JP4924689B2 - Ferrite grinding body, ferrite core, manufacturing method, grinding method and apparatus - Google Patents

Ferrite grinding body, ferrite core, manufacturing method, grinding method and apparatus Download PDF

Info

Publication number
JP4924689B2
JP4924689B2 JP2009241472A JP2009241472A JP4924689B2 JP 4924689 B2 JP4924689 B2 JP 4924689B2 JP 2009241472 A JP2009241472 A JP 2009241472A JP 2009241472 A JP2009241472 A JP 2009241472A JP 4924689 B2 JP4924689 B2 JP 4924689B2
Authority
JP
Japan
Prior art keywords
ferrite
press
cross
density
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009241472A
Other languages
Japanese (ja)
Other versions
JP2010135758A (en
Inventor
雅史 岸本
将浩 田中
豊 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009241472A priority Critical patent/JP4924689B2/en
Priority to CN 200910209401 priority patent/CN101723656B/en
Priority to CN201310073289.5A priority patent/CN103193470B/en
Publication of JP2010135758A publication Critical patent/JP2010135758A/en
Application granted granted Critical
Publication of JP4924689B2 publication Critical patent/JP4924689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、トランスとチョークコイルなどインダクタンス部品として使用され、両側に鍔部を有する面実装型フェライト磁心、特に片側の鍔部が略多角形を含む自由度の高い形状とすることが可能なフェライト磁心、フェライト研削体、研削方法、製造方法、及び研削装置に関する。 The present invention is a surface mount type ferrite magnetic core that is used as an inductance component such as a transformer and a choke coil and has flanges on both sides, and in particular, a ferrite that can have a highly flexible shape including a substantially polygonal flange on one side. core, ferrites grinding bodies, grinding process, manufacturing method, relates beauty grinding apparatus.

各種電子機器に用いられるトランスやチョークコイル等のインダクタンス素子を構成する面実装型コイル部品には、フェライト磁心が広く用いられている。このフェライト磁心として、両側に円形状または略四角形の鍔部を備えるドラムコアが良く知られている。以下フェライト磁心をドラムコアとも呼ぶ。   Ferrite magnetic cores are widely used in surface mount coil components that constitute inductance elements such as transformers and choke coils used in various electronic devices. As this ferrite magnetic core, a drum core having a circular or substantially square flange on both sides is well known. Hereinafter, the ferrite magnetic core is also referred to as a drum core.

通常、両側に円形鍔部を備えるドラムコアをインダクタンス素子として使用する場合、図20に示すように使用される。即ち、ドラムコア8の軸部82に絶縁被覆導線85を巻回した後、略四角形の基台83に接着剤84などで固定し、前記導線85の2端を基台83に備えられた2端子86,86に、それぞれ接続することでインダクタンス素子が完成される。   Usually, when a drum core having circular flanges on both sides is used as an inductance element, it is used as shown in FIG. That is, after winding the insulation coated conductive wire 85 around the shaft portion 82 of the drum core 8, it is fixed to the substantially rectangular base 83 with an adhesive 84 or the like, and two terminals of the conductive wire 85 are provided on the base 83. An inductance element is completed by connecting to 86 and 86, respectively.

図20に示した両側に円形鍔部を備えるドラムコア8の製造方法として、フェライト顆粒を円柱状の成形体80にプレス成形した後、図21、22に示すように、フェライト成形体80を案内装置93に載せて、研削加工刃91でフェライト成形体80の軸方向の中央部分を研削するセンタレス加工によって、所望の幅を研削することにより、両側に円形鍔部81が形成されたフェライト研削体を、焼成によって収縮緻密化させて得られる。連続したプレス成形とセンタレス加工によって、生産性良くドラムコアを製造できる。   As a manufacturing method of the drum core 8 having circular flanges on both sides shown in FIG. 20, after ferrite granules are press-molded into a cylindrical shaped body 80, the ferrite molded body 80 is guided to a guide device as shown in FIGS. The ferrite grinding body in which the circular flanges 81 are formed on both sides is obtained by grinding the desired width by centerless machining by grinding the central portion in the axial direction of the ferrite compact 80 with the grinding blade 91. Obtained by shrinking and densifying by firing. Drum cores can be manufactured with high productivity by continuous press molding and centerless processing.

しかしながら、前記両側に円形鍔部81を有するドラムコア8は、方向の識別性はないため、インダクタンス素子などに部品化するには、基台83など他の部材が必要となり、ドラムコア8と基台83を接着剤84を用いて固着しなければならないという問題点を有していた。従って、生産性良く低コストでドラムコアを製造できても、部品化において生産性が悪く、コストを要する問題があった。   However, since the drum core 8 having the circular flanges 81 on both sides has no direction discrimination, other members such as the base 83 are required to make it into an inductance element, and the drum core 8 and the base 83 are required. Had to be fixed using the adhesive 84. Therefore, even if the drum core can be manufactured with good productivity and at low cost, there is a problem that the productivity is low in parts production and the cost is high.

さらに、部品化した素子の高さは、ドラムコア8の高さと基台83の厚さの和になり、ドラムコア8の高さを低くしても基台83の厚さ分だけ高くなるという問題点を有していた。特に、高密度実装の電子機器に用いられるチップ型素子などに用いられる場合、薄型化及び軽量化を妨げる原因になっていた。   Further, the height of the componentized element is the sum of the height of the drum core 8 and the thickness of the base 83, and even if the height of the drum core 8 is lowered, the height is increased by the thickness of the base 83. Had. In particular, when used for chip-type elements used in high-density packaging electronic devices, it has been a cause of hindering thickness reduction and weight reduction.

そして、特許文献1では、ドラムコアのみで部品化が可能な構成として、両側に略四角形の鍔部を形成し、一方の鍔部に端子などを形成することで、基台が不要なドラムコアが開示されている。しかし、前記略四角形のドラムコアでは、図23に示すような加工方法で四角柱状の成形体80を研削して鍔部を形成する必要がある。この場合、一つ一つの成形体を加工するため生産性は高くない。両側鍔部が円形のドラムコアのように生産性良く、連続的に加工できるセンタレス加工を適用することは不可能である。   And in patent document 1, the drum core which does not require a base is disclosed by forming a substantially square collar part on both sides and forming a terminal etc. in one collar part as composition which can be componentized only with a drum core. Has been. However, in the substantially square drum core, it is necessary to grind the quadrangular columnar shaped body 80 by a processing method as shown in FIG. In this case, productivity is not high because each molded body is processed. It is impossible to apply centerless machining that can be continuously machined with high productivity, such as a drum core with circular flanges on both sides.

尚、特許文献2には、片側の鍔部が円形で他の片側の鍔部が四角形であり、該四角形の鍔部に端子電極が形成されているドラムコアが開示されている。しかしながら、その製造方法についての記載は無い。   Patent Document 2 discloses a drum core in which a flange on one side is circular and a flange on the other side is a square, and a terminal electrode is formed on the rectangular flange. However, there is no description about the manufacturing method.

特開2005−310982号公報JP-A-2005-310982 実開昭58−187117号公報Japanese Utility Model Publication No. 58-187117

本発明は斯かる事情に鑑みてなされたものであり、片側に端子電極が形成可能なフェライト磁心、該フェライト磁心を生産性よく製造することができる製造方法、フェライト研削体、研削装置及び方法を提供する。 The present invention has been made in view of such circumstances, the terminal electrodes can be formed ferrite core on one side, a manufacturing method which can be produced with good productivity the ferrite core, ferrites grinding bodies, Grinding device And a method.

本発明に係るフェライト研削体は、フェライト材料とPVAとを含むフェライト顆粒をプレス成形してなり、プレス成形方向に連なる第1部材と第2部材とを有し、前記第2部材の前記プレス成形方向に垂直な断面積は、前記第1部材の前記プレス成形方向に垂直な断面積より大きく、前記第2部材は、前記第1部材の密度より3%〜8%大きい密度を有するフェライト成形体を、前記第1部材と前記第2部材とが連なる部分の前記プレス成形方向に垂直な断面積が前記第1の部材の前記プレス成形方向に垂直な断面積より小さくなるように研削してなることを特徴とする。 The ferrite ground body according to the present invention is formed by press-forming ferrite granules containing a ferrite material and PVA, and has a first member and a second member that are continuous in the press-forming direction, and the press-forming of the second member. cross sectional area perpendicular to the direction, greater than the cross-sectional area perpendicular to the press-forming direction of the first member, the second member is a ferrite molded product having a 3% to 8% greater density than the density of said first member Is cut so that the cross-sectional area perpendicular to the press molding direction of the portion where the first member and the second member are continuous is smaller than the cross-sectional area perpendicular to the press molding direction of the first member. It is characterized by that.

また、本発明に係るフェライト研削体は、前記第1部材は円板状をなし、前記第2部材の断面は少なくとも2つの角部を有することを特徴とする。 In the ferrite ground body according to the present invention, the first member has a disk shape, and the cross-section of the second member has at least two corners.

また、本発明に係るフェライト研削体は、前記第2部材は四角板状をなすことを特徴とする。 The ferrite ground body according to the present invention is characterized in that the second member has a square plate shape.

また、本発明に係るフェライト研削体は、前記第2部材の断面は長方形をなすことを特徴とする。 In the ferrite ground body according to the present invention, the second member has a rectangular cross section.

また、本発明に係るフェライト研削体は、前記第2部材の断面は円弧と直線からなる形状をなすことを特徴とする。 The ferrite ground body according to the present invention is characterized in that a cross section of the second member has a shape formed of an arc and a straight line.

本発明に係るフェライト磁心は、前述したフェライト研削体を焼成してなることを特徴とする。   The ferrite magnetic core according to the present invention is characterized by firing the ferrite ground body described above.

本発明に係る研削方法は、フェライト材料とPVAとを含むフェライト顆粒をプレス成形してなり、プレス成形方向に連なる第1部材と第2部材とを有し、前記第2部材の前記プレス成形方向に垂直な断面積は、前記第1部材の前記プレス成形方向に垂直な断面積より大きく、前記第2部材は、前記第1部材の密度より3%〜8%大きい密度を有するフェライト成形体を、該フェライト成形体を支持面にて支持する支持手段と、外周面を前記支持面に対向させる円板状の回転研削刃とを備え、前記支持面は、前記回転研削刃の軸方向の一端側にある第1の面と、前記回転研削刃の軸方向の他端側にあり、前記第1の面よりも前記回転研削刃に近い第2の面とを有する研削装置を用いて研削する方法であって、前記フェライト成形体の第2部材が前記第1の面と対向するように、該フェライト成形体の第1部材を前記第2の面に載せて前記フェライト成形体を支持する支持工程と、前記回転研削刃を回転駆動して、前記フェライト成形体の第1部材と第2部材とが連なる部分を研削する工程とを備え、前記支持手段は、前記第1の面の前記第2の面と反対側に側壁部をさらに有し、該側壁部は、前記回転研削刃の軸端面と略平行する内側面を備え、前記研削装置は、前記側壁部の内側面が鉛直方向に対して2度〜8度傾くように配置されており、前記支持工程は、前記第2部材の外端面が前記側壁部の内側面と当接するように前記フェライト成形体を支持することを特徴とする。 The grinding method according to the present invention includes a first member and a second member that are formed by press-molding a ferrite granule including a ferrite material and PVA, and that are continuous in the press-molding direction, and the press-molding direction of the second member. A cross-sectional area perpendicular to the press molding direction of the first member is larger than the cross-sectional area of the first member, and the second member is a ferrite molded body having a density 3% to 8% larger than the density of the first member. , A support means for supporting the ferrite compact with a support surface, and a disk-shaped rotary grinding blade whose outer peripheral surface faces the support surface, the support surface being one end in the axial direction of the rotary grinding blade. Grinding using a grinding apparatus having a first surface on the side and a second surface closer to the rotary grinding blade than the first surface, on the other end side in the axial direction of the rotary grinding blade A second member of the ferrite molded body A supporting step of supporting the ferrite molded body by placing the first member of the ferrite molded body on the second surface so as to face the first surface, and rotationally driving the rotary grinding blade, A step of grinding a portion where the first member and the second member of the ferrite molded body are continuous, and the support means further includes a side wall portion on the side opposite to the second surface of the first surface, The side wall includes an inner surface that is substantially parallel to the shaft end surface of the rotary grinding blade, and the grinding device is disposed such that the inner surface of the side wall is inclined by 2 to 8 degrees with respect to the vertical direction. In the supporting step, the ferrite molded body is supported so that an outer end surface of the second member is in contact with an inner surface of the side wall portion.

本発明に係る製造方法は、前述した研削方法で研削したフェライト研削体を焼成してフェライト磁心を得る焼成工程をさらに備えることを特徴とする。 According to the process of the present invention, and further comprising a firing step to obtain a ferrite core by firing a ferrite grinding bodies and grinding Grinding method described above.

本発明に係る研削装置は、フェライト材料とPVAとを含むフェライト顆粒をプレス成形してなり、プレス成形方向に連なる第1部材と第2部材とを有し、前記第2部材の前記プレス成形方向に垂直な断面積は、前記第1部材の前記プレス成形方向に垂直な断面積より大きく、前記第2部材は、前記第1部材の密度より3%〜8%大きい密度を有するフェライト成形体を支持面にて支持する支持手段と、外周面を前記支持面に対向させる円板状の回転研削刃とを備える研削装置であって、前記支持面は、前記回転研削刃の軸方向の一端側にある第1の面と、前記回転研削刃の軸方向の他端側にあり、前記第1の面よりも前記回転研削刃に近い第2の面とを有し、前記第1の面の前記第2の面と反対側に側壁部をさらに有し、該側壁部は、前記第2の面と略垂直する内側面を備え、前記側壁部の内側面が鉛直方向に対して2度〜8度傾くように構成してあることを特徴とする。 The grinding apparatus according to the present invention includes a first member and a second member that are formed by press-molding a ferrite granule including a ferrite material and PVA, and that are continuous in the press-molding direction, and the press-molding direction of the second member. A cross-sectional area perpendicular to the press molding direction of the first member is larger than the cross-sectional area of the first member, and the second member is a ferrite molded body having a density 3% to 8% larger than the density of the first member. A grinding apparatus comprising: a support means for supporting by a support surface; and a disk-shaped rotary grinding blade whose outer peripheral surface faces the support surface, wherein the support surface is one end side in the axial direction of the rotary grinding blade. A first surface on the other end side in the axial direction of the rotary grinding blade and a second surface closer to the rotary grinding blade than the first surface, A side wall portion is further provided on the side opposite to the second surface, and the side wall portion is An inner surface of the second surface substantially perpendicular, characterized in that the inner surface of the side wall portions are configured to be inclined 2 ° to 8 ° with respect to the vertical direction.

また、本発明に係る研削装置は、前記内側面が鉛直方向に対して4度〜6度傾くように構成してあることを特徴とする。   The grinding apparatus according to the present invention is characterized in that the inner side surface is inclined by 4 to 6 degrees with respect to the vertical direction.

本発明によれば、第2部材は第1部材の密度より3%〜8%大きい密度を有することで、欠けが発生せず、焼成体の軸部中央近傍のクラックや鍔部の外端面と外周の稜部でのクラックの発生をより確実に避けることができ、片側に端子電極が形成可能なフェライト磁心が得られる。   According to the present invention, the second member has a density that is 3% to 8% larger than the density of the first member, so that chipping does not occur, and the cracks in the vicinity of the center of the shaft portion of the fired body and the outer end surface of the flange portion The generation of cracks at the outer peripheral ridge can be avoided more reliably, and a ferrite core capable of forming a terminal electrode on one side can be obtained.

本発明によれば、第1部材は円柱状をなし、第2部材は、軸断面は少なくとも2つの角部を有することで、自由度の高い形状の研削成形体を作製可能である。   According to the present invention, the first member has a cylindrical shape, and the second member has at least two corners in the axial cross section, so that a grinding molded body having a high degree of freedom can be produced.

本発明によれば、第2部材は、軸断面は長辺と短辺を有する長方形をなすことで、方向性も備えることができ、面実装部品としてエンボステープへの挿入、エンボステープから部品を取り出し、基板への実装に非常に好都合である。   According to the present invention, the second member can be provided with directionality by forming a rectangle having a long side and a short side in the axial section, and can be inserted into the embossed tape as a surface mount component, and the component can be removed from the embossed tape. It is very convenient for taking out and mounting on a substrate.

本発明によれば、第2部材は、軸断面は円弧と直線からなる形状をなすことで、方向性を備えながら、半円の対辺の両角に端子電極を形成することで、実装面積を小さくすることができる。   According to the present invention, the second member has a shape in which the axial cross section is formed by an arc and a straight line, and while having directionality, the terminal electrode is formed at both corners of the opposite side of the semicircle, thereby reducing the mounting area. can do.

本発明によれば、研削装置において、支持面は前記回転研削刃の軸方向の一端側にある第1の面と、前記回転研削刃の軸方向の他端側にあり、前記第1の面よりも前記回転研削刃に近い第2の面とを有することで、自由度の高い形状の被研削物を研削可能である。   According to the present invention, in the grinding device, the support surface is on the first surface on one end side in the axial direction of the rotary grinding blade and on the other end side in the axial direction of the rotary grinding blade, and the first surface In addition, since the second surface is closer to the rotary grinding blade, it is possible to grind an object to be ground having a high degree of freedom.

本発明によれば、研削装置において、側壁部を備えることで、被研削物を安定に研削可能である。   According to the present invention, the object to be ground can be stably ground by providing the side wall portion in the grinding apparatus.

本発明によれば、研削装置において、前記側壁部の内側面が鉛直方向に対して傾くように構成してあることで、重力を利用して被研削物の回転外周面及び一端の外側面を加工基準面である第2の面及び側壁部の内側面に常時接触させながら、確実な研削加工を行うことができる。   According to the present invention, in the grinding apparatus, the inner side surface of the side wall portion is configured to be inclined with respect to the vertical direction. Reliable grinding can be performed while always contacting the second surface, which is the processing reference surface, and the inner surface of the side wall.

本発明によれば、生産性に優れる、プレス成形工程とセンタレス加工工程により、低コストで早いリードタイムで、片側鍔部に端子電極を容易に形成可能な形状を有するフェライト磁心を得ることができる。   According to the present invention, it is possible to obtain a ferrite magnetic core having a shape capable of easily forming a terminal electrode on one side collar portion at a low cost and with a fast lead time by a press molding process and a centerless processing process, which are excellent in productivity. .

実施の形態1に係るフェライト磁心を示す斜視図である。2 is a perspective view showing a ferrite magnetic core according to Embodiment 1. FIG. 実施の形態1に係るフェライト磁心を示す正面図である。FIG. 3 is a front view showing a ferrite magnetic core according to the first embodiment. 実施の形態1に係るフェライト磁心を示す上面図である。FIG. 3 is a top view showing a ferrite magnetic core according to the first embodiment. 実施の形態1に係るプレス成形装置を示す模式図である。1 is a schematic diagram showing a press molding apparatus according to Embodiment 1. FIG. 実施の形態1に係るプレス成形装置によるプレス成形処理を模式的に示す説明図である。FIG. 3 is an explanatory diagram schematically showing press forming processing by the press forming apparatus according to Embodiment 1. 実施の形態1に係るプレス成形後の成形体を示す斜視図である。3 is a perspective view showing a molded body after press molding according to Embodiment 1. FIG. 実施の形態1に係るセンタレス加工機を示す一部省略した斜視図である。It is the perspective view which abbreviate | omitted partially which shows the centerless processing machine which concerns on Embodiment 1. FIG. 実施の形態1に係るセンタレス加工機の加工処理を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing processing of the centerless processing machine according to the first embodiment. 実施の形態1に係るセンタレス加工後のドラムコア成形体を示す斜視図である。2 is a perspective view showing a drum core molded body after centerless processing according to Embodiment 1. FIG. 実施の形態1に係る鍔部に端子電極が形成されたドラムコア焼成体を用いたインダクタンス素子を示す斜視図である。FIG. 3 is a perspective view showing an inductance element using a drum core fired body in which terminal electrodes are formed on the collar according to the first embodiment. 実施の形態1に係る鍔部に端子電極が形成されたドラムコア焼成体を用いたトランス部品を示す斜視図である。FIG. 3 is a perspective view showing a transformer component using a drum core fired body in which terminal electrodes are formed on the flange according to the first embodiment. 実施の形態2に係るフェライト磁心を示す斜視図である。5 is a perspective view showing a ferrite magnetic core according to Embodiment 2. FIG. 実施の形態2に係るフェライト磁心を示す正面図である。6 is a front view showing a ferrite magnetic core according to Embodiment 2. FIG. 実施の形態2に係るフェライト磁心を示す上面図である。6 is a top view showing a ferrite magnetic core according to Embodiment 2. FIG. 実施の形態2に係るプレス成形装置を示す模式図である。5 is a schematic diagram showing a press molding apparatus according to Embodiment 2. FIG. 実施の形態2に係る成形金型を示す上面図である。6 is a top view showing a molding die according to Embodiment 2. FIG. 実施の形態2に係るプレス成形装置によるプレス成形処理を模式的に示す説明図である。FIG. 6 is an explanatory diagram schematically showing press forming processing by a press forming apparatus according to Embodiment 2. 実施の形態2に係るプレス成形後の成形体を示す斜視図である。5 is a perspective view showing a molded body after press molding according to Embodiment 2. FIG. 実施の形態2に係る鍔部に端子電極が形成されたドラムコア焼成体を用いたインダクタンス素子を示す斜視図である。It is a perspective view which shows the inductance element using the drum core baking body by which the terminal electrode was formed in the collar part concerning Embodiment 2. FIG. 従来の両側円形鍔部を備えるドラムコアを用いたインダクタンス素子を示す斜視図である。It is a perspective view which shows the inductance element using the drum core provided with the conventional double-sided circular collar part. センタレス加工の原理を模式的に示す説明図である。It is explanatory drawing which shows the principle of centerless processing typically. センタレス加工の原理を模式的に示す説明図である。It is explanatory drawing which shows the principle of centerless processing typically. 従来の両側四角形鍔部を備えるドラムコアのセンタレス加工の原理を模式的に示す説明図である。It is explanatory drawing which shows typically the principle of the centerless process of a drum core provided with the both-sides square collar part.

以下、本発明をその実施の形態を示す図面に基づき具体的に説明する。
なお、以下の実施の形態では、軟磁性を示すソフトフェライトのドラムコアを製造する例を挙げて説明する。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
In the following embodiments, an example of producing a soft ferrite drum core exhibiting soft magnetism will be described.

(実施の形態1)
図1は、実施の形態1に係るドラムコア1を示す斜視図、図2は実施の形態1に係るドラムコア1を示す正面図、図3は実施の形態1に係るドラムコア1を示す上面図である。図に示したように、ドラムコア1(フェライト磁心)は、円形鍔部11と、四角形鍔部12と、円形鍔部11及び四角形鍔部12を連結する軸部13とを備える。
(Embodiment 1)
1 is a perspective view showing a drum core 1 according to the first embodiment, FIG. 2 is a front view showing the drum core 1 according to the first embodiment, and FIG. 3 is a top view showing the drum core 1 according to the first embodiment. . As shown in the figure, the drum core 1 (ferrite magnetic core) includes a circular flange portion 11, a square flange portion 12, and a shaft portion 13 that connects the circular flange portion 11 and the square flange portion 12.

実施の形態1に係るドラムコア1を製造するには、フェライト材料の各原料粉を秤量し、純水を加えてアトライター(attritor)で混合し、混合したスラリーにバインダーを添加した後、スプレードライヤー(spray dryer)で乾燥する。得られた混合粉の顆粒を、アルミナ製の箱に入れて仮焼し、仮焼した顆粒に純水を加えて、アトライターで粉砕する。得られたスラリーにバインダーを添加してスプレードライヤーで乾燥し、フェライトの顆粒10を得た。フェライトの顆粒10を、図4、5に示すようなプレス成形装置2の成形金型20に充填した後、成形金型20に、上下パンチ部21、22が、それぞれ下ろされ、押し上げられ、図6に示したフェライト成形体3が製作された。   In order to manufacture the drum core 1 according to Embodiment 1, each raw material powder of ferrite material is weighed, pure water is added and mixed with an attritor, a binder is added to the mixed slurry, and then a spray dryer Dry with (spray dryer). The obtained mixed powder granules are placed in an alumina box and calcined, and pure water is added to the calcined granules and pulverized with an attritor. A binder was added to the resulting slurry and dried with a spray dryer to obtain ferrite granules 10. After filling the granule 10 of ferrite into the molding die 20 of the press molding apparatus 2 as shown in FIGS. 4 and 5, the upper and lower punch portions 21 and 22 are respectively lowered and pushed up into the molding die 20. The ferrite molded body 3 shown in FIG.

製作したフェライト成形体3を、図7、8に示すようなセンタレス加工機4でセンタレス加工した。得られたフェライト研削体5は図9の斜視図に示すように、円形の鍔部51と、四角形の鍔部52と、それらを連結する軸部53とを備えている。次に、フェライト研削体5を焼成し、図1に示したような焼成体のドラムコア1を得た。   The manufactured ferrite molded body 3 was centerless processed with a centerless processing machine 4 as shown in FIGS. As shown in the perspective view of FIG. 9, the obtained ferrite grinding body 5 includes a circular flange 51, a square flange 52, and a shaft 53 that connects them. Next, the ferrite ground body 5 was fired to obtain a drum core 1 having a fired body as shown in FIG.

以下、本実施の形態1のプレス成形処理の詳細を説明する。図4は実施の形態1に係るプレス成形装置を示す模式図、図5は実施の形態1に係るプレス成形装置によるプレス成形処理を模式的に示す説明図、図6は実施の形態1に係るプレス成形後の成形体を示す斜視図である。プレス成形装置2は、中空の四角筒状の上壁面20a、円筒状の下壁面20b、及びそれらを連結する連結面20cにより構成されている内壁面を有する成形金型20と、上壁面20aに摺動自在に挿入されている四角柱状の上パンチ部21と、下壁面20bに摺動自在に挿入されている円柱状の下パンチ部22とを備える。また、プレス成形装置2は、上パンチ部21及び下パンチ部22などを駆動するモータなどの駆動部23と、駆動部23による駆動を制御するマイクロコンピュータなどの駆動制御部24とを有する。駆動制御部24は、機能構成部として、下降制御部241、上昇制御部242、及び補助下降制御部243などを含む。   Hereinafter, the details of the press molding process of the first embodiment will be described. 4 is a schematic diagram showing the press molding apparatus according to the first embodiment, FIG. 5 is an explanatory diagram schematically showing press molding processing by the press molding apparatus according to the first embodiment, and FIG. 6 is according to the first embodiment. It is a perspective view which shows the molded object after press molding. The press molding apparatus 2 includes a molding die 20 having an inner wall surface constituted by a hollow square cylindrical upper wall surface 20a, a cylindrical lower wall surface 20b, and a connecting surface 20c for connecting them, and an upper wall surface 20a. A rectangular columnar upper punch portion 21 that is slidably inserted and a columnar lower punch portion 22 that is slidably inserted into the lower wall surface 20b are provided. The press molding apparatus 2 includes a drive unit 23 such as a motor that drives the upper punch unit 21 and the lower punch unit 22, and a drive control unit 24 such as a microcomputer that controls driving by the drive unit 23. The drive control unit 24 includes a descending control unit 241, an ascending control unit 242, an auxiliary descending control unit 243, and the like as functional components.

本実施の形態1では、四角柱状の上パンチ部21の軸方向と交差する方向における断面積は、円柱状の下パンチ部22の軸方向と交差する方向における断面積よりも大きい。成形金型20に形成される穴部は下向き凸形状を成し、上パンチ部21が摺動する上壁面20aと連結面20cとにより囲まれる四角柱状の上穴、及び、下パンチ部22が摺動する下壁面20bにより囲まれる円柱状の下穴により構成される。なお、上パンチ部21が進退する方向と交差する方向における上穴の開口断面積は、下パンチ部22が進退する方向と交差する方向における下穴の開口断面積よりも大きい。   In the first embodiment, the cross-sectional area in the direction intersecting the axial direction of the quadrangular columnar upper punch portion 21 is larger than the cross-sectional area in the direction intersecting the axial direction of the cylindrical lower punch portion 22. The hole formed in the molding die 20 has a downward convex shape, and a rectangular columnar upper hole surrounded by an upper wall surface 20a on which the upper punch portion 21 slides and a connecting surface 20c, and a lower punch portion 22 are formed. It is constituted by a columnar prepared hole surrounded by a sliding lower wall surface 20b. The opening cross-sectional area of the upper hole in the direction intersecting the direction in which the upper punch portion 21 advances and retreats is larger than the opening cross-sectional area of the lower hole in the direction intersecting with the direction in which the lower punch portion 22 advances and retreats.

このようなプレス成形装置2により本実施の形態1に係るフェライト成形体3を成形するには、まず、図5(a)に示すような第1の工程において、駆動部23は、成形金型20の上側端面よりも上方に上パンチ部21の下端面21aを配置し、さらに、成形金型20の下側端面よりも上方に下パンチ部22の上端面22aを配置するように、上パンチ部21と下パンチ部22を駆動する。これにより、成形金型20及び下パンチ部22により、フェライトの顆粒10を充填するための収容部を形成する。そして、収容部内に成形金型20の上側端面と同じ高さにまでフェライトの顆粒10を充填する。   In order to form the ferrite molded body 3 according to the first embodiment with such a press molding apparatus 2, first, in the first step as shown in FIG. The upper punch portion 21 is disposed at a lower end surface 21a above the upper end surface of the upper punch portion 20 and is further disposed at an upper end surface 22a of the lower punch portion 22 above the lower end surface of the molding die 20. The part 21 and the lower punch part 22 are driven. Thereby, the molding die 20 and the lower punch portion 22 form an accommodating portion for filling the ferrite granules 10. And the granule 10 of ferrite is filled in the accommodating part to the same height as the upper end face of the molding die 20.

次に、図5(b)に示す第2の工程において、駆動部23は上パンチ部21を駆動し、上パンチ部21を下降させる。この時、下降制御部241は、下パンチ部22の上端面22aの初期位置を高度の基準面とし、上パンチ部21の下端面21aを該基準面からの第1高さh1にまで下降させるように、駆動部23の駆動を制御する。これにより、上パンチ部21の下端面21aをフェライトの顆粒10の表面に接触させ、収容部に充填されるフェライトの顆粒10に均一に押圧力を加える。   Next, in the second step shown in FIG. 5B, the drive unit 23 drives the upper punch unit 21 and lowers the upper punch unit 21. At this time, the lowering control unit 241 uses the initial position of the upper end surface 22a of the lower punch unit 22 as a high reference surface, and lowers the lower end surface 21a of the upper punch unit 21 to the first height h1 from the reference surface. Thus, the drive of the drive part 23 is controlled. Thus, the lower end surface 21a of the upper punch portion 21 is brought into contact with the surface of the ferrite granule 10, and a pressing force is uniformly applied to the ferrite granule 10 filled in the accommodating portion.

次に、図5(c)に示す第3の工程において、駆動部23は下パンチ部22を駆動し、下パンチ部22を上昇させる。この時、上昇制御部242は、下パンチ部22の上端面22aを基準面からの第3高さh3にまで上昇させて、下パンチ部22の上端面22aで収容部に充填されるフェライトの顆粒10に押圧力を加えるように、駆動部23の駆動を制御する。この結果、下パンチ部22の上端面22a上のフェライトの顆粒10の一部が、上パンチ部21の下面21aと成形金型の連結面20cにより形成される空間へと、すなわち、より負荷の少ない側へと流動する。   Next, in the third step shown in FIG. 5C, the drive unit 23 drives the lower punch unit 22 to raise the lower punch unit 22. At this time, the ascending control unit 242 raises the upper end surface 22a of the lower punch unit 22 to the third height h3 from the reference surface, and the ferrite filled in the accommodation unit with the upper end surface 22a of the lower punch unit 22 The drive of the drive unit 23 is controlled so as to apply a pressing force to the granules 10. As a result, a part of the ferrite granules 10 on the upper end surface 22a of the lower punch portion 22 is moved to the space formed by the lower surface 21a of the upper punch portion 21 and the connecting surface 20c of the molding die, that is, more loaded. Flows to the less side.

さらに、図5(d)に示す第4の工程においては、駆動部23は上パンチ部21を駆動し、上パンチ部21を下降させる。この時、補助下降制御部243は、上パンチ部21の下端面21aを基準面からの前記第1の高さh1より略低い第2高さh2にまで下降させるように、駆動部23の駆動を制御する。上パンチ部21の下端面21aで収容部に充填されるフェライトの顆粒10にこれらを圧潰するような押圧力が加える。この結果、収容部に充填されるフェライトの顆粒10は流動せず、圧潰されて緊密に結合されている。図6に示すような、円柱部31と、密度が該円柱部31より高い四角柱部32とを含むフェライト成形体3が製作された。製作されたフェライト成形体3は後述するセンタレス加工機4へ伝送される。   Further, in the fourth step shown in FIG. 5D, the drive unit 23 drives the upper punch unit 21 and lowers the upper punch unit 21. At this time, the auxiliary lowering control unit 243 drives the driving unit 23 so as to lower the lower end surface 21a of the upper punch unit 21 to a second height h2 that is substantially lower than the first height h1 from the reference surface. To control. A pressing force is applied to the ferrite granules 10 filled in the accommodating portion at the lower end surface 21a of the upper punch portion 21 so as to crush them. As a result, the ferrite granules 10 filled in the accommodating portion do not flow but are crushed and tightly coupled. As shown in FIG. 6, a ferrite molded body 3 including a cylindrical portion 31 and a quadrangular prism portion 32 having a higher density than the cylindrical portion 31 was manufactured. The manufactured ferrite molded body 3 is transmitted to a centerless processing machine 4 described later.

このように製作されたフェライト成形体3の円柱部31と四角柱部32の密度について、発明者は、前記プレス成形時の上下パンチ部の圧力またはストロークを調整し、円柱部31と四角柱部32とが異なる密度を有する複数のフェライト成形体3を作製し、センタレス研削加工により鍔部を形成した後、フェライト研削体5の外観を評価した。さらに、フェライト研削体5を焼成し、焼成後の寸法を評価した。その結果、本実施の形態1に係るフェライト成形体3では、四角柱部32が円柱部31の密度より3%〜8%大きい密度を有することが好ましいと判明した。四角柱部32の密度が円柱部31の密度に比べて3%から8%大きいと、フェライト研削体5の四角形鍔部の欠けなどの発生が無い。3%未満の場合は、センタレス加工後の外観では、略四角形の鍔部端部に多くの欠けが観察され、高合格率で生産することができない。8%を超えると、円形鍔部と四角形鍔部とをそれぞれ焼成収縮する際、収縮率の差が大きくなるため、円柱部分と略四角柱部分を合わせた界面近傍で収縮挙動の差によって、クラックが発生するようになる。欠けが発生せず、かつ焼成体の各界面近傍でのクラック発生をより確実に避けるためには、5%〜7%がより好ましい。   Regarding the density of the cylindrical portion 31 and the rectangular column portion 32 of the ferrite molded body 3 manufactured in this way, the inventor adjusts the pressure or stroke of the upper and lower punch portions during the press molding, and the cylindrical portion 31 and the rectangular column portion. A plurality of ferrite molded bodies 3 having a density different from that of 32 were prepared, and a collar portion was formed by centerless grinding, and then the appearance of the ferrite ground body 5 was evaluated. Further, the ferrite ground body 5 was fired, and the dimensions after firing were evaluated. As a result, it was found that in the ferrite molded body 3 according to the first embodiment, it is preferable that the quadrangular column part 32 has a density that is 3% to 8% greater than the density of the cylindrical part 31. When the density of the rectangular column portion 32 is 3% to 8% larger than the density of the cylindrical portion 31, there is no occurrence of a chipping of the rectangular flange portion of the ferrite grinding body 5. In the case of less than 3%, in the appearance after the centerless processing, many chips are observed at the end portion of the substantially rectangular ridge part, and it cannot be produced with a high pass rate. If it exceeds 8%, the difference between the shrinkage ratios becomes larger when the circular collar part and the square collar part are fired and shrunk, so cracks are caused by the difference in shrinkage behavior near the interface of the cylindrical part and the substantially quadrangular prism part. Will occur. In order to prevent chipping and to more reliably avoid the occurrence of cracks in the vicinity of each interface of the fired body, 5% to 7% is more preferable.

次に、本実施の形態1のセンタレス加工処理の詳細を説明する。図7は実施の形態1に係るセンタレス加工機を示す一部省略した斜視図、図8は実施の形態1に係るセンタレス加工機の加工処理を模式的に示す断面図、図9は実施の形態1に係るセンタレス加工後のドラムコア成形体を示す斜視図である。図7、図8に示したように、本実施の形態1のセンタレス加工機(研削装置)4は、電動モータのモータ軸(不図示)に連動する回転軸41aに取り付けされている研削加工刃41と、フェライト成形体3を伝送する供給シュート42と、研削加工刃41と対向し、供給シュート42から伝送されたフェライト成形体3を案内する案内装置43とを備える。案内装置43は、円盤状の支持部46と、支持部46の外周に適長離隔して配置されている複数の突起部44と、支持部46の両側端面に配置されており、支持部46の外周面に対して垂直に設けられる側壁部47、48とを備える(図7では側壁部47の図示を省略した)。また、支持部46は、第1の外周面46a、及び軸方向において該第1の外周面46aに連なって、第1の外周面46aより大きい第2の外周面46bを含む段階状の外周形状を有する。該第2の外周面46bと第1の外周面46aとの段差は、加工するフェライト成形体3の四角柱部32が円柱部31から張り出している部分より大きくなるように形成されている。複数の突起部44は第2の外周面46bに配置されており、周方向に隣接する突起部44、44により形成される空間は、供給シュート42から伝送されたフェライト成形体3を安定に研削するように保持するための保持部45を形成する。また、第1の外周面46a側の側壁部47の内側面が鉛直方向に対して傾くように、該センタレス加工機4が構成されている。   Next, details of the centerless machining process of the first embodiment will be described. 7 is a partially omitted perspective view showing the centerless processing machine according to the first embodiment, FIG. 8 is a cross-sectional view schematically showing the processing of the centerless processing machine according to the first embodiment, and FIG. 9 is the embodiment. 1 is a perspective view showing a drum core molded body after centerless processing according to FIG. As shown in FIGS. 7 and 8, the centerless processing machine (grinding device) 4 of the first embodiment is a grinding blade attached to a rotating shaft 41 a that is linked to a motor shaft (not shown) of an electric motor. 41, a supply chute 42 that transmits the ferrite molded body 3, and a guide device 43 that faces the grinding blade 41 and guides the ferrite molded body 3 transmitted from the supply chute 42. The guide device 43 is disposed on a disc-shaped support portion 46, a plurality of protrusions 44 that are spaced apart from each other by an appropriate length on the outer periphery of the support portion 46, and on both end surfaces of the support portion 46. Side wall portions 47 and 48 provided perpendicular to the outer peripheral surface of the outer wall surface (in FIG. 7, illustration of the side wall portion 47 is omitted). Further, the support portion 46 includes a first outer peripheral surface 46a and a stepped outer peripheral shape that includes the second outer peripheral surface 46b that is continuous with the first outer peripheral surface 46a in the axial direction and is larger than the first outer peripheral surface 46a. Have The step between the second outer peripheral surface 46 b and the first outer peripheral surface 46 a is formed to be larger than the portion where the quadrangular column portion 32 of the ferrite molded body 3 to be processed projects from the cylindrical portion 31. The plurality of protrusions 44 are arranged on the second outer peripheral surface 46b, and the space formed by the protrusions 44 and 44 adjacent in the circumferential direction stably grinds the ferrite molded body 3 transmitted from the supply chute 42. A holding portion 45 is formed to hold as described above. Further, the centerless processing machine 4 is configured such that the inner surface of the side wall 47 on the first outer peripheral surface 46a side is inclined with respect to the vertical direction.

このセンタレス加工機4でフェライト成形体3をセンタレス処理する場合、図8に示すように、プレス成形装置2から送り出されたフェライト成形体3が、四角柱部32が案内装置43の第1の外周面46a、円柱部31が第2の外周面46bとそれぞれ対応するように供給シュート42を通って案内装置43の外周に順送りされる。案内装置43は、矢印Aの方向に回転駆動され、供給される各フェライト成形体3は、回転する案内装置43の外周面に装着されている複数の突起部44と44の間の保持部45に1個ずつ伝送される。円柱部31の外周面31bが第2の外周面46b、四角柱部32の外端面32aが側壁部47の内側面47aにそれぞれ常時接触させるとともに、円柱部31の外端面31aが側壁部48の内側面48a、四角柱部32の外周面32bが第1の外周面46aと隙間を明けて対向するように、保持部45に保持されている。保持されているフェライト成形体3は、突起部44で規制されつつ案内装置43と研削加工刃41の最小間隔部分に向けて順番に送り込まれる。   When the centerless processing machine 4 performs centerless processing of the ferrite molded body 3, as shown in FIG. 8, the ferrite molded body 3 fed out from the press molding apparatus 2 has a rectangular column portion 32 having a first outer periphery of the guide apparatus 43. The surface 46a and the cylindrical portion 31 are sequentially fed to the outer periphery of the guide device 43 through the supply chute 42 so as to correspond to the second outer peripheral surface 46b. The guide device 43 is rotationally driven in the direction of arrow A, and each ferrite compact 3 to be supplied is held by a holding portion 45 between a plurality of protrusions 44 and 44 mounted on the outer peripheral surface of the rotating guide device 43. Are transmitted one by one. The outer peripheral surface 31b of the cylindrical portion 31 is always in contact with the second outer peripheral surface 46b, the outer end surface 32a of the quadrangular prism portion 32 is always in contact with the inner side surface 47a of the side wall portion 47, and the outer end surface 31a of the cylindrical portion 31 is The inner surface 48a and the outer peripheral surface 32b of the quadrangular prism portion 32 are held by the holding portion 45 so as to face the first outer peripheral surface 46a with a gap. The held ferrite molded body 3 is sequentially fed toward the minimum gap portion between the guide device 43 and the grinding blade 41 while being regulated by the protrusion 44.

研削加工刃41は高速に回転駆動され、フェライト成形体3が案内装置43と研削加工刃41の最小間隔部分を通過する際に、研削加工刃41はフェライト成形体3を、円柱部31の外周面31bが第2の外周面46b、四角柱部32の外端面32aが側壁部47の内側面47aにそれぞれ常時接触しながら、回転させる。回転しているフェライト成形体3は研削加工刃41に研削される。研削加工刃41の幅はフェライト成形体3の軸方向の全長より小さく、フェライト成形体3の軸方向の中間部分が研削加工刃41の幅で切り込まれ、図7のように円形の鍔部51と四角形の鍔部52とそれらを連結する軸部53とを有するドラム型のフェライト研削体5に加工される。ドラム型に加工されたフェライト研削体5は案内装置43の回転案内によって順に排出される。   The grinding blade 41 is rotationally driven at high speed, and when the ferrite molded body 3 passes through the minimum gap portion between the guide device 43 and the grinding blade 41, the grinding blade 41 moves the ferrite molded body 3 around the outer periphery of the cylindrical portion 31. The surface 31 b is rotated while being always in contact with the second outer peripheral surface 46 b and the outer end surface 32 a of the quadrangular column 32 is in contact with the inner surface 47 a of the side wall 47. The rotating ferrite molded body 3 is ground by the grinding blade 41. The width of the grinding blade 41 is smaller than the overall length of the ferrite molded body 3 in the axial direction, and the intermediate portion of the ferrite molded body 3 in the axial direction is cut by the width of the grinding blade 41 to form a circular flange as shown in FIG. 51, a drum-shaped ferrite grinding body 5 having a square flange 52 and a shaft 53 connecting them. The ferrite grinding body 5 processed into the drum shape is sequentially discharged by the rotation guide of the guide device 43.

ここで、本実施の形態1では、第1の外周面46a側の側壁部47の内側面47aが鉛直方向に対して下方に傾くように、該センタレス加工機4が配置されている。また、フェライト成形体3は、四角柱部32は円柱部31より高い密度を有し、且つ円柱部31より張り出した構成となるため、四角柱部32の方が円柱部31に比べて重量が大きい。従って、前述のように円柱部31の外周面31bが第2の外周面46b、四角柱部32の外端面32aが側壁部47の内側面47aにそれぞれ常時接触させるように、保持部45に保持される場合、フェライト成形体3では、四角柱部32の重心が円柱部31の重心よりも低位にされる。また、第2の外周面46bと第1の外周面46aとの段差は、四角柱部32が円柱部31から張り出している部分より大きいとともに、円柱部31の外端面31aが側壁部48の内側面48aと隙間を明けて対向している。これにより、センタレス加工時にフェライト成形体3を安定に回転、移動させることができる。   Here, in the first embodiment, the centerless processing machine 4 is arranged so that the inner side surface 47a of the side wall 47 on the first outer peripheral surface 46a side is inclined downward with respect to the vertical direction. Further, in the ferrite molded body 3, the quadrangular column portion 32 has a higher density than the columnar portion 31 and is configured to protrude from the columnar portion 31, so that the quadrangular column portion 32 is heavier than the columnar portion 31. large. Therefore, as described above, the outer peripheral surface 31b of the cylindrical portion 31 is held by the holding portion 45 so that the outer peripheral surface 46b is always in contact with the second outer peripheral surface 46b, and the outer end surface 32a of the rectangular column portion 32 is always in contact with the inner side surface 47a of the side wall portion 47. In this case, in the ferrite molded body 3, the center of gravity of the rectangular column part 32 is set lower than the center of gravity of the cylindrical part 31. Further, the step between the second outer peripheral surface 46 b and the first outer peripheral surface 46 a is larger than the portion where the quadrangular prism portion 32 projects from the cylindrical portion 31, and the outer end surface 31 a of the cylindrical portion 31 is within the side wall portion 48. It faces the side surface 48a with a gap. Thereby, the ferrite compact 3 can be stably rotated and moved during the centerless processing.

本実施の形態1では、第1の外周面46a側の側壁部47の内側面47aが鉛直方向に対して2度から8度傾くことが好ましい。2度未満では、円柱部31の外周面31bと第2の外周面46bとの接触が不安定であり、研削加工精度が低下する。8度を超えると、四角柱部32の外端面32aと側壁部47の内側面47aとの接触による摩擦が大きく、成形体の回転移動がスムーズでなくなり、途中で停止する現象が起こり、研削加工が全周に渡ってなされなくなる。より好ましくは4度から6度である。   In the first embodiment, it is preferable that the inner side surface 47a of the side wall 47 on the first outer peripheral surface 46a side is inclined by 2 to 8 degrees with respect to the vertical direction. If it is less than 2 degrees, the contact between the outer peripheral surface 31b of the cylindrical portion 31 and the second outer peripheral surface 46b is unstable, and the grinding accuracy is lowered. If the angle exceeds 8 degrees, the friction caused by the contact between the outer end surface 32a of the quadrangular column 32 and the inner surface 47a of the side wall portion 47 is large, and the rotational movement of the molded body becomes unsmooth and stops in the middle. Will not be made all around. More preferably, it is 4 to 6 degrees.

図10は実施の形態1に係る鍔部に端子電極が形成されたドラムコア焼成体を用いたインダクタンス素子を示す斜視図である。上記のフェライト研削体5は、前述のように焼成され、図1の焼成体のドラムコア1を得た。さらに、得られた焼成体のドラムコア1の略四角形鍔部の隣接する2角に端子電極16,16を形成し、両側鍔部の間の軸部13に絶縁被覆導線15を巻回し、導線の両端を前記2つの端子電極16,16に半田で半田付けし、図10に示したようなインダクタンス素子が得られた。   FIG. 10 is a perspective view showing an inductance element using a drum core fired body in which terminal electrodes are formed on the flange according to the first embodiment. The ferrite ground body 5 was fired as described above to obtain the drum core 1 of the fired body of FIG. Furthermore, the terminal electrodes 16 and 16 are formed in the adjacent two corners of the substantially quadrangular collar portion of the drum core 1 of the fired body obtained, and the insulation-coated conductive wire 15 is wound around the shaft portion 13 between the both side collar portions. Both ends were soldered to the two terminal electrodes 16 and 16 with solder, and an inductance element as shown in FIG. 10 was obtained.

図11は実施の形態1に係る鍔部に端子電極が形成されたドラムコア焼成体を用いたトランス部品を示す斜視図である。上記のフェライト研削体5は、前述のように焼成され、図1の焼成体のドラムコア1を得た。さらに、得られた焼成体のドラムコア1の略四角形鍔部の4角に端子電極16,16,16,16を形成し、両側鍔部の間の軸部13に1対の絶縁被覆導線15を巻回し、各導線の両端をそれぞれ隣接する前記4つの端子電極16,16,16,16に半田で半田付けし、さらに、円形鍔部11と四角形鍔部12とに挟まれた空間に、フェライト粉末が分散混合された耐熱性樹脂を充填することで、図11に示したようなトランス部品が得られた。   FIG. 11 is a perspective view showing a transformer component using a drum core fired body in which terminal electrodes are formed on the flange according to the first embodiment. The ferrite ground body 5 was fired as described above to obtain the drum core 1 of the fired body of FIG. Further, terminal electrodes 16, 16, 16, 16 are formed at the four corners of the substantially rectangular collar portion of the drum core 1 of the fired body, and a pair of insulating coated conductors 15 are formed on the shaft portion 13 between the both side collar portions. Winding and soldering both ends of each conductive wire to the four terminal electrodes 16, 16, 16, 16 adjacent to each other with solder, and in the space sandwiched between the circular flange portion 11 and the square flange portion 12, A transformer component as shown in FIG. 11 was obtained by filling a heat-resistant resin in which powder was dispersed and mixed.

(実施の形態2)
次に、図12〜17に基づいて、本発明の実施形態2について説明する。
図12は実施の形態2に係るフェライト磁心を示す斜視図、図13は実施の形態2に係るフェライト磁心を示す正面図、図14は実施の形態2に係るフェライト磁心を示す上面図である。本実施形態2に係るフェライト磁心6は、実施形態1の四角形鍔部12を備える構成の代わりに、円形鍔部61と、四角形と円形の結合形状である半円四角形の鍔部62と、それらを連結する軸部63とを備える構成とする。そして、プレス成形装置7及びプレス成形処理も実施の形態1と異なる。それ以外は、本実施形態2は基本的に実施形態1と同様に構成されているので、重複する説明を省略する。
(Embodiment 2)
Next, Embodiment 2 of the present invention will be described with reference to FIGS.
12 is a perspective view showing a ferrite core according to the second embodiment, FIG. 13 is a front view showing the ferrite core according to the second embodiment, and FIG. 14 is a top view showing the ferrite core according to the second embodiment. The ferrite magnetic core 6 according to the second embodiment includes a circular flange 61, a semicircular rectangular flange 62, which is a combined shape of a square and a circle, instead of the configuration including the rectangular flange 12 of the first embodiment, It is set as the structure provided with the axial part 63 which connects. The press molding device 7 and the press molding process are also different from those in the first embodiment. Other than that, the second embodiment is basically configured in the same manner as the first embodiment, and therefore, a duplicate description is omitted.

図15は実施の形態2に係るプレス成形装置を示す模式図、図16は実施の形態2に係る成形金型を示す上面図、図17は実施の形態2に係るプレス成形装置によるプレス成形処理を模式的に示す説明図、図18は実施の形態2に係るプレス成形後の成形体を示す斜視図である。図15に示したプレス成形装置7は、成形するフェライト成形体60と対応する中空の半円略四角筒状の上壁面70a、円筒状の下壁面70b、及びそれらを連結する連結面により構成されている内壁面70cを有する成形金型70と、上壁面70aに摺動自在に挿入されている半円略四角柱状の上パンチ部71と、下壁面70bに摺動自在に挿入されている円柱状の下パンチ部72とを備える。また、プレス成形装置7は、上パンチ部71及び下パンチ部72などを駆動するモータなどの駆動部73と、駆動部73による駆動を制御するマイクロコンピュータなどの駆動制御部74とを有する。駆動制御部74は、機能構成部として、下降制御部741、上昇制御部742、及び補助下降制御部743などを含む。   15 is a schematic diagram showing a press molding apparatus according to the second embodiment, FIG. 16 is a top view showing a molding die according to the second embodiment, and FIG. 17 is a press molding process by the press molding apparatus according to the second embodiment. FIG. 18 is a perspective view showing a molded body after press molding according to the second embodiment. The press molding apparatus 7 shown in FIG. 15 includes a hollow semicircular substantially square cylindrical upper wall surface 70a corresponding to a ferrite molded body 60 to be molded, a cylindrical lower wall surface 70b, and a connecting surface for connecting them. A molding die 70 having an inner wall surface 70c, a semi-circular substantially quadrangular prism-shaped upper punch portion 71 slidably inserted into the upper wall surface 70a, and a circle slidably inserted into the lower wall surface 70b. A columnar lower punch portion 72 is provided. The press molding apparatus 7 includes a drive unit 73 such as a motor that drives the upper punch unit 71 and the lower punch unit 72 and a drive control unit 74 such as a microcomputer that controls driving by the drive unit 73. The drive control unit 74 includes a descending control unit 741, an ascending control unit 742, an auxiliary descending control unit 743, and the like as functional components.

図15、16に示したように、成形金型70は、半円略四角柱状の上パンチ部71の軸方向と交差する方向における断面は、円柱状の下パンチ部72の軸方向と交差する方向における断面積よりも大きい。成形金型70に形成される穴部は下向き凸形状を成し、上パンチ部71が摺動する上壁面70aと連結面70cとにより囲まれる半円四角柱状の上穴、及び、下パンチ部72が摺動する下壁面70bにより囲まれる円柱状の下穴により構成される。半円四角柱状の上穴は、片側で円柱状の下穴から張り出している。上パンチ部71が進退する方向と交差する方向における上穴の開口断面積は、下パンチ部72が進退する方向と交差する方向における下穴の開口断面積よりも大きい。   As shown in FIGS. 15 and 16, in the molding die 70, the cross section in the direction intersecting the axial direction of the semicircular substantially quadrangular columnar upper punch portion 71 intersects the axial direction of the cylindrical lower punch portion 72. Larger than the cross-sectional area in the direction. The hole formed in the molding die 70 has a downwardly convex shape, and is a semicircular quadrangular columnar upper hole surrounded by an upper wall surface 70a on which the upper punch portion 71 slides and a connecting surface 70c, and a lower punch portion. It is constituted by a cylindrical prepared hole surrounded by a lower wall surface 70b on which 72 slides. The semicircular quadrangular columnar upper hole projects from the cylindrical pilot hole on one side. The opening cross-sectional area of the upper hole in the direction intersecting the direction in which the upper punch portion 71 advances and retreats is larger than the opening cross-sectional area of the lower hole in the direction intersecting with the direction in which the lower punch portion 72 advances and retreats.

上述のようなプレス成形装置7により本実施の形態2に係るフェライト成形体を製造するには、まず、図17(a)に示すような第1の工程において、駆動部73は、成形金型70の上側端面よりも上方に上パンチ部71の下端面71aを配置し、さらに、成形金型70の下側端面よりも上方に下パンチ部72の上端面72aを配置するように、上パンチ部71と下パンチ部72を駆動する。これにより、成形金型70及び下パンチ部72により、フェライトの顆粒10を充填するための収容部を形成する。そして、収容部内に成形金型70の上側端面と同じ高さにまでフェライトの顆粒10を充填する。   In order to manufacture the ferrite molded body according to the second embodiment by the press molding apparatus 7 as described above, first, in the first step as shown in FIG. The upper punch surface 71a is disposed above the upper end surface of the upper punch portion 71, and the upper punch surface 72a is disposed above the lower end surface of the molding die 70. The part 71 and the lower punch part 72 are driven. In this way, a housing part for filling the ferrite granules 10 is formed by the molding die 70 and the lower punch part 72. Then, the ferrite granules 10 are filled in the accommodating portion to the same height as the upper end surface of the molding die 70.

次に、図17(b)に示す第2の工程において、駆動部73は上パンチ部71を駆動し、上パンチ部71を下降させる。この時、下降制御部741は、下パンチ部72の上端面72aの初期位置を高度の基準面とし、上パンチ部71の下端面71aを該基準面からの第1高さh1にまで下降させるように、駆動部73の駆動を制御する。これにより、上パンチ部71の下端面71aをフェライトの顆粒10の表面に接触させることで、収容部に充填されるフェライトの顆粒10に均一に押圧力を加えている。   Next, in the second step shown in FIG. 17B, the drive unit 73 drives the upper punch unit 71 and lowers the upper punch unit 71. At this time, the lowering control unit 741 uses the initial position of the upper end surface 72a of the lower punch unit 72 as a high reference surface, and lowers the lower end surface 71a of the upper punch unit 71 to the first height h1 from the reference surface. Thus, the drive of the drive part 73 is controlled. Thus, the lower end surface 71a of the upper punch portion 71 is brought into contact with the surface of the ferrite granule 10, so that a pressing force is uniformly applied to the ferrite granule 10 filled in the accommodating portion.

次に、図17(c)に示す第3の工程において、駆動部73は下パンチ部72を駆動し、下パンチ部72を上昇させる。この時、上昇制御部742は、下パンチ部72の上端面72aを基準面からの第3高さh3にまで上昇させて、下パンチ部72の上端面72aで収容部に充填されるフェライトの顆粒10にこれらを圧潰するような押圧力を加えるように、駆動部73の駆動を制御する。これによって、収容部内に収容されるフェライトの顆粒10が圧潰され、緊密に結合されている。   Next, in the third step shown in FIG. 17C, the drive unit 73 drives the lower punch unit 72 to raise the lower punch unit 72. At this time, the ascending control unit 742 raises the upper end surface 72a of the lower punch unit 72 to the third height h3 from the reference surface, and the ferrite filled in the housing unit with the upper end surface 72a of the lower punch unit 72. The drive of the drive unit 73 is controlled so as to apply a pressing force to the granules 10 to crush them. As a result, the ferrite granule 10 accommodated in the accommodating portion is crushed and tightly coupled.

さらに、図17(d)に示す第4の工程においては、駆動部73は上パンチ部71を駆動し、上パンチ部71を下降させる。この時、補助下降制御部743は、上パンチ部71の下端面71aを基準面からの前記第1の高さh1より略低い第2高さh2にまで下降させるように駆動部73の駆動を制御する。上パンチ部71の下端面71aで収容部に充填されるフェライトの顆粒10に押圧力を加える。この場合、フェライトの顆粒10が既に圧潰されて結合されたので、収容部に充填されるフェライトの顆粒10は流動しない。この結果、上パンチ部71の下端面71aと成形金型の連結面70cにより形成される空間に位置するフェライト顆粒10の結合体は一層圧力加えられ、さらに緊密に結合されている。この結果、図18に示すような、円柱部と、密度が該円柱部より高い半円略四角柱部とを備えるフェライト成形体60が製作された。   Further, in the fourth step shown in FIG. 17D, the drive unit 73 drives the upper punch unit 71 and lowers the upper punch unit 71. At this time, the auxiliary lowering control unit 743 drives the driving unit 73 to lower the lower end surface 71a of the upper punch unit 71 to a second height h2 that is substantially lower than the first height h1 from the reference surface. Control. A pressing force is applied to the ferrite granules 10 filled in the accommodating portion at the lower end surface 71 a of the upper punch portion 71. In this case, since the ferrite granule 10 has already been crushed and bonded, the ferrite granule 10 filled in the accommodating portion does not flow. As a result, the bonded body of the ferrite granules 10 located in the space formed by the lower end surface 71a of the upper punch portion 71 and the connecting surface 70c of the molding die is further pressed and further tightly coupled. As a result, as shown in FIG. 18, a ferrite molded body 60 including a cylindrical portion and a semicircular substantially quadrangular prism portion whose density is higher than that of the cylindrical portion was manufactured.

このように製作されたフェライト成形体60の円柱部と半円略四角柱部の密度は、実施の形態1と同様、半円略四角柱部が円柱部の密度より3%〜8%大きい密度を有することが好ましい。5%以上7%以下がより好ましい。   As in the first embodiment, the density of the cylindrical portion and the semicircular substantially quadrangular prism portion of the ferrite molded body 60 manufactured in this way is 3% to 8% higher than the density of the cylindrical portion. It is preferable to have. 5% or more and 7% or less are more preferable.

製作されたフェライト成形体60は実施の形態1と同様、センタレス加工されて焼成され、図12に示したようなフェライト磁心6が得られた。フェライト磁心6は、半円略四角形の鍔部において端子電極16を形成し、両鍔部の間に絶縁被覆導線を巻回し、導線の両端を前記2つの端子電極16に半田で半田付けし、さらに、両鍔部61、62に挟まれた空間に、フェライト粉末が分散混合された耐熱性樹脂を充填することで、図19に示したようなインダクタンス素子が得られた。   The manufactured ferrite molded body 60 was centerless processed and fired in the same manner as in Embodiment 1 to obtain a ferrite magnetic core 6 as shown in FIG. The ferrite magnetic core 6 is formed with a terminal electrode 16 in a semicircular substantially quadrangular ridge, winding an insulation-coated conductive wire between both ridges, and soldering both ends of the conductive wire to the two terminal electrodes 16 with solder. Further, an inductance element as shown in FIG. 19 was obtained by filling a space between both flange portions 61 and 62 with a heat resistant resin in which ferrite powder was dispersed and mixed.

本実施の形態2に係るフェライト磁心6は、実施形態1の四角形鍔部12を備える構成の代わりに、四角形と円形の結合形状である半円四角形の鍔部62を備える構成を有する。この半円四角形の鍔部62と円形の鍔部との軸断面積の差は、実施の形態1の四角形の鍔部12と円形の鍔部11との軸断面積の差より小さいなどを考慮して、上述のプレス成形処理を採用するが、これに限らず、実施の形態1と同様なプレス成形処理を採用してもよいことは勿論である。   The ferrite magnetic core 6 according to the second embodiment has a configuration including a semicircular quadrangular flange 62 that is a combined shape of a square and a circle, instead of the configuration including the quadrangular flange 12 of the first embodiment. Considering that the difference in the axial cross-sectional area between the semicircular rectangular flange 62 and the circular flange is smaller than the difference in the axial cross-sectional area between the rectangular flange 12 and the circular flange 11 of the first embodiment. And although the above-mentioned press molding process is employ | adopted, it is needless to say that not only this but the press molding process similar to Embodiment 1 may be employ | adopted.

なお、フェライト成形体の密度は、プレス時にフェライト顆粒が金型内への充填される様子や、圧力による流動・変形などの挙動が非常に複雑であると推測される。成形体それぞれの形状に応じて上下パンチの条件をパラメータとして、成形体・焼成体の形状や焼成時の収縮ばらつき等を評価して、適当な成形処理を採用することが好ましい。   The density of the ferrite compact is presumed to be very complicated in the manner in which ferrite granules are filled into the mold during pressing and the behavior such as flow and deformation due to pressure. It is preferable to adopt an appropriate molding process by evaluating the shape of the molded body / fired body, variation in shrinkage during firing, etc., using the upper and lower punch conditions as parameters according to the shape of each molded body.

以下、本発明を実施例に基づいて詳細に述べる。
(実施例1)
フェライト材料として、mol%で、Fe23 :47、NiO:23、CuO:5、ZnO:25の組成になるように、各原料粉を秤量し、純水を加えてアトライターで混合した。混合スラリーにPVAをフェライト材料重量に対して1%添加した後、スプレードライヤーで乾燥した。得られた混合粉の顆粒を、アルミナ製の箱に入れて、大気中、最高温度900℃で2時間保持することで仮焼した。仮焼した顆粒に純水を加えて、アトライターで粉砕した。このスラリーにPVAをフェライト材料重量に対して2%添加し、スプレードライヤーで乾燥し、顆粒を得た。顆粒の粒径は約100μmであった。
Hereinafter, the present invention will be described in detail based on examples.
Example 1
As a ferrite material, each raw material powder was weighed so as to have a composition of mol%, Fe 2 O 3 : 47, NiO: 23, CuO: 5, ZnO: 25, and pure water was added and mixed by an attritor. . After 1% of PVA was added to the mixed slurry with respect to the weight of the ferrite material, it was dried with a spray dryer. The obtained mixed powder granules were put into an alumina box and calcined by holding them in the atmosphere at a maximum temperature of 900 ° C. for 2 hours. Pure water was added to the calcined granules and pulverized with an attritor. To this slurry, 2% of PVA was added with respect to the weight of the ferrite material, and dried with a spray dryer to obtain granules. The particle size of the granules was about 100 μm.

得られた顆粒を、円柱部と略正方形の四角柱部を合わせた成形体が得られる図4に示すようなプレス成形装置の成形金型20に充填した後、実施の形態1に説明した工程でプレス成形し、フェライト成形体が得られた。成形体の形状は円形の鍔の直径または略四角形鍔の一辺の長さが約3mmで、高さが約1mmである。   After filling the obtained granules into a molding die 20 of a press molding apparatus as shown in FIG. 4 in which a molded body in which a cylindrical portion and a substantially square quadrangular prism portion are combined is obtained, the process described in the first embodiment And a ferrite molded body was obtained. The shape of the molded body is such that the diameter of a circular ridge or the length of one side of a substantially rectangular ridge is about 3 mm and the height is about 1 mm.

先ず、フェライト成形体を10ヶ作製し、円柱部と四角柱部をカッターナイフで分離し、それぞれの重量を電子天秤で、大きさをマイクロメータで測定し、成形体密度を算出した。結果を表1に示す。四角柱部の密度が円柱部に比べて、3%から8%大きい範囲にあることが分かる。   First, 10 ferrite compacts were produced, the cylindrical part and the quadrangular prism part were separated with a cutter knife, the respective weights were measured with an electronic balance, the size was measured with a micrometer, and the compact density was calculated. The results are shown in Table 1. It can be seen that the density of the quadrangular prism portion is in the range of 3% to 8% larger than that of the cylindrical portion.

Figure 0004924689
Figure 0004924689

次に、前記条件でフェライト成形体を1000ヶ作製した。予め前記形状に合わせて図7、図8に示したセンタレス加工機4の加工機構部分を製作し、側壁部47の内側面47aを鉛直方向に5度の角度で傾くように設定する。   Next, 1000 ferrite compacts were produced under the above conditions. The processing mechanism portion of the centerless processing machine 4 shown in FIGS. 7 and 8 is manufactured according to the shape in advance, and the inner side surface 47a of the side wall portion 47 is set to be inclined at an angle of 5 degrees in the vertical direction.

作製したフェライト成形体1000ヶを前記機構を備えるセンタレス加工機4で加工した。研削加工刃の厚さは490μmで、両側鍔部の間隔は約510μmであった。図9に示したような円形の鍔部と略正方形の鍔部を備えているドラムコア成形体が作製された。該ドラムコア成形体1000ヶの外観を評価したところ、欠け不良は無かった。   1000 pieces of the produced ferrite compacts were processed by the centerless processing machine 4 equipped with the mechanism. The thickness of the grinding blade was 490 μm, and the distance between both side flanges was about 510 μm. A drum core molded body having a circular collar portion and a substantially square collar portion as shown in FIG. 9 was produced. When the appearance of 1000 drum core molded bodies was evaluated, there was no chipping defect.

次に、ドラムコア成形体1000ヶを大気中、最高温度1100℃で2時間保持により焼成し、ドラムコア焼成体を得た。焼成収縮率は約16%であった。焼成体の外観検査及び寸法検査を行い問題無いことを確認した。   Next, 1000 drum core compacts were fired in the air at a maximum temperature of 1100 ° C. for 2 hours to obtain a drum core fired body. The firing shrinkage rate was about 16%. The appearance inspection and dimensional inspection of the fired body were performed to confirm that there was no problem.

得られたドラムコア焼成体の内50ヶについて、両側鍔部の間に直径100μmの絶縁被覆導線を12回巻回し、HP社製LCRメータ4284Aを使用して、周波数100kHzでのインダクタンス及び直流重畳特性を評価し、インダクタンス素子として目的とする特性が得られていることを確認した。   About 50 of the obtained drum core fired bodies, an insulating coated conductor wire having a diameter of 100 μm is wound 12 times between the flanges on both sides, and an LCR meter 4284A manufactured by HP is used to perform inductance and DC superposition characteristics at a frequency of 100 kHz. Was evaluated, and it was confirmed that the intended characteristics as an inductance element were obtained.

(実施例2)
実施例1で得られたドラムコア焼成体の内50ヶについて、略正方形の鍔部の隣接する2角にディップ法によりAgペーストを鍔部の外面から側面を通じて内面に連続するように塗布乾燥させた後、大気中600℃で20分保持により焼成した。次に電解バレルめっきによりAg電極上にNi及びSnめっき膜を施し、端子電極を形成した。次に両側鍔部の間に直径100μmの絶縁被覆導線を12回巻回し、導線の両端を前記2つの端子電極に高融点半田で半田付けし、インダクタンス素子とした。得られたインダクタンス素子を、予め作製し、前記端子電極部分との接続部分に低融点半田を印刷した評価用プリント基板に実装し、リフロー装置により半田付けした。評価用プリント基板を介してインダクタンス素子を評価し、目的とする特性が得られていることを確認した。
(Example 2)
About 50 of the drum core fired bodies obtained in Example 1, the Ag paste was applied and dried so as to be continuous from the outer surface of the collar part to the inner surface through the side surface by dipping in two adjacent corners of the substantially square collar part. Thereafter, it was fired by holding at 600 ° C. for 20 minutes in the air. Next, Ni and Sn plating films were applied on the Ag electrodes by electrolytic barrel plating to form terminal electrodes. Next, an insulating coated conductor wire having a diameter of 100 μm was wound 12 times between both side flanges, and both ends of the conductor wire were soldered to the two terminal electrodes with a high melting point solder to obtain an inductance element. The obtained inductance element was fabricated in advance, mounted on a printed circuit board for evaluation in which low melting point solder was printed on the connection portion with the terminal electrode portion, and soldered by a reflow apparatus. The inductance element was evaluated through the evaluation printed board, and it was confirmed that the intended characteristics were obtained.

(実施例3)
プレス成形金型として、図6に示したような片側が円柱、他の片側が断面が長辺と短辺を有する長方形である四角柱部を合わせたフェライト成形体3が得られるプレス成形金型2を用いて、他の条件は実施例1と同条件でドラムコア焼成体を1000ヶ作製した。得られたドラムコア焼成体は図1に示したような円形の鍔部11と略長方形の鍔部12を備えている。次に、略長方形鍔部の4角にディップ法によりAgペーストを鍔部の外面から側面を通じて内面に連続するように塗布乾燥させた後、実施例2と同様の条件で端子電極を形成した。次に両側鍔部の間に直径70μmの絶縁被覆導線を5回巻回した後、さらにもう1つの絶縁被覆導線を合わせ2本を5回巻回し、次に最初に巻回した絶縁被覆導線のみをさらに5回巻回した。
(Example 3)
As a press-molding die, as shown in FIG. 6, a press-molding die is obtained in which a ferrite molded body 3 is obtained, in which one side is a cylinder and the other side is a rectangular column having a cross section having a long side and a short side. 2 were used, and 1000 drum core fired bodies were produced under the same conditions as in Example 1. The obtained drum core fired body includes a circular flange 11 and a substantially rectangular flange 12 as shown in FIG. Next, after applying and drying Ag paste on the four corners of the substantially rectangular ridge part by dip method so as to continue from the outer surface of the heel part to the inner surface through the side surface, terminal electrodes were formed under the same conditions as in Example 2. Next, after winding 70 μm diameter insulation coated wire between both side collars 5 times, combining another insulation coated wire and winding 2 times 5 times, then only the first insulation coated wire wound Was wound five more times.

次に、巻回数の多い方の導線の両端を、略長方形の1短辺の両端角部の端子電極に、巻回数の少ない方の導線の両端を、前記短辺と対向する短辺の両端角部の端子電極に、それぞれ高融点半田で半田付けした。さらに、略長方形鍔部と円形鍔部の外円を延長した面に挟まれた空間に、フェライト粉末が分散混合された耐熱性樹脂を充填することで、図11に示したようなトランス部品が得られた。得られたトランス部品を、予め作製した前記端子電極部分との接続部分に低融点半田を印刷した評価用プリント基板に実装し、リフロー装置により半田付けした。評価用プリント基板を介してトランス部品を評価し、目的とする特性が得られていることを確認した。また、漏洩磁束について、フェライト粉末が分散混合された耐熱性樹脂の充填をしたものとしなかったものを比較評価し、前記樹脂の充填によって漏洩磁束がより少ないことを確認した。   Next, both ends of the conductor with the larger number of windings are connected to terminal electrodes at both corners of one short side of a substantially rectangular shape, and both ends of the conductor with the smaller number of windings are connected to both ends of the short side facing the short side. Each corner terminal electrode was soldered with a high melting point solder. Furthermore, a transformer part as shown in FIG. 11 is obtained by filling a space sandwiched between the surfaces of the substantially rectangular collar part and the circular collar part extending the outer circle with a heat resistant resin in which ferrite powder is dispersed and mixed. Obtained. The obtained transformer component was mounted on a printed circuit board for evaluation in which low melting point solder was printed on a connection portion with the terminal electrode portion prepared in advance, and soldered by a reflow apparatus. Transformer components were evaluated via a printed circuit board for evaluation, and it was confirmed that the intended characteristics were obtained. Moreover, about the leakage magnetic flux, it compared with what was not what was filled with the heat resistant resin by which the ferrite powder was disperse-mixed, and it confirmed that leakage magnetic flux was less by filling with the said resin.

(実施例4)
プレス成形金型として、図18に示したような片側が円柱と他の片側が半円柱と略四角柱を合わせたフェライト成形体60が得られるプレス成形金型を用いて、他の条件は実施例1と同条件でドラムコア焼成体を1000ヶ作製した。得られたドラムコア焼成体は円形の鍔部と半円と略四角形を合わせた形の鍔部を備えている。
Example 4
As a press molding die, as shown in FIG. 18, a press molding die in which a ferrite molded body 60 in which one side is a cylinder and the other side is a semi-cylinder and a substantially square column is obtained is used. 1000 drum core fired bodies were produced under the same conditions as in Example 1. The obtained drum core fired body is provided with a circular collar part and a collar part formed by combining a semicircle and a substantially square shape.

得られたドラムコア焼成体の内50ヶについて、略半円と略四角形を合わせた形状の、2角にディップ法によりAgペーストを鍔部の外面から側面を通じて内面に連続するように塗布乾燥させた後、実施例2と同様の条件でインダクタンス素子を得た。得られたインダクタンス素子を、予め作製し、前記端子電極部分との接続部分に低融点半田を印刷した評価用プリント基板に実装し、リフロー装置により半田付けした。評価用プリント基板を介してインダクタンス素子を評価し、目的とする特性が得られていることを確認した。また、実装面積は実施例2の場合に比べて約20%小さく、かつ実装する鍔部が半円と略四角形を合わせた形であるため、表面実装で使用するエンボステープへの挿入時に、パーツフィーダー等により方向性を容易に認識可能であった。   About 50 of the obtained drum core fired bodies, Ag paste was applied and dried in two corners by a dip method in a shape of a substantially semicircle and a substantially square shape so as to continue from the outer surface of the buttock to the inner surface through the side surface. Thereafter, an inductance element was obtained under the same conditions as in Example 2. The obtained inductance element was fabricated in advance, mounted on a printed circuit board for evaluation in which low melting point solder was printed on the connection portion with the terminal electrode portion, and soldered by a reflow apparatus. The inductance element was evaluated through the evaluation printed board, and it was confirmed that the intended characteristics were obtained. In addition, the mounting area is about 20% smaller than in the case of Example 2 and the mounting flange has a shape that combines a semicircle and a substantially square shape. Therefore, when inserting into the embossed tape used for surface mounting, The directionality could be easily recognized by a feeder or the like.

(比較例1〜3)
比較例1として、実施例1に記載のプレス条件を変えて、表2の試料No.11、12、13に示すように、四角柱部の成形体密度が円柱部に比べて8%を超える条件として、それぞれの条件で成形体を各30ヶ作製した。焼成後、外観評価を行ったところ、試料No.11の条件では30ヶ中6ヶで、試料No.12の条件では30ヶ中9ヶで、試料No.13の条件では30ヶ中13ヶについて、円柱部と四角柱部を合わせた境界近傍にクラックが認められた。
(Comparative Examples 1-3)
As Comparative Example 1, the press conditions described in Example 1 were changed, and sample Nos. As shown in 11, 12, and 13, as a condition that the density of the molded body of the quadrangular column part exceeds 8% as compared with the cylindrical part, 30 molded bodies were produced under each condition. After firing, appearance evaluation was performed. In the condition of 11, the sample No. In the condition of 12, the sample number is 9 out of 30. Under 13 conditions, cracks were observed in the vicinity of the boundary of the cylindrical portion and the quadrangular column portion in 13 out of 30 pieces.

比較例2として、実施例1に記載のプレス条件を変えて、表2の試料No.14、15、16に示すように、四角柱部の成形体密度が円柱部に比べて3%未満となる条件として、それぞれの条件で成形体を各30ヶ作製し、外観評価を行ったところ、試料No.14では30ヶ中16ヶで、試料No.15では30ヶ中10ヶで、試料No.16では30ヶ中9ヶについて、成形体の略四角形鍔部の欠けが顕著に認められた。   As Comparative Example 2, the press conditions described in Example 1 were changed, and Sample No. As shown in 14, 15, and 16, as a condition that the density of the molded body of the quadrangular column part is less than 3% compared to the cylindrical part, 30 molded bodies were produced under each condition, and the appearance was evaluated. Sample No. No. 14 is 16 out of 30 and sample no. 15 is 10 out of 30, and sample no. In No. 16, chipping of a substantially rectangular ridge portion of the molded body was remarkably observed in 9 out of 30 pieces.

比較例3として、実施例1に記載のプレス条件を変えて、表2の試料No.17、18、19に示すように、四角柱部の成形体密度が円柱部に比べて3%未満となり、かつ密度がNo.11〜13の略四角柱の密度と同程度と、比較的高密度の条件として、それぞれの条件で成形体を各30ヶ作製した。焼成後、外観評価を行ったところ、試料No.17の条件では30ヶ中16ヶで、試料No.18の条件では30ヶ中13ヶで、試料No.19の条件では30ヶ中10ヶについて、円柱部の外端面と外周の稜部にクラックが認められた。   As Comparative Example 3, the press conditions described in Example 1 were changed, and sample Nos. 17, 18, and 19, the density of the molded body of the quadrangular column portion is less than 3% compared to the cylindrical portion, and the density is As the conditions of a comparatively high density and approximately the same as the density of the substantially quadrangular prisms 11 to 13, 30 molded bodies were produced under each condition. After firing, appearance evaluation was performed. In the condition of 17, the sample No. Under the condition of 18, the sample No. Under 19 conditions, cracks were observed on the outer end surface of the cylindrical portion and the ridge portion on the outer periphery of 10 out of 30 pieces.

Figure 0004924689
Figure 0004924689

(実施例5〜11、比較例4、5)
実施例5〜11、比較例4、5として、実施の形態1のセンタレス加工機4の加工機構部分において、表3に示すように、傾く角度を0度(比較例4)、2度(実施例5)、3度(実施例6)、4度(実施例7)、5度(実施例8)、6度(実施例9)、7度(実施例10)、8度(実施例11)、10度(比較例5)にして、実施例1で得られたフェライト成形体各30ヶをセンタレス加工し、鍔部を形成した。これら各試料30ヶについて、加工品の略四角形鍔部の厚さと円形鍔部の厚さを投影機で測定し、厚さばらつきの指標として3σを算出し、表3に示した。角度2度〜8度では3σは略四角形鍔部の厚さで19μm以下、円形鍔部の厚さで25μm以下と小さく、特に角度4度〜6度ではではそれぞれ15μm以下、21μm以下とより小さく、加工精度が高い。他方、角度10度では、成形体の回転移動が加工途中で止まってしまい、全周に渡って切削加工できなかった。尚、両側鍔部の平均厚さは約300μmであった。角度0度では、円柱部の外周面の加工基準面への接触が不安定のため、研削位置がばらつくと推定できる。
(Examples 5 to 11, Comparative Examples 4 and 5)
As Examples 5 to 11 and Comparative Examples 4 and 5, in the processing mechanism portion of the centerless processing machine 4 of the first embodiment, as shown in Table 3, the inclination angle is 0 degree (Comparative Example 4), 2 degrees (Implementation) Example 5) 3 degrees (Example 6) 4 degrees (Example 7) 5 degrees (Example 8) 6 degrees (Example 9) 7 degrees (Example 10) 8 degrees (Example 11) ) At 10 degrees (Comparative Example 5), 30 ferrite molded bodies obtained in Example 1 were each processed centerlessly to form a collar portion. For each of these 30 samples, the thickness of the substantially rectangular ridge and the thickness of the circular ridge of the processed product were measured with a projector, and 3σ was calculated as an index of thickness variation. At an angle of 2 to 8 degrees, 3σ is approximately 19 μm or less as the thickness of the substantially rectangular ridge, and 25 μm or less as the thickness of the circular ridge, and is particularly smaller at 15 to 21 μm or less at angles of 4 to 6 degrees, respectively. High processing accuracy. On the other hand, at an angle of 10 degrees, the rotational movement of the formed body stopped in the middle of processing, and cutting could not be performed over the entire circumference. In addition, the average thickness of both side ridges was about 300 μm. At an angle of 0 °, it can be estimated that the grinding position varies because the contact of the outer peripheral surface of the cylindrical portion with the processing reference surface is unstable.

Figure 0004924689
Figure 0004924689

以上、本発明の実施形態を詳述したが、本発明は前記実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible within the range of the summary of this invention.

例えば、前記実施形態1、2において、片側が円柱と他の片側が四角柱を合わせた成形体、及び片側が円柱と他の片側が半円柱と略四角柱を合わせた成形体を例として説明したが、これに限定されるものではなく、他の形状の成形体を適用してもよい。要するに、成形体の高さの略半分程度が円柱形状であれば、円柱の外周面を利用することで、成形体の残りの略半分は、原理的に略四角柱に限らず、略多角形を含む自由度の高い形状の成形体を作製可能である。   For example, in the first and second embodiments, a molded body in which one side is a cylinder and the other side is a square column, and a molded body in which one side is a cylinder and the other side is a semi-cylinder and a substantially square column are described as examples. However, the present invention is not limited to this, and a molded body having another shape may be applied. In short, if approximately half of the height of the molded body is a cylindrical shape, the remaining half of the molded body is not limited to a substantially rectangular prism in principle, but can be a substantially polygonal shape by utilizing the outer peripheral surface of the cylinder. It is possible to produce a molded body having a high degree of freedom including.

また、円柱は、円の直径と柱の高さを有し、前記直径と高さの大小関係は不問としている。従って、円板も円柱に含まれるものとする。同様に、略四角柱を含む略多角柱は、略多角形の辺の長さと柱の長さの大小関係は不問としている。よって、略多角板も略多角柱に含まれる。また、略多角形は略正多角形のみを意味するものではない。ここで、略四角形や略多角形で用いている略とは、それぞれの角部の全てまたは一部を直線状または円弧状に面取り加工している形状を含むことを意味している。   The cylinder has a circle diameter and a column height, and the magnitude relationship between the diameter and the height is not questioned. Accordingly, the circular plate is also included in the cylinder. Similarly, a substantially polygonal column including a substantially quadrangular column does not ask the magnitude relation between the length of the side of the substantially polygon and the length of the column. Therefore, the substantially polygonal plate is also included in the substantially polygonal column. Further, the substantially polygon does not mean only a substantially regular polygon. Here, the term “substantially used in a substantially quadrangular shape or a substantially polygonal shape” means that all or part of each corner portion includes a shape that is chamfered into a linear shape or an arc shape.

また、略円柱は、センタレス加工が可能であれば、円柱に限らず楕円柱や直方体を半円柱で挟んだ形状などを含むことを意味している。   Moreover, if a centerless process is possible, a substantially cylinder means not only a cylinder but the shape which pinched | interposed the elliptic cylinder and the rectangular parallelepiped with the half cylinder.

また、センタレス加工時の傾く角度は、重力を利用して円柱の外周面及び多角柱の外側面を加工基準面に常時接触させればよい。   In addition, the tilting angle at the time of centerless processing may be such that the outer peripheral surface of the cylinder and the outer surface of the polygonal column are always brought into contact with the processing reference surface using gravity.

また、研削装置では、側壁部47の内側面は、第2の外周面46bと垂直となるように構成している。センタレス加工が可能であるためには、実質的に垂直であることが必要であるIn the grinding device, the inner surface of the side wall 47 is configured to be perpendicular to the second outer peripheral surface 46b . In order to be able to perform centerless processing , it is necessary to be substantially vertical .

なお、開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The disclosed embodiments should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1,6 ドラムコア(フェライト磁心)
2,7 プレス成形装置
20,70 成形金型
20a 上壁面(上金型)
20b 下壁面(下金型)
21,71 上パンチ部
22,72 下パンチ部
21a、71a 下端面
22a、72a 上端面
241、741 下降制御部
242、742 上昇制御部
243、743 補助下降制御部
3 フェライト成形体
31 円柱部(第1部材)
32 四角柱部(第2部材)
4 センタレス加工機(研削装置)
41 研削加工刃
43 案内装置(支持手段)
46 支持部(支持面)
46a 第1の外周面(第1の面)
46b 第2の外周面(第2の面)
47 側壁部
47a 内側面
5 フェライト研削体
53 軸部
1,6 drum core (ferrite core)
2,7 Press molding equipment 20,70 Mold 20a Upper wall surface (upper mold)
20b Lower wall surface (lower mold)
21, 71 Upper punch part 22, 72 Lower punch part 21a, 71a Lower end face 22a, 72a Upper end face 241, 741 Lowering control part 242, 742 Ascending control part 243, 743 Auxiliary lowering control part 3 Ferrite compact 31 Cylindrical part (first 1 member)
32 Square column (second member)
4 Centerless processing machine (grinding equipment)
41 Grinding blade 43 Guide device (support means)
46 Supporting part (supporting surface)
46a First outer peripheral surface (first surface)
46b Second outer peripheral surface (second surface)
47 Side wall part 47a Inner side surface 5 Ferrite grinding body 53 Shaft part

Claims (10)

フェライト材料とPVAとを含むフェライト顆粒をプレス成形してなり、プレス成形方向に連なる第1部材と第2部材とを有し、前記第2部材の前記プレス成形方向に垂直な断面積は、前記第1部材の前記プレス成形方向に垂直な断面積より大きく、前記第2部材は、前記第1部材の密度より3%〜8%大きい密度を有するフェライト成形体を、前記第1部材と前記第2部材とが連なる部分の前記プレス成形方向に垂直な断面積が前記第1の部材の前記プレス成形方向に垂直な断面積より小さくなるように研削してなることを特徴とするフェライト研削体。 The ferrite granules comprising a ferrite material and PVA becomes by press molding, and a first member and a second member connected to the press-forming direction, the cross-sectional area perpendicular to the press-forming direction of the second member, the A ferrite molded body having a density larger than a cross-sectional area perpendicular to the press molding direction of the first member, and the second member having a density 3% to 8% larger than the density of the first member, and the first member and the first member A ferrite ground body obtained by grinding so that a cross-sectional area perpendicular to the press molding direction of a portion connecting two members is smaller than a cross-sectional area perpendicular to the press molding direction of the first member. 前記第1部材は円板状をなし、
前記第2部材の断面は少なくとも2つの角部を有すること
を特徴とする請求項1に記載のフェライト研削体
The first member has a disk shape,
The ferrite ground body according to claim 1, wherein a cross section of the second member has at least two corners.
前記第2部材は四角板状をなすことを特徴とする請求項1又は2に記載のフェライト研削体The ferrite ground body according to claim 1, wherein the second member has a square plate shape. 前記第2部材の断面は長方形をなすことを特徴とする請求項3に記載のフェライト研削体The ferrite ground body according to claim 3, wherein the second member has a rectangular cross section. 前記第2部材の断面は円弧と直線からなる形状をなすことを特徴とする請求項1又は2に記載のフェライト研削体3. The ferrite ground body according to claim 1, wherein a cross section of the second member has a circular arc shape and a straight line shape. 請求項1から5のいずれか1項に記載のフェライト研削体を焼成してなることを特徴とするフェライト磁心。 A ferrite core obtained by firing the ferrite ground body according to any one of claims 1 to 5 . フェライト材料とPVAとを含むフェライト顆粒をプレス成形してなり、プレス成形方向に連なる第1部材と第2部材とを有し、前記第2部材の前記プレス成形方向に垂直な断面積は、前記第1部材の前記プレス成形方向に垂直な断面積より大きく、前記第2部材は、前記第1部材の密度より3%〜8%大きい密度を有するフェライト成形体を、該フェライト成形体を支持面にて支持する支持手段と、外周面を前記支持面に対向させる円板状の回転研削刃とを備え、前記支持面は、前記回転研削刃の軸方向の一端側にある第1の面と、前記回転研削刃の軸方向の他端側にあり、前記第1の面よりも前記回転研削刃に近い第2の面とを有する研削装置を用いて研削する方法であって、
前記フェライト成形体の第2部材が前記第1の面と対向するように、該フェライト成形体の第1部材を前記第2の面に載せて前記フェライト成形体を支持する支持工程と、
前記回転研削刃を回転駆動して、前記フェライト成形体の第1部材と第2部材とが連なる部分を研削する工程と
を備え、
前記支持手段は、前記第1の面の前記第2の面と反対側に側壁部をさらに有し、
該側壁部は、前記回転研削刃の軸端面と略平行する内側面を備え、
前記研削装置は、前記側壁部の内側面が鉛直方向に対して2度〜8度傾くように配置されており、
前記支持工程は、前記第2部材の外端面が前記側壁部の内側面と当接するように前記フェライト成形体を支持すること
を特徴とする研削方法。
A ferrite granule containing a ferrite material and PVA is press-molded, and has a first member and a second member continuous in the press-molding direction, and a cross-sectional area perpendicular to the press-molding direction of the second member is A ferrite molded body having a density larger than the cross-sectional area perpendicular to the press molding direction of the first member and the second member having a density of 3% to 8% larger than the density of the first member is supported on the ferrite molded body. And a disk-shaped rotary grinding blade whose outer peripheral surface faces the support surface, and the support surface is a first surface on one end side in the axial direction of the rotary grinding blade. A method of grinding using a grinding device that is on the other end side in the axial direction of the rotary grinding blade and has a second surface closer to the rotary grinding blade than the first surface,
A supporting step of supporting the ferrite compact by placing the first member of the ferrite compact on the second surface such that the second member of the ferrite compact faces the first surface;
Rotating the rotary grinding blade to grind a portion where the first member and the second member of the ferrite compact are continuous, and
The support means further includes a side wall on the opposite side of the first surface to the second surface,
The side wall includes an inner surface substantially parallel to the shaft end surface of the rotary grinding blade,
The grinding device is arranged such that the inner surface of the side wall portion is inclined by 2 to 8 degrees with respect to the vertical direction,
In the supporting step, the ferrite molded body is supported so that an outer end surface of the second member is in contact with an inner surface of the side wall portion.
請求項7に記載の研削方法で研削したフェライト研削体を焼成してフェライト磁心を得る焼成工程をさらに備えることを特徴とする製造方法。 A manufacturing method further comprising a firing step of firing the ferrite ground body ground by the grinding method according to claim 7 to obtain a ferrite magnetic core. フェライト材料とPVAとを含むフェライト顆粒をプレス成形してなり、プレス成形方向に連なる第1部材と第2部材とを有し、前記第2部材の前記プレス成形方向に垂直な断面積は、前記第1部材の前記プレス成形方向に垂直な断面積より大きく、前記第2部材は、前記第1部材の密度より3%〜8%大きい密度を有するフェライト成形体を支持面にて支持する支持手段と、外周面を前記支持面に対向させる円板状の回転研削刃とを備える研削装置であって、
前記支持面は、前記回転研削刃の軸方向の一端側にある第1の面と、
前記回転研削刃の軸方向の他端側にあり、前記第1の面よりも前記回転研削刃に近い第2の面とを有し、
前記第1の面の前記第2の面と反対側に側壁部をさらに有し、
該側壁部は、前記第2の面と略垂直する内側面を備え、
前記側壁部の内側面が鉛直方向に対して2度〜8度傾くように構成してあること
を特徴とする研削装置。
A ferrite granule containing a ferrite material and PVA is press-molded, and has a first member and a second member continuous in the press-molding direction, and a cross-sectional area perpendicular to the press-molding direction of the second member is Support means for supporting a ferrite molded body having a density larger than a cross-sectional area perpendicular to the press molding direction of the first member and having a density of 3% to 8% larger than the density of the first member on a support surface. And a disc-shaped rotary grinding blade with an outer peripheral surface facing the support surface,
The support surface is a first surface on one end side in the axial direction of the rotary grinding blade;
A second surface on the other end side in the axial direction of the rotary grinding blade, and closer to the rotary grinding blade than the first surface;
A side wall on the opposite side of the first surface from the second surface;
The side wall includes an inner surface that is substantially perpendicular to the second surface,
A grinding apparatus characterized in that an inner surface of the side wall portion is inclined by 2 to 8 degrees with respect to a vertical direction.
前記内側面が鉛直方向に対して4度〜6度傾くように構成してあることを特徴とする請求項に記載の研削装置。 The grinding apparatus according to claim 9 , wherein the inner surface is configured to be inclined by 4 to 6 degrees with respect to a vertical direction.
JP2009241472A 2008-10-27 2009-10-20 Ferrite grinding body, ferrite core, manufacturing method, grinding method and apparatus Active JP4924689B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009241472A JP4924689B2 (en) 2008-10-27 2009-10-20 Ferrite grinding body, ferrite core, manufacturing method, grinding method and apparatus
CN 200910209401 CN101723656B (en) 2008-10-27 2009-10-27 Ferrite forming body, ferrite grinding body, ferrite core, manufacture method, forming method and device, grinding method and device
CN201310073289.5A CN103193470B (en) 2008-10-27 2009-10-27 Ferrite ground body and ferrite magnetic core

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008275294 2008-10-27
JP2008275294 2008-10-27
JP2009241472A JP4924689B2 (en) 2008-10-27 2009-10-20 Ferrite grinding body, ferrite core, manufacturing method, grinding method and apparatus

Publications (2)

Publication Number Publication Date
JP2010135758A JP2010135758A (en) 2010-06-17
JP4924689B2 true JP4924689B2 (en) 2012-04-25

Family

ID=42346693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241472A Active JP4924689B2 (en) 2008-10-27 2009-10-20 Ferrite grinding body, ferrite core, manufacturing method, grinding method and apparatus

Country Status (2)

Country Link
JP (1) JP4924689B2 (en)
CN (2) CN103193470B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070509B2 (en) * 2007-01-11 2015-06-30 Tyco Electronics Corporation Method for manufacturing a planar electronic device having a magnetic component
CN102982969B (en) * 2012-11-27 2015-09-16 宁波澳普网络通信设备有限公司 Pulse transformer
JP2015032643A (en) * 2013-07-31 2015-02-16 太陽誘電株式会社 Electronic component
CN103921197A (en) * 2014-04-02 2014-07-16 湖州科富电子科技有限公司 Automatic shape processing device
JP6534902B2 (en) * 2015-09-30 2019-06-26 太陽誘電株式会社 Method of manufacturing magnetic body, and method of manufacturing coil component using the magnetic body
CN107068332B (en) * 2017-02-28 2018-07-06 庆邦电子元器件(泗洪)有限公司 A kind of inductance element for electronic equipment
TWI709020B (en) * 2018-03-30 2020-11-01 日商京瓷股份有限公司 Core for inductance, core body for electronic pen, electronic pen and input device
JP6730397B2 (en) * 2018-09-28 2020-07-29 太陽誘電株式会社 Coil parts and electronic equipment

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432608A (en) * 1987-07-28 1989-02-02 Matsushita Electric Works Ltd Electromagnetic device
JP2694350B2 (en) * 1988-11-04 1997-12-24 太陽誘電株式会社 Method of manufacturing magnetic core
JPH05159918A (en) * 1991-12-05 1993-06-25 Mitsubishi Electric Corp Manufacture of ferrite core
JPH06349658A (en) * 1993-06-04 1994-12-22 Tdk Corp Grinding method of core for transformer
JPH07147211A (en) * 1993-11-25 1995-06-06 Fuji Elelctrochem Co Ltd Manufacture of drum type ferrite core having cut parts
JPH07201576A (en) * 1994-01-07 1995-08-04 Murata Mfg Co Ltd Chip type inductor device
JP3174696B2 (en) * 1994-09-29 2001-06-11 太陽誘電株式会社 Drum-shaped part processing method and device
JP2760391B2 (en) * 1995-01-26 1998-05-28 富士電気化学株式会社 Rotary press
JPH09266122A (en) * 1996-03-27 1997-10-07 Fuji Elelctrochem Co Ltd Forming method of cap shaped core made of ferrite
JPH11150027A (en) * 1997-11-14 1999-06-02 Fuji Elelctrochem Co Ltd Linearity coil
JPH11251150A (en) * 1998-02-27 1999-09-17 Kyocera Corp Drum core and wound inductor using the same
JP2000269023A (en) * 1999-03-18 2000-09-29 Tdk Corp Bipolar anisotropic cylindrical ferrite magnet and its manufacture
JP2001191199A (en) * 1999-12-28 2001-07-17 Sumitomo Special Metals Co Ltd Compacting device, magnetic powder feeding method and rare earth magnet
JP3670575B2 (en) * 2000-01-12 2005-07-13 Tdk株式会社 Method for manufacturing coil-enclosed dust core and coil-enclosed dust core
CN1215494C (en) * 2001-02-27 2005-08-17 松下电器产业株式会社 Coil component and method of mfg. same
JP3654251B2 (en) * 2002-01-22 2005-06-02 松下電器産業株式会社 Coil parts
JP3888078B2 (en) * 2001-04-24 2007-02-28 松下電器産業株式会社 Coil component manufacturing method and apparatus
JP2004311632A (en) * 2003-04-04 2004-11-04 Nec Saitama Ltd Small coil and its manufacturing method
JP4614119B2 (en) * 2004-01-30 2011-01-19 日立金属株式会社 Ferrite core, surface mount coil component using the same, and manufacturing method thereof
JP4594050B2 (en) * 2004-11-26 2010-12-08 京セラ株式会社 Drum-type core, method of manufacturing the same, and surface mount coil using the same
JP2007190648A (en) * 2006-01-20 2007-08-02 Harada Seiko:Kk Drum core grinding machine and method thereof

Also Published As

Publication number Publication date
JP2010135758A (en) 2010-06-17
CN103193470B (en) 2015-01-28
CN101723656A (en) 2010-06-09
CN101723656B (en) 2013-03-27
CN103193470A (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP4924689B2 (en) Ferrite grinding body, ferrite core, manufacturing method, grinding method and apparatus
US11869696B2 (en) Electronic component
US9576721B2 (en) Electronic component and method for manufacturing electronic component
KR101265155B1 (en) Coil component
CN206532662U (en) Laminated coil parts and modular unit
US20050030143A9 (en) Method for manufacturing coil-embedded dust core and coil-embedded dust core
JP2013084988A (en) Method of manufacturing high-current thin inductor
JP6890260B2 (en) Inductor parts and their manufacturing methods
CN101615499B (en) Electronic component and manufacture method thereof
JP2019186255A (en) Laminated coil component
CN111986879B (en) Laminated coil component
EP0124602A4 (en) Adjustable air gap ferrite structures and methods of manufacture.
JP2019186253A (en) Laminated coil component
CN107452466B (en) Electronic component
JP7178480B2 (en) Method and inductive element for manufacturing an inductive element
KR102052784B1 (en) Coil component and method of manufacturing the same
CN111009394A (en) Laminated coil array
US5900797A (en) Coil assembly
JP6387697B2 (en) Magnetic core and coil device
US20100039197A1 (en) Inductor structure
JP2006294775A (en) Magnetic material and inductor using the same
CN103578730A (en) Fixture for manufacturing current transformer and manufacturing method thereof
US20220093324A1 (en) Coil and Method for Producing A Coil
JP4614119B2 (en) Ferrite core, surface mount coil component using the same, and manufacturing method thereof
CN112242223A (en) Inductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350