項が続き、したがって、
Figure 0004927849
すなわち、x(tT)が、単位エネルギと相関されない。したがって、(nおよびmにわたる)二重の合計は、(mにわたる)単一の合計になる。これは、受信機の平方根レイズドコサイン波形(root-raised-cosign waveform)によってフィルタリングされた白色雑音の結果であるので、第2の項が続く。最後の式は、l=t−mを設定することによって、および、1が整数を通して続く(runs through)とき、mもそうであることを観測することによって、得られる。
平方行列AおよびR((b−a+1)要素の)は、以下のように規定されることができる:
Figure 0004927849
および
Figure 0004927849
式4における直交性条件は、次に以下のように表現されることができる:
Figure 0004927849
これは、以下のような行列形態で同等に表現される:
Figure 0004927849
式10が直感的な意味を作ることを理解するために、M−1(チップ間隔を隔てられた等化器に関して)であるとき、雑音が優勢である、すなわち、R+A≒σIである特別な場合を考慮することができる。この場合、cが、h(−n)、すなわちチャネルインパルス応答に一致するレイク(rake)フィルタに比例することは明らかである。ベクトルcが、フィルタが書き込まれるときに丁度書き込まれるが、hを含む式10の右側のベクトルは、時間が逆の順番で書き込まれることに留意すべきである。
いくつかの重要な観察は、式10に関して行われることができる。第1に、AおよびRが、エルミート行列である。これらは、それぞれ式7および式8から、およびrシーケンスが対称的であり実数である特性から容易に確認できる。
第2に、Aは、一般にToeplitz行列ではない。これを理解するために、単純にM=2であるとして、A(0、0)およびA(1、1)を考える。これらは、以下によって与えられる:
Figure 0004927849
第1の量は、複合チャネル応答の複数のオンタイムコンポーネントのエネルギである(複合チャネルが送信される場合、チャネルおよび受信機フィルタがまとめられる(taken together))。第2の量は、複合チャネル応答の複数の早期コンポーネントのエネルギである。これら2つの要素は必ずしも同一ではない。Aの非Toeplitz性質となる重要な事実は、パルス成形フィルタになるchipxM入力シーケンスの静的でない(より厳密には、広い意味で静的でない)性質である。そのため、等化器フィルタへの入力のMの位相のそれぞれは異なる統計を有する。
A(j、k)は、M=2である場合に関して以下のように単純化されることができる。
Figure 0004927849
に関して、量A(j−k)は、以下のように規定されることができる:
Figure 0004927849
同様に、
Figure 0004927849
に関して、量A(j−k)は、以下のように規定されることができる:
Figure 0004927849
量A(j−k)は、オンタイムサンプルに対応する開始アドレスを有する、(j−k)T/2秒だけ間隔を隔てられたサンプル相関を表す。量A(j−k)は、(j−k)T/2秒だけ間隔を隔てられたサンプル相関を表すが、早期のサンプルに対応する開始アドレスを有する。
aが奇数整数であると仮定され、かつbが偶数整数であると仮定されるなら、行列Aは、以下の形態に特定される。
Figure 0004927849
上記行列の対角線要素は、M=2の場合について交互する。一般に、対角線要素は、Mの周期性で繰り返す。行列が、もはやToeplitzではないので、周波数領域等化を用いるときに、注意を払わなければならない。これを行うために、行列は、4つのより小さいToeplitz行列に分解されることができ、4つのより小さいToeplitz行列は、周波数領域等化を実行するために使用されることができる。
文献[S.U.H Qureshi氏による、「Adaptive Equalizaton」、Proceeding of the IEEE 、第73巻、第9号、第1349〜1387頁、1985年9月]に記載されるように、1より小さい過剰帯域幅を有するシステムにおいて(特に、WCDMAシステム内のパルス幅は、0.22の過剰帯域幅を有する)、有限数の等化器タップに対応する相関行列は、雑音が存在しないときでも正則(nonsingular)である。最小2乗平均(LMS)アルゴリズムは、したがって高い幾何学条件(geometry conditions)においてさえ唯一の解に収束する(converge)。
図1を再び参照すると、受信デバイス14の等化器16において、相関およびチャネルインパルス応答は、等化器16によるフィルタリングに関する分数タップ間隔となるT/2の間隔、すなわちM=2で得られる。上記で示されるように、kが整数であるとき、
Figure 0004927849

Figure 0004927849
とは異なる。第1の量は、オンタイム開始アドレスに対応し、第2の量は、早期の開始アドレスに対応する。したがって、等化器16が以下の量の推定に戻されることができることが非常に望ましい:
Figure 0004927849
これらは、下記のように推定される(真の値の代わりに推定された値を示す脱字記号(caret symbol)を有する):
Figure 0004927849
上記これらの式から直接見られることができるように、開始アドレスは、2つの推定に関して1/2チップだけオフセットされる。さらに、sにわたる累算(accumulation)はチップ間隔である。最後に、累算長さは、プログラム可能な設定であり得るパラメータである。この累算長さを、例えば256の倍数であるように設定することが都合がよいかもしれない。これは、行列A+Rの対角線要素の改善された推定を提供することもできる。
量2(b−a+1)は、等化器への入力の相関行列を記述する。特に、この量は、A+R行列の下側三角形部分を記述する。行列の上側三角形部分は、AおよびRの両方がエルミート行列であるので、自動的に決定されることができる。
一実施形態において、等化器16の機能性は、ソフトウエアおよびハードウエアで実施される。ソフトウエアは、アドレスtTで始まる均一の相関累算をプログラムするデジタル信号プロセッサ(DSP)(図1に示されていない)で実行することができる。この場合、等化器16内のハードウエアは、
Figure 0004927849
を与える相関の第1の部分集合(subset)に関する開始アドレスtTの累算、および
Figure 0004927849
を与える相関の第2の部分集合に関する開始アドレスtT−T/2の累算に対応する推定の両集合(sets)を戻すことができる。
等化器16の代替の第2の実施について、DSPで実行するソフトウエアは、第1の時間に関する開始アドレスtTおよび第2の時間に関して開始アドレスtT−T/2をプログラムすることによって、相関を2回トリガーする(trigger)ことができる。等化器16におけるハードウエアは、プログラムされた開始アドレスが「オンタイム」サンプルに対応するのか、あるいは「早期」サンプルに対応するのかに依存して、
Figure 0004927849
または
Figure 0004927849
のいずれかに戻ることができる。この場合、DSPは、上述の第1の実施で得られた同一情報を得るために2つのタスクをプログラムする。いずれの場合においても、ハードウエアは、従来のチャネルインパルス応答推定技法に従って、チャネルインパルス応答を推定するために使用されることもできる。
DSP上で実行するソフトウエアは、相関行列がToeplitzではない事実を考慮することによって相関推定を利用することができるが、4つのToeplitzサブマトリックス(sub-matrices)に分割されることができる。これらToeplitzサブマトリックスは、次に、所望であれば周波数領域等化を実施するために利用されることができる。
上述のように、本明細書に説明される等化技法は、アンテナダイバシティを扱うことができる。再び、アンテナダイバシティとは、送信または受信デバイスが、無線信号の送信または受信のためにマルチプルアンテナを実装する無線通信のことを指す。送信ダイバシティは、マルチプル送信アンテナからの信号送信を含む。受信ダイバシティは、マルチプル受信アンテナを使用する信号の受信を含む。
送信ダイバシティに関して、パイロットおよびデータチャネルが、符号分割多重化(WCDMAシステムにおけるように)されていると仮定する。2つの異なるアンテナ上のパイロットパターンは、サーチャ(searcher)が送信機から受信機への経路上のチャネルのインパルス応答を識別することを可能にすることができる。特に、共通パイロットチャネル(CPICH)上のパターンは、以下のようであることができる:
Figure 0004927849
上記で示される各符号(1または−1)は、複素記号(後でスクランブルされる)を生じるために(1+j)だけ乗算される256チップ記号である。フレーム内に150個の記号が存在することができる。特に、周期性は、150MOD4=2および150個の記号内で4であり得る。したがって、最後のパターンは完成されていない可能性があり、上記パターンはフレームの開始でリセットされる可能性がある。
閉ループ送信機ダイバシティにおいて、第2のアンテナ(Ant1)上のデータは、第1のアンテナ(Ant0)上のデータに対して一定の位相オフセットを有することができる。この位相オフセットは、スロット毎に1回のレートで変化することができる。以下の表現
Figure 0004927849
は、2つの異なるアンテナからの結合された送信として示される。次に、
Figure 0004927849
が、送信アンテナaから受信機(この実施例において単一のアンテナ受信機であると仮定される)へのチャネル応答を表すとする。受信された信号は、次に、
Figure 0004927849
によって与えられる。
2つの送信アンテナ上のデータ信号の位相オフセットは、受信機でデータ信号が互いに強化するように、データを位置合わせするように設定されることができる。したがって、MMSEの意味で、一方の等化器を、
Figure 0004927849
を生成するように構成し、他方の等化器を、
Figure 0004927849
を生成するように構成することは、正しい基準ではない。これは、等化の実施において、チャネル間の位相オフセットが存在することを知らせる情報が失われ、かつデータがこれを補償するために再度位置合わせされる必要があるからである。
d(kT/M)が、0番目のアンテナにわたって送信される半チップデータコンポーネントを表し、かつ(w)d(kT/M)が、1番目のアンテナにわたって送信される半チップデータコンポーネントを表すとする。この場合、目標は、チップインスタンス(chip instances)で
Figure 0004927849
を最小化することであり、z(tT)は、cで置き換えられたcを有する式2によって与えられ、下付き文字dは、MMSEの意味で実際のデータを生成するように構成されるフィルタを表す。図3の直交性原理は、式5と類似する方法で交差項の評価を必要とすることがある。これは、以下のように与えられる:
Figure 0004927849
上記一連の等式において、第1の等式は、式11を使用することによって、tM−jによって置き換えられたkに従う。送信された記号d(tT)が、雑音シーケンスwに無関係であり、かつ、スクランブルシーケンスは、i.i.d.シーケンスであるので、nがtに等しくなく、a=0、1のとき、xa(nT)に相関されていないので、第2の等式が続く。送信された記号d(tT)が、異なるOVSF符号に無関係のゼロ平均データを含むので、第3の等式が続く。さらに、2つのアンテナ上のこのデータの重み(weights)は1およびwである。
自己共分散行列(autocovariance matrix)は、ちょうど上記で概説されたように、A+Rとして示されることができる。AおよびRがh0およびh1に依存する方法は異なるが、自己共分散を推定し、かつ等化器フィルタを得るためにこの推定された行列を使用することができるので、これは重要ではない。
解くべき最終的な行列式は、
Figure 0004927849
である。式12における行列Aは、式10における行列Aとは異なることがあることを強調すべきである。
この点で、時間tでのパイロットチップ、すなわちp(tT)を等化することが望ましい。これは、任意の受信機で生じる位相アーチファクト(artifact)を補償するために必要であり、等化後に実行される。上記で概説された技法に類似する技法は、
Figure 0004927849
を最小化するために使用されることができ、ここで、zは、等化されたパイロットシーケンスである。式12に類似する以下の式が得られる:
Figure 0004927849
ここで、wp,iは、対象のチップtに関するアンテナ0に対するアンテナ1のパイロット重みである。これは、10ミリ秒のフレーム内の256チップ位相に応じて1または−1のいずれかである。この重みに従って、等化器フィルタはcp,iによって表され、ここでI=0または1が使用され、ここにおいて、cは等化フィルタ重み(tap)を表し、pはパイロットを表し、iは送信アンテナ数を表す。
特に、データおよびパイロット等化は、i=0、1に関する以下の式を満足する2つの組の等化器コンポーネントフィルタcを使用して同時に達成されることができる:
Figure 0004927849
以下の式は、コンポーネントフィルタcおよびcから、データおよびパイロット等化器係数を与える:
Figure 0004927849
および
Figure 0004927849
ここで、wp,iは、1または−1である。
パイロットおよびデータ等化器フィルタの両方に関する出力を達成するために、等化器16(図1)は、コンポーネントフィルタcおよびcを実施するようにプログラムされたデジタル信号プロセッサ(DSP)を含むことができる。同一のデータは、2回フィルタされることができ(データフィルタおよびパイロットフィルタそれぞれで1回)、かつ閉ループ送信ダイバシティ(CLTD)重みに基づいて集められる(put together)ことができる。
Figure 0004927849
のスケーリング(scaling)は、既に含められるべきである。同様に、パイロットは、フレーム内の記号に関するパイロット重みに基づいて集められる。等化後のドット・クロスブロック(dot-cross block)は、パイロットエネルギスケールに対して過剰なトラフィックを有する。特に、
Figure 0004927849
の代わりに、等化後のドット・クロスブロックは、復調器バックエンド(backend)へ信号を送信する前に、スケーリングにおいて補償されることができる
Figure 0004927849
のスケール(scale)を有する。
図3は、受信信号をフィルタリングする等化器60を含む無線通信デバイス50の一実施形態を示すブロック図である。無線通信デバイス50は、スペクトル拡散無線信号を受信するために1つ以上のアンテナ52を含むことができる。本明細書で概説したように、説明された等化技法は、アンテナダイバシティまたはダイバシティなしを取り扱うために実施されることができる。
無線通信デバイス50は、フロントエンド(frontend)51およびバックエンド61を有するとして特徴付けられることができる。フロントエンド51は、受信信号の任意の必要または望ましいアナログ処理を実施するために、RFアナログ処理コンポーネント54を含む。フロントエンド51は、受信信号をデジタルサンプルへ変換するためにアナログデジタル変換器56も含む。
等化器60は、本明細書に説明される1つ以上の等化技法を実施する。特に等化器60は、チャネルインパルス応答を推定し、異なる受信信号に関する2つ以上の共分散を計算することによってチャネル分散を推定し、かつ推定されたチャネルインパルス応答および推定されたチャネル分散に基づいて、等化器に関するフィルタ係数を選択するように構成されることができる。等化器60は、1/2チップだけ間隔を隔てられたフィルタタップを有し分数的に間隔を隔てられる。
バックエンド61は、フロントエンド51によって生成される記号を処理するために使用されることができる様々なコンポーネントを含む。一実施例において、バックエンド61は、データに加えられる任意のインタリーブを取り除くためのデインタリーバ(de−interleaver)と、デレートマッチング(de−rate matching)を実行するためのデレートマッチングユニットと、データを復号するための復号器とを含む。直交増幅変調に関して、損失尤度比(loss likelihood ratio)(LLR)抽出は、デインタリービングの前にバックエンド61によって実行されることができる。いずれの場合においても、デジタル信号プロセッサ(DSP)は、スペクトル拡散復調によるバックエンド61技法を実施するために使用されることができる。いくつかの実施形態において、バックエンド61で実行されるDSPは、等化の様々な態様を実行するために等化器60によってもたらされることができる。
図4は、等化器70の様々な例示的なステージを示す一例示的なブロック図である。図4に示されるステージは、典型的に、後続の図面で示される他のステージが続く。したがって、等化器70は、一般に、等化器60によって実行される等化のより早期にステージ(図3)に対応することができる。例示的なビット長さが図4に示されるが、ビット長さは、実施に関して所望であれば変更されることができる。同様に、以下に説明される多くの他の図は、例示的なビット長さを示す。しかしながら、これらは、他の実施に関して変更されることができる。
サンプルサーバ72は、一般的に、アナログデジタル変換の後でサンプルを格納するメモリの一部を表す。回転子(rotator)73は、受信サンプル内の周波数誤差を相殺し、かつそれらをドット・クロス74に転送する。ドット・クロス74および合計ユニット(summation unit)75は、まとめて等化器70のフィルタと見なされることができる。
ドット・クロス74は、ドット・クロス動作を実行し、ここにおいて、
Figure 0004927849
である。図5Aおよび図5Bは、それぞれ以下を解くために使用されることができるハードウエアを示す:
Figure 0004927849
ハードウエアにおける便宜のために、対称の飽和が使用されることができ、すなわち、範囲は、[−(2^(K−1)−1)、(2^(K−1)−1)]であることを許容することができ、ここで、Kは飽和後に使用されるビット数を表す。図5Aに示されるように、実数積ユニット(product real unit)84は、それぞれの入力を受け(示されるように)、かつ加算器ユニット87によって互いから減算される出力を生成する2つの乗算ユニット85、86を含む。図5Bに示されるように、虚数積ユニット(product imaginary unit)94は、それぞれの入力を受け(示されるように)、かつ加算器ユニット97によって互いに加算される出力を生成する2つの乗算ユニット95、96を含む。
再び図4を参照すると、より多いまたはより少ないタップが規定されることができるが、合計ユニットは、64個のタップにわたって合計する。プログラム可能な丸めユニット76(programmable rounding unit)は、実施に従った丸めを実行する(この例において、[3...13]の範囲にビットを丸める)。飽和ユニット77は、信号に飽和を実行し、デスクランブル(descramble)ユニット78は、知られている符号を使用して信号をデスクランブルする。等化器出力ボックス79は、一般に、メモリ内に格納されることができる等化器70の出力を表す。異なるメモリアドレスが、異なるダイバシティシナリオに関連する異なる等化器出力に関して規定されることができる。
図6A〜図6Cは、本開示の実施形態による異なるダイバシティシナリオに関するメモリに書き込まれた等化器出力をそれぞれ示すブロック図である。特に、図6Aは、ダイバシティなしシナリオを示し、送信デバイスおよび受信デバイスが、それぞれ単一の(非ダイバシティ(non-diverse))アンテナを有することを意味する。図6Bは、受信(Rx)ダイバシティのシナリオを示し、受信デバイスが、2つ以上の受信アンテナを有することを意味する。図6Cは、送信(Tx)ダイバシティのシナリオを示し、送信デバイスが、2つ以上の送信アンテナを有することを意味する。移動体ユニットに関して、ダイバシティシナリオ(Txダイバシティ、Rxダイバシティ、またはダイバシティなし)は、通信基地局によって移動体に識別されることができる。次に、移動体は、基地局によって識別されたダイバシティ状態に従って動作することができる。
図6A〜図6Cから理解されることができるように、本明細書に説明されるような無線通信デバイスは、等化器を含むことができ、等化器は、ダイバシティなしに関する第1の手段で(図6A)で2つ以上の等化フィルタの出力を結合し、無線通信デバイスに信号を送信する送信デバイスが、マルチプル送信アンテナを含む送信ダイバシティに関する第2の手段で(図6C)2つ以上の等化フィルタの出力を結合し、かつ無線通信デバイスが、マルチプル受信アンテナを含む受信ダイバシティに関する第3の手段で(図6B)2つ以上の等化フィルタの出力を結合するように構成される。
ダイバシティなしに関して、図6Aに示されるように、102で示される等化器出力0は、104で示されるメモリ位置「等化器コンバイナ(combiner)RAM」に単に書き込まれる。受信ダイバシティに関して、図6Bに示されるように、再び102で示される等化器出力0は、106で示される等化器出力1と結合される。特に、図6Bに示されるように、102で示される等化器出力0は、104で示される等化器コンバイナRAMに格納される。106で示される等化器出力1は、次に、加算器105によって等化器コンバイナRAM0の内容と合計され、等化器コンバイナRAM0内に格納して戻される前にユニット107によって8ビットまで飽和される。
送信ダイバシティに関して、図6Cに示されるように、102で示される等化器出力0は、104で示される等化器コンバイナRAM0に格納され、一方、106で示される等化器出力1は、108で示される等化器コンバイナRAM1に格納される。
図7は、異なるCPICH信号を生成するための共通パイロットチャネル(CPICH)生成ユニット120を示すブロック図である。CPICH生成ユニット120は、等化器60の一部を形成することができる(図3)。等化器RAM110は、一般に、図6Aから図6Cにおいて104で示される等化器RAM0か、または図6Cにおいて108で示される等化器RAM1のいずれかを表す。以下により詳細に概説されるように、異なるCPICH信号が、ダイバシティに基づき生成されることができる。再びダイバシティは、基地局が、移動体ユニットへこの情報を通信する限り移動体ユニットで知られる。
cpichDMA、cpich256、cpichPri512、およびcpichDiv512は、ユニット120によって生成されることができる異なるCPICH信号をそれぞれ言及する。異なるCPICH信号は、以下により詳細に概説されるように、異なるアンテナダイバシティシナリオのために使用されることができる。cpichDMAは、全てのモードで生成され、かつ変調器、例えば変調器65(図3)に送信される。cpich256は、「diversityPilot」記号が無いなら生成される。cpichPri512およびcpichDiv512は、「diversityPilot」記号が存在するなら生成される。高速共有制御チャネル(HS−SCCH)または高速物理データ共有チャネル(HS−PDSCH)のいずれも、送信ダイバシティを使用しない場合でも、「diversityPilot」記号が存在することを可能にすることができることに留意すべきである。
図7に示されるように、等化器RAM110は、CPICH生成ユニット120に入力を提供する。CPICH生成ユニット120は、OVSFディスプレディング(dispreading)ユニット122を含み、OVSFディスプレディングユニット122は、パイロットチャネルの累算を容易にするように符号による入力を乗算するために、直交可変拡散係数(OVSF)を加える。アキュムレータ124は、パイロットチャネルを回復するために、例えば256個のサンプルにわたって累算する。アキュムレータ124の出力は、cpichDMAに対応する。
cpich256を生成するために、アキュムレータ124の出力は、回転子126によって45度回転される。回転子126の出力は、次に、4ビットを取り除くために丸めユニット128によって丸められ、かつ飽和ユニット130によって10ビットに飽和される。飽和ユニット130の10ビット出力は、cpich256である。しかしながら、再びCPICH信号の生成の様々な段階でのビット長さは、他の実施に関して異なることができる。
cpichPri512およびcpichDiv512信号は、以下により詳細に説明されるように、送信ダイバシティ状態で使用される。cpichPri512を生成するために、回転子126の出力は、バタフライ(butterfly)加算ユニット132に送信され、バタフライ加算ユニット132は、第2の送信アンテナに関連付けられる信号の一部を相殺するために一対の連続するCPICH信号を加算し、それによって、第1の送信アンテナに関連付けられる信号の一部だけを保存する。バタフライ加算ユニット132の出力は、次に、5ビットを取り除くために丸めユニット134によって丸められ、かつ飽和ユニット136によって10ビットに飽和される。飽和ユニット136の10ビット出力は、cpichPri512である。
cpichDiv512を生成するために、回転子126の出力は、バタフライ減算ユニット138に送信され、バタフライ減算ユニット138は、第1の送信アンテナに関連付けられる信号の一部を相殺するために一対の連続するCPICH信号を減算し、それによって、第2の送信アンテナに関連付けられる信号の一部だけを保存する。バタフライ減算ユニット138の出力は、次に、5ビットを取り除くために丸めユニット140によって丸められ、かつ飽和ユニット142によって10ビットに飽和される。飽和ユニット142の10ビット出力は、cpichDiv512である。
図8〜図13は、異なるCPICH信号が生成される異なるシナリオを示すブロック図である。図8〜図13に示されるいくつかのシナリオまたは全てのシナリオは、等化器60(図3)によって実施されることができる。図8に示されるように、移動体ユニットで検出される送信(Tx)ダイバシティパイロット記号が存在しないとき、等化器コンバイナRAM0(104)は、cpich256を生成しかつ出力するCPICH生成ユニット120に入力を提供する。
図9に示されるように、送信(Tx)ダイバシティパイロット記号が存在するが、ユーザ機器(UE)のための空間時間送信ダイバシティ(STTD)または閉ループ送信ダイバシティ(CLTD)が存在しないときに、cpichPri512が生成されかつ使用される。UEは、一般に移動体装置、すなわちユーザ機器を示す。この場合、コンバイナRAM0(104)は、cpich256を生成しかつ出力するCPICH生成ユニット120に入力を提供する。
図10に示されるように、空間時間送信ダイバシティ(STTD)が使用されるとき、cpichPri512が、0番目の送信アンテナに関して生成され、かつcpichDiv512が、1番目の送信アンテナに関して生成される。示されるように、この場合、等化器コンバイナRAM0(104)は、送信アンテナ0のためのCPICH生成ユニット120への入力に対応し、等化器コンバイナRAM1(108)は、送信アンテナ1のためのCPICH生成ユニット120への入力に対応する。CPICH生成ユニット120は、0番目の送信アンテナのためのcpichDiv512を生成するためにこれらそれぞれの入力を使用し、cpichDiv512は、1番目の送信アンテナのために生成される。
図11に示されるように、受信(Rx)ダイバシティに関して、図7に示されるコンポーネントへのわずかな修正は、単一のcpich256を生成するために、2つの受信アンテナに対応する、2つの入力を結合するために使用されることができる。この場合、等化器出力0(図6B、102参照)は、受信(Rx)アンテナ0に対応し、等化器出力1(図6B、106参照)は、受信(Rx)アンテナ1に対応する。これらそれぞれの入力は、各入力のためのcpichDMAを生成するCPICH生成ユニット120にそれぞれ提供される。各それぞれのcpichDMAは、次に、回転子141、143によって45度回転され、回転子141、143の出力は、加算器144によってともに加算される。加算器144の出力は、4ビットを取り除くために丸めユニット146によって丸められ、かつ次に飽和ユニット148によって10ビットに飽和される。飽和ユニット148の出力は、受信ダイバシティの場合に関してcpich256を含む。
図12は、特に2ラン(run)モードの閉ループ送信ダイバシティ(CLTD)のためのCPICH信号の生成を示す。2ランモードとは、2つの送信アンテナのそれぞれについて1回の2回データを等化するモードのことを言う。示されるように、CLTDに関して、等化器コンバイナRAM0(104)は、送信アンテナ(Tx)0に関連付けられ、等化器コンバイナRAM1(108)は、送信アンテナ(Tx)1に関連付けられる。CPICH生成ユニット120は、0番目の送信アンテナのためにcpichPri512およびcpichDiv512を生成し、かつ1番目の送信アンテナのために別個のcpichPri512およびcpichDiv512を生成するようにこれらそれぞれの入力を使用する。
図13は、cpichCLTDの生成を示す図であり、それは、図12の図示から生成されるそれぞれのCPICH信号に基づき、閉ループ送信ダイバシティに関する制御信号である。特に、図13は、「2ランモード」に関するCPICH信号の生成を示す。1ランモードにおけるCLTDに関して、cpichPri512Tx1およびcpichDiv512Tx1に対応する図13のブランチは、除去されることができる。
図13への入力は、表示されるように図12の出力である。示されるように、cpichPri512Tx0およびcpichDiv512Tx0は、加算器160によって合計され、合計は、乗算器162を使用してw0だけ乗算される。変数w0は、送信アンテナ0に関する閉ループ送信ダイバシティ重みを示す。同様の方法で、cpichPri512Tx1およびcpichDiv512Tx1は、加算器164によって合計され、合計は、乗算器166を使用してw1だけ乗算される。変数w1は、送信アンテナに関する閉ループ送信ダイバシティ重みを示す。
乗算器162および166の出力は、加算器168を使用して合計される。加算器168の出力は、次に、プログラム可能な丸め(rounding)ユニット170に供給され、それは、この実施例において、8ビットまたは9ビットを丸めて切り捨てるために範囲[8、9]にプログラムされることができる。ユニット170の出力は、次に、飽和ユニット172によって10ビットに飽和される。飽和ユニット172の出力は、閉ループ送信ダイバシティに関するCPICH信号、すなわちcpichCLTDを有する。
図14は、どのように等化器コンバイナRAM180の内容が、格納されたビットから対象のデータを抽出するために使用されることができるかを示すブロック図である。図14に示されるアーキテクチャは、図3の等化器60の一部を形成することができる。等化器コンバイナRAM180は、等化器コンバイナRAM0(104)または等化器コンバイナRAM0(108)のいずれかに対応することができる。同一のハードウエアが、両方のメモリ位置に格納されたビットからデータを抽出するために使用されることができる。示されるように、等化器コンバイナRAM180は、データビットの抽出を実行するFHT16(182)への入力を提供する。FHT16は、16のブロックサイズを有する高速アダマール変換(FTH)ユニットである。
示されるように、FHT16(182)は、OVSFディスプレディングユニット184、16サイクルにわたって累算するアキュムレータ186、1ビットを丸めて切り捨てる丸めユニット188、および9ビットに飽和する飽和ユニット190を含む。FHT16(182)の出力はデータ16であり、それは、高速物理データ共有チャネル(HS−PDSCH)チャネル上の単一の変調記号を表す。「ドット・クロス」動作は、典型的に、チャネルによって導入されるランダム位相変化を相殺するために、そのようなデータに実行される。
図15〜図22は、「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す様々な例示的なブロック図である。再び、チャネルによって導入されるランダム位相変化を相殺するために、等化の間にデータに対するそのようなドット・クロス動作が使用される。図15〜図22に示されるいくつかのアーキテクチャまたは全てのアーキテクチャは、図3の等化器60の一部を形成することができる。
図15は、ダイバシティのないパイロットがチャネル上に存在するとき、「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す例示的なブロック図である。図15に示されるように、等化器コンバイナRAM180は、例えば、図14に関して上記で説明されたように、データビットの抽出を実行するFHT16(182)へ入力を提供する。
FHT16(182)の出力は乗算器200に供給され、それは、cpich256の共役(conjugate)だけFHT16(182)の出力を乗算する。乗算器200の出力は、7ビットを取り除くために丸めユニット202によって丸められ、かつ飽和ユニット204によって9ビットに飽和される。飽和ユニット204の出力は、記号バッファ206内に格納されるダイバシティなしに関する記号である。記号バッファ206内に格納される任意の記号は、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
図16は、ダイバシティパイロットが存在するが、UEのための空間時間送信ダイバシティ(STTD)または閉ループ送信ダイバシティ(CLTD)が存在しないときに、「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す例示的なブロック図である。図16は、図15に非常に類似し、いくつかの実施形態において、同一のコンポーネントが、乗算、丸め、飽和、および記号バッファリング(buffering)を実行するために使用されることができる。しかしながら、これらのコンポーネントは、図15および図16では異なって表示される。
図16に示されるように、等化器コンバイナRAM180は、例えば図14に関して上記で説明されたように、データビットの抽出を実行するFHT16(182)へ入力を提供する。FHT16(182)の出力は、cpichPri512の共役だけFHT16(182)の出力を乗算する乗算器210に提供される。乗算器210の出力は、7ビットを取り除くために丸めユニット212によって丸められ、かつ飽和ユニット214によって9ビットに飽和される。飽和ユニット214の出力は、ダイバシティパイロットが存在するが、UEのための空間時間送信ダイバシティ(STTD)または閉ループ送信ダイバシティ(CLTD)が存在しないときの場合に関する記号として、記号バッファ216内に格納される。記号バッファ216内に格納される任意の記号は、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
図17は、2ラン閉ループ送信ダイバシティ(CLTD)のための「ドット・クロス」動作を実施するために使用されることができる、アーキテクチャを示す例示的なブロック図である。図16に示されるように、各等化器コンバイナRAM0(104)および等化器コンバイナRAM1(108)は、異なる回数でFHT16(182)への入力を提供し、または、アーキテクチャは、両方のRAM入力からデータの同時生成のためにFHT16を複製する(182Aおよび182Bとして示される)ことができる。等化器コンバイナRAM0(104)からの入力に関するFHT16(182A)の出力は、最初は、記号バッファ220内に格納される。等化器コンバイナRAM0(108)からの入力に関するFHT16(182B)の出力は、次に、加算器222によって記号バッファ220のこの一時的な内容に加算され、飽和ユニット224によって9ビットに飽和される。
乗算器226は、cpichCLTDの共役だけ飽和ユニット224の出力を乗算する。乗算器226の出力は、7ビットを取り除くために丸めユニット228によって丸められ、かつ飽和ユニット229によって9ビットに飽和される。飽和ユニット229の出力は、次に、2ラン閉ループ送信ダイバシティ(CLTD)に関する記号として記号バッファ220内に格納される。等化器コンバイナRAM0(104)からの入力に関するFHT16(182A)の出力は、記号バッファ220内のユニット229の出力によって置換されることを認識することができる。記号バッファ220内に格納される任意の記号は、次に、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
図18は、空間時間送信ダイバシティ(STTD)のための「ドット・クロス」動作を実施するために使用されることができる、アーキテクチャを示す例示的なブロック図である。図18に示されるように、各等化器コンバイナRAM0(104)および等化器コンバイナRAM1(108)は、それぞれFHT16(182A)およびFHT16(182B)への入力を提供する。FHT16(182A)およびFHT16(182B)は、順次異なるデータを処理する同一のコンポーネント、または図14に示されるようなFHT16(182B)の複製(duplicate)バージョンであり得る。
FHT16(182A)の出力は乗算器230に供給され、乗算器230はcpichPri512Tx0の共役とFHT16(182A)の出力を乗算する。乗算器230の出力は、7ビットを取り除くために丸めユニット232によって丸められ、かつ次に飽和ユニット234によって9ビットに飽和される。飽和ユニット234の出力は、最初は、記号バッファ220内に格納される。
FHT16(182B)の出力は、乗算器238に供給され、乗算器238は、cpichDiv512Tx1の共役とFHT16(182A)の出力を乗算する。乗算器238の出力は、7ビットを取り除くために丸めユニット240によって丸められ、かつ飽和ユニット242によって9ビットに飽和される。共役(Conj)ユニット244は、飽和ユニット242の出力の共役を生成しそれは、一般に複素数の虚数部分を無効にすることを含む。記号バッファ236(飽和ユニット234から)内に最初に格納されたデータは、次に、加算器/減算器246によって共役ユニット244の出力と結合される。加算器/減算器246の出力は、次に、空間時間送信ダイバシティに関する記号として記号バッファ236内に格納される前に、飽和ユニット248によって9ビットに飽和される。加算器/減算器246の機能(すなわち、加算または減算)は、入力の実または虚の性質に基づく。実成分は減算され、一方、虚成分は加算される。これは、複素乗算を規定する図18のアーキテクチャに帰す。いずれの場合でも、記号バッファ2360内の任意の記号は、次に、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
図19は、1ラン閉ループ送信ダイバシティ(CLTD)のための「ドット・クロス」動作を実施するために使用されることができる、アーキテクチャを示す例示的なブロック図である。図19に示されるように、等化器コンバイナRAM180は、例えば図14に関して上記で説明されたように、データビットの抽出を実行するFHT16(182)へ入力を提供する。
FHT16(182)の出力は乗算器260に供給され、それはcpichCLTDの共役とFHT16(182)の出力を乗算する。乗算器260の出力は、7ビットを取り除くために丸めユニット262によって丸められ、かつ飽和ユニット264によって9ビットに飽和される。飽和ユニット264の出力は、1ラン閉ループ送信ダイバシティに関する記号であり、記号バッファ266内に格納される。記号バッファ266内に格納される任意の記号は、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
図20〜図22は、チャネルによって導入された無作為の位相変化を相殺するために、データに対する「ドット・クロス」動作を実装するために使用されることができる等化器アーキテクチャを示す追加のブロック図である。図20〜図22に示されるSCCHレジスタは、一般に、共有された制御チャネルに関する記号を格納するために使用されるメモリである。SCCHが、SCCH生成をブロック毎に16ビットを有する8個の別個のブロックに分解する実施で128個のチップの拡散係数を使用することを可能にするために、8回のサンプリングが生じる。各ブロックは、FHT16を使用して処理され、結果は、ともに加算されまたは減算されるかのいずれかである。この場合において、加算または減算は、所定の記号に関するHS−SCCH OFSF符号数に応じる。一般に、用語SCCHおよびHS−SCCHは、本開示で同時に使用される。
図20は、ダイバシティなしパイロットが存在するシナリオに関する等化器アーキテクチャを示すブロック図である。図20に示されるように、等化器コンバイナRAM180はFHT16(182)へ入力を供給し、それは、例えば図14に関して上記で説明されたように、データビットの抽出を実行する。FHT16(182)の出力は乗算器300に供給され、それは、cpich256の共役とFHT16(182)の出力を乗算する。乗算器300の出力は、7ビットを取り除くために丸めユニット302によって丸められ、かつ飽和ユニット304によって9ビットに飽和される。飽和ユニット304の出力は、加算器/減算器306を使用して8サイクルに関して累算され、ここにおいて、加算または減算は、所定の記号に関するHS−SCCH OFSF符号数に依存する。この累算の最終結果は、HS−SCCH共有制御チャネル記号を有し、ダイバシティなしパイロットが存在するシナリオに関する共有制御チャネル(SCCH)レジスタ308内に格納される。SCCHレジスタ308内に格納される任意の記号は、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
図21は、ダイバシティパイロットが存在するが、UEのための空間時間送信ダイバシティ(STTD)または閉ループ送信ダイバシティ(CLTD)が存在しないシナリオに関するアーキテクチャを示すブロック図である。図21に示されるように、等化器コンバイナRAM180は、例えば図14に関して上記で説明されたように、データビットの抽出を実行するFHT16(182)へ入力を提供する。FHT16(182)の出力は、cpichPri512の共役とFHT16(182)の出力を乗算する乗算器310に提供される。乗算器310の出力は、7ビットを取り除くために丸めユニット312によって丸められ、かつ飽和ユニット314によって9ビットに飽和される。飽和ユニット314の出力は、加算器/減算器316を使用して8サイクルに関して累算され、ここにおいて、加算または減算は、所定の記号に関するHS−SCCH OFSF符号数に依存する。この累算の最終結果は、HS−SCCH共有制御チャネル記号を有し、ダイバシティパイロットが存在するが、UEのための空間時間送信ダイバシティ(STTD)または閉ループ送信ダイバシティ(CLTD)が存在しないシナリオに関する共有制御チャネル(SCCH)レジスタ318内に格納される。SCCHレジスタ318内に格納される制御記号は、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61のような)に転送されることができる。
図22は、空間時間送信ダイバシティ(STTD)のシナリオに関するアーキテクチャを示すブロック図である。図22に示されるように、等化器コンバイナRAM0(104)は、例えば図14のFHT16(182)に関して上記で説明されたように、データビットの抽出を実行するFHT16(182A)へ入力を提供する。FHT16(182A)の出力は、cpichPri512Tx0の共役とFHT16(182A)の出力を乗算する乗算器350に提供される。乗算器350の出力は、7ビットを取り除くために丸めユニット352によって丸められ、かつ飽和ユニット354によって9ビットに飽和される。飽和ユニット354の出力は、加算器/減算器356を使用して8サイクルに関して累算され、ここにおいて、加算または減算は、所定の記号に関するHS−SCCH OFSF符号数に依存する。この累算の最終結果は、送信アンテナ0に関するHS−SCCH共有制御チャネル記号を有し、空間時間送信ダイバシティ(STTD)のシナリオに関する共有制御チャネル(SCCH)レジスタ358内に格納される。SCCHレジスタ358内に格納されるそのような記号は、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
さらに、送信アンテナ1に関して、等化器コンバイナRAM1(108)は、データビットの抽出を実行するFHT16(182B)へ入力を提供する。FHT16(182B)の出力は、cpichDiv512Txtの共役とFHT16(182B)の出力を乗算する乗算器362に提供される。乗算器362の出力は、7ビットを取り除くために丸めユニット364によって丸められ、かつ飽和ユニット366によって9ビットに飽和される。共役ユニット368は、一般に複素数の虚数部分を無効にすることを含む飽和ユニット366の出力の共役を生成する。共役ユニット368の出力は、加算器/減算器369を使用して8サイクルに関して累算され、ここにおいて、加算または減算は、所定の記号に関するHS−SCCH OFSF符号数に依存する。この累算の最終結果は、送信アンテナ1に関するHS−SCCH制御記号を有し、空間時間送信ダイバシティ(STTD)のシナリオに関する共有制御チャネル(SCCH)レジスタ360内に格納される。
図23は、図3の等化器60の一部を形成することができる高速物理データ共有チャネル(HS−PDSCH)に関するアーキテクチャを示すブロックである。図23において、記号バッファ380は、異なるダイバシティシナリオに関して上記で議論された任意の記号バッファに対応することができる。示されるように、記号バッファ380の内容は、乗算器382を使用してHS−PDSCH記号メトリック(metric)スケール係数と乗算される。HS−PDSCH記号メトリックスケール係数は、HS−PDSCH記号をスケーリングするためのスケール係数であり、一般に符号のない(unsigned)量である。乗算器382の出力は、7ビットを取り除くために丸めユニット384によって丸められ、かつ飽和ユニット386によって9ビットに飽和される。飽和ユニット354の出力は、書き込み制御バッファ(WCB)388内に格納された復調記号を有する。WCB388内に格納された復調記号は、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
図24は、図3の等化器60の一部を形成することができる高速共有制御チャネル(HS−SCCH)に関するアーキテクチャを示すブロックである。図24において、SCCHレジスタ390は、異なるダイバシティシナリオに関して上記に示されたSCCHレジスタの任意のものに対応することができる。示されるように、SCCHレジスタ390の内容は、1ビットだけ丸めユニット392によって丸められ、かつ飽和ユニット394によって11ビットに飽和される。乗算器396は、HS−SCCH記号メトリックスケール係数と飽和ユニット394の出力とを乗算するために使用される。HS−SCCH記号メトリックスケール係数は、HS−SCCH記号をスケーリングするためのスケール係数であり、一般に符号のない量である。
乗算器396の出力は、4ビットを取り除くために丸めユニット398によって丸められ、かつ飽和ユニット400によって5ビットに飽和される。飽和ユニット400の出力はHS−SCCH記号を有し、それは、HS−SCCHコントローラ406に提供される。HS−SCCHコントローラ406は、単に、HS−SCCH記号を格納するための独特のメモリ位置である意味でレジスタと同じである。いずれの場合においても、HS−SCCHコントローラ406内に格納された記号は、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
図25は、特に受信ダイバシティおよび閉ループ送信ダイバシティ(CLTD)の両方に関するCPICH信号の生成を示すブロック図である。図25のアーキテクチャは、図3の等化器60の一部を形成することができる。この場合、等化器コンバイナRAM0(104)は、CPICH生成ユニット120に入力を提供し、CPICH生成ユニット120は、0番目の送信アンテナに関するcpichPri512Tx0およびcpichDiv512Tx0を生成するために入力を使用する。
図26は、cpichCLTDの生成を示すブロック図であり、それは、図25の図示から生成されるそれぞれのCPICH信号に基づく、閉ループ送信ダイバシティに関する制御信号である。図26のアーキテクチャは、図3の等化器60の一部を形成することができる。特に、図26への入力は、表されるように図25の出力である。示されるように、cpichPri512Tx0は、乗算器420を使用してw0と乗算される。再び、変数w0とは、送信アンテナ0に関する閉ループ送信ダイバシティ重みのことである。同様の方法で、cpichDiv512Tx0は、乗算器422を使用してw1と乗算される。変数w1は、送信アンテナに関する閉ループ送信ダイバシティ重みを示す。乗算器420および422の出力は加算器426によって合計され、加算器426の出力は9ビットを取り除くために丸めユニット428によって丸められ、かつ飽和ユニット430によって10ビットに飽和される。飽和ユニット430の出力は、受信ダイバシティおよび閉ループ送信ダイバシティ(CLTD)のシナリオに関するcpichCLTDを有する。
図27は、特に、受信ダイバシティおよび空間時間送信ダイバシティ(STTD)の両方に関するCPICH信号の生成を示すブロック図である。図27のアーキテクチャは、図3の等化器60の一部を形成することができる。この場合、等化器コンバイナRAM0(104)は、CPICH生成ユニット120AおよびCPICH生成ユニット120Bへの入力を提供する。CPICH生成ユニット120Aおよび120Bは、一般に、CPICH生成ユニット120(図7)に従い、連続して使用される同一のユニットを備えることができ、または複製ユニットを備えることができる。いずれの場合も、CPICH生成ユニット120Aおよび120Bは該入力を使用して、0番目の送信アンテナに関するcpichPri512Tx0およびcpichDiv512Tx0を生成する。
図28は、受信ダイバシティ(RxD)および閉ループ送信ダイバシティ(CLTD)に関する「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す例示的なブロック図である。図28のアーキテクチャは、図3の等化器60の一部を形成することができる。図28に示されるように、等化器コンバイナRAM0(104)は、FHT16(182A)およびFHT16(182B)への入力を提供する。FHT16(182A)およびFHT16(182B)は、データを順次処理する同一のコンポーネント、または図14に示されるようなFHT16(182)の複製バージョンであり得る。FHT16(182A)の出力は、記号バッファ450にロードされる。FHT16(182B)の出力は、加算器452を使用して記号バッファ450内のFHT16(182A)の出力と合計される。加算器452の出力は、次に、飽和ユニット454を使用して9ビットに飽和される。乗算器456は、cpichCLTDの共役と飽和ユニット454の出力を乗算する。乗算器456の出力は、7ビットを取り除くために丸めユニット458によって丸められ、かつ次に飽和ユニット460によって9ビットに飽和される。飽和ユニットの出力は、受信ダイバシティおよび閉ループ送信ダイバシティのシナリオに関する記号として記号バッファ450内に格納される。記号バッファ450内に格納されたそのような記号は、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
図29は、受信ダイバシティ(RxD)および空間時間送信ダイバシティ(STTD)に関する「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す例示的なブロック図である。図29のアーキテクチャは、図3の等化器60の一部を形成することができる。図29に示されるように、等化器コンバイナRAM0(104)は、FHT16(182A)およびFHT16(182B)への入力を提供する。再び、FHT16(182A)およびFHT16(182B)は、データを順次処理する同一のコンポーネント、または図14に示されるようなFHT16(182)の複製バージョンであり得る。
乗算器470は、cpichPri512Tx0の共役だけFHT16(182A)の出力を乗算する。乗算器470の出力は7ビットを取り除くために丸めユニット472によって丸められ、かつ飽和ユニット474によって9ビットに飽和される。飽和ユニット474の出力は、最初に、記号バッファ476内に格納される。
FHT16(182B)の出力は、乗算器478に供給され、それは、cpichDiv512Tx0の共役とFHT16(182A)の出力を乗算する。乗算器478の出力は7ビットを取り除くために丸めユニット480によって丸められ、かつ飽和ユニット482によって9ビットに飽和される。共役ユニット484は、一般に複素数の虚数部分を無効にすることを含む飽和ユニット482の出力の共役を生成する。記号バッファ476(飽和ユニット474から)内に最初に格納されたデータは、次に、加算器/減算器486によって共役ユニット484の出力と結合される。加算器/減算器246の出力は、次に、受信ダイバシティおよび空間時間送信ダイバシティに関する記号として記号バッファ476内に格納される前に、飽和ユニット488によって9ビットに飽和される。加算器/減算器488の機能(すなわち、加算または減算)は、入力の実または虚の性質に基づく。実成分は減算され、一方、虚成分は加算される。これは、複素乗算を規定する図29のアーキテクチャに帰す。記号バッファ476内に格納される記号は、デインタリービング、デレートマッチング、および復号のためにバックエンド(図3に示されるようにバックエンド61など)に転送されることができる。
いくつかの等化技法が説明された。説明された等化技法は、異なるアンテナダイバシティシナリオを扱うことができる分数的に間隔を隔てられた等化器アーキテクチャを使用する。説明された等化器は、ハードウエア、ソフトウエア、ファームウエア、または任意のその組合せで実施されることができる。等化器がソフトウエアで実施されるなら、ソフトウエアを実行するプロセッサは、マイクロプロセッサまたはデジタル信号プロセッサ(DSP)の形態を取ることができ、無線通信デバイスまたは基地局と一体にされるまたは一部を形成することができる。メモリは、ソフトウエアを格納することができ、上記で説明された様々な技法を実行するためにプロセッサによってアクセスかつ実行されるプログラムコードを格納するランダムアクセスメモリ(RAM)の形態を取ることができる。
例示的なハードウエア実施は、DSP、特定用途向け集積回路(ASIC)、フィールドプログラム可能なゲートアレイ(FPGA)、プログラム可能な論理デバイス、専用に設計されたハードウエアコンポーネント、またはそれらの任意の組合せでの実施を含むことができる。
それにもかかわらず、様々な他の修正は、本発明の精神および範囲から逸脱することなく行われることができる。例えば、他のタイプのコンポーネントは、本明細書に説明される技法を実施するために使用されることができる。さらに、例示的なビット長さが、上述された様々な実施例に関して与えられたが、他のビット長さは、他の実施に関して使用されることができる。したがって、これらおよび他の実施形態は、特許請求の範囲内にある。
本明細書に説明されるような等化技法を実施する受信デバイスを含む無線通信システムを示すブロック図。 本明細書に説明されるような等化技法を実施するデバイスを含むシステムのより詳細なブロック図。 本開示の技法により受信信号をフィルタする等化器を含む無線通信デバイスの実施形態を示すブロック図。 等化器の様々な例示的ステージを示す一例示的なブロック図。 等化のためのドット・クロス技法を実施するために使用されることができるハードウエアを示すブロック図。 等化のためのドット・クロス技法を実施するために使用されることができるハードウエアを示すブロック図。 本開示の実施形態による異なるダイバシティシナリオに関するメモリに書き込まれている等化器出力を示すブロック図。 本開示の実施形態による異なるダイバシティシナリオに関するメモリに書き込まれている等化器出力を示すブロック図。 本開示の実施形態による異なるダイバシティシナリオに関するメモリに書き込まれている等化器出力を示すブロック図。 異なるCPICH信号を生成するために使用されることができる共通パイロットチャネル(CPICH)生成ユニットを示すブロック図。 異なるCPICH信号が生成される異なるシナリオを示すブロック図。 異なるCPICH信号が生成される異なるシナリオを示すブロック図。 異なるCPICH信号が生成される異なるシナリオを示すブロック図。 異なるCPICH信号が生成される異なるシナリオを示すブロック図。 異なるCPICH信号が生成される異なるシナリオを示すブロック図。 異なるCPICH信号が生成される異なるシナリオを示すブロック図。 等化器内の該格納されたビットから対象のデータを抽出するために使用されることができる、16のブロックサイズを有する高速アダマール変換(FTH)を示すブロック図。 等化器における「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す様々な例示的なブロック図。 等化器における「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す様々な例示的なブロック図。 等化器における「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す様々な例示的なブロック図。 等化器における「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す様々な例示的なブロック図。 等化器における「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す様々な例示的なブロック図。 等化器における「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す様々な例示的なブロック図。 等化器における「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す様々な例示的なブロック図。 等化器における「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す様々な例示的なブロック図。 等化器における高速物理データ共有チャネル(HS−PDSCH)に関する記号を生成するためのアーキテクチャを示すブロック図。 等化器内における高速共有制御チャネル(HS−SCCH)に関する記号を生成するためのアーキテクチャを示すブロック図。 特に受信ダイバシティおよび閉ループ送信ダイバシティ(CLTD)に関する、等化器内におけるCPICH信号の生成を示すブロック図。 等化器内の、閉ループ送信ダイバシティのための制御信号であるcpichCLTDの、図25の図示から生成されたそれぞれのCPICH信号に基づく生成を示すブロック図。 特に受信ダイバシティおよび空間時間送信ダイバシティ(STTD)の両方に関する、等化器内におけるCPICH信号の生成を示すブロック図。 受信ダイバシティ(RxD)および閉ループ送信ダイバシティ(CLTD)に関する、等化器における「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す例示的なブロック図。 受信ダイバシティ(RxD)および空間時間送信ダイバシティ(STTD)に関する、等化器における「ドット・クロス」動作を実施するために使用されることができるアーキテクチャを示す例示的なブロック図を示す図。

Claims (25)

  1. (a1) スペクトル拡散無線通信システムにおける等化方法であって、
    (a2) チャネルインパルス応答を推定することと、
    (a3) 複数の分数的に間隔を隔てられたチップの受信サンプルに関する複数の値を具備する共分散を計算することによってチャネル分散を推定することと、
    (a4) 前記推定されたチャネルインパルス応答および前記推定されたチャネル分散に基づいて、最小2乗平均誤差(MMSE)等化器に関する複数のフィルタ係数を選択することと
    を含む、
    (a5) ここにおいて、前記等化器は、数分の1チップの間隔を隔てられた複数のフィルタ係数を有する最小2乗平均誤差(MMSE)等化器の1つまたは複数の等化フィルタを含む分数的に間隔を隔てられた等化器であり、および
    (a6) 前記複数のフィルタ係数を選択することは、複数の分数的に間隔を隔てられたチップの受信サンプルに関する前記推定されたチャネル分散および前記推定されたチャネルインパルス応答に基づき、
    前記方法は、
    (a7)ダイバシティなしに関する第1の手段で前記1つの等化フィルタの出力を結合することと、
    (a8) 送信ダイバシティに関する第2の手段で前記2つ以上の等化フィルタの出力を結合することと、および
    (a9) 受信ダイバシティに関する第3の手段で前記2つ以上の等化フィルタの出力を結合することと
    (a10) をさらに具備する方法。
  2. 前記等化器は、1/2チップの間隔を隔てられた複数のフィルタタップを有する分数的に間隔を隔てられた等化器である請求項1に記載の方法。
  3. 送信および受信ダイバシティに関する第4の手段で前記2つ以上の等化フィルタの出力を結合することをさらに具備する請求項1に記載の方法。
  4. 複数の分数的に間隔を隔てられたチップの受信サンプルに関する複数の値を具備する前記共分散は、奇数および偶数の複数の受信サンプルに関する複数の値を計算することを具備する、請求項1に記載の方法。
  5. 等化器出力を生成することと、
    前記等化器出力およびアンテナダイバシティに基づき共通パイロットチャネル(CPICH)信号を生成することとをさらに具備する請求項1に記載の方法。
  6. スペクトル拡散無線通信に関する等化の方法であって、
    複数の分数的に間隔を隔てられたチップの受信サンプルに関する複数の値を具備する共分散を計算することによってチャネル分散を推定することと、
    推定されたチャネルインパルス応答および前記推定されたチャネル分散に基づいて、最小2乗平均誤差(MMSE)等化器の1つまたは複数の等化フィルタを具備する等化器に関する複数のフィルタリング係数を選択することと、および
    ダイバシティなしに関する第1の手段で前記1つの等化フィルタの出力を結合することと、
    送信ダイバシティに関する第2の手段で前記2つ以上の等化フィルタの出力を結合することと、および
    受信ダイバシティに関する第3の手段で前記2つ以上の等化フィルタの出力を結合することと
    を具備し、
    前記等化器は、数分の1チップの間隔を隔てられた複数のフィルタリング係数を有する分数的に間隔を隔てられた最小2乗平均誤差(MMSE)等化器であり、および前記複数のフィルタリング係数を選択することは、複数の分数的に間隔を隔てられたチップの受信サンプルに関する前記推定されたチャネル分散および前記推定されたチャネルインパルス応答に基づく、方法。
  7. 送信および受信ダイバシティに関する第4の手段で前記2つ以上の等化フィルタの出力を結合することをさらに具備する、請求項6に記載の方法。
  8. 前記チャネルインパルス応答を推定することをさらに具備する請求項6に記載の方法。
  9. 前記等化器は、数分の1チップの間隔を隔てられた複数のフィルタタップを有する分数的に間隔を隔てられた等化器である、請求項8に記載の方法。
  10. 無線信号を受信する受信機と、
    最小2乗平均誤差(MMSE)等化器であって、チャネルインパルス応答を推定し、複数の分数的に間隔を隔てられたチップの受信サンプルに関する複数の値を具備する共分散を計算することによってチャネル分散を推定し、かつ前記推定されたチャネルインパルス応答および前記推定されたチャネル分散に基づいて、前記等化器に関する複数のフィルタ係数を選択する等化器とを備えるスペクトル拡散無線通信デバイスであって、
    前記等化器は、数分の1チップの間隔を隔てられた複数のフィルタ係数を有する分数的に間隔を隔てられた等化器であり、および複数のフィルタ係数は、複数の分数的に間隔を隔てられたチップの受信サンプルに関する前記推定されたチャネル分散および前記推定されたチャネルインパルス応答に基づいて選択され、
    前記等化器は、最小2乗平均誤差(MMSE)等化器の2つ以上の等化フィルタを含み、および
    ダイバシティなしに関する第1の手段で前記1つの等化フィルタの出力を結合し、
    送信ダイバシティに関する第2の手段で前記2つ以上の等化フィルタの出力を結合し、ここで、前記無線通信デバイスに前記複数の信号を送信する送信デバイスは、複数の送信アンテナを含む、および
    受信ダイバシティに関する第3の手段で前記2つ以上の等化フィルタの出力を結合する、ここで、前記無線通信デバイスは、複数の受信アンテナを含む
    ように構成される、スペクトル拡散無線通信デバイス。
  11. 前記等化器は、1/2チップの間隔を隔てられた複数のフィルタタップを有する分数的に間隔を隔てられた等化器である請求項10に記載の無線通信デバイス。
  12. 前記等化器は、送信および受信ダイバシティに関する第4の手段で前記2つ以上の等化フィルタの出力を結合するように構成される、請求項10に記載の無線通信デバイス。
  13. 前記等化器は、奇数および偶数の複数のサンプルに関する複数の値を計算することによって、複数の分数的に間隔を隔てられたチップの受信サンプルに関する複数の値を具備する前記共分散を計算する請求項10に記載の無線通信デバイス。
  14. スペクトル拡散無線通信デバイスのための等化器であって、
    複数の分数的に間隔を隔てられたチップの受信サンプルに関する複数の値を具備する共分散マトリックスを計算することによってチャネル分散を推定し、
    推定されたチャネルインパルス応答および前記推定されたチャネル分散に基づいて、最小2乗平均誤差(MMSE)等化器の2つ以上の等化フィルタに関する複数のフィルタリング係数を選択し、および
    ダイバシティなしに関する第1の手段で前記1つの等化フィルタの出力を結合し、
    送信ダイバシティに関する第2の手段で前記2つ以上の等化フィルタの前記出力を結合し、および
    受信ダイバシティに関する第3の手段で前記2つ以上の等化フィルタの前記出力を結合するように構成され、
    前記等化器は、数分の1チップの間隔を隔てられた複数のフィルタリング係数を有する分数的に間隔を隔てられた最小2乗平均誤差(MMSE)等化器であり、および複数のフィルタリング係数は、複数の分数的に間隔を隔てられたチップの受信サンプルに関する前記推定されたチャネル分散および前記推定されたチャネルインパルス応答に基づいて選択される、等化器。
  15. 前記等化器は、送信および受信ダイバシティに関するさらなる手段で前記2つ以上の等化フィルタの前記出力を結合する、請求項14に記載の等化器。
  16. 前記等化器は、前記チャネルインパルス応答を推定する、請求項14に記載の等化器。
  17. 前記等化器は、1/2チップだけ間隔を隔てられた複数のフィルタタップを有する分数的に間隔を隔てられた等化器である請求項16に記載の等化器。
  18. スペクトル拡散無線通信デバイスで実行されたときに、前記無線通信デバイスに、
    チャネルインパルス応答を推定させ、
    複数の分数的に間隔を隔てられたチップの受信サンプルに関する複数の値を具備する共分散を計算することによってチャネル分散を推定させ、
    前記推定されたチャネルインパルス応答および前記推定されたチャネル分散に基づいて、最小2乗平均誤差(MMSE)等化器に関する複数のフィルタ係数を選択させ、
    ダイバシティなしに関する第1の手段で前記等化器における前記1つの等化フィルタの出力を結合させ、
    送信ダイバシティに関する第2の手段で前記等化器における前記2つ以上の等化フィルタの出力を結合させ、および
    受信ダイバシティに関する第3の手段で前記等化器における前記2つ以上の等化フィルタの前記出力を結合させることによって等化を実行させるプログラムコードを含み、
    前記等化器は、数分の1チップの間隔を隔てられた複数のフィルタタップを有する分数的に間隔を隔てられた最小2乗平均誤差(MMSE)等化器であり、および前記複数のフィルタ係数を選択することは、複数の分数的に間隔を隔てられた複数のチップの受信サンプルに関する前記推定されたチャネル分散および前記推定されたチャネルインパルス応答に基づく、メモリ記録デバイス。
  19. 前記等化器は、1/2チップだけ間隔を隔てられた複数のフィルタタップを有する分数的に間隔を隔てられた等化器である、請求項18に記載のメモリ記録デバイス。
  20. 複数の分数的に間隔を隔てられたチップの受信サンプルに関する複数の値を具備する前記共分散を計算することは、奇数および偶数の複数の受信サンプルに関する複数の値を計算することを具備する、請求項18に記載のメモリ記録デバイス。
  21. 実行されるとき、前記デバイスに、
    最小2乗平均誤差(MMSE)等化器出力の生成、および
    前記等化器出力およびアンテナダイバシティに基づく共通パイロットチャネル(CPICH)信号の生成
    を行わせるプログラムコードをさらに具備する請求項18に記載のメモリ記録デバイス。
  22. スペクトル拡散無線通信デバイスにおいて実行されたときに、前記デバイスに、
    複数の分数的に間隔を隔てられたチップの受信サンプルに関する複数の値を具備する分散マトリックスを計算することによってチャネル分散を推定することと、
    推定されたチャネルインパルス応答および前記推定されたチャネル分散に基づいて、最小2乗平均誤差(MMSE)等化器の2つ以上の等化フィルタに関する複数のフィルタリング係数を選択することと、
    ダイバシティなしに関する第1の手段で前記1つの等化フィルタの出力を結合することと、
    送信ダイバシティに関する第2の手段で前記2つ以上の等化フィルタの前記出力を結合することと、および
    受信ダイバシティに関する第3の手段で前記2つ以上の等化フィルタの前記出力を結合することと
    による等化を行わせるプログラムコードを具備するメモリ記録デバイスであって、
    前記等化器は、数分の1チップの間隔を隔てられた複数のフィルタリング係数を有する分数的に間隔を隔てられた最小2乗平均誤差(MMSE)等化器であり、および複数のフィルタリング係数は、複数の分数的に間隔を隔てられたチップの受信サンプルに関する前記推定されたチャネル分散および前記推定されたチャネルインパルス応答に基づいて選択される、メモリ記録デバイス。
  23. 前記スペクトル拡散無線通信デバイスにおいて実行されたときに、前記デバイスに、
    前記チャネルインパルス応答の推定を行わせるプログラムコードをさらに具備する請求項22に記載のメモリ記録デバイス。
  24. 前記等化器は、1/2チップだけ間隔を隔てられた複数のフィルタタップを有する分数的に間隔を隔てられた等化器である、請求項22に記載のメモリ記録デバイス。
  25. スペクトル拡散無線通信デバイスのための等化器であって、前記等化器は、
    複数の分数的に間隔を隔てられたチップの受信サンプルに関する複数の値を具備する共分散を計算することによってチャネル分散を推定するための手段と、
    推定されたチャネルインパルス応答および前記推定されたチャネル分散に基づいて、最小2乗平均誤差(MMSE)等化器の2つ以上の等化フィルタに関するフィルタリング係数を選択するための手段と、および
    ダイバシティなしに関する第1の手段で前記1つの等化フィルタの出力を結合するための手段と、
    送信ダイバシティに関する1つの手段で前記2つ以上の等化フィルタの前記出力を結合するための手段と、および
    受信ダイバシティに関する他の手段で前記2つ以上の等化フィルタの前記出力を結合するための手段と
    を具備し、
    前記等化器は、数分の1チップの間隔を隔てられた複数のフィルタタップを有する分数的に間隔を隔てられた最小2乗平均誤差(MMSE)等化器であり、および前記複数のフィルタリング係数を選択するための手段は、複数の分数的に間隔を隔てられたチップの受信サンプルに関する前記推定されたチャネル分散および前記推定されたチャネルインパルス応答に基づいて複数のフィルタリング係数を選択する、等化器。
JP2008531385A 2005-09-15 2006-09-15 スペクトル拡散無線通信に関する分数的に間隔を隔てられた等化器 Expired - Fee Related JP4927849B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US71778505P 2005-09-15 2005-09-15
US60/717,785 2005-09-15
US11/502,178 US8064556B2 (en) 2005-09-15 2006-08-09 Fractionally-spaced equalizers for spread spectrum wireless communication
US11/502,178 2006-08-09
PCT/US2006/036137 WO2007035550A1 (en) 2005-09-15 2006-09-15 Fractionally-spaced equalizers for spread spectrum wireless communication

Publications (2)

Publication Number Publication Date
JP2009509420A JP2009509420A (ja) 2009-03-05
JP4927849B2 true JP4927849B2 (ja) 2012-05-09

Family

ID=37681678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008531385A Expired - Fee Related JP4927849B2 (ja) 2005-09-15 2006-09-15 スペクトル拡散無線通信に関する分数的に間隔を隔てられた等化器

Country Status (6)

Country Link
US (1) US8064556B2 (ja)
EP (1) EP1925096A1 (ja)
JP (1) JP4927849B2 (ja)
KR (2) KR101120768B1 (ja)
CN (1) CN101305523B (ja)
WO (1) WO2007035550A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689910A (zh) * 2007-06-01 2010-03-31 奈克斯蒂维蒂有限公司 用多天线来增压的小范围增压器和方法
JP4913018B2 (ja) * 2007-11-12 2012-04-11 富士通株式会社 逆拡散回路および電子機器
US8331499B2 (en) * 2009-04-22 2012-12-11 Cambridge Silicon Radio Ltd. Receiver
EP2504933A4 (en) * 2009-11-26 2015-10-14 Freescale Semiconductor Inc RECEIVER AND METHOD FOR SIGNAL DEACTIVATION
CA3017181C (en) 2010-12-10 2023-07-18 Sun Patent Trust Signal generation method and signal generation device
TWI504169B (zh) * 2013-05-31 2015-10-11 Mstar Semiconductor Inc 加速等化收斂速度的接收裝置與方法
US9479360B2 (en) 2014-06-27 2016-10-25 Samsung Electronics Co., Ltd Receiver apparatus and reception method in wireless communication system
KR102222449B1 (ko) * 2015-02-16 2021-03-03 삼성전자주식회사 탭이 내장된 데이터 수신기 및 이를 포함하는 데이터 전송 시스템
TWI627846B (zh) * 2016-03-30 2018-06-21 晨星半導體股份有限公司 等化增強模組、解調變系統以及等化增強方法
CN111245499B (zh) * 2020-01-08 2021-07-27 西安电子科技大学 基于预整形的时域并行分数间隔均衡器及均衡方法
US20240022458A1 (en) * 2022-07-18 2024-01-18 Cisco Technology, Inc. Transmitter equalization optimization for ethernet chip-to-module (c2m) compliance

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734953B2 (ja) 1993-12-16 1998-04-02 日本電気株式会社 Cdma受信装置
US5852630A (en) * 1997-07-17 1998-12-22 Globespan Semiconductor, Inc. Method and apparatus for a RADSL transceiver warm start activation procedure with precoding
US6175588B1 (en) 1997-12-30 2001-01-16 Motorola, Inc. Communication device and method for interference suppression using adaptive equalization in a spread spectrum communication system
US6775260B1 (en) 1999-02-25 2004-08-10 Texas Instruments Incorporated Space time transmit diversity for TDD/WCDMA systems
JP2000315966A (ja) 1999-02-25 2000-11-14 Texas Instr Inc <Ti> Tdd/wcdmaのための空間時間送信ダイバーシチ
JP3322243B2 (ja) 1999-06-30 2002-09-09 日本電気株式会社 直接拡散cdma受信機
FI20000820A (fi) * 2000-04-06 2001-10-07 Nokia Networks Oy Kanavakorjaimen optimointi
US7272192B2 (en) 2000-04-14 2007-09-18 Board Of Trustees Of The Leland Stanford Junior University Time-reversal block transmit diversity system for channels with intersymbol interference and method
US6956893B2 (en) * 2001-08-20 2005-10-18 Motorola, Inc. Linear minimum mean square error equalization with interference cancellation for mobile communication forward links utilizing orthogonal codes covered by long pseudorandom spreading codes
US9236902B2 (en) * 2001-08-28 2016-01-12 Texas Instruments Incorporated Combined equalizer and spread spectrum interference canceller method and implementation for the downlink of CDMA systems
EP1556962A2 (en) 2002-10-29 2005-07-27 Axiocom Inc. Cascade filter receiver for ds-cdma communication systems
CN1723629A (zh) 2003-01-10 2006-01-18 美商内数位科技公司 通用二阶段数据估测
MXPA05013518A (es) 2003-06-25 2006-03-09 Interdigital Tech Corp Ecualizador basado en ventana deslizante de complejidad reducida.
US7324583B2 (en) 2004-02-13 2008-01-29 Nokia Corporation Chip-level or symbol-level equalizer structure for multiple transmit and receiver antenna configurations
US20050195886A1 (en) * 2004-03-02 2005-09-08 Nokia Corporation CPICH processing for SINR estimation in W-CDMA system
US7599978B2 (en) 2004-07-06 2009-10-06 Telefonaktiebolaget L M Ericsson (Publ) Digital signal decimation by subspace projection
US7483480B2 (en) * 2004-11-24 2009-01-27 Nokia Corporation FFT accelerated iterative MIMO equalizer receiver architecture

Also Published As

Publication number Publication date
KR20110135984A (ko) 2011-12-20
US20070127557A1 (en) 2007-06-07
WO2007035550A1 (en) 2007-03-29
KR101120768B1 (ko) 2012-03-26
JP2009509420A (ja) 2009-03-05
KR20080042934A (ko) 2008-05-15
CN101305523A (zh) 2008-11-12
CN101305523B (zh) 2013-02-27
EP1925096A1 (en) 2008-05-28
US8064556B2 (en) 2011-11-22

Similar Documents

Publication Publication Date Title
JP4927849B2 (ja) スペクトル拡散無線通信に関する分数的に間隔を隔てられた等化器
JP5059776B2 (ja) 無線通信のための準線形干渉消去
US7936810B2 (en) Delayed combining of frequency-domain equalized wireless channels with large delay-spreads
JP5180093B2 (ja) 無線通信用の多段受話器
US7961774B2 (en) Multipath interference-resistant receivers for closed-loop transmit diversity (CLTD) in code-division multiple access (CDMA) systems
US20060229051A1 (en) Interference selection and cancellation for CDMA communications
US20070054692A1 (en) Methods and apparatus to perform noise estimation for frequency-domain equalizers
US7738607B2 (en) Method and system for cluster processing using conjugate gradient-based MMSE equalizer and multiple transmit and/or receive antennas for HSDPA, STTD, closed-loop and normal mode
US7218692B2 (en) Multi-path interference cancellation for transmit diversity
EP1678841A1 (en) A unified mmse equalization and multi-user detection approach for use in a cdma system
US20070053417A1 (en) Methods and apparatus to perform fractional-spaced channel estimation for frequency-domain equalizers
US8498321B2 (en) Method and system for optimizing programmable interference suppression
US20070053416A1 (en) Methods and apparatus to perform closed-loop transmit diversity with frequency-domain equalizers
US7203178B2 (en) Multiuser interference cancellation apparatus
JP2005175775A (ja) 等化器およびその初期値設定方法
WO2001054328A1 (fr) Dispositif et procédé de suppression de signal d&#39;interférence
EP2742600A2 (en) Non-redundant equalization
KR100603766B1 (ko) 근거리 무선통신 시스템을 위한 부분적인 간섭 제거 장치및 그 방법
KR101758107B1 (ko) 무선 통신 시스템에서 간섭 제거를 이용한 등화 장치 및 방법
US20040228314A1 (en) Device for joint detection of cdma codes for multipath downlink
KR101820915B1 (ko) 무선 통신 시스템에서 간섭 제거를 이용한 등화 장치 및 방법
US20090323860A1 (en) Receiving and processing data
JP4048530B2 (ja) 干渉抑圧cdma受信機
Knoche et al. MAI-Suppression with Fractional T-equalizer for CDMA
EP1341319A1 (en) A method of processing data sequences and a corresponding base station comprising a plurality of transmission antennas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110921

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4927849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees