JP2006294775A - Magnetic material and inductor using the same - Google Patents

Magnetic material and inductor using the same Download PDF

Info

Publication number
JP2006294775A
JP2006294775A JP2005111675A JP2005111675A JP2006294775A JP 2006294775 A JP2006294775 A JP 2006294775A JP 2005111675 A JP2005111675 A JP 2005111675A JP 2005111675 A JP2005111675 A JP 2005111675A JP 2006294775 A JP2006294775 A JP 2006294775A
Authority
JP
Japan
Prior art keywords
magnetic
powder
inductor
magnetic material
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005111675A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakayama
一博 中山
Hiroyasu Mori
森  博康
Yoshihiko Hattori
善彦 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2005111675A priority Critical patent/JP2006294775A/en
Priority to TW095111866A priority patent/TW200643998A/en
Publication of JP2006294775A publication Critical patent/JP2006294775A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain high insulation and voltage resistance property along with high effective magnetic permeability property in an inductor. <P>SOLUTION: A magnetic material covers such a surface of magnetic metallic powder, hard Fe-Si system alloy magnetic powder, or ductile Fe-Ni system alloy magnetic powder with glass membrane, and covers the outside with thermosetting resin which serves both as an insulating material and a binding material. Further, an air core coil 1 is embedded into the powder consisting of the magnetic material, so that an inductor may be constituted by carrying out pressure molding. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、チョークコイルやパワーインダクタ等に用いられる磁性材料と、この磁性材料を使用して構成したインダクタに関するものである。   The present invention relates to a magnetic material used for a choke coil, a power inductor, and the like, and an inductor configured using the magnetic material.

近年、ノートパソコンやサーバに使用されるMPUの処理速度の高速化は目覚しく、それに伴って供給電源の大電流化が急速に進んでいる。また省エネルギー化の観点からパワーインダクタを含む回路の高効率化の要求もある。金属磁性粉末を圧縮成形して作製される圧粉磁心は直流重畳特性に優れており、大電流化と小型化を実現できる。このような圧粉磁心を利用したものとして、特許文献1に記載されているような一体成形型インダクタが知られている。     In recent years, the processing speed of MPUs used in notebook personal computers and servers has been remarkably increased, and accordingly, the power supply power supply has been rapidly increased. There is also a demand for higher efficiency of circuits including power inductors from the viewpoint of energy saving. A powder magnetic core produced by compression molding metal magnetic powder has excellent DC superposition characteristics, and can realize a large current and a small size. As one using such a powder magnetic core, an integrally formed inductor as described in Patent Document 1 is known.

これは図1に示すような構造であり、金属磁性粉とバインダを混合した複合磁性粉の中に空芯コイル1を埋設して加圧成形したものである。成形体2の金属磁性粉の粒子表面は絶縁処理されている。平角線からなるコイル1の両端末を外部に引き出して折り曲げ、そのまま電極3としてある。
特開平9−120926号公報 特開2000−160204号公報
This is a structure as shown in FIG. 1, in which an air-core coil 1 is embedded in a composite magnetic powder in which metal magnetic powder and a binder are mixed and pressure-molded. The surface of the particles of the metal magnetic powder of the molded body 2 is insulated. Both ends of the coil 1 made of a flat wire are drawn out and bent to the electrode 3 as they are.
JP-A-9-120926 JP 2000-160204 A

従来は、金属磁性粉としてカーボニル鉄粉やFe−Si合金、Fe−Ni合金(パーマロイ)、Fe−Si−Al合金、鉄基非晶質合金等が用いられている。金属磁性粉の粒子の表面には、リン酸塩等による化成処理や熱処理を施す自己酸化法、あるいは無機絶縁材の微粒子を付着させる等の手段で絶縁被膜を形成している。この金属磁性粉に、有機系樹脂バインダを混合して混合磁性粉とした後、加圧成形して一体成形型インダクタを得ていた。   Conventionally, carbonyl iron powder, Fe—Si alloy, Fe—Ni alloy (permalloy), Fe—Si—Al alloy, iron-based amorphous alloy, and the like are used as metal magnetic powder. On the surface of the metal magnetic powder particles, an insulating coating is formed by means such as a chemical oxidation treatment with phosphate or the like, a self-oxidation method in which heat treatment is performed, or fine particles of an inorganic insulating material are adhered. An organic resin binder was mixed with the metal magnetic powder to form a mixed magnetic powder, and then pressure-molded to obtain an integrally molded inductor.

圧粉磁心の透磁率を上げるには金属磁性粉の充填率を上げればよい。そのためには、
・圧縮するプレス圧を高くする。
・バインダの量を減らす。
・磁性粉の粒径を大きくする。
・圧縮成形時の金型温度を上げる。
などの手段が考えられる。
In order to increase the magnetic permeability of the dust core, the filling rate of the metal magnetic powder may be increased. for that purpose,
-Increase the pressing pressure to compress.
・ Reduce the amount of binder.
-Increase the particle size of the magnetic powder.
-Increase the mold temperature during compression molding.
Such means can be considered.

ところが、いずれの手段も空芯コイルを埋設して加圧成形する一体成形型インダクタを製作する上では問題が多い。   However, any of these means has many problems in producing an integral-molded inductor in which an air-core coil is embedded and press-molded.

たとえば、
・プレス圧を高くすると、埋設されたコイルの絶縁被膜がダメージを受け、導線間の短絡不良が発生し易くなる。金型の耐久性も低下する。
・バインダ量を減らすと、圧粉体の絶縁性、耐電圧が低下する。
・磁性粉の粒径を大きくすると、高周波特性が低下する。
・金型温度を上げる方法は、作業性の低下や設備のコスト高を招く。
などの問題がある。
For example,
-When the press pressure is increased, the insulation coating of the embedded coil is damaged, and a short circuit failure between the conductors is likely to occur. The durability of the mold is also reduced.
・ If the amount of binder is reduced, the insulation and dielectric strength of the green compact will decrease.
・ When the particle size of the magnetic powder is increased, the high frequency characteristics are degraded.
-The method of raising the mold temperature leads to a decrease in workability and high equipment costs.
There are problems such as.

このため、透磁率を上げる大幅な改善は困難な状況にあり、一体成形型インダクタ用の混合磁性粉の実効透磁率は25前後の低い値に留まっている。   For this reason, it is difficult to significantly improve the magnetic permeability, and the effective magnetic permeability of the mixed magnetic powder for the integral-type inductor remains at a low value of around 25.

このように従来の一体成形型インダクタは実効透磁率が低いため、フェライトを使用したインダクタと同じインダクタンスを得るには巻数が増え、銅損失が大きくなる欠点を有していた。また、バインダの量を減らして実効透磁率を高くした場合には絶縁性、耐電圧が低いものとなっていた。本発明は、インダクタにおいて高い絶縁性、耐電圧特性と共に高い実効透磁率を得ることを目的とする。   As described above, since the conventional integral-type inductor has a low effective magnetic permeability, the number of turns is increased to obtain the same inductance as that of an inductor using ferrite, resulting in a disadvantage that copper loss is increased. Further, when the effective magnetic permeability is increased by reducing the amount of the binder, the insulation and withstand voltage are low. An object of the present invention is to obtain high effective magnetic permeability as well as high insulation and voltage resistance characteristics in an inductor.

本発明による磁性材料は、硬質なFe−Si系合金磁性粉や延性のあるFe−Ni系合金磁性粉などの磁性金属粉末の表面をガラス膜で覆い、さらにその外側を、絶縁材と結着材を兼ねる熱硬化性樹脂で被覆した構成を特徴とする。
また本発明は、このような磁性材料からなる粉末中に、空芯コイルを埋設して加圧成形したインダクタの構成を特徴とする。
The magnetic material according to the present invention covers the surface of a magnetic metal powder such as hard Fe-Si alloy magnetic powder or ductile Fe-Ni alloy magnetic powder with a glass film, and further binds the outside to an insulating material. It is characterized by a structure coated with a thermosetting resin that also serves as a material.
Further, the present invention is characterized by the configuration of an inductor in which an air-core coil is embedded in a powder made of such a magnetic material and press-molded.

本発明による磁性材料は、粒子の表面が硬質なガラス膜で絶縁被覆されるので、従来品と同等の絶縁性、耐電圧を確保するのに要する樹脂バインダの量を減らすことができる。また、延性のあるFe−Ni系合金を混合することで金属磁性粉の充填率が上がるので、金属磁性粉の平均粒径をあまり大きくしなくても圧粉磁心の実効透磁率を高くでき、一体成形型インダクタのインダクタンスの値も高くなる。一方、同じインダクタンス値にする場合は、巻数及び巻線抵抗が減少し、銅損失の低減が可能となる。   Since the magnetic material according to the present invention is coated with a hard glass film on the surface of the particles, the amount of resin binder required to ensure the same insulation and withstand voltage as conventional products can be reduced. Moreover, since the filling rate of the metal magnetic powder is increased by mixing the ductile Fe-Ni alloy, the effective permeability of the dust core can be increased without increasing the average particle size of the metal magnetic powder. The inductance value of the integrally molded inductor is also increased. On the other hand, when the inductance value is the same, the number of turns and the winding resistance are reduced, and the copper loss can be reduced.

本発明による磁性材料で加圧成形体を試作したところ、実効透磁率は30以上となり従来の同型品の約1.4倍となった。絶縁熱劣化特性及びコア損失は従来の圧粉磁心と同等レベルであることを確認した。したがって、この磁性材料を使用して一体成形型インダクタを構成することにより、高効率で絶縁性及び成形体強度に優れた信頼性の高いものが得られる。   When a pressure-molded body was prototyped with the magnetic material according to the present invention, the effective magnetic permeability was 30 or more, which was about 1.4 times that of the conventional product of the same type. It was confirmed that the insulation heat deterioration characteristics and core loss were at the same level as the conventional dust core. Therefore, by using this magnetic material to form an integral-molded inductor, a highly reliable product with high efficiency and excellent insulation and molded body strength can be obtained.

[第1実施例]
平均粒径20μmのFe−Si系合金粉末からなる金属磁性粉と軟化温度が500℃以下の低融点ガラス粉末を用意し、Fe−Si系合金粉末100wt%に対して低融点ガラス粉末を0.78wt%添加して混合する。この混合粉を粒子複合化装置炉内に入れ、回転数最大負荷にて30分間攪拌すると、混合粉に強力な圧縮、剪断力が作用し、磁性粉末の粒子表面にガラス質層の薄い絶縁膜が形成される。粒子複合化装置炉内の雰囲気は、金属磁性粉の表面が酸化されてガラスとの濡れ性が増すので、大気中とするのがよい。
[First embodiment]
A metal magnetic powder comprising an Fe—Si based alloy powder having an average particle size of 20 μm and a low melting point glass powder having a softening temperature of 500 ° C. or less are prepared. Add 78 wt% and mix. When this mixed powder is placed in a particle compounding device furnace and stirred for 30 minutes at the maximum rotation speed, a strong compressive and shearing force acts on the mixed powder, and a thin insulating film with a vitreous layer on the particle surface of the magnetic powder. Is formed. The atmosphere in the particle composite apparatus furnace is preferably in the atmosphere because the surface of the metal magnetic powder is oxidized and the wettability with the glass is increased.

次いで、このガラス膜で被覆された磁性粉末100wt%に対して2.5wt%の、絶縁材と結着材を兼ねる熱硬化性有機樹脂を攪拌式造粒装置に入れて約20分攪拌して混合し、予備乾燥することにより、ガラス膜の外側をさらに熱硬化性樹脂で被覆した粉末状の磁性材料を作製した。この二重に絶縁処理を施した磁性材料を加圧成形して得た圧粉磁心を試料No.1とする。   Next, 2.5 wt% of a thermosetting organic resin serving as both an insulating material and a binder is added to the stirring powder granulator for 100 wt% of the magnetic powder coated with the glass film, and stirred for about 20 minutes. By mixing and pre-drying, a powdery magnetic material in which the outside of the glass film was further coated with a thermosetting resin was produced. A powder magnetic core obtained by press-molding this double-insulated magnetic material was used as a sample no. Set to 1.

[第2実施例]
平均粒径10μmのFe−Ni系合金粉末と軟化温度が500℃以下の低融点ガラス粉末を用意し、Fe−Ni系合金粉末100wt%に対して低融点ガラス粉末を0.78wt%添加して混合する。この混合粉末を粒子複合化装置炉内に入れて30分間攪拌し、ガラス膜で被覆された磁性粉末を得る。次いで、この磁性粉末100wt%に対して2.5wt%の絶縁、結着用の熱硬化性有機樹脂を攪拌式造粒装置に入れて、約20分攪拌して混合し、予備乾燥することにより、ガラス膜の外側をさらに熱硬化性樹脂で被覆した粉末状の磁性材料を作製した。この磁性材料を加圧成形して得た圧粉磁心を試料No.2とする。
[Second Embodiment]
An Fe—Ni alloy powder having an average particle size of 10 μm and a low melting glass powder having a softening temperature of 500 ° C. or less are prepared, and 0.78 wt% of the low melting glass powder is added to 100 wt% of the Fe—Ni alloy powder. Mix. This mixed powder is put into a particle compounding device furnace and stirred for 30 minutes to obtain a magnetic powder coated with a glass film. Next, 2.5 wt% of the insulating and binding thermosetting organic resin for 100 wt% of the magnetic powder is put into a stirring granulator, mixed by stirring for about 20 minutes, and pre-dried. A powdery magnetic material was produced in which the outside of the glass film was further coated with a thermosetting resin. A powder magnetic core obtained by pressure-molding this magnetic material was designated as Sample No. 2.

[比較例1、2]
試料No.1、No.2との特性比較用に上述のFe−Si系合金粉末とFe−Ni系合金粉末とを、熱硬化性樹脂のみで絶縁被覆処理した二つの磁性材料を用意した。それぞれの磁性材料を加圧成形して得た圧粉磁心を試料No.3、No.4とする。試料No.1と試料No.3、試料No.2と試料No.4の透磁率がそれぞれ同等の値となるように、試料No.3、No.4における熱硬化性樹脂の量を合金粉末100wt%に対して3.5wt%としてある。
[Comparative Examples 1 and 2]
Sample No. 1, no. Two magnetic materials were prepared by subjecting the above-described Fe—Si alloy powder and Fe—Ni alloy powder to an insulation coating treatment only with a thermosetting resin. A powder magnetic core obtained by pressure-molding each magnetic material was used as a sample No. 3, no. 4 Sample No. 1 and sample no. 3, Sample No. 2 and sample no. Sample No. 4 so that the magnetic permeability of each sample has the same value. 3, no. The amount of the thermosetting resin in No. 4 is 3.5 wt% with respect to 100 wt% of the alloy powder.

[第3実施例]
前述のガラス被覆したFe−Si系合金粉末とガラス被覆したFe−Ni系合金粉末の二種の金属磁性粉を、それぞれ75wt%:25wt%、50wt%:50wt%、25wt%:75%wt%の割合で混合した3種類の混合磁性粉を用意し、これらの混合磁性粉100wt%に対して2wt%の熱硬化性有機樹脂を混合して粉末状の磁性材料を作製した。そして、各磁性材料を加圧成形して得た圧粉磁心をそれぞれ試料No.5、No.6、No.7とする。Fe−Si系合金粉末とFe−Ni系合金粉末の平均粒径は、それぞれ20μm、10μmとした。
[Third embodiment]
Two kinds of metal magnetic powders of the glass-coated Fe—Si alloy powder and the glass-coated Fe—Ni alloy powder are 75 wt%: 25 wt%, 50 wt%: 50 wt%, and 25 wt%: 75% wt%, respectively. Three types of mixed magnetic powders mixed at a ratio of 2 wt% were prepared, and 2 wt% thermosetting organic resin was mixed with 100 wt% of these mixed magnetic powders to produce a powdered magnetic material. And each of the magnetic cores obtained by pressure-molding each magnetic material is sample No. 5, no. 6, no. 7 The average particle diameters of the Fe—Si based alloy powder and the Fe—Ni based alloy powder were 20 μm and 10 μm, respectively.

なお、混合磁性粉には粒子間の滑性を高めるため、さらにステアリン酸塩などの潤滑剤を0.1〜0.5wt%添加してもよい。金属磁性粉の平均粒径は10μm〜30μm程度が好ましい。粒径がこれよりも大きくなるとコア損失が増大し、これよりも小さくなると高い透磁率が得難くなると同時にガラス被膜の形成が難しくなる。また、ガラス粉末の平均粒径は被覆する磁性粉末の平均粒径の1/5〜1/10の範囲から選ぶのがよい。   In addition, in order to improve the lubricity between particles, 0.1 to 0.5 wt% of a lubricant such as stearate may be added to the mixed magnetic powder. The average particle size of the metal magnetic powder is preferably about 10 μm to 30 μm. When the particle size is larger than this, the core loss is increased. When the particle size is smaller than this, it is difficult to obtain a high magnetic permeability and at the same time, it is difficult to form a glass film. The average particle size of the glass powder is preferably selected from the range of 1/5 to 1/10 of the average particle size of the magnetic powder to be coated.

上述した試料No.1〜No.7の各圧粉磁心の電気、磁気特性を測定した結果は図2のとおりである。本発明の磁性材料を使用した試料No.1、No.2の圧粉磁心は、透磁率が比較品の試料No.3、No.4とほぼ同じであるにもかかわらず、絶縁抵抗と耐電圧は高い値を示していることが分かる。絶縁抵抗と耐電圧特性が試料No.3、No.4と同等レベルとするならば、試料No.1、No.2で使用した有機樹脂量2.5wt%をさらに低減することが可能となり、透磁率29、27以上にできることは容易に推定できる。しかし、試料No.1のようなFe−Si系合金粉のみではコア損失がやや大きくなり、No.2のようなFe−Ni系合金粉のみでは材料費が高価となる。これらの問題はFe−Si系合金粉とFe−Si系合金粉の平均粒径よりも小さいFe−Ni系合金粉を混合することで解消できる。   Sample No. mentioned above. 1-No. The result of measuring the electrical and magnetic characteristics of each dust core of No. 7 is as shown in FIG. Sample No. using the magnetic material of the present invention. 1, no. 2 has a magnetic permeability of a comparative sample No. 3, no. Although it is almost the same as 4, it can be seen that the insulation resistance and the withstand voltage show high values. The insulation resistance and withstand voltage characteristics are 3, no. If the level is equal to 4, the sample No. 1, no. It is possible to further reduce the organic resin amount 2.5 wt% used in No. 2 and to easily increase the permeability to 29, 27 or more. However, sample no. The core loss is slightly increased only with the Fe—Si based alloy powder such as No. 1; The material cost becomes expensive only with the Fe—Ni alloy powder such as 2. These problems can be solved by mixing Fe—Ni-based alloy powder and Fe—Ni-based alloy powder smaller than the average particle diameter of Fe—Si-based alloy powder.

図2に示した特性の測定にあたっては、粉末状の磁性材料1gを金型に入れて圧力5トン/cmでプレス成形し、外径が14.4mm、内径が10.3、厚みが約2mmのリング状の圧粉磁心としたものを、透磁率、コア損失測定用の試料とした。そして交流B−Hカーブ測定器を用い、測定周波数300KHzで印加磁束密度40mTとした時の交流比透磁率(μa)とコア損失を測定した。 In the measurement of the characteristics shown in FIG. 2, 1 g of powdered magnetic material was put into a mold and press-molded at a pressure of 5 ton / cm 2 , the outer diameter was 14.4 mm, the inner diameter was 10.3, and the thickness was about A 2 mm ring-shaped dust core was used as a sample for measuring permeability and core loss. Then, using an AC B-H curve measuring device, the AC relative permeability (μa) and the core loss when the applied magnetic flux density was 40 mT at a measurement frequency of 300 KHz were measured.

また、絶縁抵抗、耐電圧測定用試料は、粉末状の磁性材料0.45gを金型に入れて圧力5トン/cmでプレス成形し、外径が7.2mmφ、厚みが約2mmの円柱状の圧粉磁心とした。そして、上下面に5mm×5mmの電極を付け、絶縁抵抗測定器及び耐圧試験器によって電極間の面間抵抗と耐電圧を測定した。 In addition, a sample for measuring insulation resistance and withstand voltage is a circle having an outer diameter of 7.2 mmφ and a thickness of about 2 mm by placing 0.45 g of a powdered magnetic material in a mold and press-molding at a pressure of 5 ton / cm 2. A columnar dust core was formed. And the electrode of 5 mm x 5 mm was attached to the upper and lower surfaces, and the inter-surface resistance and withstand voltage between electrodes were measured with the insulation resistance measuring device and the pressure | voltage resistant tester.

本発明による圧粉磁心の試料No.1、No.2と比較例の試料No.3、No.4の絶縁抵抗の熱劣化特性を図3に示す。試料No.3、No.4に比べて、本発明の圧粉磁心は長時間、高い温度に曝されても絶縁抵抗の劣化が少ないことが明らかである。絶縁抵抗・熱劣化特性が優れている圧粉磁心を使用することにより信頼性の高いパワーインダクタが製作可能となる。   Sample No. of dust core according to the present invention. 1, no. 2 and Comparative Sample No. 3, no. FIG. 3 shows the thermal deterioration characteristics of the insulation resistance No. 4. Sample No. 3, no. Compared to 4, it is clear that the dust core of the present invention is less deteriorated in insulation resistance even when exposed to a high temperature for a long time. By using a dust core with excellent insulation resistance and thermal degradation characteristics, a highly reliable power inductor can be manufactured.

絶縁抵抗・熱劣化特性の測定は、絶縁抵抗測定用圧粉磁心を150℃の恒温槽内に入れて時間ごとの絶縁抵抗の値を測定することにより行った。圧粉磁心の絶縁抵抗の低下が進行する速度は「温度が10℃上がるごとに反応速度が2倍となる」というアレニウスの反応式に近い近似式をもって低下することが実験的に確かめられている。したがって、150℃―3000時間後の絶縁抵抗値は100℃―96000時間に相当するものとなり、製品の寿命、保証期間を見極める指標となる。   Insulation resistance / thermal degradation characteristics were measured by placing a dust core for measuring insulation resistance in a thermostat at 150 ° C. and measuring the value of insulation resistance over time. It has been experimentally confirmed that the rate at which the insulation resistance of the dust core progresses decreases with an approximate expression close to the Arrhenius reaction formula that “the reaction rate doubles every time the temperature rises by 10 ° C.” . Therefore, the insulation resistance value after 150 ° C.-3000 hours is equivalent to 100 ° C.-96000 hours, and is an index for determining the life and warranty period of the product.

本発明の圧粉磁心の試料No.5、No.6、No.7の絶縁抵抗の熱劣化特性を図4に示す。これらの圧粉磁心比較品の試料No.3、No.4と比べて同等以上であることが分かる。また図2から明らかなように、高い透磁率と高い絶縁性が得られている。Fe−Si系合金磁性粉の配合比率の高いNo.5はコア損失が増加し、Fe−Ni系合金磁性粉の配合比率の高いNo.7は耐電圧が低下している。この配合比はコア損失と耐電圧特性のどちらを重視するかで適宜選択すれば良い。総合的に最も優れた磁気特性は、Fe−Si系合金磁性粉とFe−Ni系合金磁性粉との配合比を、70wt%:30wt%〜30wt%:70wt%の範囲内としたときに得られた。   Sample No. of the dust core of the present invention. 5, no. 6, no. FIG. 4 shows the thermal deterioration characteristics of the insulation resistance No.7. Sample No. of these dust core comparison products 3, no. It can be seen that it is equal to or greater than 4. As is clear from FIG. 2, high magnetic permeability and high insulation are obtained. No. with a high blending ratio of Fe-Si alloy magnetic powder. No. 5 has a core loss increased, and No. 5 having a high blending ratio of the Fe—Ni alloy magnetic powder. 7 has a reduced withstand voltage. This blending ratio may be appropriately selected depending on which of core loss and withstand voltage characteristics is important. Overall, the most excellent magnetic properties are obtained when the blending ratio of the Fe—Si alloy magnetic powder and the Fe—Ni alloy magnetic powder is within the range of 70 wt%: 30 wt% to 30 wt%: 70 wt%. It was.

次に、本発明の磁性材料を使用した一体成形型インダクタの製造例について説明する。一番大きな効果が得られた試料No.5に用いた磁性材料を使用して試作を行った。この磁性材料は、ガラス膜と熱硬化性樹脂で粒子表面を二重に被覆したFe−Si系合金粉及びFe−Ni系合金粉を混合したものである。   Next, an example of manufacturing an integrally molded inductor using the magnetic material of the present invention will be described. Sample No. with the greatest effect was obtained. A prototype was made using the magnetic material used in No. 5. This magnetic material is a mixture of a Fe—Si based alloy powder and a Fe—Ni based alloy powder in which the particle surface is covered with a glass film and a thermosetting resin.

まず、断面寸法が縦0.8mm×横2mmの絶縁被覆銅線である平角線を用い、内径5mmφの2層にエッジワイズ巻きした2.5ターンの空芯コイルを用意する。この空芯コイルを成形金型の内部にセットし、空芯コイルが埋設された状態となるように、前記の磁性材料を3.3g金型に充填した。   First, a 2.5-turn air-core coil is prepared by edgewise winding two layers with an inner diameter of 5 mmφ using a rectangular wire that is an insulation-coated copper wire having a cross-sectional dimension of 0.8 mm in length × 2 mm in width. The air core coil was set in a molding die, and the magnetic material was filled in a 3.3 g die so that the air core coil was embedded.

そして5トン/cmの圧力で加圧成形し、型から取り出した成形品を85℃で2時間、150℃にて30分間予備加熱してバインダとなる熱硬化性樹脂を硬化させた。この後、コイルの端末を折り曲げ成形することにより、縦12.5mm×横12.2mm×高さ4.7mmの図1に示したような一体成形型インダクタが完成した。 Then, it was pressure-molded at a pressure of 5 tons / cm 2 , and the molded product taken out from the mold was preheated at 85 ° C. for 2 hours and at 150 ° C. for 30 minutes to cure the thermosetting resin as a binder. Thereafter, the end of the coil was bent to form an integrally molded inductor as shown in FIG. 1 having a length of 12.5 mm × width of 12.2 mm × height of 4.7 mm.

また、特性比較用にガラス被覆していない従来の磁性材料と、断面寸法が縦0.6mm×横2mmの絶縁被覆銅線である平角線(内径5mmφの2層にエッジワイズ巻きした2.5ターン)の空芯コイルを用意し、同一形状の一体成形型インダクタを作製した。この従来の製法によるインダクタと前述の本発明の製法によるインダクタのインダクタンス値及びコイルの抵抗値を表1に示す。   For comparison of characteristics, a conventional magnetic material not coated with glass and a rectangular wire (2.5 mm, edgewise wound on two layers with an inner diameter of 5 mmφ, which is an insulation-coated copper wire having a cross-sectional dimension of 0.6 mm × width 2 mm) Turn) air-core coil was prepared, and an integrally molded inductor having the same shape was produced. Table 1 shows the inductance value and the coil resistance value of the inductor according to the conventional manufacturing method and the inductor according to the manufacturing method of the present invention described above.

Figure 2006294775
Figure 2006294775

表1から明らかなように、本発明の磁性材料を使用して製造したインダクタは抵抗値をほぼ2割低減された空芯コイルでありながら、従来品より高いインダクタンスが得られている。   As is apparent from Table 1, the inductor manufactured using the magnetic material of the present invention is an air-core coil having a resistance value reduced by about 20%, but has a higher inductance than the conventional product.

インダクタの構成例を示す斜視図Perspective view showing a configuration example of an inductor 圧粉磁心試料No.1〜No.7の電気・磁気特性の測定データ図Powder core sample No. 1-No. 7 Measurement data of electrical and magnetic characteristics 圧粉磁心試料No.1〜No.4の絶縁抵抗・熱劣化特性図Powder core sample No. 1-No. 4 Insulation resistance / thermal deterioration characteristics 圧粉磁心試料No.3〜No.7の絶縁抵抗・熱劣化特性図Powder core sample No. 3-No. 7 Insulation resistance / thermal degradation characteristics

符号の説明Explanation of symbols

1 コイル
2 成形体
3 電極
1 Coil 2 Molded body 3 Electrode

Claims (6)

金属磁性粉の粒子の表面をガラス膜で覆い、さらにその外側を熱硬化性樹脂で被覆したことを特徴とする磁性材料。 A magnetic material characterized in that the surface of metal magnetic powder particles is covered with a glass film, and the outside thereof is covered with a thermosetting resin. 金属磁性粉がFe−Si系合金である請求項1の磁性材料。 The magnetic material according to claim 1, wherein the metal magnetic powder is an Fe-Si alloy. 金属磁性粉がFe−Ni系合金である請求項1の磁性材料。 The magnetic material according to claim 1, wherein the metal magnetic powder is an Fe-Ni alloy. 金属磁性粉が、Fe−Si系合金からなる第1の磁性粉と、Fe−Ni系合金からなる第2の磁性粉とからなり、第1の磁性粉と第2の磁性粉を混合した請求項1の磁性材料。 The metal magnetic powder is composed of a first magnetic powder made of an Fe-Si alloy and a second magnetic powder made of an Fe-Ni alloy, and the first magnetic powder and the second magnetic powder are mixed. Item 1. A magnetic material according to item 1. 第1の磁性粉と第2の磁性粉の配合比を30〜70wt%:70〜30wt%とした請求項4の磁性材料。 The magnetic material according to claim 4, wherein a blending ratio of the first magnetic powder and the second magnetic powder is 30 to 70 wt%: 70 to 30 wt%. 請求項1〜5のいずれか一つの請求項の磁性材料からなる粉末中に、空芯コイルを埋設して加圧成形したことを特徴とするインダクタ。 An inductor, wherein an air-core coil is embedded in a powder made of the magnetic material according to any one of claims 1 to 5 and pressure-molded.
JP2005111675A 2005-04-08 2005-04-08 Magnetic material and inductor using the same Pending JP2006294775A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005111675A JP2006294775A (en) 2005-04-08 2005-04-08 Magnetic material and inductor using the same
TW095111866A TW200643998A (en) 2005-04-08 2006-04-04 Magnetic material and the inductor using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111675A JP2006294775A (en) 2005-04-08 2005-04-08 Magnetic material and inductor using the same

Publications (1)

Publication Number Publication Date
JP2006294775A true JP2006294775A (en) 2006-10-26

Family

ID=37415039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111675A Pending JP2006294775A (en) 2005-04-08 2005-04-08 Magnetic material and inductor using the same

Country Status (2)

Country Link
JP (1) JP2006294775A (en)
TW (1) TW200643998A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861102B1 (en) * 2007-04-18 2008-10-01 송만호 Method for forming terminals of a surface mounting-type inductor
JP2012049435A (en) * 2010-08-30 2012-03-08 Alps Green Devices Co Ltd Coil enclosing dust core
KR20180027982A (en) 2016-09-07 2018-03-15 삼성전기주식회사 Magnetic powder and inductor comprising the same
US10026543B2 (en) 2015-09-21 2018-07-17 Samsung Electro-Mechanics Co., Ltd. Coil component and method for manufacturing the same
US10204730B2 (en) 2009-05-15 2019-02-12 Cyntec Co., Ltd. Electronic device and manufacturing method thereof
CN113380513A (en) * 2021-06-21 2021-09-10 深圳市铂科新材料股份有限公司 Integrated multilayer coil inductor and preparation method thereof
US11996224B2 (en) 2017-09-29 2024-05-28 Tokin Corporation Method for manufacturing a powder core, the powder core and an inductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113436875B (en) * 2021-06-25 2022-04-19 广东精密龙电子科技有限公司 Low-molding pressure inductance material, preparation method and integrated inductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861102B1 (en) * 2007-04-18 2008-10-01 송만호 Method for forming terminals of a surface mounting-type inductor
US10204730B2 (en) 2009-05-15 2019-02-12 Cyntec Co., Ltd. Electronic device and manufacturing method thereof
JP2012049435A (en) * 2010-08-30 2012-03-08 Alps Green Devices Co Ltd Coil enclosing dust core
US10026543B2 (en) 2015-09-21 2018-07-17 Samsung Electro-Mechanics Co., Ltd. Coil component and method for manufacturing the same
KR20180027982A (en) 2016-09-07 2018-03-15 삼성전기주식회사 Magnetic powder and inductor comprising the same
US11996224B2 (en) 2017-09-29 2024-05-28 Tokin Corporation Method for manufacturing a powder core, the powder core and an inductor
CN113380513A (en) * 2021-06-21 2021-09-10 深圳市铂科新材料股份有限公司 Integrated multilayer coil inductor and preparation method thereof

Also Published As

Publication number Publication date
TW200643998A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
KR100433200B1 (en) Composite magnetic material, magnetic elements and method of manufacturing the same
JP5358562B2 (en) Method for producing composite magnetic material and composite magnetic material
JP5626672B1 (en) Dust core manufacturing method, dust core and coil component
JP2006294775A (en) Magnetic material and inductor using the same
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
WO2016010098A1 (en) Magnetic core, method for producing magnetic core, and coil component
JP7128439B2 (en) Dust core and inductor element
CN107452466B (en) Electronic component
JP2015126047A (en) Dust core, coil component using the same, and method for producing dust core
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2003217919A (en) Dust core and high-frequency reactor using the same
WO2004107367A1 (en) Soft magnetic material, motor core, transformer core and process for producing soft magnetic material
JP2004363466A (en) Complex magnetic material and method for manufacturing inductor using the same
JP2004197218A (en) Composite magnetic material, core using the same, and magnetic element
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
JP2007123376A (en) Compound magnetic substance and magnetic device using same, and method of manufacturing same
JP6460505B2 (en) Manufacturing method of dust core
JP4750471B2 (en) Low magnetostrictive body and dust core using the same
JP2010118484A (en) Inductance element and method of manufacturing the same
CN113272086B (en) Method for producing magnetic material, method for producing powder magnetic core, method for producing coil component, powder magnetic core, coil component, and granulated powder
JP2019073748A (en) Method for producing magnetic material, method for producing dust core, method for manufacturing coil component, dust core, and coil component
JP2008195970A (en) Composite magnetic material, powder magnetic core and magnetic element
JP7128438B2 (en) Dust core and inductor element
JP2021158148A (en) Powder magnetic core
JP2016167477A (en) Coil-sealed dust core

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310