JP4922651B2 - Method for producing wear-resistant catalyst molded body - Google Patents

Method for producing wear-resistant catalyst molded body Download PDF

Info

Publication number
JP4922651B2
JP4922651B2 JP2006110548A JP2006110548A JP4922651B2 JP 4922651 B2 JP4922651 B2 JP 4922651B2 JP 2006110548 A JP2006110548 A JP 2006110548A JP 2006110548 A JP2006110548 A JP 2006110548A JP 4922651 B2 JP4922651 B2 JP 4922651B2
Authority
JP
Japan
Prior art keywords
catalyst
molded body
treatment
range
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006110548A
Other languages
Japanese (ja)
Other versions
JP2006231332A (en
Inventor
保彦 木津
昇 杉島
信之 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2006110548A priority Critical patent/JP4922651B2/en
Publication of JP2006231332A publication Critical patent/JP2006231332A/en
Application granted granted Critical
Publication of JP4922651B2 publication Critical patent/JP4922651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、耐摩耗性に優れた脱硝処理またはダイオキシン類の酸化分解処理用触媒成形体の製造方法に関する。 The present invention relates to a method for producing a catalyst molded body for denitration or oxidative decomposition treatment of dioxins having excellent wear resistance.

現在、事業用発電設備をはじめとする各種産業分野ではボイラーやエンジンなどが動力源として広く使用されており、これらを稼動させるため一般に石炭、石油、ガスなどが燃料として用いられている。しかし、化石燃料を燃焼した際に発生する多量の燃焼ガス中には大気汚染原因となる窒素酸化物が含まれており、燃焼後ガスを大気中に排出するためには環境への影響、周辺住人への健康被害を考慮し、排ガス中の窒素酸化物を排煙脱硝処理装置で除去し無害化した後、大気中に排出する必要がある。これら排ガス中の窒素酸化物の排煙脱硝処理装置としては、例えば、チタンとケイ素とからなる複合酸化物または二酸化チタンなどのチタン化合物を含む、板状またはハニカム状の脱硝用触媒を排ガス煙道に設置し、脱硝用触媒の上流煙道部から排ガス中にアンモニア、尿素などの還元性ガスを添加した後、脱硝用触媒に通過させ窒素酸化物を水と窒素とに無害化する脱硝処理装置が一般的に用いられている。また、廃棄物を焼却した排ガスなどの処理では、ダイオキシン類や有機化合物の除去や脱硝、脱臭のための触媒を用いる場合も多い。   At present, boilers and engines are widely used as power sources in various industrial fields including commercial power generation facilities, and coal, oil, gas, etc. are generally used as fuels to operate these. However, a large amount of combustion gas generated when burning fossil fuel contains nitrogen oxides that cause air pollution. In order to discharge the burned gas into the atmosphere, the environmental impact, Considering the health hazards to residents, it is necessary to remove nitrogen oxides in the exhaust gas with a flue gas denitration treatment device and make it harmless, and then discharge it to the atmosphere. Examples of the flue gas denitration treatment apparatus for nitrogen oxides in these exhaust gases include, for example, a plate-like or honeycomb-like denitration catalyst containing a composite oxide composed of titanium and silicon or a titanium compound such as titanium dioxide as an exhaust gas flue. Denitration treatment equipment installed in the exhaust flue of the denitration catalyst, adding reducing gas such as ammonia and urea into the exhaust gas, and then passing through the denitration catalyst to make nitrogen oxides harmless to water and nitrogen Is generally used. Further, in the treatment of exhaust gas from incinerated waste, a catalyst for removing dioxins and organic compounds, denitration, and deodorization is often used.

しかし、例えば燃料として石炭を使用する石炭焚きボイラでは、発生する排ガス中にフライアッシュなどのダスト成分が高濃度で含まれているため、この排ガスが触媒を通過する時にダスト成分と触媒とが接触して触媒が削られる、いわゆる摩耗現象が発生し、特にダストとの衝突が激しい排ガス入口側端面では触媒摩耗が大きいことが広く知られている。   However, for example, in coal-fired boilers that use coal as the fuel, dust components such as fly ash are contained in the exhaust gas that is generated at a high concentration. Therefore, when the exhaust gas passes through the catalyst, the dust component and the catalyst come into contact with each other. It is widely known that the catalyst wears off, that is, a so-called wear phenomenon occurs, and the catalyst wear is particularly large at the exhaust gas inlet side end face where the collision with dust is severe.

このような排ガス中のダストによる触媒摩耗の対応策として、水ガラスなどのガラス、あるいは釉による触媒表面の被覆方法が提案されている(特許文献1)。しかし、水ガラスなどのガラス質を用いて触媒表層を被覆する方法では、ガラス質被覆後の熱処理で発生する水蒸気などにより被覆層が破壊され、また強度向上のため被覆層を厚くすると加熱時に被覆層の熱収縮・膨張が起こり、歪が破壊してしまうなどの問題が発生する。さらに、これらガラス質被覆処理した触媒を高濃度ダスト条件で暴露した場合、しばらく暴露を継続するとダストによりガラス質被覆層が摩耗して未処理部分が露出し、その後露出部分を中心に局部的な摩耗が発生することから、十分な耐摩耗強度は得られなかった。   As a countermeasure against such catalyst wear due to dust in the exhaust gas, a method of coating the catalyst surface with glass such as water glass or soot has been proposed (Patent Document 1). However, in the method of coating the catalyst surface layer using glassy material such as water glass, the coating layer is destroyed by water vapor generated by heat treatment after the glassy coating, and when the coating layer is thickened to improve the strength, it is coated during heating. Problems such as thermal contraction / expansion of the layers occur and strain is destroyed. In addition, when these glassy coating-treated catalysts are exposed under high-concentration dust conditions, if the exposure is continued for a while, the vitreous coating layer is abraded by the dust and untreated parts are exposed, and then the exposed parts are mainly localized. Since abrasion occurred, sufficient abrasion resistance strength could not be obtained.

また、上記方法の改良法として、触媒に予め金属酸化物を担持し、後から被覆するケイ酸ナトリウムなどのガラス質と触媒との反応を抑制する方法が提案されている(特許文献2)。しかし、この方法は製造工程が更に複雑となり量産技術としては適当とはいえない。   As an improved method of the above method, there has been proposed a method in which a metal oxide is previously supported on a catalyst and the reaction between the vitreous such as sodium silicate and the catalyst to be coated later and the catalyst is suppressed (Patent Document 2). However, this method is not suitable as a mass production technique because the manufacturing process becomes more complicated.

また、耐摩耗強度向上方法として、シリカゲルなどの水溶性コロイド溶液による被覆方法も提案されている。この方法はコロイド溶液中の無機微粒子が触媒細孔内部表面まで侵入して細孔表面を被覆するため、ガラス質被覆方法に比べ局部的な摩耗現象は発生しにくい。しかし、触媒細孔に侵入し細孔表面を被覆する無機微粒子量が少ないと目的とする効果が得られないため、無機微粒子を多くするためシリカなどの高濃度に含有されたコロイド溶液にて処理しても、一定量以上の無機微粒子は細孔表面に被覆できず触媒表面に残存し、これが被覆層の剥離や被覆層のムラなどの原因となりかえって耐摩耗強度が低下する。   Further, as a method for improving the wear resistance strength, a coating method using a water-soluble colloidal solution such as silica gel has been proposed. In this method, since the inorganic fine particles in the colloidal solution penetrate into the inner surface of the catalyst pores and coat the pore surfaces, local wear phenomenon is less likely to occur compared to the vitreous coating method. However, if the amount of inorganic fine particles that enter the catalyst pores and cover the surface of the fine pores is small, the desired effect cannot be obtained. Therefore, in order to increase the amount of inorganic fine particles, treatment is performed with a colloidal solution containing silica or other high concentrations. However, a certain amount or more of the inorganic fine particles cannot be coated on the pore surface and remain on the catalyst surface, which may cause peeling of the coating layer or unevenness of the coating layer, resulting in a decrease in wear resistance.

特公昭57−26820号公報Japanese Patent Publication No.57-26820 特開平11−57489号公報JP-A-11-57489

本発明の目的は、耐摩耗性に優れ、例えば、ダストを含む排ガスの脱硝処理に使用するのに好適な耐摩耗性触媒の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a wear-resistant catalyst which is excellent in wear resistance and is suitable for use in, for example, denitration treatment of exhaust gas containing dust.

本発明者らの研究によれば、上記課題は下記発明により解決できることがわかった。
(1)脱硝処理またはダイオキシン類の酸化分解処理用の触媒組成物を成形した後、乾燥、焼成して得られる、孔径が0.01〜100μmの範囲の細孔を有し、かつ、ガス流れ方向に貫通口を有する多孔性触媒成形体において、そのガス入口部を、ガス入口端部から成形体全長の15%の範囲内で、スノーテックス(商品名)を用いて調製したシリカ分散液で浸漬または含浸処理を行って、細孔の閉塞率が1.19〜4.29%、かつ、孔径0.01〜0.1μm範囲の細孔の閉塞容積が全細孔閉塞容積の10〜29%とすることを特徴とする耐摩耗性触媒成形体の製造方法。
(2)触媒組成物がチタン−ケイ素複合酸化物またはチタン酸化物を主成分とし、そのほか、触媒活性成分を含有するものである上記(1)の耐摩耗性触媒成形体の製造方法。
According to the studies by the present inventors, it has been found that the above problems can be solved by the following invention.
(1) After forming a catalyst composition for denitration treatment or oxidative decomposition treatment of dioxins, the catalyst composition has pores having a pore diameter ranging from 0.01 to 100 μm, and is obtained by drying and firing, and gas flow In a porous catalyst molded body having through-holes in the direction, the gas inlet portion is a silica dispersion prepared using Snowtex (trade name) within a range of 15% of the total length of the molded body from the gas inlet end portion. When the immersion or impregnation treatment is performed, the pore occlusion ratio is 1.19 to 4.29%, and the pore occlusion volume in the pore diameter range of 0.01 to 0.1 μm is 10 to 29 of the total pore occlusion volume. % . A method for producing a wear-resistant catalyst molded body characterized by comprising:
(2) The method for producing a wear-resistant catalyst molded article according to the above (1), wherein the catalyst composition contains titanium-silicon composite oxide or titanium oxide as a main component and contains a catalytically active component.

本発明の耐摩耗性触媒成形体は、耐摩耗性に優れ、例えば、ダストを含む排ガスの脱硝処理に好適に用いられる。   The wear-resistant catalyst molded body of the present invention is excellent in wear resistance, and is suitably used for, for example, denitration treatment of exhaust gas containing dust.

本発明の耐摩耗性触媒成形体とは、排ガスの脱硝処理、ダイオキシン類の酸化分解処理、脱臭処理、有機化合物分解処理などの各種処理に用いられる触媒成形体であって、その少なくともガス入口側部を耐摩耗性にしたものである。その代表例としては、排ガスの脱硝処理やダイオキシン類の酸化分解処理、特に排ガス中のダストによって摩耗現象が起こりやすい、排ガスの脱硝処理に用いる触媒成形体のガス入口側部を耐摩耗性にしたものを挙げることができる。   The wear-resistant catalyst molded body of the present invention is a catalyst molded body used for various treatments such as denitration treatment of exhaust gas, oxidative decomposition treatment of dioxins, deodorization treatment, organic compound decomposition treatment, at least on the gas inlet side The part is made wear resistant. Typical examples include denitration treatment of exhaust gas and oxidative decomposition treatment of dioxins, especially wear phenomenon caused by dust in the exhaust gas, which makes the gas inlet side part of the catalyst molded body used for denitration treatment of exhaust gas wear resistant. Things can be mentioned.

上記触媒成形体については特に制限はなく、上記各種処理に一般に用いられている、ガス流れ方向に貫通孔を有する多孔性触媒成形体であればいずれも使用することができる。具体的には、例えば、排ガスの脱硝処理に一般に用いられている、チタン−ケイ素複合酸化物、または二酸化チタンなどのチタン酸化物を主成分とし、そのほかモリブデン、バナジウム、タングステンなどの酸化物を含有する触媒組成物を図1に示すハニカム状、あるいは図2に示す板状などに成形することにより上記触媒成形体が得られるが、本発明の耐摩耗性触媒成形体は、この触媒成形体の少なくともガス入口側部を耐摩耗化処理したものである。なお、上記多孔性触媒成形体は、通常、孔径が0.01〜100μmの範囲の細孔を有している。   There is no restriction | limiting in particular about the said catalyst molded object, All can be used if it is a porous catalyst molded object which has a through-hole in the gas flow direction generally used for the said various processes. Specifically, for example, titanium-silicon composite oxide or titanium oxide such as titanium dioxide, which is generally used for denitration treatment of exhaust gas, contains oxides such as molybdenum, vanadium, and tungsten. The catalyst molded body is obtained by molding the catalyst composition to be formed into a honeycomb shape as shown in FIG. 1 or a plate shape as shown in FIG. 2. The wear-resistant catalyst molded body of the present invention is obtained from this catalyst molded body. At least the gas inlet side is subjected to wear resistance treatment. In addition, the said porous catalyst molded object has the pore of the range whose pore diameter is 0.01-100 micrometers normally.

本発明の耐摩耗性触媒成形体は、ガス流れ方向に貫通口を有する多孔性触媒成形体のガス入口側部に、細孔の閉塞率が1〜35%、かつ孔径0.01〜0.1μm範囲の細孔の閉塞容積が全細孔閉塞容積の6〜50%となるようにシリカを担持したものである。   The wear-resistant catalyst molded body of the present invention has a pore blocking ratio of 1 to 35% and a pore diameter of 0.01 to 0.00 at the gas inlet side portion of the porous catalyst molded body having through holes in the gas flow direction. Silica is supported so that the closed volume of pores in the 1 μm range is 6 to 50% of the closed volume of all pores.

細孔の閉塞率は1〜35%であり、好ましくは3〜30%である。ここで、「閉塞率」とは次のとおり定義されるものである。なお、細孔容積は水銀圧入法によって測定したものである。
閉塞率(%)=(耐摩耗化処理前の全細孔容積−耐摩耗化処理後の全細孔容積)/(耐摩耗化処理前の全細孔容積)(×100)
上記閉塞率が1%未満では十分な耐摩耗強度が得られず、一方35%を超えると耐摩耗化処理に用いたシリカの担持ムラなどが発生し、かえって耐摩耗強度が低下する。
The blocking rate of the pores is 1 to 35%, preferably 3 to 30%. Here, the “blocking rate” is defined as follows. The pore volume is measured by mercury porosimetry.
Occlusion rate (%) = (total pore volume before abrasion resistance treatment−total pore volume after abrasion resistance treatment) / (total pore volume before abrasion resistance treatment) (× 100)
If the clogging rate is less than 1%, sufficient wear resistance strength cannot be obtained. On the other hand, if it exceeds 35%, the unevenness of the silica used in the wear resistance treatment occurs, and the wear resistance strength decreases.

本発明の耐摩耗性触媒成形体においては、触媒成形体の0.01〜100μmの範囲の孔径を有する細孔のうち、0.01〜0.1μmの範囲の孔径を有する細孔(本発明では孔径0.01〜0.1μm範囲の細孔という。)の少なくとも一部を閉塞させて閉塞率が1〜35%の範囲となるようにするのが好ましい。すなわち、0.01〜0.1μmという微小な孔径を有する細孔の少なくとも一部を閉塞することにより、より効果的に耐摩耗性を向上させることができる。   In the wear-resistant catalyst molded body of the present invention, among the pores having a pore diameter in the range of 0.01 to 100 μm of the catalyst molded body, pores having a pore diameter in the range of 0.01 to 0.1 μm (the present invention Then, it is preferable that at least a part of the pores having a pore diameter in the range of 0.01 to 0.1 μm is closed so that the blocking rate is in the range of 1 to 35%. That is, the wear resistance can be improved more effectively by closing at least a part of the pores having a minute pore diameter of 0.01 to 0.1 μm.

また、本発明の耐摩耗性触媒成形体においては、上記の孔径0.01〜0.1μm範囲の細孔を、その閉塞容積が全細孔閉塞容積の6〜50%となるように閉塞させる。すなわち、下記式で算出される数値(以下、孔径0.01〜0.1μm範囲の細孔閉塞率という。)が6〜50%となるようにする。
孔径0.01〜0.1μm範囲の細孔閉塞率(%)=
(耐摩耗化処理前の孔径0.01〜0.1μm範囲の細孔容積−耐摩耗化処理後の孔径0.01〜0.1μm範囲の細孔容積)/(耐摩耗化処理前の全細孔容積−耐摩耗化処理後の全細孔容積)(×100)
なお、孔径0.01〜0.1μm範囲の細孔容積は水銀圧入法により測定した。水銀圧入法による細孔容積測定では、水銀を低圧から高圧へ段階的に加圧しながら圧入し、大孔径から小孔径の細孔の順に測定が行われる。このとき、各測定圧力で測定される細孔の孔径は一定であることから、孔径0.01〜0.1μm範囲の細孔の測定圧力から孔径0.01〜0.1μm範囲の細孔容積を求めた。
Further, in the wear-resistant catalyst molded body of the present invention, the pores having the pore diameters in the range of 0.01 to 0.1 μm are blocked so that the closed volume is 6 to 50% of the total pore closed volume. . That is, the numerical value calculated by the following formula (hereinafter referred to as the pore clogging rate in the range of pore diameter of 0.01 to 0.1 μm) is set to 6 to 50%.
Pore blockage rate (%) in the range of 0.01 to 0.1 μm
(Pore volume in the range of 0.01 to 0.1 μm before the wear resistance treatment−pore volume in the range of 0.01 to 0.1 μm after the wear resistance treatment) / (total before the abrasion resistance treatment) Pore volume-total pore volume after anti-abrasion treatment) (× 100)
The pore volume in the pore diameter range of 0.01 to 0.1 μm was measured by mercury porosimetry. In the pore volume measurement by the mercury intrusion method, mercury is injected while being gradually pressurized from a low pressure to a high pressure, and measurement is performed in the order of pores having a large pore diameter to a small pore diameter. At this time, since the pore diameter measured at each measurement pressure is constant, the pore volume ranging from 0.01 to 0.1 μm to the pore volume ranging from 0.01 to 0.1 μm pore diameter is measured. Asked.

上記孔径0.01〜0.1μm範囲の細孔閉塞率が6%未満では、触媒成形体の耐摩耗性を十分に向上させることができない。   When the pore clogging ratio in the pore diameter range of 0.01 to 0.1 μm is less than 6%, the wear resistance of the catalyst molded body cannot be sufficiently improved.

本発明の耐摩耗性触媒成形体は、その少なくともガス入口側部をケイ素化合物を含む溶液または分散液で処理し、その後乾燥、焼成することにより得られる。この溶液または分散液による処理は、元素化合物が細孔内部まで十分侵入するようにすればよく、例えば、触媒成形体の少なくともガス入口側部にケイ素化合物を含む溶液または分散液を含浸させればよい。例えば、シリカゾル(例えば、スノーテックス(商品名))を用いることができる。シリカゾルは、排ガス中に含まれるSOの酸化性能が低く実用的である(SO酸化性能が高いとSOを生成し、配管腐食や硫黄化合物による配管閉塞などの問題を起こす。)
分散液による処理は、シリカゾルを用いて行われるが、その際の孔径0.01〜0.1μm範囲の細孔閉塞率は6〜50%である。なお、ゾルとしては、平均粒子径が5〜20μmの範囲のものが用いられる。
The wear-resistant catalyst molded body of the present invention can be obtained by treating at least the gas inlet side with a solution or dispersion containing a silicon compound, followed by drying and firing. The treatment with the solution or dispersion may be performed so that the elemental compound sufficiently penetrates into the pores. For example, if a solution or dispersion containing a silicon compound is impregnated on at least the gas inlet side of the catalyst molded body. Good. For example, silica sol (for example, Snowtex (trade name)) can be used. Silica sol is practical because it has low oxidation performance of SO 2 contained in exhaust gas (high SO 2 oxidation performance generates SO 3 and causes problems such as pipe corrosion and pipe clogging with sulfur compounds).
The treatment with the dispersion is performed using silica sol, and the pore clogging rate in the range of 0.01 to 0.1 μm is 6 to 50%. As the sol, those having an average particle diameter in the range of 5 to 20 μm are used.

触媒成形体全体を耐摩耗化処理してもよいが、通常、触媒成形体のガス入口側部(入口側端部)について耐摩耗化処理を行えばよい。具体的には、例えば、ガス入口側から触媒成形体の1〜15%の長さの範囲を処理すればよい。   Although the entire catalyst molded body may be subjected to wear resistance treatment, it is usually sufficient to perform the wear resistance treatment on the gas inlet side portion (inlet side end portion) of the catalyst molded body. Specifically, for example, a range of 1 to 15% of the length of the catalyst molded body from the gas inlet side may be processed.

触媒成形体は、上記元素化合物溶液または分散液による処理の後、乾燥、焼成するが、この焼成は50〜650℃、好ましくは100〜500℃の範囲で行うのがよい。焼成温度が低すぎると耐摩耗強度の向上が十分でなく、一方高すぎると触媒が熱劣化を起こしたり、また結晶構造の変化により摩耗強度が低下することがある。なお、上記元素化合物は、焼成などにより、酸化物などの形態に変換されているものと考えられる。   The catalyst molded body is dried and fired after the treatment with the elemental compound solution or dispersion, and the firing is preferably performed at 50 to 650 ° C, preferably 100 to 500 ° C. If the calcination temperature is too low, the wear resistance strength is not sufficiently improved, while if it is too high, the catalyst may be thermally deteriorated or the wear strength may be reduced due to a change in crystal structure. In addition, it is thought that the said elemental compound is converted into forms, such as an oxide, by baking.

以下、実施例を挙げて本発明を更に具体的に説明する。
(実施例1)
触媒成形体として、チタニアとシリカとからなる複合酸化物を主成分とし、これにバナジウムおよびタングステンを加えてなる、壁厚1mm、長さ1mのハニカム状触媒成形体を用いた。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
As the catalyst molded body, a honeycomb-shaped catalyst molded body having a wall thickness of 1 mm and a length of 1 m, comprising a composite oxide composed of titania and silica as a main component and vanadium and tungsten added thereto, was used.

この触媒成形体の端面から50mmの範囲の部分に、スノーテックス(商品名、日産化学(株)製)を用いて調製した、シリカ含有量が7質量%のコロイダル溶液を含浸させ、常温の室温で8時間放置した後、さらに450℃で2時間焼成した。これにより端面部(処理部)にシリカが被覆された触媒(1)が得られた。   A portion in a range of 50 mm from the end face of the catalyst molded body was impregnated with a colloidal solution having a silica content of 7% by mass prepared using Snowtex (trade name, manufactured by Nissan Chemical Co., Ltd.), and room temperature at room temperature. And then left to stand at 450 ° C. for 2 hours. As a result, a catalyst (1) in which the end face part (treatment part) was coated with silica was obtained.

この触媒(1)の細孔容積を水銀圧入法により測定したところ、その細孔容積は、処理部で0.415cc/gであり、未処理部で0.42cc/gであった。また、孔径0.01〜0.1μm範囲の細孔容積については、処理部で0.3245cc/gであり、未処理部で0.3250cc/gであった。閉塞率および孔径0.01〜0.1μm範囲の細孔閉塞率を表1に示す。
(実施例2)
実施例1で用いたと同じ触媒成形体の端面から50mmの範囲の部分に、スノーテックス(商品名、日産化学(株)製)を用いて調製した、シリカ含有量が7質量%のコロイダル溶液を含浸させ、常温の室温で8時間放置した後(含浸−乾燥工程:4回)、さらに450℃で2時間焼成した。これにより端面部(処理部)にシリカが被覆された触媒(2)が得られた。
When the pore volume of this catalyst (1) was measured by mercury porosimetry, the pore volume was 0.415 cc / g in the treated part and 0.42 cc / g in the untreated part. The pore volume in the range of 0.01 to 0.1 μm in pore diameter was 0.3245 cc / g in the treated part and 0.3250 cc / g in the untreated part. The blockage rate and the pore blockage rate in the range of 0.01 to 0.1 μm are shown in Table 1.
(Example 2)
A colloidal solution having a silica content of 7% by mass prepared using Snowtex (trade name, manufactured by Nissan Chemical Co., Ltd.) is applied to a portion in the range of 50 mm from the end face of the same catalyst molded body as used in Example 1. It was impregnated and allowed to stand at room temperature for 8 hours (impregnation-drying step: 4 times) and then calcined at 450 ° C. for 2 hours. As a result, a catalyst (2) in which the end face part (treatment part) was coated with silica was obtained.

この触媒(2)の細孔容積を水銀圧入法により測定したところ、その細孔容積は、処理部で0.402cc/gであり、未処理部で0.42cc/gであった。また、孔径0.01〜0.1μm範囲の細孔容積については、処理部で0.3198cc/gであり、未処理部で0.3250cc/gであった。閉塞率および孔径0.01〜0.1μm範囲の細孔閉塞率を表1に示す。
(比較例1)
実施例1で用いたと同じ触媒成形体をボックス型乾燥器内で120℃で3時間乾燥させた後、さらに450℃で2時間焼成した。
When the pore volume of this catalyst (2) was measured by mercury porosimetry, the pore volume was 0.402 cc / g in the treated part and 0.42 cc / g in the untreated part. In addition, the pore volume in the pore diameter range of 0.01 to 0.1 μm was 0.3198 cc / g in the treated part and 0.3250 cc / g in the untreated part. The blockage rate and the pore blockage rate in the range of 0.01 to 0.1 μm are shown in Table 1.
(Comparative Example 1)
The same catalyst molded body as used in Example 1 was dried in a box-type dryer at 120 ° C. for 3 hours, and further calcined at 450 ° C. for 2 hours.

このようにして得られた触媒(3)の細孔容積を水銀圧入法により測定したところ、その細孔容積は0.42cc/gであった。また、孔径0.01〜0.1μm範囲の細孔容積は、0.3250cc/gであった。閉塞率および孔径0.01〜0.1μm範囲の細孔閉塞率を表1に示す。
(比較例2)
実施例1で用いたと同じ触媒成形体の端面から50mmの範囲の部分に、スノーテックス(商品名、日産化学(株)製)を用いて調製した、シリカ含有量が1質量%のコロイダル溶液を含浸させ、常温の室温で8時間放置した後、さらに450℃で2時間焼成した。これにより端面部(処理部)にシリカが被覆された触媒(4)が得られた。
The pore volume of the catalyst (3) thus obtained was measured by mercury porosimetry, and the pore volume was 0.42 cc / g. Moreover, the pore volume in the pore diameter range of 0.01 to 0.1 μm was 0.3250 cc / g. The blockage rate and the pore blockage rate in the range of 0.01 to 0.1 μm are shown in Table 1.
(Comparative Example 2)
A colloidal solution having a silica content of 1% by mass prepared using Snowtex (trade name, manufactured by Nissan Chemical Co., Ltd.) is applied to a portion within a range of 50 mm from the end face of the same catalyst molded body used in Example 1. It was impregnated and allowed to stand at room temperature for 8 hours and then calcined at 450 ° C. for 2 hours. As a result, a catalyst (4) in which the end surface portion (treatment portion) was coated with silica was obtained.

この触媒(4)の細孔容積を水銀圧入法により測定したところ、その細孔容積は、処理部で0.418cc/gであり、未処理部で0.42cc/gであった。また、孔径0.01〜0.1μm範囲の細孔容積については、処理部で0.3249cc/gであり、未処理部で0.3250cc/gであった。閉塞率および孔径0.01〜0.1μm範囲の細孔閉塞率を表1に示す。
(実施例3)
触媒(1)〜(4)をそれぞれ端面から100mmのところで切断し、風洞内に触媒開口部がガス流れ方向に対し垂直になるように、また処理部がガス入口側となるように設置した。
When the pore volume of this catalyst (4) was measured by the mercury intrusion method, the pore volume was 0.418 cc / g in the treated part and 0.42 cc / g in the untreated part. The pore volume in the range of 0.01 to 0.1 μm in pore diameter was 0.3249 cc / g in the treated part and 0.3250 cc / g in the untreated part. The blockage rate and the pore blockage rate in the range of 0.01 to 0.1 μm are shown in Table 1.
(Example 3)
Each of the catalysts (1) to (4) was cut at a distance of 100 mm from the end face, and installed in the wind tunnel so that the catalyst opening was perpendicular to the gas flow direction and the treatment part was on the gas inlet side.

平均粒子径約40μmのケイ砂を50g/Nm相当含有したケイ砂含有空気を30m/秒の速度で60分間触媒内を通過させた。ケイ砂含有空気の通過前(試験前)の触媒の重量と通過後(試験後)の触媒の重量とを測定して、下記式にしたがって摩耗率を求めた。
摩耗率(%)=(試験前の触媒重量−試験後の触媒重量)/(試験前の触媒重量)(×100)
結果を表1に示す。
Silica sand-containing air containing 50 g / Nm 3 of silica sand having an average particle diameter of about 40 μm was passed through the catalyst at a speed of 30 m / sec for 60 minutes. The weight of the catalyst before the passage of the silica sand-containing air (before the test) and the weight of the catalyst after the passage (after the test) were measured, and the wear rate was determined according to the following formula.
Abrasion rate (%) = (catalyst weight before test−catalyst weight after test) / (catalyst weight before test) (× 100)
The results are shown in Table 1.

Figure 0004922651
Figure 0004922651

ハニカム状触媒の斜視図および横断面図である。It is the perspective view and cross-sectional view of a honeycomb-shaped catalyst. 板状触媒の斜視図および横断面図である。It is the perspective view and cross-sectional view of a plate-shaped catalyst.

Claims (2)

脱硝処理またはダイオキシン類の酸化分解処理用の触媒組成物を成形した後、乾燥、焼成して得られる、孔径が0.01〜100μmの範囲の細孔を有し、かつ、ガス流れ方向に貫通口を有する多孔性触媒成形体において、そのガス入口部を、ガス入口端部から成形体全長の15%の範囲内で、スノーテックス(商品名)を用いて調製したシリカ分散液で浸漬または含浸処理を行って、細孔の閉塞率が1.19〜4.29%、かつ、孔径0.01〜0.1μm範囲の細孔の閉塞容積が全細孔閉塞容積の10〜29%とすることを特徴とする耐摩耗性触媒成形体の製造方法。 After forming a catalyst composition for denitration treatment or oxidative decomposition treatment of dioxins, it is obtained by drying and firing, and has pores with a pore diameter in the range of 0.01 to 100 μm and penetrates in the gas flow direction. In a porous catalyst molded body having a mouth, the gas inlet portion is immersed or impregnated with a silica dispersion prepared using Snowtex (trade name) within a range of 15% of the total length of the molded body from the gas inlet end. By performing the treatment, the clogging rate of the pores is 1.19 to 4.29%, and the clogging volume of the pores in the pore diameter range of 0.01 to 0.1 μm is 10 to 29% of the total pore clogging volume. A method for producing a wear-resistant catalyst molded body characterized by the above. 触媒組成物がチタン−ケイ素複合酸化物またはチタン酸化物を主成分とし、そのほか、触媒活性成分を含有するものである請求項1に記載の耐摩耗性触媒成形体の製造方法。 2. The method for producing a wear-resistant catalyst molded body according to claim 1, wherein the catalyst composition contains titanium-silicon composite oxide or titanium oxide as a main component and additionally contains a catalytically active component.
JP2006110548A 2000-01-20 2006-04-13 Method for producing wear-resistant catalyst molded body Expired - Lifetime JP4922651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110548A JP4922651B2 (en) 2000-01-20 2006-04-13 Method for producing wear-resistant catalyst molded body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000011610 2000-01-20
JP2000011610 2000-01-20
JP2006110548A JP4922651B2 (en) 2000-01-20 2006-04-13 Method for producing wear-resistant catalyst molded body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001009716A Division JP2001269576A (en) 2000-01-20 2001-01-18 Abrasion-resistant catalyst

Publications (2)

Publication Number Publication Date
JP2006231332A JP2006231332A (en) 2006-09-07
JP4922651B2 true JP4922651B2 (en) 2012-04-25

Family

ID=37039553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110548A Expired - Lifetime JP4922651B2 (en) 2000-01-20 2006-04-13 Method for producing wear-resistant catalyst molded body

Country Status (1)

Country Link
JP (1) JP4922651B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911340B2 (en) * 1977-11-15 1984-03-14 株式会社日本触媒 Improved shaped catalyst for nitrogen oxide purification
JPS55155740A (en) * 1979-05-22 1980-12-04 Nippon Shokubai Kagaku Kogyo Co Ltd Fortified catalyzer for exhaust gas treatment
JPS57131837A (en) * 1981-02-10 1982-08-14 Suzuki Motor Co Ltd Fuel injection control device
JPS62158160A (en) * 1985-12-27 1987-07-14 堺化学工業株式会社 Formed catalyst and catalytic reaction
JPH0338256A (en) * 1989-07-04 1991-02-19 Babcock Hitachi Kk Manufacture of plate-shaped catalyst for removing nitrogen oxide
JPH0691960B2 (en) * 1990-08-27 1994-11-16 株式会社日本触媒 Enhanced exhaust gas treatment catalyst
JPH08229412A (en) * 1995-11-30 1996-09-10 Nippon Shokubai Co Ltd Catalyst and method for removing nitrogen oxide
JPH09173866A (en) * 1995-12-28 1997-07-08 Nippon Soken Inc Diesel exhaust gas purifying filter
JP3560408B2 (en) * 1996-02-15 2004-09-02 株式会社日本自動車部品総合研究所 Diesel exhaust gas purification filter and method for producing the same
JP3595622B2 (en) * 1996-04-18 2004-12-02 三菱重工業株式会社 Catalyst and method for reducing and removing nitrogen oxides contained in exhaust gas
JPH1157489A (en) * 1997-08-19 1999-03-02 Babcock Hitachi Kk Reinforcing method of exhaust gas denitrification catalyst
JPH11239706A (en) * 1998-02-25 1999-09-07 Ngk Insulators Ltd Method and apparatus for dust collection of incinerator exhaust gas
JP2000126615A (en) * 1998-10-21 2000-05-09 Babcock Hitachi Kk Production of wear-resistant catalyst

Also Published As

Publication number Publication date
JP2006231332A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4813830B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
JP4907860B2 (en) Filter catalyst
KR101298305B1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JP5576023B2 (en) Ammonia oxidation catalyst for coal burning public facilities
CN101428240B (en) Selective catalytic reduction flue gas denitration catalyst and production method thereof
ES2792679T3 (en) Catalyzed ceramic spark plug filter and process exhaust or waste gas cleaning method
KR20030070827A (en) Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process
KR101456275B1 (en) Process of regenerating catalyst for denitration
KR20120028049A (en) A catalyst for selective catalytic reduction of nitrogen oxides and method for regeneration thereof
KR20110055533A (en) Nox removal catalyst for high-temperature flue gas, manufacturing method thereof, and nox removal method for high-temperature flue gas
JP4175671B2 (en) NOx removal catalyst manufacturing method and exhaust gas purification method
JP4922651B2 (en) Method for producing wear-resistant catalyst molded body
JP2006192344A (en) Method for regenerating denitrification catalyst and regenerated denitrification catalyst
JP2001269576A (en) Abrasion-resistant catalyst
JP2013180286A (en) Denitration catalyst for treating exhaust gas and method for treating exhaust gas
JP4873211B2 (en) Catalyst for selective catalytic reduction of nitrogen oxides and method for producing the same.
JP2006314935A (en) Flue gas nox removal catalyst, its manufacturing method, and flue gas nox removal system
JPH0647282A (en) Catalyst for low temperature denitrification of flue gas, its production and method for low temperature denitrification of flue gas
EP0605237B1 (en) Exhaust gas cleaner
JP5078958B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
JP2016159272A (en) Regeneration process of denitration catalyst
JP4511920B2 (en) Method for producing denitration catalyst
KR100970337B1 (en) A catalyst for selective catalytic reduction of nitrogen oxides and A method for preparing the same
JP4918241B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
JP2006075671A (en) Method for regenerating denitration catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Ref document number: 4922651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

EXPY Cancellation because of completion of term