JP4924078B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP4924078B2
JP4924078B2 JP2007033505A JP2007033505A JP4924078B2 JP 4924078 B2 JP4924078 B2 JP 4924078B2 JP 2007033505 A JP2007033505 A JP 2007033505A JP 2007033505 A JP2007033505 A JP 2007033505A JP 4924078 B2 JP4924078 B2 JP 4924078B2
Authority
JP
Japan
Prior art keywords
movable
oil supply
introduction path
lubricating oil
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007033505A
Other languages
Japanese (ja)
Other versions
JP2008196415A (en
JP2008196415A5 (en
Inventor
恭弘 沖
重樹 岩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007033505A priority Critical patent/JP4924078B2/en
Priority to DE102008008860.9A priority patent/DE102008008860B4/en
Publication of JP2008196415A publication Critical patent/JP2008196415A/en
Publication of JP2008196415A5 publication Critical patent/JP2008196415A5/ja
Application granted granted Critical
Publication of JP4924078B2 publication Critical patent/JP4924078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、固定部に対する可動部の変位によって冷媒を圧縮する圧縮機に関する。   The present invention relates to a compressor that compresses a refrigerant by displacement of a movable portion with respect to a fixed portion.

従来、この種の電動圧縮機では、コンプレッサハウジング内において可動スクロール部が固定スクロール部に対してスクロール運動して冷媒を圧縮する圧縮機構と、この圧縮機構により圧縮された冷媒から分離部により分離された潤滑油をコンプレッサハウジング内の駆動軸の軸受け部に導く潤滑油導入通路を備えたものがある(例えば、特許文献1参照)。   Conventionally, in this type of electric compressor, the movable scroll portion is scrolled with respect to the fixed scroll portion in the compressor housing to compress the refrigerant, and the refrigerant is separated from the refrigerant compressed by the compression mechanism by the separation portion. Some of them have a lubricating oil introduction passage that guides the lubricating oil to a bearing portion of a drive shaft in the compressor housing (see, for example, Patent Document 1).

このものにおいて、潤滑油導入通路は、可動スクロール部および固定スクロール部を貫通してコンプレッサハウジング内の駆動軸の軸受け部に連通するように形成されている。分離部から潤滑油導入通路を介して流入される潤滑油が駆動軸および軸受け部の間に供給されて、駆動軸が円滑に回転されることになる。
特開2005−201173号公報
In this structure, the lubricating oil introduction passage is formed so as to penetrate the movable scroll portion and the fixed scroll portion and communicate with the bearing portion of the drive shaft in the compressor housing. Lubricating oil flowing from the separating portion through the lubricating oil introduction passage is supplied between the driving shaft and the bearing portion, so that the driving shaft is smoothly rotated.
JP 2005-201173 A

しかし、上述の電動圧縮機では、潤滑油導入通路は、可動スクロール部および固定スクロール部を貫通するように形成されている。このため、可動スクロール部の旋回運動に伴って、可動スクロール部側潤滑油導入通路と固定スクロール部側潤滑油導入通路とが間欠的に連通することになる。   However, in the above-described electric compressor, the lubricating oil introduction passage is formed so as to penetrate the movable scroll portion and the fixed scroll portion. For this reason, with the turning motion of the movable scroll portion, the movable scroll portion side lubricant introduction passage and the fixed scroll portion side lubricant introduction passage communicate intermittently.

ここで、可動スクロール部および固定スクロール部の間には焼き付け防止のために間隙が設けられている。可動スクロール部側潤滑油導入通路と固定スクロール部側潤滑油導入通路と非連通状態であるときには、可動スクロール部側潤滑油導入通路から当該間隙に潤滑油が漏れ、十分な量の潤滑油が軸受け部側に供給されなくなる。   Here, a gap is provided between the movable scroll portion and the fixed scroll portion to prevent burning. When the movable scroll part side lubricant introduction passage and the fixed scroll part side lubricant introduction passage are not in communication, the lubricant leaks from the movable scroll part side lubricant introduction passage into the gap, and a sufficient amount of lubricant is received by the bearing. It will not be supplied to the part side.

本発明は、上記点に鑑み、潤滑油漏れを抑制するようにした圧縮機を提供することを目的とする。 An object of this invention is to provide the compressor which suppressed the leakage of lubricating oil in view of the said point.

上記目的を達成するため、本発明では、冷媒吸入口(13)および冷媒吐出口(22)を備えるハウジング(1、1a、1c)と、ハウジング内に収納され、固定部(24)と、変位可能に支持される可動部(17)と、を有する圧縮機構(4)と、を備え、可動部の変位により、冷媒吸入口から低圧冷媒を吸入、圧縮し高圧冷媒を前記冷媒吐出口から吐出するものであり、圧縮機構により圧縮された高圧冷媒から潤滑油を分離する分離部(21b)と、固定部および可動部にそれぞれ設けられ、分離部からの潤滑油を低圧冷媒および高圧冷媒の圧力差に基づいてハウジング内の摺動部に導く導入路(31、32、50)と、を備え、可動部が変位することにより、固定部側導入路と可動部側導入路が間欠的に連通するように構成される圧縮機であって、
可動部および固定部のうち一方の部材の導入路内にて他方の部材側に変位可能に収納され、かつ給油穴(30a)を有する給油通路部材(30)を備え、給油通路部材は、軸線方向に貫通する給油穴(30a)を有し、かつ一方の部材の導入路内にて移動可能に収納された給油可動部材(30)であり、一方の部材の導入路内には、給油可動部材(30)を収納する収納部(32)が形成され、導入路として、分離部からの潤滑油を収納部に導入する給油通路(31)が設けられており、
固定部側導入路(31、32)と可動部側導入路(50)が連通状態であるときには、一方の導入路内の潤滑油が給油可動部材(30)の給油穴を通して他方の導入路に供給され、固定部側導入路と可動部側導入路が非連通状態であるときには、給油可動部材(30)が他方の部材側に押圧されて他方の部材側に移動することによって給油穴が他方の部材により閉じられ
給油通路(31)のうち潤滑油流れ方向に直交する断面積(S2)は、給油穴(30a)のうち潤滑油流れ方向に直交する断面積(S1)よりも、大きくなっており、給油可動部材(30)のうち潤滑油流れ上流側端面には、給油通路(31)を介して高圧冷媒の圧力を受ける受圧部(30b)が設けられており、非連通状態であるとき、給油可動部材(30)は、受圧部(30b)に高圧冷媒の圧力を受けて、高圧冷媒と低圧冷媒との圧力差によって他方の部材側に押圧されることを特徴とする。
In order to achieve the above object, according to the present invention, a housing (1, 1a, 1c) including a refrigerant suction port (13) and a refrigerant discharge port (22), a housing (1), a fixing portion (24), a displacement A compression mechanism (4) having a movable part (17) supported in a possible manner, and by displacing the movable part, low-pressure refrigerant is sucked and compressed from the refrigerant suction port, and high-pressure refrigerant is discharged from the refrigerant discharge port. The separation part (21b) that separates the lubricating oil from the high-pressure refrigerant compressed by the compression mechanism, and the fixed part and the movable part are provided respectively, and the lubricating oil from the separation part is used as the pressure of the low-pressure refrigerant and the high-pressure refrigerant. An introduction path (31, 32, 50) that leads to a sliding part in the housing based on the difference, and the fixed part side introduction path and the movable part side introduction path communicate intermittently when the movable part is displaced. Compressed to be configured There is,
Is displaceably housed in the other member side in the introduction path of the one member of the movable portion and a fixed portion, and includes an oil supply passage member (30) having an oil supply hole (30a), the oil supply passage member, the axis This is an oil supply movable member (30) which has an oil supply hole (30a) penetrating in the direction and is movably accommodated in the introduction path of one member. A storage portion (32) for storing the member (30) is formed, and an oil supply passage (31) for introducing the lubricating oil from the separation portion into the storage portion is provided as an introduction path,
When the fixed part side introduction path (31, 32) and the movable part side introduction path (50) are in communication, the lubricating oil in one introduction path passes through the oil supply hole of the oil supply movable member (30) to the other introduction path. When the fixed part side introduction path and the movable part side introduction path are in a non-communication state, the oil supply movable member (30) is pressed to the other member side and moved to the other member side, so that the oil supply hole is on the other side. closed by the member,
The cross-sectional area (S2) orthogonal to the lubricating oil flow direction in the oil supply passage (31) is larger than the cross-sectional area (S1) orthogonal to the lubricating oil flow direction in the oil supply hole (30a), and the oil supply is movable. A pressure receiving portion (30b) that receives the pressure of the high-pressure refrigerant through the oil supply passage (31) is provided on the end surface on the upstream side of the lubricating oil flow of the member (30). (30) receives the pressure of the high pressure refrigerant to the pressure receiving portion (30b), and feature to be pressed against the other member side by the pressure difference between high pressure refrigerant and low pressure refrigerant.

したがって、給油通路部材の給油穴から潤滑油が漏れることを抑制できるので、潤滑油の漏れを抑制できる。   Therefore, since it can suppress that lubricating oil leaks from the oil supply hole of an oil supply channel | path member, the leakage of lubricating oil can be suppressed.

ここで、「ハウジング内の摺動部」とは、互いに摺動するように配置された2つの部材の隙間であり、例えば、「駆動軸および軸受け部の隙間」である。   Here, the “sliding portion in the housing” is a gap between two members arranged to slide with each other, for example, “a gap between the drive shaft and the bearing portion”.

本発明では、給油通路部材は、軸線方向に貫通する給油穴を有し、かつ一方の部材の導入路内にて移動可能に収納される給油可動部材であり、さらに給油可動部材は、他方の部材側に押圧されて他方の部材側に移動して給油穴が他方の部材により閉じられる。 In the present invention, the oil supply passage member is an oil supply movable member that has an oil supply hole penetrating in the axial direction and is movably accommodated in the introduction path of one member. It is pressed by the member side moves to the other member side oil supply hole Ru closed by the other member.

この場合、給油可動部材が他方の部材側に移動して給油穴が他方の部材により閉じられるので、潤滑油の漏れを抑制できる。   In this case, since the oil supply movable member moves to the other member side and the oil supply hole is closed by the other member, leakage of the lubricating oil can be suppressed.

本発明は、給油可動部材は、圧縮機構からの高圧冷媒と低圧冷媒との圧力差により他方の部材側に押圧される。   In the present invention, the oil supply movable member is pressed to the other member side by the pressure difference between the high-pressure refrigerant and the low-pressure refrigerant from the compression mechanism.

したがって、押圧するためのバネ等の弾性部材を用いることなく、給油可動部材を押圧することができる。   Therefore, the oil supply movable member can be pressed without using an elastic member such as a spring for pressing.

上述の特徴の圧縮機において、給油可動部材を径方向から囲むように形成され、かつ給油可動部材の外周面と一方の部材の導入路の内周面との間を密閉するシール部材(400)が設けられていてもよい。 In the compressor having the above-described characteristics, the seal member (400) is formed so as to surround the oil supply movable member from the radial direction and seals between the outer peripheral surface of the oil supply movable member and the inner peripheral surface of the introduction path of one member. May be provided .

したがって、給油可動部材の外周面と一方の部材の導入路の内周面との間の隙間から潤滑油が漏れることを防止できる。   Therefore, it is possible to prevent the lubricating oil from leaking from the gap between the outer peripheral surface of the oil supply movable member and the inner peripheral surface of the introduction path of one member.

上述の特徴の圧縮機において、可動部と固定部との間の間隙において給油通路部材を囲むように形成され、間隙を密閉する補助シール部材(400A)が設けられていてもよい。 In the compressor having the above-described characteristics, an auxiliary seal member (400A) may be provided that is formed so as to surround the oil supply passage member in the gap between the movable portion and the fixed portion, and seals the gap .

これにより、給油通路部材から間隙内に潤滑油が漏れることがあっても、補助シール部材によりその潤滑油を補助シール部材の内側に止めることができる。   Thereby, even if lubricating oil may leak into the gap from the oil supply passage member, the lubricating oil can be stopped inside the auxiliary sealing member by the auxiliary sealing member.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体例との対応関係を示すものである。よって、当該符号により上記手段に記載された発明が後述する具体例に限定するものではない。   In addition, the code | symbol in the bracket | parenthesis of each means described in the claim and this column shows the correspondence with the specific example as described in embodiment mentioned later. Therefore, the invention described in the above means by the reference numerals is not limited to the specific examples described later.

以下、本発明の実施形態について説明する。なお、以下に説明する第1〜第6実施形態のうち、第1〜3、5、6実施形態が特許請求の範囲に記載した発明の実施形態であり、第4実施形態は参考例として示す形態である。
(第1実施形態)
図1に本発明の圧縮機を適用されてなるヒートポンプ式給湯機の第1実施形態を示す。
Hereinafter, embodiments of the present invention will be described. Of the first to sixth embodiments described below, the first to third, fifth and sixth embodiments are embodiments of the invention described in the claims, and the fourth embodiment is shown as a reference example. It is a form.
(First embodiment)
FIG. 1 shows a first embodiment of a heat pump type water heater to which the compressor of the present invention is applied.

ヒートポンプ式給湯機は、冷媒を吸入して圧縮する圧縮機100と、この圧縮機100からの吐出冷媒と貯湯タンク内の給湯水との間で熱交換する水冷媒熱交換器110と、水冷媒熱交換器110から流出した冷媒を減圧する減圧器120と、外気から吸熱して減圧器120から流出する冷媒を蒸発させる蒸発器130と、蒸発器130からの冷媒を液相冷媒と気相冷媒に分離して気相冷媒を圧縮機100に供給する気液分離器140とを備える。冷媒としては、例えば、二酸化炭素が用いられている。   The heat pump water heater includes a compressor 100 that sucks and compresses refrigerant, a water refrigerant heat exchanger 110 that exchanges heat between the refrigerant discharged from the compressor 100 and hot water in a hot water storage tank, and a water refrigerant. A decompressor 120 that decompresses the refrigerant that has flowed out of the heat exchanger 110, an evaporator 130 that absorbs heat from the outside air and evaporates the refrigerant that flows out of the decompressor 120, and a liquid-phase refrigerant and a gas-phase refrigerant as the refrigerant from the evaporator 130 And a gas-liquid separator 140 that supplies the gas-phase refrigerant to the compressor 100. For example, carbon dioxide is used as the refrigerant.

次に、本実施形態の圧縮機100の構造について図2〜図4を参照して説明する。   Next, the structure of the compressor 100 of this embodiment is demonstrated with reference to FIGS.

図2は圧縮機100の内部構造を示す断面図であり、図3は図2中A部分の拡大図である。   2 is a cross-sectional view showing the internal structure of the compressor 100, and FIG. 3 is an enlarged view of a portion A in FIG.

図2に示すように、圧縮機100は、略水平に配置される横置き型圧縮機であって、金属製の略円筒状のハウジング1を備える。ハウジング1の軸方向一端側開口部(図中左側開口部)には、蓋部1aが填め込まれ、ハウジング1の軸方向他端側開口部(図中右側開口部)には、蓋部1cが填め込まれている。   As shown in FIG. 2, the compressor 100 is a horizontal type compressor that is disposed substantially horizontally, and includes a substantially cylindrical housing 1 made of metal. A lid 1a is fitted into the opening on the one end side in the axial direction of the housing 1 (left side opening in the figure), and the lid 1c is placed on the opening on the other end side in the axial direction of the housing 1 (right side opening in the figure). Is inserted.

ハウジング1内には、モータ部3が配置されており、モータ部3は、ロータ9およびステータ11を備える。ロータ9は、磁石からなる円筒部材であり、ロータ9の中空部には、駆動軸10が圧入固定されている。ステータ11は、ハウジング1内に支持され、ステータコア(磁性体からなる)に対してステータコイル11aが回巻されて構成されている。ステータ11は、ロータ9に回転磁界を与えてロータ9を回転させる。   A motor unit 3 is disposed in the housing 1, and the motor unit 3 includes a rotor 9 and a stator 11. The rotor 9 is a cylindrical member made of a magnet, and a drive shaft 10 is press-fitted and fixed in a hollow portion of the rotor 9. The stator 11 is supported in the housing 1 and is configured by winding a stator coil 11a around a stator core (made of a magnetic material). The stator 11 applies a rotating magnetic field to the rotor 9 to rotate the rotor 9.

駆動軸10は、金属製からなるもので、水平方向に配置されている。駆動軸10の一端部(図中左側)は、軸受部材29aにより回転自在に支持される。軸受部材29aは、支持壁6を介してハウジング1の内壁により支持されている。軸受部材29aと支持壁6とはボルトBOにより締結されている。   The drive shaft 10 is made of metal and is disposed in the horizontal direction. One end (left side in the figure) of the drive shaft 10 is rotatably supported by a bearing member 29a. The bearing member 29 a is supported by the inner wall of the housing 1 through the support wall 6. The bearing member 29a and the support wall 6 are fastened by a bolt BO.

支持壁6には、潤滑油を流す潤滑油通路(図示省略)が設けられている。駆動軸10の他端部(図中右側)は、軸受部材29bにより回転自在に支持される。軸受部材29bは、ハウジング1の内壁により支持されている。   The support wall 6 is provided with a lubricating oil passage (not shown) through which lubricating oil flows. The other end (right side in the figure) of the drive shaft 10 is rotatably supported by the bearing member 29b. The bearing member 29 b is supported by the inner wall of the housing 1.

駆動軸10には、その軸方向に延びるように形成されて軸方向両端部の間を貫通する給油穴10aと、給油穴10a側から軸受部材29a側に連通する油注入穴10cが形成されている。駆動軸10には、給油穴10a側から軸受部材29b側に連通する油注入穴10bが形成されている。軸受部材29aには、給油穴10aに連通して軸方向一端部に開口する油排出穴290が設けられている。   The drive shaft 10 is formed with an oil supply hole 10a formed so as to extend in the axial direction and penetrating between both axial ends, and an oil injection hole 10c communicating from the oil supply hole 10a side to the bearing member 29a side. Yes. The drive shaft 10 is formed with an oil injection hole 10b that communicates from the oil supply hole 10a side to the bearing member 29b side. The bearing member 29a is provided with an oil discharge hole 290 that communicates with the oil supply hole 10a and opens at one end in the axial direction.

なお、油排出穴290を止め栓により閉塞させ、油注入孔10cを通る潤滑油を増やすようにしてもよい。   Note that the oil discharge hole 290 may be closed with a stopper and the lubricating oil passing through the oil injection hole 10c may be increased.

駆動軸10の他端部には、その一端部側に対して軸がずれて形成される偏心部10eが形成される。偏心部10eには可動スクロール17のボス部17cが嵌合されている。これにより、駆動軸10の回転に伴い、可動スクロール17が旋回運動することになる。   The other end portion of the drive shaft 10 is formed with an eccentric portion 10e formed so that the shaft is shifted with respect to the one end portion side. A boss portion 17c of the movable scroll 17 is fitted to the eccentric portion 10e. As a result, the movable scroll 17 performs a turning motion as the drive shaft 10 rotates.

可動スクロール17は、固定スクロール24とともに、冷媒を圧縮する圧縮機構4を構成し、可動スクロール17は、ボス部17cとともに、可動基板部17aおよび旋回羽根部17bを備えている。可動基板部17aは、円盤状に形成されており、旋回羽根部17bは、可動基板部17aから駆動軸10に対して反対側に突出し、かつ渦巻き状に形成されている。   The movable scroll 17 constitutes a compression mechanism 4 that compresses the refrigerant together with the fixed scroll 24, and the movable scroll 17 includes a movable substrate portion 17a and a swirl vane portion 17b together with the boss portion 17c. The movable substrate portion 17a is formed in a disc shape, and the swirl vane portion 17b protrudes from the movable substrate portion 17a to the opposite side with respect to the drive shaft 10 and is formed in a spiral shape.

固定スクロール24は、固定基板部24aおよび固定羽根部24bを備えている。固定基板部24aは、円盤状に形成され、可動基板部17aに対向して配置されている。固定基板部24aおよび可動基板部17aの間には圧縮室18が形成される。   The fixed scroll 24 includes a fixed substrate portion 24a and a fixed blade portion 24b. The fixed substrate portion 24a is formed in a disc shape and is disposed to face the movable substrate portion 17a. A compression chamber 18 is formed between the fixed substrate portion 24a and the movable substrate portion 17a.

固定羽根部24bは、固定基板部24aから可動基板部17aに向けて突出し、かつ渦巻き状に形成されている。固定羽根部24bおよび旋回羽根部17bは、圧縮室18で、互いに噛み合うように配置されている。固定基板部24aは、軸受部材29bにより支持されている。固定基板部24aは、軸受部材29bに対してボルトBOにより締結されている。   The fixed blade portion 24b protrudes from the fixed substrate portion 24a toward the movable substrate portion 17a and is formed in a spiral shape. The fixed blade portion 24b and the swirl blade portion 17b are arranged in the compression chamber 18 so as to mesh with each other. The fixed substrate portion 24a is supported by the bearing member 29b. The fixed substrate portion 24a is fastened to the bearing member 29b by a bolt BO.

固定基板部24aに対して外周側には吸入口13が設けられており、吸入口13は、ハウジング1に対して外側に開口して、かつ圧縮室18に連通するように設けられている。   The suction port 13 is provided on the outer peripheral side with respect to the fixed substrate portion 24 a, and the suction port 13 is provided so as to open to the outside with respect to the housing 1 and communicate with the compression chamber 18.

固定基板部24aに対して駆動軸10の反対側には吐出室20aが設けられている。固定基板部24aには、吐出孔19が設けられており、吐出孔19は、吐出室20aおよび圧縮室18の間を連通している。吐出室20aには、逆止弁20が設けられている。逆止弁20は、圧縮室18から吐出孔19を介して吐出される高圧冷媒が逆流することを止める弁体である。   A discharge chamber 20a is provided on the opposite side of the drive shaft 10 with respect to the fixed substrate portion 24a. The fixed substrate portion 24 a is provided with a discharge hole 19, and the discharge hole 19 communicates between the discharge chamber 20 a and the compression chamber 18. A check valve 20 is provided in the discharge chamber 20a. The check valve 20 is a valve body that stops the high-pressure refrigerant discharged from the compression chamber 18 through the discharge hole 19 from flowing backward.

吐出室20aの下流側には、オイル分離機構21bが設けられており、オイル分離機構21bは、内筒と外筒とからなる周知の二重筒構造の旋回流体型油分離器である。オイル分離機構21bは、吐出室20aから冷媒供給通路21aを介して供給される冷媒から潤滑油を分離する。オイル分離機構21bに対して外周側には、ハウジング1に向けて開口する吐出口22が設けられている。吐出口22は、オイル分離機構21bで潤滑油を除かれた冷媒を水冷媒熱交換器110に向けて吐出するために設けられている。   An oil separation mechanism 21b is provided on the downstream side of the discharge chamber 20a, and the oil separation mechanism 21b is a well-known double-cylinder structure swirling fluid type oil separator composed of an inner cylinder and an outer cylinder. The oil separation mechanism 21b separates the lubricating oil from the refrigerant supplied from the discharge chamber 20a via the refrigerant supply passage 21a. A discharge port 22 that opens toward the housing 1 is provided on the outer peripheral side with respect to the oil separation mechanism 21b. The discharge port 22 is provided to discharge the refrigerant from which the lubricating oil has been removed by the oil separation mechanism 21b toward the water-refrigerant heat exchanger 110.

オイル分離機構21bの下側には、高圧貯油室40が設けられており、高圧貯油室40は、オイル分離機構21bから給油通路21cを介して流下した潤滑油を貯める。固定基板部24aには、給油通路31が設けられており、給油通路31は一端が高圧貯油室40内部に開口している。   A high pressure oil storage chamber 40 is provided below the oil separation mechanism 21b, and the high pressure oil storage chamber 40 stores the lubricating oil that has flowed down from the oil separation mechanism 21b through the oil supply passage 21c. The fixed substrate portion 24 a is provided with an oil supply passage 31, and one end of the oil supply passage 31 opens into the high-pressure oil storage chamber 40.

給油通路31のうち可動基板部17側には、図3に示すように、円柱形状空洞部である可動収納部32が設けられている。可動ピン30は、金属製の筒状の給油可動部材であって、その軸線方向が潤滑油流れ方向(図3中矢印Na)に一致するように配置されている。可動収納部32には、円筒状の可動ピン30が軸方向に移動可能に収納されている。 As shown in FIG. 3, a movable storage portion 32 that is a cylindrical hollow portion is provided on the movable substrate portion 17 a side in the oil supply passage 31. The movable pin 30 is a metallic cylindrical oil supply movable member, and is arranged so that its axial direction coincides with the lubricating oil flow direction (arrow Na in FIG. 3). A cylindrical movable pin 30 is accommodated in the movable storage portion 32 so as to be movable in the axial direction.

可動ピン30には、軸線方向に延びる給油穴30aが設けられている。給油穴30aは、給油通路31に連通している。可動ピン30のうち潤滑油流れ上流側端面には、給油通路31から流れる冷媒圧力を受ける受圧面30bが形成されている。   The movable pin 30 is provided with an oil supply hole 30a extending in the axial direction. The oil supply hole 30 a communicates with the oil supply passage 31. A pressure receiving surface 30 b that receives the refrigerant pressure flowing from the oil supply passage 31 is formed on the end surface on the upstream side of the lubricating oil flow in the movable pin 30.

可動スクロール17の可動基板部17aには、給油穴50が設けられており、給油穴50は、可動スクロール17の旋回運動に伴って、図4に示すように、可動ピン30の給油穴30a(すなわち、可動収納部32)に間欠的に連通する。なお、図4中点鎖線200は、可動基板部17aの給油穴50の旋回軌跡を示す。 The movable board portion 17a of the movable scroll 17 is provided with an oil supply hole 50. The oil supply hole 50 is provided with the oil supply hole 30a (of the movable pin 30 as shown in FIG. That is, it communicates intermittently with the movable storage portion 32). In addition, the dashed- two dotted line 200 in FIG. 4 shows the turning locus | trajectory of the oil supply hole 50 of the movable board | substrate part 17a.

ここで、給油穴50の一端側は、固定基板部24a側に開口している。給油穴50は、図2に示すように、L字状に形成され、他端側が、貯油室51に連通している。貯油室51は、偏心部10eおよび可動基板部17aの間に形成され、駆動軸10の給油穴10aに繋がっている。   Here, one end side of the oil supply hole 50 opens to the fixed substrate portion 24a side. As shown in FIG. 2, the oil supply hole 50 is formed in an L shape, and the other end communicates with the oil storage chamber 51. The oil storage chamber 51 is formed between the eccentric portion 10 e and the movable substrate portion 17 a and is connected to the oil supply hole 10 a of the drive shaft 10.

ここで、可動収納部32のうち潤滑油流れ方向に対する直交方向の断面積S3は、給油通路31のうち潤滑油流れ方向に対する直交方向の断面積S2に比べて、広くなっている(S3>S2)。給油穴30aのうち潤滑油流れ方向に直交する断面積S1は、給油通路31の断面積S2に比べて、狭くなっている(S2>S1)。可動収納部32のうち潤滑油流れ方向に対する直交方向の断面積S3は、給油穴30aのうち潤滑油流れ方向に直交する断面積S1よりも大きい(S3>S1)。給油穴50のうち潤滑油流れ方向に直交する断面積S4は、給油穴30aの断面積S1よりも大きくなっている(S4>S1)。   Here, the sectional area S3 in the direction perpendicular to the lubricating oil flow direction in the movable storage portion 32 is larger than the sectional area S2 in the direction perpendicular to the lubricating oil flow direction in the oil supply passage 31 (S3> S2). ). The cross-sectional area S1 orthogonal to the lubricating oil flow direction in the oil supply hole 30a is narrower than the cross-sectional area S2 of the oil supply passage 31 (S2> S1). The cross-sectional area S3 in the direction perpendicular to the lubricating oil flow direction in the movable storage portion 32 is larger than the cross-sectional area S1 in the oil supply hole 30a perpendicular to the lubricating oil flow direction (S3> S1). The cross-sectional area S4 orthogonal to the lubricating oil flow direction in the oil supply hole 50 is larger than the cross-sectional area S1 of the oil supply hole 30a (S4> S1).

また、軸受部材29bには、後述するようにハウジング1の下側に溜まる潤滑油を圧縮機構4側に戻す油導入通路16が設けられている。   Further, the bearing member 29b is provided with an oil introduction passage 16 for returning the lubricating oil accumulated on the lower side of the housing 1 to the compression mechanism 4 side as will be described later.

次に、本実施形態の作動について説明する。   Next, the operation of this embodiment will be described.

まず、モータ部3の駆動軸10が可動スクロール17を駆動すると、可動スクロール17が旋回運動する。すると、固定羽根部24bおよび旋回羽根部17bの間の容積が変化する。これに伴い、低圧冷媒が吸入口13を介して圧縮室18に吸入され圧縮される。 このため、圧縮室18からの高圧冷媒が吐出孔19、吐出室20a、および冷媒供給通路21aを通してオイル分離機構21bに向かって流れる。   First, when the drive shaft 10 of the motor unit 3 drives the movable scroll 17, the movable scroll 17 rotates. Then, the volume between the fixed blade portion 24b and the swirl blade portion 17b changes. Accordingly, the low-pressure refrigerant is sucked into the compression chamber 18 through the suction port 13 and compressed. For this reason, the high-pressure refrigerant from the compression chamber 18 flows toward the oil separation mechanism 21b through the discharge hole 19, the discharge chamber 20a, and the refrigerant supply passage 21a.

オイル分離機構21bでは、高圧冷媒が巻き起こす旋回流の遠心力により冷媒中の潤滑油が分離して、残る冷媒が吐出口22から吐出さる。このとき、潤滑油は、給油通路21cを介して高圧貯油室40に流れる。 In the oil separation mechanism 21b, it separates the lubricating oil in the refrigerant by centrifugal force of the swirling flow pressure refrigerant stir remains refrigerant Ru discharged from the discharge port 22. At this time, the lubricating oil flows into the high-pressure oil storage chamber 40 via the oil supply passage 21c.

その後、高圧貯油室40からの潤滑油が高圧冷媒(圧縮後の冷媒圧力)および低圧冷媒(圧縮前の冷媒圧力)の圧力差により軸受け部29a、29bに導かれる。   Thereafter, the lubricating oil from the high-pressure oil storage chamber 40 is guided to the bearing portions 29a and 29b due to the pressure difference between the high-pressure refrigerant (compressed refrigerant pressure) and the low-pressure refrigerant (compressed refrigerant pressure).

具体的には、潤滑油が、固定基板部24a内の給油通路31を通過して可動収納部32に向けて流れる。可動収納部32において、可動ピン30の受圧面30bに潤滑油が可動基板部17側に押圧する。   Specifically, the lubricating oil flows toward the movable storage portion 32 through the oil supply passage 31 in the fixed substrate portion 24a. In the movable storage portion 32, the lubricating oil presses against the pressure receiving surface 30 b of the movable pin 30 toward the movable substrate portion 17.

ここで、可動ピン30の受圧面30bが可動収納部32の潤滑油最上流部32aに位置するとき、可動ピン30の受圧面30bのうち給油通路31に対応する部分で潤滑油から圧力を受ける。   Here, when the pressure receiving surface 30b of the movable pin 30 is positioned at the most upstream portion 32a of the lubricating oil of the movable housing portion 32, the pressure is received from the lubricating oil at the portion corresponding to the oil supply passage 31 in the pressure receiving surface 30b of the movable pin 30. .

このとき、可動ピン30が潤滑油から受ける力Fは、次式(1)で表される。   At this time, the force F that the movable pin 30 receives from the lubricating oil is expressed by the following equation (1).

F=(Pd−Ps)(S2−S1)…(1)
Pdは高圧冷媒の圧力であり、Psは低圧冷媒の圧力である。
F = (Pd−Ps) (S2−S1) (1)
Pd is the pressure of the high-pressure refrigerant, and Ps is the pressure of the low-pressure refrigerant.

可動ピン30の受圧面30bが、図3に示すように、可動収納部32の潤滑油最上流部32aから離れているとき(すなわち、可動収納部32の潤滑油最上流部32aおよび受圧面30bの間に空間ができるとき)、可動ピン30がその受圧面30b全体で潤滑油から圧力を受ける。   As shown in FIG. 3, when the pressure receiving surface 30b of the movable pin 30 is away from the most upstream portion 32a of the lubricant in the movable storage portion 32 (that is, the most upstream portion 32a of the lubricant in the movable storage portion 32 and the pressure receiving surface 30b). The movable pin 30 receives pressure from the lubricating oil over the entire pressure receiving surface 30b.

このとき、可動ピン30が潤滑油から受ける力Fは、次式(2)で表される。   At this time, the force F that the movable pin 30 receives from the lubricating oil is expressed by the following equation (2).

F=(Pd−Ps)(S3−S1)…(2)
一方、可動基板部17aは、上述の如く、固定基板部24aに対して旋回運動している。このため、可動基板部17aの給油穴50が、可動ピン30の給油穴30aに間欠的に連通する。
F = (Pd−Ps) (S3−S1) (2)
On the other hand, as described above, the movable substrate portion 17a rotates with respect to the fixed substrate portion 24a. For this reason, the oil supply hole 50 of the movable substrate portion 17 a communicates intermittently with the oil supply hole 30 a of the movable pin 30.

可動基板部17aの給油穴50が、可動ピン30の給油穴30aに非連通状態であるときには、図3に示すように、可動ピン30の給油穴30aが可動基板部17aにより閉ざされる。このため、固定基板部24aと可動基板部17aとの間の間隙Kaと、可動ピン30の給油穴30aとの間が閉じられる。   When the oil supply hole 50 of the movable substrate portion 17a is not in communication with the oil supply hole 30a of the movable pin 30, the oil supply hole 30a of the movable pin 30 is closed by the movable substrate portion 17a as shown in FIG. For this reason, the gap Ka between the fixed substrate portion 24 a and the movable substrate portion 17 a and the oil supply hole 30 a of the movable pin 30 are closed.

また、可動基板部17aの給油穴50が、可動ピン30の給油穴30aに連通状態であるときには、潤滑油が可動ピン30の給油穴30aを通して可動基板部17aの給油穴50内に流れる。   Further, when the oil supply hole 50 of the movable substrate portion 17 a is in communication with the oil supply hole 30 a of the movable pin 30, the lubricating oil flows into the oil supply hole 50 of the movable substrate portion 17 a through the oil supply hole 30 a of the movable pin 30.

次に、潤滑油は給油穴50から貯油室51を経て駆動軸10の給油穴10a内に流れる。潤滑油の一部は、油注入穴10cを経て、軸受部材29aおよび駆動軸10の間の隙間に流れる。また、潤滑油の一部は、油注入穴10bを経て、軸受部材29bおよび駆動軸10の間の隙間に流れる。   Next, the lubricating oil flows from the oil supply hole 50 through the oil storage chamber 51 into the oil supply hole 10 a of the drive shaft 10. Part of the lubricating oil flows into the gap between the bearing member 29a and the drive shaft 10 through the oil injection hole 10c. Further, part of the lubricating oil flows through the oil injection hole 10b and into the gap between the bearing member 29b and the drive shaft 10.

このように、潤滑油が軸受部材29a、29bおよび駆動軸10の間の隙間に流れるので、駆動軸10が円滑に回転することができる。なお、「軸受部材29a、29bおよび駆動軸10の間の隙間」は「ハウジング内の摺動部」に相当する。   Thus, since the lubricating oil flows into the gap between the bearing members 29a and 29b and the drive shaft 10, the drive shaft 10 can rotate smoothly. The “gap between the bearing members 29a and 29b and the drive shaft 10” corresponds to the “sliding portion in the housing”.

一方、残りの潤滑油は、駆動軸10の給油穴10aを経て軸受部材29aの油排出穴290からハウジング1下部に流れ落ちる。その後、この潤滑油は潤滑油通および油導入通路16を経て圧縮機構4側に吸入される。

On the other hand, the remaining lubricating oil flows down from the oil discharge hole 290 of the bearing member 29 a to the lower part of the housing 1 through the oil supply hole 10 a of the drive shaft 10. Thereafter, the lubricating oil is sucked into the compression mechanism 4 side through the lubricating oil passage path and the oil introduction passage 16.

以上説明した本実施形態によれば、可動スクロール17の旋回運動に伴って、可動基板部17aの給油穴50が、可動ピン30の給油穴30aに間欠的に連通する。ここで、可動基板部17aの給油穴50が、可動ピン30の給油穴30aに非連通状態であるときには、可動ピン30の給油穴30aが可動基板部17aにより閉ざされる。このため、間隙Kaと、可動ピン30の給油穴30aとの間が閉じられる。したがって、可動ピン30の給油穴30aから潤滑油が間隙Ka内に流れることを防止できる。これに伴い、オイル分離機構21b側からの潤滑油の供給量を増やす必要が無くなる。   According to the present embodiment described above, the oil supply hole 50 of the movable substrate portion 17 a communicates intermittently with the oil supply hole 30 a of the movable pin 30 as the movable scroll 17 rotates. Here, when the oil supply hole 50 of the movable substrate portion 17a is not in communication with the oil supply hole 30a of the movable pin 30, the oil supply hole 30a of the movable pin 30 is closed by the movable substrate portion 17a. For this reason, the gap Ka and the oil supply hole 30a of the movable pin 30 are closed. Therefore, the lubricating oil can be prevented from flowing into the gap Ka from the oil supply hole 30a of the movable pin 30. Accordingly, it is not necessary to increase the supply amount of the lubricating oil from the oil separation mechanism 21b side.

また、本実施形態では、軸受け部29a、29b側に供給される高温状態の潤滑油の総量を減らすことができる。このため、圧縮機構4から吐出される高圧冷媒のうち、潤滑油に含まれる熱エネルギとして奪われるエネルギを減らすことができる。したがって、圧縮機100から水冷媒熱交換器110に高圧冷媒として送られる熱エネルギを増やすことができる。したがって、水冷媒熱交換器110で効率的に熱交換を行うことができる。   In the present embodiment, the total amount of high-temperature lubricating oil supplied to the bearing portions 29a and 29b can be reduced. For this reason, in the high-pressure refrigerant discharged from the compression mechanism 4, the energy taken as thermal energy contained in the lubricating oil can be reduced. Therefore, it is possible to increase the heat energy sent from the compressor 100 to the water refrigerant heat exchanger 110 as a high-pressure refrigerant. Therefore, heat exchange can be performed efficiently by the water refrigerant heat exchanger 110.

本実施形態では、可動収納部32のうち可動ピン30に対して上流側には、潤滑油が流れる空間32kが設けられ、この空間32kに可動ピン30の受圧面30bが露出している。このため、可動ピン30に対して冷媒の圧力を確実に加えることができる。   In the present embodiment, a space 32k through which lubricating oil flows is provided upstream of the movable pin 30 in the movable storage portion 32, and the pressure receiving surface 30b of the movable pin 30 is exposed in this space 32k. For this reason, the pressure of the refrigerant can be reliably applied to the movable pin 30.

本実施形態では、潤滑油の供給量は、高圧側の給油穴30aが低圧側の給油穴50と連通する開口面積、および開口率(開口している時間的割合)により決まる。この緒元は、高圧側の給油穴30a断面積S1、および低圧側の給油穴50の断面積S4の2つにより決定される。本実施形態ではS4はS1より大きく設定されている(S4>S1)。   In the present embodiment, the supply amount of the lubricating oil is determined by the opening area where the high-pressure-side oil supply hole 30a communicates with the low-pressure-side oil supply hole 50, and the opening ratio (time ratio of opening). This specification is determined by two of the cross-sectional area S1 of the high-pressure side oil supply hole 30a and the cross-sectional area S4 of the low-pressure side oil supply hole 50. In this embodiment, S4 is set larger than S1 (S4> S1).

これにより、高圧側の給油穴30a、低圧側の給油穴50が、例え、加工・組み付けのバラツキにより相対的にずれたとしても、給油穴30aが給油穴50に連通時にはみ出す率が軽減され、すなわち、開口面積が減り、ひいては潤滑油の供給量が減るという懸念が軽減される。   Thereby, even if the high-pressure side oil supply hole 30a and the low-pressure side oil supply hole 50 are relatively displaced due to variations in processing and assembly, the rate of the oil supply hole 30a protruding when communicating with the oil supply hole 50 is reduced. That is, the concern that the opening area is reduced and the supply amount of the lubricating oil is reduced is reduced.

また、高圧側の給油穴30a断面積S1が小さいため、万が一可動ピン30の端部に一時的に隙間ができたとしても、潤滑油の漏れを少なく抑えることができる。   In addition, since the cross-sectional area S1 of the high-pressure side oil supply hole 30a is small, even if a gap is temporarily formed at the end of the movable pin 30, leakage of the lubricating oil can be suppressed to a minimum.

一般的に、冷媒としては二酸化炭素を用いた冷凍サイクル装置では、その運転時には冷媒圧力の高低圧差が大きくなる。冷媒圧力の高低圧差が大きくなると、潤滑油の洩れ量が増える可能性がある。   In general, in a refrigeration cycle apparatus using carbon dioxide as a refrigerant, the difference between the high and low pressures of the refrigerant becomes large during operation. When the difference between the high and low pressures of the refrigerant pressure increases, the amount of lubricating oil leakage may increase.

これに対し、本実施形態の構成では、可動ピン30を用いて潤滑油の洩れ量を減らすことができるので、二酸化炭素を用いた冷媒圧力の高低圧差の大きな冷凍サイクルに本発明を適用することが好適である。   On the other hand, in the configuration of the present embodiment, the amount of lubricating oil leakage can be reduced using the movable pin 30, so that the present invention is applied to a refrigeration cycle having a large difference in refrigerant pressure using carbon dioxide. Is preferred.

本実施形態では、スクロール型の圧縮機100の圧縮機構を構成する可動スクロール17および固定スクロール24は、厳密な寸法公差で設計されることが必要である。   In the present embodiment, the movable scroll 17 and the fixed scroll 24 constituting the compression mechanism of the scroll compressor 100 need to be designed with strict dimensional tolerances.

一方、潤滑油の洩れ量を減らすためには、設計上、可動基板部17aの給油穴50と可動ピン30の給油穴30aとの相対位置を厳密に設定することが必要である。このため、可動基板部17aの給油穴50と可動ピン30の給油穴30aとの相対位置を厳密に設定するにあたり、本発明をスクロール型の圧縮機に適用することが好適である。   On the other hand, in order to reduce the leakage amount of the lubricating oil, it is necessary to strictly set the relative position between the oil supply hole 50 of the movable substrate portion 17a and the oil supply hole 30a of the movable pin 30 in design. For this reason, when setting the relative position of the oil supply hole 50 of the movable board | substrate part 17a and the oil supply hole 30a of the movable pin 30 exactly | strictly, it is suitable to apply this invention to a scroll type compressor.

(第2実施形態)
本第2実施形態では、図5に示すように、上述の第1実施形態の可動ピン30にシール部材400を装着して、可動ピン30の外周面と可動収納部32の内壁面との間から潤滑油が漏れるのを抑制する。シール部材400は、可動ピン30を径方向から囲むようにリング状に形成されるOリングである。
(Second Embodiment)
In the second embodiment, as shown in FIG. 5, the seal member 400 is attached to the movable pin 30 of the first embodiment described above, and the gap between the outer peripheral surface of the movable pin 30 and the inner wall surface of the movable storage portion 32 is. To prevent the lubricant from leaking out. The seal member 400 is an O-ring formed in a ring shape so as to surround the movable pin 30 from the radial direction.

この場合、細かい異物が可動ピン30の外周に噛み混んで可動ピン30の動きが阻害されることはない。   In this case, the fine foreign matter does not bite the outer periphery of the movable pin 30 and the movement of the movable pin 30 is not hindered.

(第3実施形態)
本第3実施形態では、図6に示すように、上述の第1実施形態の可動スクロール17および固定スクロール24の間の間隙Kaに対して、補助シール部材400Aを追加して、可動収納部32および可動ピン30から潤滑油が間隙Ka内に洩れても広がらないようにする。
(Third embodiment)
In the third embodiment, as shown in FIG. 6, an auxiliary seal member 400 </ b> A is added to the gap Ka between the movable scroll 17 and the fixed scroll 24 of the first embodiment described above, and the movable storage portion 32. In addition, the lubricating oil is prevented from spreading even if it leaks from the movable pin 30 into the gap Ka.

補助シール部材400Aは、可動ピン30を囲むようにリング状に形成されており、補助シール部材400Aは、固定スクロール24のリング状の溝部401内に填め込まれている。補助シール部材400Aは、可動スクロール17の旋回運動に伴い、可動スクロール17に対して摺動する。   The auxiliary seal member 400 </ b> A is formed in a ring shape so as to surround the movable pin 30, and the auxiliary seal member 400 </ b> A is fitted in the ring-shaped groove portion 401 of the fixed scroll 24. The auxiliary seal member 400 </ b> A slides relative to the movable scroll 17 as the movable scroll 17 rotates.

本実施形態では、補助シール部材400Aおよび溝部401の間の隙間には、高圧冷媒の圧力が作用して、補助シール部材400Aを可動スクロール17側に押し付けている。   In this embodiment, the pressure of the high-pressure refrigerant acts on the gap between the auxiliary seal member 400A and the groove 401, and presses the auxiliary seal member 400A toward the movable scroll 17 side.

(第4実施形態)
上述の第1〜3実施形態において、給油通路部材として金属製の可動ピン30を用いた例について説明したが、これに代えて、本第4実施形態では、バネ鋼等の弾性部材からなる弾性シール部材を給油通路部材として用いた例について説明する。
本実施形態の圧縮機100の構造を図7に示す。
(Fourth embodiment)
In the first to third embodiments described above, the example in which the metal movable pin 30 is used as the oil supply passage member has been described. Instead of this, in the fourth embodiment, the elasticity made of an elastic member such as spring steel is used. An example in which the seal member is used as an oil supply passage member will be described.
The structure of the compressor 100 of this embodiment is shown in FIG.

弾性シール部材30Aは、太筒部300の潤滑油下流側に細筒部310が接続されて構成され、細筒部310は、可動収納部32内から間隙Ka側に突出するように配置されている。   The elastic seal member 30A is configured by connecting a thin tube portion 310 to the lubricating oil downstream side of the thick tube portion 300, and the thin tube portion 310 is disposed so as to protrude from the movable storage portion 32 to the gap Ka side. Yes.

太筒部300および細筒部310の連結部320は、筒部300、310に比べて厚みが薄くなっている。このため、連結部320の強度が筒部300、310に比べて剛性が低くなっている。このことにより、連結部320の弾性変形により細筒部310が可動基板部17a側に変位可能に構成されることになる。   The connecting portion 320 of the thick tube portion 300 and the thin tube portion 310 is thinner than the tube portions 300 and 310. For this reason, the strength of the connecting portion 320 is lower than that of the cylindrical portions 300 and 310. Thus, the thin cylindrical portion 310 is configured to be displaceable toward the movable substrate portion 17a by elastic deformation of the connecting portion 320.

太筒部300の給油穴30bと細筒部310の給油穴30aとは、連通しており、細筒部310の潤滑油流れ上流側に受圧面340が形成される。   The oil supply hole 30b of the thick tube portion 300 and the oil supply hole 30a of the thin tube portion 310 communicate with each other, and a pressure receiving surface 340 is formed on the upstream side of the lubricant flow of the thin tube portion 310.

ここで、細筒部310が可動基板部17aに押し付けられた状態で、太筒部300は、可動収納部32内に圧入等で固定されている。   Here, the thick tube portion 300 is fixed in the movable storage portion 32 by press-fitting or the like in a state where the thin tube portion 310 is pressed against the movable substrate portion 17a.

なお、細筒部310には高圧側から冷媒圧力を受けて、可動基板部17aに押し付けられる構成であれば太筒部300の圧入時に可動基板部17aに押し付けられていなくてもよい。   In addition, if the thin cylinder part 310 receives the refrigerant pressure from the high pressure side and is pressed against the movable substrate part 17a, it may not be pressed against the movable substrate part 17a when the thick cylinder part 300 is pressed.

このように構成される本実施形態では、潤滑油が、固定基板部24a内の給油通路31から可動収納部32内を経て弾性シール部材30Aの太筒部300に流れると、細筒部310の受圧面340に対して潤滑油が可動基板部17側に押圧する。   In the present embodiment configured as described above, when the lubricating oil flows from the oil supply passage 31 in the fixed substrate portion 24a through the movable storage portion 32 to the thick cylindrical portion 300 of the elastic seal member 30A, Lubricating oil presses against the pressure receiving surface 340 toward the movable substrate 17 side.

このとき、細筒部310が潤滑油から受ける力Fは、次式(3)で表される。
F=(Pd−Ps)(S3−S1)+F0…(3)
S3は、太筒部300の給油穴30bうち潤滑油流れ方向に対する直交方向の断面積であり、S1は、細筒部310の給油穴30aのうち潤滑油流れ方向に対する直交方向の断面積である。F0は、細筒部310の受圧面340に対して潤滑油が押圧していない状態で、連結部320の弾性力で細筒部310を押し付ける力である。
At this time, the force F received by the thin cylindrical portion 310 from the lubricating oil is expressed by the following equation (3).
F = (Pd−Ps) (S3−S1) + F0 (3)
S3 is a cross-sectional area in the direction orthogonal to the lubricating oil flow direction in the oil supply hole 30b of the thick cylindrical part 300, and S1 is a cross-sectional area in the direction orthogonal to the lubricating oil flow direction in the oil supply hole 30a of the narrow cylindrical part 310. . F0 is a force that presses the thin cylindrical portion 310 with the elastic force of the connecting portion 320 in a state where the lubricating oil is not pressed against the pressure receiving surface 340 of the thin cylindrical portion 310.

ここで、可動基板部17aの旋回運動に伴って、可動基板部17aの給油穴50が、細筒部310の給油穴30aに間欠的に連通する。   Here, the oil supply hole 50 of the movable substrate part 17a is intermittently communicated with the oil supply hole 30a of the thin cylindrical part 310 with the turning movement of the movable substrate part 17a.

可動基板部17aの給油穴50が、細筒部310の給油穴30aに連通状態であるときには、潤滑油が細筒部310の給油穴30aを通して可動基板部17aの給油穴50内に流れる。   When the oil supply hole 50 of the movable substrate portion 17a is in communication with the oil supply hole 30a of the thin tube portion 310, the lubricating oil flows into the oil supply hole 50 of the movable substrate portion 17a through the oil supply hole 30a of the thin tube portion 310.

一方、可動基板部17aの給油穴50が、細筒部310の給油穴30aに非連通状態であるときには、図7に示すように、細筒部310の給油穴30aが可動基板部17aにより閉鎖される。このため、固定基板部24aと可動基板部17aとの間の間隙Kaと、細筒部310の給油穴30aとの間が密閉される。   On the other hand, when the oil supply hole 50 of the movable substrate portion 17a is not in communication with the oil supply hole 30a of the thin tube portion 310, the oil supply hole 30a of the thin tube portion 310 is closed by the movable substrate portion 17a as shown in FIG. Is done. For this reason, the gap Ka between the fixed substrate portion 24a and the movable substrate portion 17a and the oil supply hole 30a of the narrow cylinder portion 310 are sealed.

このように構成される本実施形態では、弾性シール部材30Aの細筒部310は、潤滑油からの押圧力{(Pd−Ps)(S3−S1)}と連結部320の弾性力(F0)とにより押し付けられる。このため、細筒部310の給油穴30aを可動基板部17aにより確実に閉じることができる。したがって、細筒部310の給油穴30aから潤滑油が漏れることを確実に防止できる。   In the present embodiment configured as described above, the narrow cylindrical portion 310 of the elastic seal member 30A has the pressing force {(Pd-Ps) (S3-S1)} from the lubricating oil and the elastic force (F0) of the connecting portion 320. And pressed by. For this reason, the oil supply hole 30a of the thin cylindrical part 310 can be reliably closed by the movable substrate part 17a. Therefore, it is possible to reliably prevent the lubricating oil from leaking from the oil supply hole 30a of the thin cylindrical portion 310.

また、本実施形態では、太筒部300は可動収納部32内に圧入等で固定されているので、太筒部300の外周面と可動収納部32の内周面との間から潤滑油が漏れることを防止できる。   Further, in the present embodiment, since the thick tube portion 300 is fixed in the movable storage portion 32 by press fitting or the like, lubricating oil is supplied from between the outer peripheral surface of the thick tube portion 300 and the inner peripheral surface of the movable storage portion 32. It can prevent leakage.

(第5実施形態)
上述の第1実施形態では、可動ピンを固定スクロールの固定基板部側に配置した例について説明したが、これに代えて、図8に示すように、本第5実施形態では、軸受部材29bに可動ピン30を配置した例について説明する。図8中において、図2と同一符号は同一部材を示す。
(Fifth embodiment)
In the first embodiment described above, the example in which the movable pin is arranged on the fixed substrate portion side of the fixed scroll has been described. Instead, as shown in FIG. 8, in the fifth embodiment, the bearing member 29b is provided on the bearing member 29b. An example in which the movable pin 30 is arranged will be described. 8, the same reference numerals as those in FIG. 2 denote the same members.

以下、本実施形態について、上述の第1実施形態の構成との違いについて説明する。   Hereinafter, the difference between the present embodiment and the configuration of the first embodiment will be described.

図8に示すように、本実施形態では、可動収納部32が軸受部材29bに設けられている。すなわち、可動収納部32が可動基板部17aに対して固定基板部24aの反対側に配置される。   As shown in FIG. 8, in this embodiment, the movable storage part 32 is provided in the bearing member 29b. That is, the movable storage portion 32 is disposed on the opposite side of the fixed substrate portion 24a with respect to the movable substrate portion 17a.

軸受部材29bには、給油通路500が設けられている。給油通路500は、高圧貯油室40から給油通路31を通して流れる潤滑油を可動収納部32に導く。したがって、可動ピン30が潤滑油により可動基板部17側に押圧される。   An oil supply passage 500 is provided in the bearing member 29b. The oil supply passage 500 guides the lubricating oil flowing from the high-pressure oil storage chamber 40 through the oil supply passage 31 to the movable storage portion 32. Therefore, the movable pin 30 is pressed toward the movable substrate portion 17 by the lubricating oil.

一方、可動スクロール17の旋回運動に伴って、上述の第1実施形態と同様、可動基板部17aの給油穴50が、可動ピン30の給油穴30aに間欠的に連通する。
これに伴い、可動基板部17aの給油穴50が、可動ピン30の給油穴30aに非連通状態であるときには、可動ピン30の給油穴30aが可動基板部17aにより閉ざされる。
On the other hand, with the turning motion of the movable scroll 17, the oil supply hole 50 of the movable substrate portion 17 a communicates intermittently with the oil supply hole 30 a of the movable pin 30, as in the first embodiment.
Accordingly, when the oil supply hole 50 of the movable substrate portion 17a is not in communication with the oil supply hole 30a of the movable pin 30, the oil supply hole 30a of the movable pin 30 is closed by the movable substrate portion 17a.

また、可動基板部17aの給油穴50が、可動ピン30の給油穴30aに連通状態であるときには、潤滑油が可動ピン30の給油穴30aを通して可動基板部17aの給油穴50内に流れる。   Further, when the oil supply hole 50 of the movable substrate portion 17 a is in communication with the oil supply hole 30 a of the movable pin 30, the lubricating oil flows into the oil supply hole 50 of the movable substrate portion 17 a through the oil supply hole 30 a of the movable pin 30.

(第6実施形態)
上述の第1の実施形態では、可動ピンを固定スクロールに配置した例について説明したが、これに代えて、図9に示すように、可動ピンを可動スクロールに配置してもよい。
(Sixth embodiment)
In the first embodiment described above, the example in which the movable pin is arranged on the fixed scroll has been described. However, instead of this, as shown in FIG. 9, the movable pin may be arranged on the movable scroll.

この場合の構成を図9に示す。給油穴50の上流部側に可動収納部32を形成し、可動収納部32内に可動ピン30を収納する。この場合、可動ピン30および可動収納部32の潤滑油最下流部32bの間にバネ部材Baを配置し、可動ピン30は、その受圧面30bにバネ 部材Baからの弾性力を受け、固定基板部24a側に押し付けられる。   The configuration in this case is shown in FIG. The movable storage portion 32 is formed on the upstream side of the oil supply hole 50, and the movable pin 30 is stored in the movable storage portion 32. In this case, the spring member Ba is arranged between the movable pin 30 and the most downstream portion 32b of the lubricating oil of the movable storage portion 32. The movable pin 30 receives the elastic force from the spring member Ba on its pressure receiving surface 30b, and the fixed substrate It is pressed to the part 24a side.

固定基板部24aの間隙Ka側には、給油通路31が開口している。可動スクロール17の旋回運動に伴って、可動ピン30の給油穴30aと給油通路31とが間欠的に連通する。このため、可動ピン30の給油穴30aと給油通路31とが連通状態であるときには、給油通路31からの潤滑油が、可動ピン30の給油穴30aを通して可動基板部17aの給油穴50に流れる。   An oil supply passage 31 is open on the gap Ka side of the fixed substrate portion 24a. With the turning movement of the movable scroll 17, the oil supply hole 30a of the movable pin 30 and the oil supply passage 31 communicate intermittently. For this reason, when the oil supply hole 30a of the movable pin 30 and the oil supply passage 31 are in communication, the lubricating oil from the oil supply passage 31 flows into the oil supply hole 50 of the movable substrate portion 17a through the oil supply hole 30a of the movable pin 30.

一方、可動ピン30の給油穴30aと給油通路31とが非連通状態であるときには、可動ピン30の給油穴30aが固定基板部24aにより閉ざされる。このため、間隙Kaと可動ピン30の給油穴30aとの間が閉じられる。したがって、上述の第1実施形態と同様、可動ピン30の給油穴30aから潤滑油が間隙Ka内に流れることを防止できる。   On the other hand, when the oil supply hole 30a of the movable pin 30 and the oil supply passage 31 are not in communication, the oil supply hole 30a of the movable pin 30 is closed by the fixed substrate portion 24a. For this reason, the gap Ka and the oil supply hole 30a of the movable pin 30 are closed. Therefore, the lubricating oil can be prevented from flowing into the gap Ka from the oil supply hole 30a of the movable pin 30 as in the first embodiment.

(他の実施形態)
上述の各実施形態では、本発明の圧縮機として、可動スクロール17が固定スクロール24に対して旋回して冷媒を圧縮するスクロール型の圧縮機を用いた例について説明したが、これに限らず、本発明の圧縮機をレシプロ型の圧縮機、ロータリ型の圧縮機に適用してもよい。
(Other embodiments)
In each of the above-described embodiments, an example in which a scroll type compressor in which the movable scroll 17 swirls with respect to the fixed scroll 24 and compresses the refrigerant is used as the compressor of the present invention is not limited thereto. The compressor of the present invention may be applied to a reciprocating compressor and a rotary compressor.

上述の第1実施形態では、「ハウジング内の摺動部」として、「軸受部材29a、29bおよび駆動軸10の間の隙間」を用いた例について説明したが、これに代えて、「可動スクロール17および軸受部材29bの間の隙間」を「ハウジング内の摺動部」としてもよい。また、可動スクロール17の自転防止機構を設ける場合には、自転防止機構を「ハウジング内の摺動部」としてもよい。   In the first embodiment described above, an example in which “the gap between the bearing members 29a and 29b and the drive shaft 10” is used as the “sliding portion in the housing” has been described. 17 and the bearing member 29b ”may be“ sliding portion in the housing ”. Further, when a rotation prevention mechanism for the movable scroll 17 is provided, the rotation prevention mechanism may be a “sliding portion in the housing”.

本発明のヒートポンプ式給湯機の第1実施形態の構成を示す図である。It is a figure which shows the structure of 1st Embodiment of the heat pump type water heater of this invention. 図1の圧縮機の構造を示す断面図である。It is sectional drawing which shows the structure of the compressor of FIG. 図2中の部分拡大図である。It is the elements on larger scale in FIG. 図3の可動基板部の給油穴の旋回軌跡を示す図である。It is a figure which shows the turning locus | trajectory of the oil supply hole of the movable board | substrate part of FIG. 本発明の圧縮機の第2実施形態を示す部分図である。It is a fragmentary figure which shows 2nd Embodiment of the compressor of this invention. 本発明の圧縮機の第3実施形態を示す部分図である。It is a fragmentary figure which shows 3rd Embodiment of the compressor of this invention. 本発明の圧縮機の第4実施形態を示す部分図である。It is a fragmentary figure which shows 4th Embodiment of the compressor of this invention. 本発明の圧縮機の第5実施形態の圧縮機を示す断面図である。It is sectional drawing which shows the compressor of 5th Embodiment of the compressor of this invention. 本発明の圧縮機の第6実施形態を示す部分図である。It is a fragmentary figure which shows 6th Embodiment of the compressor of this invention.

符号の説明Explanation of symbols

17…可動スクロール、17a…可動基板部、
50…給油穴、30…可動ピン、30a…給油穴
Ka…間隙。
17 ... movable scroll, 17a ... movable substrate part,
50 ... refueling hole, 30 ... movable pin, 30a ... refueling hole Ka ... gap.

Claims (12)

冷媒吸入口(13)および冷媒吐出口(22)を備えるハウジング(1、1a、1c)と、
前記ハウジング内に収納され、固定部(24)と、変位可能に支持される可動部(17)と、を有する圧縮機構(4)と、を備え、
前記可動部の変位により、前記冷媒吸入口から低圧冷媒を吸入、圧縮し高圧冷媒を前記冷媒吐出口から吐出するものであり、
前記圧縮機構により圧縮された前記高圧冷媒から潤滑油を分離する分離部(21b)と、
前記固定部および前記可動部にそれぞれ設けられ、前記分離部からの潤滑油を前記低圧冷媒および前記高圧冷媒の圧力差に基づいて前記ハウジング内の摺動部に導く導入路(31、32、50)と、を備え、
前記可動部が変位することにより、前記導入路のうち固定部側導入路(31、32)と可動部側導入路(50)が間欠的に連通するように構成される圧縮機であって、
前記可動部および前記固定部のうち一方の部材の導入路内にて他方の部材側に変位可能に収納され、かつ給油穴(30a)を有する給油通路部材(30)を備え、
前記給油通路部材は、軸線方向に貫通する前記給油穴(30a)を有し、かつ前記一方の部材の導入路内にて移動可能に収納された給油可動部材(30)であり、
前記一方の部材の導入路内には、前記給油可動部材(30)を収納する収納部(32)が形成され、
前記導入路として、前記分離部からの潤滑油を前記収納部に導入する給油通路(31)が設けられており、
前記固定部側導入路(31、32)と前記可動部側導入路(50)が連通状態であるときには、前記一方の導入路内の潤滑油が前記給油可動部材(30)の給油穴を通して前記他方の導入路に供給され、
前記固定部側導入路と前記可動部側導入路が非連通状態であるときには、前記給油可動部材(30)が前記他方の部材側に押圧されて前記他方の部材側に移動することによって前記給油穴が前記他方の部材により閉じられ
前記給油通路(31)のうち潤滑油流れ方向に直交する断面積(S2)は、前記給油穴(30a)のうち潤滑油流れ方向に直交する断面積(S1)よりも、大きくなっており、
前記給油可動部材(30)のうち前記潤滑油流れ上流側端面には、前記給油通路(31)を介して前記高圧冷媒の圧力を受ける受圧部(30b)が設けられており、
前記非連通状態であるとき、前記給油可動部材(30)は、前記受圧部(30b)に前記高圧冷媒の圧力を受けて、前記高圧冷媒と前記低圧冷媒との圧力差によって前記他方の部材側に押圧されることを特徴とする圧縮機。
A housing (1, 1a, 1c) comprising a refrigerant inlet (13) and a refrigerant outlet (22);
A compression mechanism (4) housed in the housing and having a fixed part (24) and a movable part (17) supported so as to be displaceable;
Due to the displacement of the movable part, low-pressure refrigerant is sucked and compressed from the refrigerant suction port, and high-pressure refrigerant is discharged from the refrigerant discharge port.
A separation unit (21b) for separating lubricating oil from the high-pressure refrigerant compressed by the compression mechanism;
Introducing paths (31, 32, 50) provided in the fixed part and the movable part, respectively, for guiding the lubricating oil from the separation part to the sliding part in the housing based on a pressure difference between the low-pressure refrigerant and the high-pressure refrigerant. ) And
A compressor configured to intermittently communicate the fixed part side introduction path (31, 32) and the movable part side introduction path (50) of the introduction path by displacing the movable part,
An oil supply passage member (30) that is slidably housed on the other member side in the introduction path of one member of the movable part and the fixed part, and has an oil supply hole (30a),
The oil supply passage member is an oil supply movable member (30) having the oil supply hole (30a) penetrating in the axial direction and housed movably in the introduction path of the one member,
A storage portion (32) for storing the fuel supply movable member (30) is formed in the introduction path of the one member,
As the introduction path, an oil supply passage (31) for introducing the lubricating oil from the separation part into the storage part is provided,
When the fixed part side introduction path (31, 32) and the movable part side introduction path (50) are in communication, the lubricating oil in the one introduction path passes through the oil supply hole of the oil supply movable member (30). Supplied to the other introduction path,
When the stationary part side introduction path and the movable part side introduction path are in a non-communication state, the lubrication movable member (30) is pressed toward the other member and moved toward the other member. The hole is closed by said other member ,
The cross-sectional area (S2) orthogonal to the lubricating oil flow direction in the oil supply passage (31) is larger than the cross-sectional area (S1) orthogonal to the lubricating oil flow direction in the oil supply hole (30a).
A pressure receiving portion (30b) that receives the pressure of the high-pressure refrigerant through the oil supply passage (31) is provided on the upstream end surface of the lubricating oil flow in the oil supply movable member (30),
When in the non-communication state, the oil supply movable member (30) receives the pressure of the high-pressure refrigerant at the pressure receiving portion (30b), and the other member side due to a pressure difference between the high-pressure refrigerant and the low-pressure refrigerant A compressor characterized by being pressed by .
前記導入路(31、32、50)のうち高圧側(31、32)は、低圧側の導入路(50)に比べて潤滑油流れ方向に直交する断面積が小さくなっていることを特徴とする請求項1に記載の圧縮機。   Of the introduction passages (31, 32, 50), the high-pressure side (31, 32) has a smaller cross-sectional area perpendicular to the lubricating oil flow direction than the introduction passage (50) on the low-pressure side. The compressor according to claim 1. 前記給油可動部材(30)の軸線方向に対して直交する断面積(S3)は、前記給油穴(30a)のうち潤滑油流れ方向に直交する断面積(S1)よりも大きくなっていることを特徴とする請求項またはに記載の圧縮機。 Sectional area perpendicular to the axial direction of the fuel supply movable member (30) (S3) is larger than the cross-sectional area perpendicular to the lubricating oil flow direction in the previous SL supply oil hole (30a) (S1) The compressor according to claim 1 or 2 , characterized by the above-mentioned. 前記給油可動部材(30)を弾性力により前記他方の部材側に押圧する弾性部材(Ba)を備えることを特徴とする請求項ないしのいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 3 , further comprising an elastic member (Ba) that presses the oil supply movable member (30) toward the other member by an elastic force. 前記給油可動部材(30)を径方向から囲むように形成され、かつ前記給油可動部材の外周面と前記収納部(32)の内周面との間を密閉するシール部材(400)が設けられていることを特徴とする請求項ないしのいずれか1つに記載の圧縮機。 A seal member (400) is provided so as to surround the oil supply movable member (30) from the radial direction and seal between the outer peripheral surface of the oil supply movable member and the inner peripheral surface of the storage portion (32). The compressor according to any one of claims 1 to 4 , wherein the compressor is provided. 前記可動部と前記固定部との間の間隙において前記給油可動部材(30)を囲むように形成され、前記間隙を密閉する補助シール部材(400A)が設けられていることを特徴とする請求項1ないしのいずれか1つに記載の圧縮機。 The auxiliary seal member (400A) is provided so as to surround the oil supply movable member (30) in a gap between the movable portion and the fixed portion, and seals the gap. The compressor according to any one of 1 to 5 . 前記可動部は、可動基板部(17a)と、前記可動基板部から前記固定部側に突出して渦巻き状に形成される旋回羽根部(17b)とを備えており、
前記固定部は、前記固定基板部(24a)と、前記固定基板部から前記可動部側に突出して前記旋回羽根部に噛み合うように形成される固定羽根部(24b)とを備えており、
前記旋回羽根部が前記固定羽根部に対して旋回運動することにより、前記冷媒吸入口からの低圧冷媒を圧縮するものであることを特徴とする請求項1ないしのいずれか1つに記載の圧縮機。
The movable portion includes a movable substrate portion (17a), and a swirl blade portion (17b) that protrudes from the movable substrate portion toward the fixed portion and is formed in a spiral shape.
The fixed portion includes the fixed substrate portion (24a) and a fixed blade portion (24b) formed so as to protrude from the fixed substrate portion toward the movable portion and mesh with the swirl blade portion.
By the swirl vane portion to pivot movement with respect to the fixed blade portion, according to any one of claims 1 to 6, characterized in that for compressing a low-pressure refrigerant from the refrigerant suction port Compressor.
前記固定部側導入路は、前記固定基板部(24a)に設けられ、
前記可動部側導入路は、前記可動基板部(17a)に設けられていることを特徴とする請求項7に記載の圧縮機。
The fixed portion side introduction path is provided in the fixed substrate portion (24a),
The compressor according to claim 7 , wherein the movable part side introduction path is provided in the movable substrate part (17a).
前記可動部は、可動基板部(17a)と、前記可動基板部から前記固定部側に突出して渦巻き状に形成される旋回羽根部(17b)とを備えており、
前記固定部は、前記可動部の駆動軸(10)を回転可能に支持する軸受部材(29b)であり、
前記固定部側導入路は、前記軸受部材(29b)に設けられ、
前記可動部側導入路は、前記可動基板部(17a)に設けられていることを特徴とする請求項1ないし6のいずれか1つに記載の圧縮機。
The movable portion includes a movable substrate portion (17a), and a swirl blade portion (17b) that protrudes from the movable substrate portion toward the fixed portion and is formed in a spiral shape.
The fixed portion is a bearing member (29b) that rotatably supports the drive shaft (10) of the movable portion,
The fixed portion side introduction path is provided in the bearing member (29b),
The compressor according to any one of claims 1 to 6, wherein the movable portion side introduction path is provided in the movable substrate portion (17a).
前記可動部の駆動軸(10)を回転可能に支持する軸受部材(29b)を備え、
前記摺動部は、前記駆動軸および前記軸受部材の間隙であり、
前記駆動軸には、前記固定部側導入路および前記可動部側導入路を通して供給される潤滑油を、前記軸受部材および前記駆動軸の間の隙間に流す軸受け流入路(10b)が設けられていることを特徴とする請求項1ないしのいずれか1つに記載の圧縮機。
A bearing member (29b) that rotatably supports the drive shaft (10) of the movable part;
The sliding portion is a gap between the drive shaft and the bearing member;
The drive shaft is provided with a bearing inflow passage (10b) through which lubricating oil supplied through the fixed portion side introduction passage and the movable portion side introduction passage flows in a gap between the bearing member and the drive shaft. The compressor according to any one of claims 1 to 9 , wherein the compressor is provided.
前記可動部を前記駆動軸を介して駆動する電動モータ部(9、11)が設けられていることを特徴とする請求項9または10に記載の圧縮機。 The compressor according to claim 9 or 10 , wherein an electric motor section (9, 11) for driving the movable section via the drive shaft is provided. 前記冷媒は二酸化炭素であることを特徴とする請求項1ないし11のいずれか1つに記載の圧縮機。 The compressor according to the refrigerant to one 11 Neu Zureka claims 1, characterized in that carbon dioxide.
JP2007033505A 2007-02-14 2007-02-14 Compressor Active JP4924078B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007033505A JP4924078B2 (en) 2007-02-14 2007-02-14 Compressor
DE102008008860.9A DE102008008860B4 (en) 2007-02-14 2008-02-13 compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033505A JP4924078B2 (en) 2007-02-14 2007-02-14 Compressor

Publications (3)

Publication Number Publication Date
JP2008196415A JP2008196415A (en) 2008-08-28
JP2008196415A5 JP2008196415A5 (en) 2008-11-06
JP4924078B2 true JP4924078B2 (en) 2012-04-25

Family

ID=39755587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033505A Active JP4924078B2 (en) 2007-02-14 2007-02-14 Compressor

Country Status (1)

Country Link
JP (1) JP4924078B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249765A (en) * 2012-05-31 2013-12-12 Mitsubishi Electric Corp Horizontal compressor and air compression device for vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100701B2 (en) * 2009-04-23 2012-12-19 株式会社日本自動車部品総合研究所 Compressor
JP6154125B2 (en) * 2012-12-17 2017-06-28 三菱重工業株式会社 Compressor with built-in oil separator
JP7139718B2 (en) * 2018-06-26 2022-09-21 株式会社デンソー compressor
DE102021101627B4 (en) * 2021-01-26 2023-05-04 Sanden International (Europe) GmbH Scroll compressors with direct oil return from an oil separator to a compression section

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389753B2 (en) * 1995-09-20 2003-03-24 ダイキン工業株式会社 Scroll type fluid machine
JP2004028017A (en) * 2002-06-27 2004-01-29 Denso Corp Scroll type compressor
JP4063221B2 (en) * 2004-01-16 2008-03-19 株式会社デンソー Scroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249765A (en) * 2012-05-31 2013-12-12 Mitsubishi Electric Corp Horizontal compressor and air compression device for vehicle

Also Published As

Publication number Publication date
JP2008196415A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP4875484B2 (en) Multistage compressor
US20170268510A1 (en) Compressor valve system and assembly
JP2011012629A (en) Scroll compressor
JP5170197B2 (en) Scroll compressor
JP4924078B2 (en) Compressor
US10890182B2 (en) Scroll compressor having check valve and passage that communicates a discharge port with a discharge space when the check valve is closed
US11428229B2 (en) Scroll compressor having enhanced discharge structure
JP4992862B2 (en) Compressor
KR20180093693A (en) Scroll compressor
US9039396B2 (en) Piston and scroll compressor assembly
JP7336052B2 (en) compressor
JP2015148198A (en) Compressor and refrigeration cycle device
JP2017172346A (en) Scroll compressor and air conditioner
CN110762006B (en) Rotary compressor and refrigeration equipment
KR20100096794A (en) Scoroll compressor and refrigsrator having the same
JP2010203327A (en) Scroll compressor
JP4973099B2 (en) Compressor
JP4024056B2 (en) Rotary compressor
CN112412789B (en) Compressor and refrigeration cycle device
JP4401365B2 (en) Rotary compressor
JP2011163227A (en) Compressor
JP5304679B2 (en) Compressor
JP2018096327A (en) Compressor
JP2006283608A (en) Hermetic compressor
JP2017082841A (en) Bearing structure and scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4924078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250